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ABSTRACT

With the growing popularity of large-scale models, neural networks with massive
numbers of parameters and increasingly complex architectures have been widely
deployed in practice. While significant theoretical efforts have been devoted to
understanding generalization in the overparameterized regime, the role of non-
parametric architectural structures remains less well understood. In this paper, we
study the structural influence of skip connections on generalization through the
lens of the PAC-Bayesian framework. We introduce a notion of general weight
correlation to formally capture inter-layer dependencies induced by skip connec-
tions. Based on this framework, we theoretically show that correlations between
adjacent layers hinder generalization, thereby explaining why ResNet-style skip
connections provide an advantage. We further analyze the interaction between
cross-layer and intra-layer correlations and prove that heterogeneous correlation
structures across layers promote generalization. Finally, we empirically validate
our framework on all skip-connection configurations in multilayer perceptrons and
convolutional networks, demonstrating that our approach effectively isolates the
contribution of skip connections to generalization.

1 INTRODUCTION

With the rapid growth of computational resources, neural networks with increasingly large param-
eter counts have become ubiquitous across diverse application domains. Beyond sheer model size,
architectural innovations have also been a key driver of progress |Xu et al.| (2024). Among these,
skip connections have emerged as a fundamental component of modern deep networks since their
introduction in ResNet. By introducing direct links across layers, skip connections not only stabi-
lize training but also enhance generalization performance. A substantial body of work has sought to
explain these benefits. However, most existing studies approach the problem from a single perspec-
tive—such as optimization |Li et al.| (2018]), algorithmic stability Hardt et al.| (2016), or the Neural
Tangent Kernel (NTK) |Arora et al.|(2019)—and typically restrict their analysis to one specific form
of skip connection.

Fig.|l]illustrates the correlation matrices of posterior weights for different skip-connection config-
urations in a 5-layer MLP. The posterior distribution is obtained by applying small-learning-rate
perturbations. Notably, the correlation structure of the weights changes substantially even with min-
imal architectural modifications—for instance, adding a single skip connection at the second layer
(Fig.[Ib) or removing one connection (Fig.[Ic). These results suggest that skip connections strongly
influence cross-layer dependencies captured in the posterior. Such sensitivity provides a natural en-
try point for PAC-Bayesian analysis, which explicitly links posterior correlations to generalization.
From this perspective, we can theoretically characterize how generalization varies with different
skip-connection patterns, offering principled guidance for designing non-parametric architectures.

However, even for a toy MLP with fewer than 500 parameters, approximating the full correlation
matrix requires at least 2,000 runs (roughly four times the number of parameters) to obtain a reason-
able estimate. This quickly becomes infeasible for modern neural networks with billions of param-
eters. Inspired by Laplace approximation of Hessian matrices (Ritter et al.,[2018)), we factorize the
correlation matrix by using the Kronecker product. Our approach naturally extends prior work on
weight correlation (Jin et al.,[2020) and weight volume (Jin et al.,2022]), both of which focus only on
intra-layer correlations while treating layers independently. In contrast, skip connections inherently
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induce dependencies across layers. To capture this effect, we introduce the notion of general weight
correlation, which models inter-layer dependencies, and propose a correlation matrix R to explicitly
represent the influence of skip connections (see Fig. [J). We then provide a theoretical analysis of
how different structures of R affect generalization, thereby explaining the discrepancies observed
across different types of skip connections. To validate our framework, we conduct experiments on
MLPs with Fashion-MNIST and CNNs with CIFAR-10. We evaluate our method using Kendall’s
7 correlation coefficient|Kendall (1938)) and demonstrate its ability to effectively capture the role of
skip connections.

Our main contributions are summarized as follows:

* To the best of our knowledge, this is the first work to analyze the non-parametric structural
influence of skip connections on generalization gaps from a PAC-Bayesian perspective.
We introduce the concept of general weight correlation to capture inter-layer dependencies
induced by skip connections.

* Within this framework, we theoretically prove that correlations between adjacent layers
impede generalization, thereby explaining the generalization advantage of ResNet-style
skip connections.

* We further show how cross-layer weight correlations interact with intra-layer correlations
under the setting of homogeneous cross-layer dependence. Our analysis reveals that gener-
alization benefits from heterogeneous (layer-specific) correlation structures.

* We empirically validate our framework on all possible skip-connection configurations in
5-layer MLPs and CNNs. The results demonstrate that our method effectively captures the
influence of skip connections, isolating their contribution to generalization.

2 RELATED WORK

2.1 PAC-BAYES GENERALIZATION BOUNDS

Classical PAC-Bayesian analyses bound the true risk of a Gibbs or posterior-averaged predictor
by balancing the empirical risk with a complexity term measured by a Kullback-Leibler diver-
gence between a posterior over hypotheses and a prior (McAllester, [1999; Langford et al., 2001}
Catoni, |2007). These early works established data-independent priors, generic KL penalties, and
temperature-style trade-offs that remain the backbone of modern formulations. Recent work adapts
these ideas to deep networks and stochastic training pipelines. Dziugaite & Roy| (2017} 2018)) con-
struct non-vacuous, data-dependent bounds for overparameterized nets by optimizing the posterior
and sometimes the prior subject to PAC-Bayes constraints. Margin information has been incorpo-
rated to tighten the empirical term and connect PAC-Bayes to classical margin theory (Neyshabur,
2017). Other directions study how SGD implicitly induces “flat” posteriors or noise-averaging
effects that PA—Bayes can capture through perturbation-sensitive priors/posteriors and training-
time noise models (Letarte et al.| 2019). Complementary threads relate PAC-Bayes to norm- or
compression-based capacities, spectral controls, and sharpness-style surrogates, yielding bounds
that move with optimization geometry rather than parameter count. However, most works focus
on overall generalization but do not analyze cross-layer parameter correlations or the role of skip
connections.

2.2  FLAT MINIMA AND GENERALIZATION

The connection between the geometry of the loss landscape and generalization has been studied
for several decades. Early work by [Hochreiter & Schmidhuber (1997) introduced the idea that flat
minima, where the loss remains nearly constant under small perturbations of the parameters, are
strongly associated with improved generalization. Their argument, grounded in a Minimum De-
scription Length (MDL) perspective, suggested that flatness reflects the robustness of the learned
solution. Subsequent empirical and theoretical studies reinforced this principle. Keskar & Socher
(2017) provided evidence that sharp minima often correspond to poor generalization, particularly
when training with large-batch methods. [Li et al.| (2018)) developed visualization tools to illustrate
how optimization trajectories converge to regions of varying sharpness, offering geometric intuition
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Figure 1: Full Correlation Matrices of Posterior Weights with Different Skip Connection Patterns.
We train a toy 5-layer MLP with parameters less than 500 to show the full Correlation Matrices. The
Posterior of weights is achieved by perturbation around the local minima with a small learning rate
on loss surface. The first figure corresponds to the MLP without skip connections. The second es-
tablishes connections only at the 2nd layers. The third figure includes skip connections that exclude
only the 2nd layer, and the last one shows the dense MLP.

for the flatness—generalization link. Jiang et al.| (2019)) further connected margin-based generaliza-
tion to flatness, showing that flatter minima correlate with wider margins and tighter generalization
bounds. While the flatness perspective provides a compelling explanation of generalization, existing
work largely treats it as an isolated principle, without integration into PAC-Bayesian frameworks or
explicit consideration of architectural mechanisms such as skip connections.

2.3 SKIP CONNECTIONS AND THEORETICAL ANALYSIS

Skip connections, first popularized by residual networks He et al.|(2016)), are widely recognized for
their empirical benefits in stabilizing optimization and enabling the training of very deep models.
From the optimization perspective, theoretical studies have demonstrated that residual links reshape
the loss landscape to reduce sharpness and ease convergence. [Zhang et al.|(2019) provided early ev-
idence that skip connections facilitate gradient flow and mitigate vanishing or exploding gradients,
while |Li et al.| (2021) analyzed how skip connections ease optimization and improve gradient flow.
These works frame skip connections primarily as a tool for optimization stability rather than for
generalization guarantees. A complementary line of research examines the role of parameter cor-
relations induced by modern architectures. Jin et al.| (2020) studied how weight correlation within
layers affects generalization and illustrated that correlated parameters can implicitly constrain hy-
pothesis complexity and lead to sharper theoretical bounds, while the cross-layer correlations that
are naturally amplified by skip connections due to the direct reuse of features and gradients across
depth remain unexplored. Existing work analyses primarily account for the optimization benefits
of skip connections, while their impact on generalization remains largely unexplored, with no prior
work employing PAC-Bayesian theory to study them.

3 PRELIMINARY

Our analysis is based on supervised classification. Let x € & C R4 denote the input, y € Y =
{1,...,k} the label, and D the unknown data distribution over X’ x ). A hypothesis h € H maps
inputs to predictions in [0, 1]". Given i.i.d. samples S = {(x;,y;)}; ~ D™ and a loss function
0:[0,1)® x Y — R*, we denote natural and empirical risks as

R(h) =By [((h(x),9)], B(B) = =3 t(h(@:), v:). ()



Under review as a conference paper at ICLR 2026

Neural Networks Classifier. Here, we consider our hypothesis as a neural networks and we define
it recursively. Given input € X, the hidden representations are computed as

2= ¢(WWa), (2a)
z2ipr = ¢(WWz) + Y 2z, 1=1,...,L -1, (2b)
ke,
h(x) = Softmax(WF) z;), (2c)
where ¢ is a non-linear activation and Z; C {1,...,l — 1} denotes the set of skip connections into

layer {. For example, in a 3-layer network, if we add a skip from layer 1 to 3, then 75 = {1}. And
since we starts from the first layer, Z; = (). For analytical tractability, we model skip connections as
additive terms after activation. Bias parameters can be concatenated in weights.

Matrix Normal Distribution. Skip connections couple the outputs of entire layers, inducing de-
pendencies across full weight matrices. To model such correlations in a tractable way, we adopt
the matrix normal distribution (MND), which naturally captures row- and column-wise covariance
structures.

Definition 3.1 (Matrix Normal Distribution). Let X € R™*? be a random matrix. Given positive
definite covariance matrices U € S} and V' € S}, we say that X follows a matrix normal

distribution with mean M € R™*P, denoted
X ~ MNp ,(M,U, V),
if its density is

exp (—g tr[VI(X - M)TU (X - M)])
(27)mp/2 det (V)m/2 det(U )P/

Equivalently, vec(X) ~ N (vec(M),V ® U), where ® denotes the Kronecker product, and vec(+)
is the vectorization operation for matrices.

p(X | M,U, V)=

Remark 3.2. Matrix-normal priors and posteriors (often with Kronecker-factored covariance) are
common in Bayesian deep learning and variational approximations (Ritter et al., 2018; Huang et al.,
2020; Schnaus et al., 2023). Here we employ them as a stylized but tractable tool to capture cross-
layer dependencies.

PAC-Bayesian Bound. The generalization gap is the difference between natural and empirical
risks (Eq.[I). Although directly computing this gap is infeasible for modern neural networks, PAC-
Bayesian theory provides a principled way to bound it in terms of the KL divergence between poste-
rior and prior distributions over weights. We recall McAllester’s classical bound (McAllester, |1998;
Guedj & Shawe-Taylor}, |2019), which forms the basis of our analysis.

Theorem 3.3 (McAllester’s bound). Given h € Hand S = {(x;,y;)}'_y ~ D™ be n i.i.d. samples.
For any prior distribution P € P(H) independent of S, and any posterior distribution Q) € P(H)
possibly dependent on S, with probability at least 1 — 6 over S, we have

Vn
KLQIP) +CF) 5
n

VQ € P(H), EMQmmn<EMQ@mn+¢

This theorem highlights that the KL term shows an important role in the upper-bound for gener-
alization gap. However, few works capture the architechture factors (e.g., skip-connection) In the
following, we propose a upper bound that incorporates the non-paramteric architechture factors.

4 MAIN RESULTS

In this section, we show our main results of the paper.

Lemma 4.1 (KL divergence between MNDs). Let Q = MN,, ,(Mg,Ug,Vy) and P =
./\/l./\fm,p(Mp, Up,Vp) be two matrix normal distributions with means Mg, Mp € R™*P, row
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covariances Ug,Up € S}*, and column covariances Vo, Vp € S;*. Then the KL divergence
admits a closed form

1 _ _ 1 _ _
KL(Q|IP) = 5 tr[(VoVp ') ® (UUp")] + Str [Vp ' (Mg — Mp)TUp' (Mg — Mp)]
2 2
4)
mp m_ det(Vp) p. det(Up) (
> T2 18 Gt T 2!

det(UQ) ’

The proof of Lemma [4.1] is deferred to Appendix [A.2] Since the weight matrices of neural
networks may have different shapes, we first pad them to a common size for notational sim-
plicity. Appendix shows that padding with non-trainable standard Gaussian entries leaves
the KL divergence unchanged. Thus, without loss of generality, we concatenate the weights as

W = (Wy,Wa,...,Wp), where foreach I = 1,2,..., L, W; € R™*™ and 3., r; = p.

Following standard assumptions in the literature (Jiang et al., 2019} Jin et al., [2020), we take the
prior distribution to be P = MN ,,W(W(O), olp,, Ip), which corresponds, after vectorization, to an
isotropic Gaussian prior vec(W) ~ N (vec(W®), 021,,,). While recent work has explored data-
dependent priors for achieving tighter bounds, we adopt this simpler form in order to focus on the
effect of skip connections.

Assumption on posteriors A full covariance structure for the posterior captures all information
contained in the trained neural network. However, estimating such a distribution is typically infea-
sible in practice, and simplified assumptions are adopted to balance tractability with the ability to
capture the most influential factors. Following [Jiang et al.| (2019); [Jin et al.[ (2020; [2022)), we as-
sume that the variance of each parameter is identical (diag(X¢q) = diag(Xp)). In contrast to earlier
works, we relax two strong assumptions: the isotropy of weight matrices within each layer (Jiang
et al., |2019) and the independence of weights across layers (Jin et al., [2020; [2022)). Under these
settings, the KL divergence simplifies to

L
1 P O_2m
(QlIP) 12—1 r{( l r) (W Pt 9 8 det(VQ)+2 Ogdet(UQ)

&)

We follow the notion of weight correlation (Jin et al., 2020) between rows of weight matrix for in a
given layer, and extend to correlation across different layers. To simplify the following analysis, we
let the size of all weights be the same (i.e., VI, r; = 7).

4.1 CONNECTION TO WEIGHT CORRELATION

We generalize the notion of weight correlation Jin et al.| (2020) to cover the relation between layer.
Therefore, we can analyse its impact on generalization gap.

Definition 4.2 (General weight correlation). Given weight matrix W;, W be the weights at [-th and
s-th layers, the generalized weight correlation is defined as

I 1 i [WEWs ]

l,s = ’
T m(r—1) S Wiill2, W2
i#£j

(6)

where W, ; is the ¢-th row of the matrix W}, corresponding to the i-th at [-th layer.
The notion of weight correlation is just a special case as | = s. We recall the weight correlation (Jin

et al., 2020), and show that weight correlation is just a special case of our formulation as it measures
the same weights.

4.2 CONNECTION TO FLATNESS OF LOSS SURFACE

Another notion relates to our work is weight volume |Jin et al.| (2022) as defined in
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Definition 4.3 (Weight Volume (Jin et al.,2022))). Let

Y, =E [(Vec(VVl) — E(vec(W})))(vec(W;) — E(Vec(Wl)))T] (7)
be the weight covariance matrix in a neural network. The weight volume is defined as
det(Zg)
vol(Wy) & =+~ (8)
[T:[Zelis

This provides a more general notion that accounts for all possible correlations within a given weight
matrix. In our setting, it can be estimated as vol(W;) = V; ;®@U. Letw = vec(WV) and w* denote the
MAP estimate of the posterior weights. The log-likelihood of the posterior (i.e., logp(w | S)) can
then be approximated by a second-order Taylor expansion, as shown in Eq.[9] This approximation
forms the basis for analyzing how skip connections affect posterior correlations and, consequently,
generalization.

1
log p(w | §) ~logp(w” | §) = 5 (w — ") Es[H](w — w") ©)

Hence, the posterior can be approximated as Gaussian,
w = vec(W) ~ N (vec(W*), Eg[H] ™) (10)

Computing the inverse of the full Hessian matrix is infeasible. An approximation is to conduct the
Kronecker product decomposition, and we have for each weight matrix

Wi ~ MN (W}, Es[Vi)] "1 Es[U]}) (1n

To examine the impact of general weight correlation, we build on Def.[4.2]and establish the following
lemma.

Lemma 4.4. Assume the weights of neural networks W; € R™*", and let matrix R = (p; ;)i j,
defined in Def. Let
Vo=diag(l—p11,...,1 —pr) @I+ R®J (12)

where J = 117 is the dot product of all one vector 1. Thus,

L

logdet(Vg) = (r — 1) Zlog(l —pi1) + logdet(diag(l — p11,...,1 —pr.) +rR). (13)
=1

The proof is in Appendix The weight correlation is just a special case of our formulation by
letting R = diag(p1,1, p2,2; - - - , pr,1)- The detailed discussion is in Appendix[A.2]

Def. f.2] and Lem. f.4] both assume 7; = 7 for simplicity. However this assumption can be relaxed
with mixed correlation between rows and columns for weights of different layers, allowing mismatch
of size for weights.

Now, we consider a case where there is a correlation between adjacent layers. This is particularly
the case for MLPs, as is shown in Fig.

Proposition 4.5 (Adjacent Connection). Given the neural network defined in Eq. Pa2bland2d and
KL divergence in Eq. @ let R be I-banded matrix, i.e.,
R = diag(p1,1,- .-, pr,L) +diag;(p12,...,pr—1,0) +diag_;(p12,...,pr,L-1) (14)

where diag, (- -) and diag_ (- - - ) are superdiagonal matrices shifted one element from the diago-
nal. Let

Ap = det(diag(l — p1,1,...,1 —pr.r) +7R) (15)
which can be represented recursively as
Ap =1+ —1)prr]Ar_1 — T2P2L_1,LAL—2 (16)
andforalll =2,...,L,
0AL <0. (17
3/)1—1,1
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We provide a more general version of the theorem, with the proof deferred to Appendix [A.4]
Prop. establishes a monotonic relationship between the term log det(Vy) and the correlations
pi—1,1 between adjacent layers, corresponding to the case illustrated in Fig. For MLPs without
skip connections, this relation holds directly; however, introducing a long skip connection can alle-
viate the effect, as shown in Fig. resulting in a smaller generalization gap (since it is positively
related to the KL divergence).

We also consider the case where correlations across different layers differ only minimally, similar
to the scenarios in Fig.[2c| Fig.[2e| and Fig. 21l Dense connections in 5-layer MLPs (Fig. ) can be
approximated under this setting by using a single scalar to represent all general weight correlations
among layers.

Proposition 4.6 (Homogeneous Connection). Consider the same conditions in Prop.[d.5] and let

R =diag(p1,1,---,pr.L) +p(Jr —I1) (18)
where J;, = 117 and Iy, is identity matrix of size L. Hence, we have
L L ro
Ap = 1+ (r—1 —r 1+ (19)
L ll;[1( ( )pl,l p) < ; 1+ (7" — 1)/)1,1 — Tp)
And ifVl =1,... L, p are higher than or lower than all p;; + lff” , we have
0A
L <o. (20)
dp
The proof is in the Appendix [A.3]
5 EXPERIMENT
Network PFN PSN PBC PBGC A Loss
MLPy 0 1.20e+05 | 2.70e+03 | 3.62e+03 | 3.18e+03 | 5.31e-01 (£7.4e-04)
MLPg o1 1.41e+05 | 4.47e+03 | 3.97e+03 | 3.55e+03 | 4.55e-01 (+1.3e-04)
MLPj1,0(1) | 1.31e+05 | 2.86e+03 | 3.74e+03 | 3.22e+03 | 4.75¢-01 (£4.8¢-04)
MLPj1,0(2) | 1.34e4+05 | 4.29¢+03 | 4.84e+03 | 3.73e+03 | 4.19¢-01 (£3.1e-04)
MLP; g o(1) | 1.47e+05 | 4.18e+03 | 3.97e+03 | 3.53e+03 | 4.51e-01 (£4.2e-04)
MLP; 0,0(2) | 1.36e+05 | 2.51e+03 | 4.39¢+03 | 3.73e+03 | 3.67e-01 (£3.7¢-04)
MLP1 0,0(3) | 1.02e+05 | 1.05e+03 | 3.28¢+03 | 2.90e+03 | 3.76e-01 (£9.0e-04)
MLP; ;1(1) | 7.41e+04 | 3.98e+03 | 5.42e+03 | 8.27e+03 | 4.53e-01 (£3.9¢-03)
MLP;51(2) | 9.64e+06 | 9.37e+06 | 1.38¢+04 | 2.20e+04 | 7.32¢-02 (£1.3e-03)
MLP;51(3) | 5.26e+04 | 1.47e+03 | 4.32e+03 | 6.11e+03 | 4.51e-01 (£1.2e-03)
MLP;551(1) | 6.48¢+04 | 9.48¢+02 | 4.09¢+03 | 5.35e+03 | 4.91e-01 (£1.2e-03)
Kendall 7 | -2.02e-01 | -8.69e-02 | 1.45¢-02 | 7.24e-02 1

Table 1: Selective results for skip connections with different complexity and performance metrics
on 5-layer MLPs. This table reports four complexity measures (PFN, PSN, PBC, and PBGC). The
full results are provided in Tab.[d ALoss denotes the empirical generalization gap, defined as the
difference between test and training loss. Each model is further trained for 5 additional epochs with
a small learning rate, and we report the mean and standard deviation across runs. The last row
reports Kendall’s 7 correlation. Bold numbers indicate the highest value, while underlined numbers
correspond to the PBC method.

To study the effect of skip connections on generalization gaps, we trained 5-layer MLPs on Fashion-
MNIST and 5-layer CNNs on CIFAR-10 with all possible skip-connection configurations. For
CNNs, we consider both versions with and without batch normalization. All MLPs use a hidden
size of 256, while CNNs use 256 channels per layer with 3 x 3 kernels. Models are trained for 80
epochs using SGD with a learning rate of 2 x 10~2, momentum of 0.9, and weight decay of 10~%.
For the toy example used to compute full covariance matrices, we train a smaller 5-layer MLP with
input dimension 8 for 100 epochs. All experiments were run on a single NVIDIA RTX 3090 GPU
with Python 3.9.7 and PyTorch 1.9.1.
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5.1 COMPLEXITY MEASURE
To benchmark our approach, we compare it against several established complexity measures:

* Product of Frobenius Norms (PFN): Defined as the product of Frobenius norms of all
weight matrices, PFN reflects the overall magnitude of network parameters across layers.

* Product of Spectral Norms (PSN) Bartlett et al.|(2017): Computed as the product of spectral
norms of the weight matrices, PSN emphasizes the worst-case layer-wise amplification
effect and has been widely studied in generalization bounds.

* PAC-Bayes & Correlation (PBC) Jin et al.| (2020): An extension of the PAC-Bayes frame-
work that incorporates weight correlations, capturing richer dependencies among parame-
ters than standard PAC-Bayes bounds.

* We refer to our method as PAC-Bayes & Generalization Correlation (PBGC), which ex-
plicitly incorporates the proposed General Weight Correlation (GWC).

For evaluation, we assess the agreement between empirical rankings of generalization perfor-
mance and those predicted by different complexity measures using Kendall’s 7 correlation coef-
ficient (Kendall, [1938). This statistic quantifies rank similarity by comparing the number of con-
cordant and discordant pairs, with values ranging from -1 (complete disagreement) to 1 (perfect
agreement).

To present our results clearly, we first introduce the notation for our models. We use MLP and CNN
to denote the model type. A superscript b, such as CNNP, indicates the use of batch normalization.
Skip connections are considered only in hidden layers (as is typical, since classification networks
rarely connect hidden layers directly to inputs or output intermediate features). We represent skip-
connection patterns with a triple index—for example, (0,0, 0) denotes the number of connections
at each position (corresponding to |Z;| in Eq. . When multiple connection types share the same
number, we use an additional index to distinguish patterns. The detailed notations are summarized
in Tab.|3| For cases with a unique configuration, we omit the index for brevity.

5.2 RESULTS OF MLP

Tab. [T] summarizes the results for skip connections in 5-layer MLPs. The last row reports Kendall’s
T correlation. As shown, our proposed method achieves the highest Kendall 7 among PFN, PSN,
and PBC, indicating that it more effectively captures the influence of skip connections.

Comparing MLPg oo with MLP; ¢ 0(3) in Tab.|l| we observe that MLP; o ¢(3)—which includes a
long skip connection from the first hidden layer to the last hidden layer—exhibits both a smaller
empirical generalization gap (3.76e-01 vs. 5.31e-01) and a lower PBGC measure (2.90e+03 vs.
3.18e+03). Consistently, Fig. [2a]and Fig. 2c|show that the cross-layer weight correlation is reduced
for MLPy ,0(3). These results provide strong evidence in support of Prop. From Fig. [2} it
is evident that the general weight correlation effectively reflects the skip connections in MLPs. In
contrast, CNNs exhibit markedly different behaviour.

5.3 RESULT OF CNN

Unlike MLPs, the impact of skip connections on CNNGs is almost negligible. As shown in Fig.[2¢|and
Fig.|21] the hidden-layer patterns exhibit no discernible differences. Consistently, the generalization
gap in Tab. E] shows only a slight reduction for CNNg o ¢ (from 5.31e-01 to 4.53e-01), while both
PBC and PBGC increase. This suggests that, for CNNs, skip connections do not primarily act
through general weight correlation. Kendall’s 7 further supports this observation: although PBGC
improves marginally over PBC, it is not the best-performing measure—the highest correlation is
achieved by PFN. This implies that the influence of skip connections in CNNs may instead be linked
to the norms of the weight matrices.

In contrast, CNNs with batch normalization behave quite differently. As illustrated in Fig. [2g| and
Fig. , CNN}{’L1 exhibits patterns similar to MLPg o 0. Interestingly, this indicates that batch-
normalized CNNs demonstrate an effect opposite to that observed in MLPs.
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Figure 2: The figures visualize the general weight correlation matrix R defined in Lem. For
CNNs, the first and last layers are omitted since they are not directly comparable; we therefore
compute the general weight correlation only across hidden channels.

Network PEN PSN PBC PBGC A Loss
CNNooo | 1.20e+05 | 2.70e+03 | 3.62¢+03 | 3.18¢+03 | 5.31e-01 (£7.4e-04)
CNNgo1 | 1.41e+05 | 447e+03 | 3.97¢+03 | 3.55¢+03 | 4.55¢-01 (+1.3e-04)
CNNo.1.0(1) | 1.31e+05 | 2.86e+03 | 3.74e+03 | 3.22¢+03 | 4.75¢-01 (£4.8¢-04)
CNNg1.0(2) | 1.34e+05 | 4.29¢+03 | 4.84¢+03 | 3.73¢+03 | 4.19¢-01 (£3.1e-04)
CNNy o0(1) | 1.47e+05 | 4.18¢+03 | 3.97e+03 | 3.53¢+03 | 4.51e-01 (+4.2¢-04)
CNNj.0(2) | 1.36e+05 | 2.51e+03 | 4.39e+03 | 3.73¢+03 | 3.67e-01 (£3.7¢-04)
CNNj .0(3) | 1.02e+05 | 1.05¢+03 | 3.28¢+03 | 2.90e+03 | 3.76e-01 (£9.0e-04)
CNNyp11(1) | 7.41e+04 | 3.98e+03 | 5.42e+03 | 8.27e+03 | 4.53¢-01 (+3.9¢-03)
CNN>.21(2) | 5.32e+04 | 3.19¢+04 | 1.13¢+04 | 1.32¢+05 | 6.90¢-01 (£1.6e-04)
CNNa221(3) | 3.76e+04 | 1.72e+04 | 1.00e+04 | 1.03e+05 | 5.70e-01 (+3.6e-04)
CNN3o1(1) | 7.85e+04 | 3.19e+04 | 1.07e+04 | 1.11e+05 | 7.90e-01 (+1.6e-04)
Kendall 7 | 2.96e-01 | 2.41e-01 | 2.09¢-01 | 2.17¢-01% I

Table 2: Selective results for skip connections with different complexity and performance metrics
on 5-layer CNNs. Bold numbers denote the highest values, underlined numbers correspond to the
PBC method, and starred numbers indicate our proposed method.

6 CONCLUSION AND LIMITATION

We introduced a PAC-Bayesian framework that makes explicit the role of architectural structure in
generalization via General Weight Correlation (GWC) and its induced matrix k. By Kronecker-
factoring the posterior covariance, our method extends weight correlation to capture cross-layer
dependencies created by skip connections. The theory shows that adjacent-layer correlations enlarge
the KL term and thus hinder generalization, while heterogeneous, layer-specific correlations are
beneficial. Empirically, PBGC best aligns (via Kendall’s 7) with observed generalization trends
across all skip patterns in MLPs, and reveals a contrasting picture for CNNs, where skip connections
have limited effect unless batch normalization is present. These results isolate when and how skip
connections help from a PAC-Bayesian viewpoint, providing actionable guidance for non-parametric
architectural design. The limitation includes extension to more general and complex models, e.g.,
transformer-based models.
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A APPENDIX

A.1 PADDING THE WEIGHT MATRIX

We show that padding the weight matrices of a neural network with non-trainable entries does not
affect the KL divergence between prior and posterior weight distributions.

Consider an L-layer network with weights {Wj,Ws,..., Wy} before padding and

{Wl,Wg, .. .,WL} after padding. Let P and @ denote the prior and posterior distributions,
respectively. Define the vectorized parameters

vece(W1) VeC(El)
vec(Wa) ~ vec(Ws)

w= . ) w = ) ; 21
vec(Wp,) vec(.WL)

where vec(-) denotes column-wise vectorization.
The KL divergence between Gaussian posterior () = N (g, X¢) and prior P = N (up,Xp) is

1 det(X
KL(QIIP) = 5 |log d;&g; —m+ (g — pr) Ip! (ng — pr) + tr(Zp'TQ) |- (22)

Padding is implemented by augmenting each W;,l = 1,2...L with non-trainable entries (stan-

dard Gaussian), so that all weight matrices share the same maximal row/column dimensions. Since
padding entries are non-trainable, their quadratic contribution in Eq.[22]cancels, i.e.

(Bq — 1p) S5 (g — pp) = (g — Fr) X5 (g — fip). (23)

Let padding be an independent standard Gaussian (v ~ A(0, I)), and re-arrange the variants as

- w
w:(y). 24)
For the covariance structure, this implies
s-1s _ (25 0) (e 0\ _ [(¥x'2g 0
E132@_(0 I)(O )=\ o 1) (2)

11
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The determinant factor is likewise preserved:

det(S) = det (% ?) — det(%). (26)

Thus all terms in equation 22| remain unchanged under padding. Hence the KL divergence between
prior and posterior distributions is invariant to padding.

Remark A.1. Padding simply appends additional coordinates that are identically distributed under
both the prior and posterior (standard Gaussian, independent of the trainable weights). Since KL
divergence only measures discrepancies between two distributions, these extra variables contribute
zero to the KL.

A.2 CONNECTION TO WEIGHT CORRELATION

We make segmentation for column covariance V according to columns of weights at each layer,
and consider the factorization of the covariance matrix for vectorized weights from all layers that
Y=V ®U, we have

VipgeU VipeU --- ViU
VorooU Voa@U -+ ViU
VeU= ) . . . 27
ViU ViU -+ Vpp®U
LetV;; = 0,Vi # j, U = 0] and
1 Pi N Pi
pZ 1 e p’i
Vie=1 . . . - (28)
pi pi - 1

We show that — log det(V; ; ® U) is indeed the weight correlation factor in the KL-divergence.

A.3 OMIITED PROOFS

Lemma A.2 (KL divergence between MNDs). Let Q = MN,, ,(Mg,Uq,Vg) and P =
MN . »(Mp,Up,Vp) be two matrix normal distributions with means Mg, Mp € R™*P, row
covariances Ug,Up € S}t and column covariances Vi, Vp € SI+. Then the KL divergence
admits a closed form

KL(QIIP) = »tr[(VaVi™) & (UQUR")] + tr [V (Mg — Mp) U (Mg — Mp)]
~mp  m . det(Vp) p. det(Up)

(29)

2 T2 % det(Vo) 2 % det(Uq)

12
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Proof. Starts from Def.[3.1] we have

KL(Q|P) = %EQtr [vp—l(X — Mp)TUR(X — Mp) - V5 (X — M)"UL (X — MQ)}

(30)
m . det(Vp) p. det(Up)
T G (n) 2 %8 det(Ug) Gl
= %EQtr Vi ' (X = Mg + Mg — Mp)"Up (X — Mg + Mg — Mp)] (32)
1 IR
- 5Eq [vee(X = Mg)T (V" @ Ug )vee(X — Mo)] (33)
L m det(Vp) P, det(Up) (34)

1 =z

3 8 det(Vg) T 2 28 det(Ug)
1 _ _ 1 - _

= Eotr [Vp (X — Mo) U (X — Mg)] + Str [Vp (Mg — Mp)"Up" (Mg — Mp)]

(35)

mp m det(Vp) p.  det(Up)
— =24 " log Zlog 36
> T3 (VQ)+2 det(Ug) (36)

1

zitr[(VQV];l) (UQURY + tr[ (Mg — Mp)"UR" (Mg — Mp)) (37)

mp det(Vp) p. det(Up)
L R T 21 38
> T8 ey T 218 det () (38)
O

Lemma A.3. Let A, B € REXL and J € S, Then,

det (A® I, + B®J) = [ det (A+ \:B). (39)

i=1
where I is the identity matrix of size r.
Proof. Let Q be the orthogonal matrix diagonalizing J, i.e., QT JQ = diag(\1,...,\.) = A. By

similarity invariance of the determinant,

det (A@ L +B®J) =det (I 2 QT(A I, + Ba J)(IL Q). (40)

Using the mixed-product property of Kronecker products, this equals

det (A® I, + B&A). 41)
Consider commutation matrix K such that
det (AR, + BoA) =det (K(A® L.+ BR A)KT) 42)
=det (I, ® A+ A® B) (43)
Hence the determinant factorizes as
[ det(A+ \;B). (44)
i=1
O
Lemma A.4 (Determinant of block correlation matrix with heterogeneous sizes). Let r1,...,7r1 €
N and define
. L
V =diag (1 = p1)lrys- -, (L= pro)lr) + (p1k J’r‘l7rk)l7k:17 45)

13
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where Jp, v, = 1,17 | Let

TLETrE”
D =diag(1 —p11,---,1 — pr.1), R = (pLe/T1T%) et (46)
Hence,
L
log det(V Z (r; — 1) log(1 — py;1) + log det (D + R) 47)
=1

Proof. For each block [, define u; = 1,,/ /71 and extend it to an orthogonal basis ); = [w U] €
R"*7t Then,

Ve e 0
QlTITLQl 7‘17 Ql TR Qk - . (48)
0 0
Let @ = diag(Q1,...,Qr). By similarity invariance of the determinant, for the second term in
Eq.[5] we have
. L .
dlag(Q{a U 7Q%)(pl,k:J'r‘l,rk)Lk:ldlag(Qlu e 7QL) = (49)
QT 0 - 0 p1adrim Pr2deie 0 pLLIr g ¢ 0 - 0
0 Qg t 0 p2,1‘]7“2,7’1 p2,2Jr2,r2 T pZ,LJrg,rL 0 Q2 ce 0
0 0 - QF) \pradepr pr2dries - prpdes/ \NO 0 - Qp
(50)
pP1,171€1,1 P1,2y/T1T2€12 -+ P1,L\/T1TL€1,L
P2,14/T2T1€21 P2,272€2 2 ©to p2,Ly/T2rrLelr 51
pPL1y/TLT1€r,1  PL2/TLT2€L1 - PL,LTLeL,L

where e; ), € RY*F denotes the matrix with first elements of 1 and others are all 0. Hence, with a
commutative matrix K, such that

L
det(V) = det(KVKT) = (H(l - pu)”_l) det(D + R). (52)
=1
[
Here, we recall Prop. [4.6]and provides the proof.
Proposition A.5. Consider the same conditions in Prop. and let
R = diag(p1,1,.--,pr,0) +p(Jr —I1) (53)
where J;, = 117 and I}, is identity matrix of size L. Hence, we have
L L o
A=A+ —-Dpy—rp) |1+ (54)
p=TH0 e (143 )
And foranyl=1,...Lif
1—
p=pt+ # (55)

the derivative of Ay, w.r.t p will be unstable such that A, (p) — oo.

14



Under review as a conference paper at ICLR 2026

Proof. Since
Ap =det(diag(l — p1,1,...,1 —pr,1) +TR)
= det (diag(1 + (r — 1)p1,1 —rp,..., 1+ (r = L)pr,L —rp) +rpJL)
= det (diag(1 + (r — )p1,1 —7p, ..., 1+ (r = D)pp,r — rp) + rpll”)
L

= H(l +(r—=1)pis—rp) (L+rpl"A7'1)
=1

where A = diag(1 —rp+ (r — 1)p1,1,...,1 —rp+ (r — 1)pr, ). Hence,

L L
AL:H(H(T—l)m,z—W) <1+Zl+(7’—m )
=1

iy Doy —rp

Now, we show the derivative of A w.r.t p. Let us consider p = rp

1
AP) = Zl—i— (r—

Dpig —

we have

L 1
=L T o D P

Then take logarithm on A, and take derivative

AL(7) A(p) + A (p)
AL(p) Z 1+ r—l)m,l—m* 1+ A0)
A(p) + pA'(p)
APE 4G
PA () — A2(5)
1+ pA(p)

Since p = rp,

ooy A TPp(A (rp) — A%(rp))
) = A )

The sign of the derivative depends on

) - 1
Al(rp) — A%(rp) = ; (14 (r—Dpg—rp)(1+ (r —1)ps,s —7p)

1+(r—1D)piu
T

Notice that p = should be avoid or it will be instable.

A.4 PROOF OF THEOREM ??

(56)
(57)
(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

Given the same assumption in Theorem ?? and assuming that each pair of elements between adjacent

weights has the same correlation coefficient, such that

Ki_11=0p1-10011—11Nn,_,, 3

(68)

where 1y, | n, is IN;—1 X IN; matrix each element of which is 1, and 7'12_1 ; is the Pearson correlation

coefficient. Therefore, we have

L

L 2 2
1 E,[w] — Ex|wi]||3 o o2
KL(p||7) = §§ <” ol 1]0_2 willlz |y, (0;” +log 0271 )) — log [ [ det(A))

=1 N 7l p,l

15
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and det(A;) is determined by the recursive difference equation
B Nl—lNlTl{l,l
det(A;—1)
K L(
oT,

e ll) > 0 showing that the KL-divergence will increase as each p?_, , increases.
} ;

det(A;) = 1 (71)

and we have

Proof. Given Eq. equation ??, A; = I and let ?1271’1 = Nl_lNlTl{Ll for simplicity, we have for
=2

Ay =T—7171% N 1NN, (72)
1
=I- N1N273,2F1N2,N2 (73)
2
1
=71— TE’QVQINQ’NQ (74)

by the Neuman series and the fact det(Az) = 1 — 77, we have

p— = ~ n 1
A7 =) () et s)
n=0
1 1
] 76
1_712N2 Nt 7
1 1 1 (77)
det(Ag) N2,
and also
72
det(Ay) = 1 — 12 (78)
det(A4;)
By induction let
1 1
A71 S —— 79
1T det(Ay_q) Ny i "
Hence,
_ 2 T -1
Ar=1—-7_1,15, N A 11N 1N, (80)
~2
Tig 1
. =g 1 81
det(Al 1) N, NN e
and
~ 2
T_11 NNy,
det(A)) =1 — —=bl _—q Tl 82
€ ( l) det(Al_1) det(Al—l) ®

Now we prove that %
-

L
2ll™) > (). To this end, we only need to prove that W < 0. Asit
1—1,1

can be observed from Eq. equation ??, det(A;) recursively depends on all 77_; _ by det(Ay), s <.
Hence by China rule

OTIE, det(A) AT, det(A)
—_ det(A;) 3 83
87—3 1,s H ¢ l 0 52 1,s ( )

s—1 L
T2 Odet(A;
= Hdet(Al < H det Al H deltqul ) 87_2( )
o kel l s—1,s
(84)

and because A; > 0,1 € [L] is positive definite, we have det(A4;) > 0. Hence, the sign of the above
equation depends on

ddet(A,)  N,4N,
B det (As— 1)

<0 (85)

67-9 1,s
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Figure 3: The visualization of general weight correlation R for dense connections. We show the
dense connections on 5-Layer MLPs, CNNs and CNNs with batch norms.

Discussion on A; = 0 Here we explain why A; > 0. We start from As. According to Eq. equa-
tion , we claim that 771272 < 1 which represent the total variance of weights at first layer that can
be explained by the second layer. We assume that none of the weights at the first layer can be totally
explained by the second layer.

O

A.5 NOTATION OF NEURAL NETWORKS

Connection Notation 1o 13 1y
0,0,0 - - -
0,0,1 - - {3}

07170(1) B {2} -
0,1,0(2) - - {2}
17070(1) {1} - -
1,070(2) - {1} -
17070(3) B B {1}
1,1,1(1) {1 {2 {3}
1,1,1(2) {1} - {23}
1,1,1(3) - [ {12} | {3}
1,171(4) - {1} {2?3}
1,1,1(5) - {2} | {13}
1,1,1(6) - - {1,2,3}
1,2,1(1) {1} | {2} | {23}
1,2,1(2) {1,2} - {2,3}
1,2,1(3) - {2} | {1.2.3}
2,1,1(1) {1} [ {12} ] {3}
2,1,1(2) {1 | {1y | {23}
2,1,1(3) {1y | {2+ | {13}
2,1,1(4) {1} - [ {123}
2,1,1(5) - {12} | {13}
2,1,1(6) - {1} | {1.2.3}
2,2,1(1) {1} [ {12} | {23}
2,2,1(2) | 2 | {12
2,2,1(3) - {1,2} | {1,2,3}
3,2,1(1) 1y [ {12} [{123)

Table 3: Notation table for configuration of skip-connections

A.6 ADDITIONAL EXPERIMENTS

17
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Network PEN PSN #Param PBC PBGC wC GWC Loss Acc. A Loss
MLPy o,0(1) [ 1.20e+05 | 2.70e+03 | 4.00e+05 | 3.62e+03 | 3.18e+03 | 3.15e+03 | 2.71e+03 | 5.40e-01 | 8.98e+01 | 5.31e-01 (£7.4e-04)
MLPj1(1) | 1.41e+05 | 4.47e+03 | 4.00e+05 | 3.97e+03 | 3.55e+03 | 3.49e+03 | 3.07e+03 | 4.80e-01 | 8.90e+01 | 4.55¢-01 (+1.3e-04)
MLPg 1 0(1) | 1.31e+05 | 2.86e+03 | 4.00e+05 | 3.74e+03 | 3.22e+03 | 3.26e+03 | 2.74e+03 | 4.90e-01 | 8.95e+01 | 4.75¢-01 (£4.8e-04)
MLP10(2) | 1.34e+05 | 4.29e+03 | 4.00e+05 | 4.84e+03 | 3.73e+03 | 4.35e+03 | 3.25e+03 | 4.50e-01 | 8.97e+01 | 4.19¢-01 (£3.1e-04)
MLP; (1) | 1.47e+05 | 4.18e+03 | 4.00e+05 | 3.97e+03 | 3.53e+03 | 3.48e+03 | 3.04e+03 [ 4.70e-01 | 8.96e+01 | 4.51e-01 (£4.2e-04)
MLP; 90(2) | 1.36e+05 | 2.51e+03 | 4.00e+05 | 4.39e+03 | 3.73e+03 | 3.90e+03 | 3.24e+03 | 4.10e-01 | 9.00e+01 | 3.67e-01 (£3.7e-04)
MLP; o0(3) | 1.02e+05 | 1.05e+03 | 4.00e+05 | 3.28e+03 | 2.90e+03 | 2.83e+03 | 2.45e+03 | 4.10e-01 | 8.93e+01 | 3.76e-01 (£9.0e-04)
MLP; 1 1(1) | 7.41e+04 | 3.98¢+03 | 4.00e+05 | 5.42e+03 | 8.27¢+03 | 4.74e+03 | 7.59¢+03 | 4.90e-01 | 8.94e+01 | 4.53¢-01 (£3.9¢-03)
MLP; 1,1(2) | 4.80e+04 | 2.72e+03 | 4.00e+05 | 4.96e+03 | 7.31e+03 | 4.28e+03 | 6.63e+03 | 5.20e-01 | 8.88e+01 | 4.82¢-01 (£3.1e-03)
MLP; 11(3) | 4.77e+04 | 2.51e+03 | 4.00e+05 | 4.90e+03 | 7.11e+03 | 4.22e+03 | 6.44e+03 | 5.20e-01 | 8.86e+01 | 4.76e-01 (£2.8e-03)
MLP; 1,1(4) | 5.57e+04 | 2.99e+03 | 4.00e+05 | 4.80e+03 | 5.86e+03 | 4.11e+03 | 5.17e+03 | 5.30e-01 | 8.90e+01 | 4.92¢-01 (+3.8¢-03)
MLP; 1,1(5) | 3.20e+04 | 1.89e+03 | 4.00e+05 | 4.90e+03 | 5.74e+03 | 4.22e+03 | 5.05e+03 | 5.30e-01 | 8.91e+01 | 4.97e-01 (£3.7¢-03)
MLP; 1,1(6) | 1.88e+04 | 9.34e+02 | 4.00e+05 | 4.60e+03 | 5.56e+03 | 3.93e+03 | 4.89e+03 | 4.90e-01 | 8.92e+01 | 4.48e-01 (£3.5¢-03)
MLP; 5 1(1) | 6.87e+04 | 3.12e+03 | 4.00e+05 | 4.52e+03 | 6.61e+03 | 3.92e+03 | 6.01e+03 | 5.10e-01 | 8.92e+01 | 4.62¢-01 (£8.0e-04)
MLP; 51(2) | 1.15e+05 | 2.24e+03 | 4.00e+05 | 3.99e+03 | 3.92e+03 | 3.34e+03 | 3.26e+03 | 6.20e-01 | 8.92e+01 | 6.14e-01 (£7.8e-04)
MLP;51(3) | 7.81e+04 | 2.03e+03 | 4.00e+05 | 4.01e+03 | 3.91e+03 | 3.36e+03 | 3.26e+03 | 6.80e-01 | 8.90e+01 | 6.75¢-01 (£1.2e-03)
MLP; 1 (1) | 7.15e+04 | 2.56e+03 | 4.00e+05 | 4.66e+03 | 6.63¢+03 | 4.06e+03 | 6.03e+03 | 5.10e-01 | 8.92e+01 | 4.61e-01 (£1.5¢-03)
MLP; 1 1(2) | 7.37e+04 | 2.33e+03 | 4.00e+05 | 4.19e+03 | 5.05¢+03 | 3.58e+03 | 4.44e+03 | 5.10e-01 | 8.92e+01 | 4.73e-01 (£1.4e-03)
MLP;1,1(3) | 6.54e+04 | 2.25e+03 | 4.00e+05 | 4.38e+03 | 5.88¢+03 | 3.78e+03 | 5.28e+03 | 5.10e-01 | 8.90e+01 | 4.59¢-01 (£2.8¢-03)
MLP;;,1(4) | 5.97e+04 | 1.98e+03 | 4.00e+05 | 4.28e+03 | 4.80e+03 | 3.67e+03 | 4.19e+03 | 5.60e-01 | 8.88e+01 | 5.16e-01 (£1.9¢-03)
MLP11(5) | 5.66e+04 | 1.92e+03 | 4.00e+05 | 4.37e+03 | 5.98e+03 | 3.77e+03 | 5.39e+03 | 5.30e-01 | 8.88e+01 | 4.79¢-01 (£2.8e-03)
MLP511(6) | 6.02e+04 | 1.99e+03 | 4.00e+05 | 4.35e+03 | 6.16e+03 | 3.75e+03 | 5.56e+03 | 5.20e-01 | 8.84e+01 | 4.63e-01 (£+2.1e-03)
MLP; 5 1(2) | 9.64e+06 | 9.37e+06 | 4.00e+05 | 1.38¢+04 | 2.20e+04 | 1.14e+04 | 1.97e+04 | 4.50e-01 | 8.43e+01 | 7.32e-02 (£1.3e-03)
MLP351(3) | 5.26e+04 | 1.47e+03 | 4.00e+05 | 4.32¢+03 | 6.11e+03 | 3.73e+03 | 5.52e+03 | 5.00e-01 | 8.88e+01 | 4.51e-01 (£+1.2e-03)
MLP3 5 1(1) | 6.48e+04 | 9.48e+02 | 4.00e+05 | 4.09e+03 | 5.35e+03 | 3.57e+03 | 4.83e+03 | 5.50e-01 | 8.84e+01 | 4.91e-01 (£1.2e-03)

Kendall -2.02e-01 | -8.69¢-02 nan 1.45e-02 | 7.24e-02 | -4.34e-02 | 7.25e-02 nan nan nan

Table 4: Comparison of skip connection configurations with different complexity and performance
metrics of 5-Layer MLPs on Fashion MNIST. We omit some of the configurations, since they cannot
achieve comparable performance. All models are trained with similar accuracy, and the Kendall
method is provided to see whether our method indeed captures the influence of skip-connection.

Network PEN PSN #Param PBC PBV wC CWC Loss Acc. A Loss
CNNy0,0(1) | 2.20e+04 [ 6.50e+03 | 4.40e+06 | 9.47e+03 | 8.95¢+04 | 9.12e+03 | 8.91e+04 | 1.00e+00 | 6.58e+01 | 3.70e-01 (£2.5e-04)
CNNj0,1(1) | 2.42e+04 | 7.20e+03 | 4.40e+06 | 9.47e+03 | 8.94e+04 | 9.11e+03 | 8.90e+04 | 9.97e-01 | 6.67e+01 | 5.10e-01 (£1.3e-04)
CNNy,1,0(1) | 2.47e+04 | 7.30e+03 | 4.40e+06 | 9.45¢+03 | 8.90e+04 | 9.10e+03 | 8.87e+04 | 1.05e+00 | 6.59e+01 | 6.40e-01 (£1.7e-04)
CNNy,1,0(2) | 2.70e+04 | 8.00e+03 | 4.40e+06 | 9.49e+03 | 9.02e+04 | 9.14e+03 | 8.98e+04 | 1.04e+00 | 6.57e+01 | 5.40e-01 (£1.2e-04)
CNNj ,0(2) | 2.72e+04 | 8.10e+03 | 4.40e+06 | 9.49¢+03 | 9.02e+04 | 9.14e+03 | 8.98e+04 | 1.10e+00 | 6.42e+01 | 6.40e-01 (£2.3e-04)
CNNj 0,0(3) | 2.92e+04 | 9.40e+03 | 4.40e+06 | 9.54e+03 | 9.21e+04 | 9.19e+03 | 9.17e+04 | 1.10e+00 | 6.15e+01 | 4.60e-01 (+1.5¢-04)
CNNy 1 1(1) | 3.47e+04 | 1.70e+04 | 4.40e+06 | 1.02e+04 | 1.07e+05 | 9.84e+03 | 1.07e+05 | 1.07e+00 | 6.23e+01 | 3.90e-01 (£1.6e-04)
CNNy1,1(2) | 3.38e+04 | 1.55e+04 | 4.40e+06 | 9.84e+03 | 9.86e+04 | 9.48e+03 | 9.82e+04 | 1.07e+00 | 6.19¢+01 | 4.00e-01 (+7.5¢-05)
CNNy1,1(3) | 3.06e+04 | 1.04e+04 | 4.40e+06 | 9.61e+03 | 9.32e+04 | 9.26e+03 | 9.29e+04 | 1.08e+00 | 6.23e+01 | 4.40e-01 (+1.5¢-04)
CNNy1,1(4) | 3.29e+04 | 1.47e+04 | 4.40e+06 | 9.57e+03 | 9.18e+04 | 9.22e+03 | 9.14e+04 | 1.06e+00 | 6.26e+01 | 3.90e-01 (+1.4e-04)
CNNy1,1(5) | 3.13e+04 | 1.14e+04 | 4.40e+06 | 9.68e+03 | 9.52e+04 | 9.33e+03 | 9.48e+04 | 1.07e+00 | 6.31e+01 | 4.40e-01 (+6.0e-05)
CNNy1,1(6) | 3.04e+04 | 1.03e+04 | 4.40e+06 | 9.53e+03 | 9.15e+04 | 9.18e+03 | 9.11e+04 | 1.08e+00 | 6.22e+01 | 4.30e-01 (+1.1e-04)
CNNj 2,1 (1) | 4.43e+04 | 2.74e+04 | 4.40e+06 | 1.18e+04 | 1.44e+05 | 1.14e+04 | 1.44e+05 | 1.03e+00 | 6.49¢+01 | 4.90e-01 (+2.2¢-04)
CNN;2,1(3) | 3.21e+04 | 1.36e+04 | 4.40e+06 | 9.71e+03 | 9.48e+04 | 9.35e+03 | 9.44e+04 | 1.06e+00 | 6.28e+01 | 4.20e-01 (+1.3e-04)
CNNy 1,1 (1) | 4.26e+04 | 2.11e+04 | 4.40e+06 | 1.05e+04 | 1.12e+05 | 1.01e+04 | 1.11e+05 | 1.02e+00 | 6.57e+01 | 5.40e-01 (+1.9¢-04)
CNN31,1(2) | 4.08e+04 | 2.29e+04 | 4.40e+06 | 1.01e+04 | 1.05e+05 | 9.77e+03 | 1.05e+05 | 1.02e+00 | 6.55¢+01 | 5.30e-01 (+1.4e-04)
CNN31,1(3) | 3.79e+04 | 1.81e+04 | 4.40e+06 | 1.00e+04 | 1.03e+05 | 9.68e+03 | 1.02e+05 | 1.05e+00 | 6.43e+01 | 5.60e-01 (+3.2¢-04)
CNNy1,1(4) | 3.75e+04 | 2.02e+04 | 4.40e+06 | 1.02e+04 | 1.07e+05 | 9.81e+03 | 1.06e+05 | 1.06e+00 | 6.38e+01 | 5.70e-01 (+1.3e-04)
CNNy1,1(5) | 3.82e+04 | 1.46e+04 | 4.40e+06 | 9.82e+03 | 9.76e+04 | 9.46e+03 | 9.72e+04 | 1.06e+00 | 6.43e+01 | 6.10e-01 (+1.3e-04)
CNNy1,1(6) | 3.72e+04 | 1.33e+04 | 4.40e+06 | 9.77e+03 | 9.69e+04 | 9.41e+03 | 9.65e+04 | 1.04e+00 | 6.49e+01 | 5.90e-01 (+1.7e-04)
CNN3 5 1(2) | 5.32e+04 | 3.19e+04 | 4.40e+06 | 1.13e+04 | 1.32e+05 | 1.09e+04 | 1.32e+05 | 1.09e+00 | 6.43e+01 | 6.90e-01 (+1.6e-04)
CNNy5.1(3) | 3.76e+04 | 1.72e+04 | 4.40e+06 | 1.00e+04 | 1.03e+05 | 9.69e+03 | 1.03e+05 | 1.03e+00 | 6.51e+01 | 5.70e-01 (43.6e-04)
CNN35.1(1) | 7.85e+04 | 3.19e+04 | 4.40e+06 | 1.07e+04 | I1.11e+05 | 1.03e+04 | I.11e+05 | 1.13e+00 | 6.45¢+01 | 7.90e-01 (£1.6e-04)

Kendall 2.96e-01 | 2.41e-01 nan 2.09e-01 | 2.17e-01 | 2.10e-01 | 2.18e-01 nan nan nan

Table 5: Comparison of skip connection configurations CNNs on CIFARI0.
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