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ABSTRACT

With the growing popularity of large-scale models, neural networks with massive
numbers of parameters and increasingly complex architectures have been widely
deployed in practice. While significant theoretical efforts have been devoted to
understanding generalization in the overparameterized regime, the role of non-
parametric architectural structures remains less well understood. In this paper, we
study the structural influence of skip connections on generalization through the
lens of the PAC-Bayesian framework. We introduce a notion of general weight
correlation to formally capture inter-layer dependencies induced by skip connec-
tions. Based on this framework, we theoretically show that correlations between
adjacent layers hinder generalization, thereby explaining why ResNet-style skip
connections provide an advantage. We further analyze the interaction between
cross-layer and intra-layer correlations and prove that heterogeneous correlation
structures across layers promote generalization. Finally, we empirically validate
our framework on all skip-connection configurations in multilayer perceptrons and
convolutional networks, demonstrating that our approach effectively isolates the
contribution of skip connections to generalization.

1 INTRODUCTION

With the rapid growth of computational resources, neural networks with increasingly large param-
eter counts have become ubiquitous across diverse application domains. Beyond sheer model size,
architectural innovations have also been a key driver of progress |Xu et al.| (2024). Among these,
skip connections have emerged as a fundamental component of modern deep networks since their
introduction in ResNet. By introducing direct links across layers, skip connections not only stabi-
lize training but also enhance generalization performance. A substantial body of work has sought to
explain these benefits. However, most existing studies approach the problem from a single perspec-
tive—such as optimization |Li et al.| (2018]), algorithmic stability Hardt et al.| (2016), or the Neural
Tangent Kernel (NTK) |Arora et al.|(2019)—and typically restrict their analysis to one specific form
of skip connection.

Fig.|l]illustrates the correlation matrices of posterior weights for different skip-connection config-
urations in a 5-layer MLP. The posterior distribution is obtained by applying small-learning-rate
perturbations. Notably, the correlation structure of the weights changes substantially even with min-
imal architectural modifications—for instance, adding a single skip connection at the second layer
(Fig.[Ib) or removing one connection (Fig.[Ic). These results suggest that skip connections strongly
influence cross-layer dependencies captured in the posterior. Such sensitivity provides a natural en-
try point for PAC-Bayesian analysis, which explicitly links posterior correlations to generalization.
From this perspective, we can theoretically characterize how generalization varies with different
skip-connection patterns, offering principled guidance for designing non-parametric architectures.

However, even for a toy MLP with fewer than 500 parameters, approximating the full correlation
matrix requires at least 2,000 runs (roughly four times the number of parameters) to obtain a reason-
able estimate. This quickly becomes infeasible for modern neural networks with billions of param-
eters. Inspired by Laplace approximation of Hessian matrices (Ritter et al.,[2018)), we factorize the
correlation matrix by using the Kronecker product. Our approach naturally extends prior work on
weight correlation (Jin et al.,[2020) and weight volume (Jin et al.,2022]), both of which focus only on
intra-layer correlations while treating layers independently. In contrast, skip connections inherently



Under review as a conference paper at ICLR 2026

induce dependencies across layers. To capture this effect, we introduce the notion of general weight
correlation, which models inter-layer dependencies, and propose a correlation matrix R to explicitly
represent the influence of skip connections (see Fig.[2). We then provide a theoretical analysis of
how different structures of R affect generalization, thereby explaining the discrepancies observed
across different types of skip connections. To validate our framework, we conduct experiments on
MLPs with Fashion-MNIST and CNNs with CIFAR-10. We evaluate our method using Kendall’s
7 correlation coefficient Kendalll and demonstrate its ability to effectively capture the role of
skip connections.

Our main contributions are summarized as follows:

* To the best of our knowledge, this is the first work to analyze the non-parametric structural
influence of skip connections on generalization gaps from a PAC-Bayesian perspective.
We introduce the concept of general weight correlation to capture inter-layer dependencies
induced by skip connections.

» Within this framework, we theoretically prove that correlations between adjacent layers
impede generalization, thereby explaining the generalization advantage of ResNet-style
skip connections.

* We further show how cross-layer weight correlations interact with intra-layer correlations
under the setting of homogeneous cross-layer dependence. Our analysis reveals that gener-
alization benefits from heterogeneous (layer-specific) correlation structures.

* We empirically validate our framework on all possible skip-connection configurations in
5-layer MLPs and CNNSs. The results demonstrate that our method effectively captures the
influence of skip connections, isolating their contribution to generalization.

2 RELATED WORK

2.1 PAC-BAYES GENERALIZATION BOUNDS

Classical PAC-Bayesian analyses bound the true risk of a Gibbs or posterior-averaged predictor
by balancing the empirical risk with a complexity term measured by a Kullback-Leibler diver-
gence between a posterior over hypotheses and a prior (McAllester, [1999} [Langford et all, 2001}
2007). These early works established data-independent priors, generic KL penalties, and
temperature-style trade-offs that remain the backbone of modern formulations. Recent work adapts
these ideas to deep networks and stochastic training pipelines. [Dziugaite & Roy| (2017; 2018) con-
struct non-vacuous, data-dependent bounds for overparameterized nets by optimizing the posterior
and sometimes the prior subject to PAC-Bayes constraints. Margin information has been incorpo-
rated to tighten the empirical term and connect PAC-Bayes to classical margin theory
[2017). Other directions study how SGD implicitly induces “flat” posteriors or noise-averaging
effects that PA-Bayes can capture through perturbation-sensitive priors/posteriors and training-
time noise models (Letarte et all 2019). Complementary threads relate PAC-Bayes to norm- or
compression-based capacities, spectral controls, and sharpness-style surrogates, yielding bounds
that move with optimization geometry rather than parameter count. However, most works focus
on overall generalization but do not analyze cross-layer parameter correlations or the role of skip
connections.

Flatness-based generalization measures typically rely on estimating the Hessian or Fisher Informa-
tion Matrix and relate reduced sharpness of the loss landscape to improved generalization
let al][2023)). These approaches emphasize local geometric properties—such as curvature, layer-wise
sensitivity, or perturbation stability—but largely overlook interactions across layers. In contrast, our
work focuses on cross-layer parameter correlations, offering a measure that clarifies how skip con-
nections influence generalization.

Information-theoretic analyses (Xu & Raginskyl [2017)) instead study mutual information between
data and parameters, providing a global characterization of information flow in learning. Our ap-
proach differs in that we examine the correlation structure among weights themselves, motivated by
structured dependencies induced by architectural elements such as skip connections. For this pur-
pose, McAllester’s PAC-Bayesian framework offers a simple and interpretable tool for connecting
such structural correlations to generalization behavior.
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Figure 1: Full Correlation Matrices of Posterior Weights with Different Skip Connection Pat-
terns. We train a toy 5-layer MLP with parameters less than 500 to show the full Correlation Matri-
ces. We sample the posterior samples of weight by SWAG [Maddox et al.| (2019) which is scalable
method to conduct uncertainty estimation. It is achieved by perturbation around the local minima
with a small learning rate on loss surface. Details about sampling is shown in Appendix[A] The first
figure corresponds to the MLP without skip connections. The second establishes connections only
at the 2nd layers. The third figure includes skip connections that exclude only the 2nd layer, and the
last one shows the dense MLP.

2.2  FLAT MINIMA AND GENERALIZATION

The connection between the geometry of the loss landscape and generalization has been studied
for several decades. Early work by [Hochreiter & Schmidhuber| (1997) introduced the idea that flat
minima, where the loss remains nearly constant under small perturbations of the parameters, are
strongly associated with improved generalization. Their argument, grounded in a Minimum De-
scription Length (MDL) perspective, suggested that flatness reflects the robustness of the learned
solution. Subsequent empirical and theoretical studies reinforced this principle. Keskar & Socher
(2017) provided evidence that sharp minima often correspond to poor generalization, particularly
when training with large-batch methods. [Li et al.| (2018]) developed visualization tools to illustrate
how optimization trajectories converge to regions of varying sharpness, offering geometric intuition
for the flatness—generalization link. Jiang et al.|(2019) further connected margin-based generaliza-
tion to flatness, showing that flatter minima correlate with wider margins and tighter generalization
bounds. While the flatness perspective provides a compelling explanation of generalization, existing
work largely treats it as an isolated principle, without integration into PAC-Bayesian frameworks or
explicit consideration of architectural mechanisms such as skip connections.

2.3 SKIP CONNECTIONS AND THEORETICAL ANALYSIS

Skip connections, first popularized by residual networks He et al.|(2016)), are widely recognized for
their empirical benefits in stabilizing optimization and enabling the training of very deep models.
From the optimization perspective, theoretical studies have demonstrated that residual links reshape
the loss landscape to reduce sharpness and ease convergence. |[Zhang et al.[(2019) provided early ev-
idence that skip connections facilitate gradient flow and mitigate vanishing or exploding gradients,
while [Li et al.| (2021)) analyzed how skip connections ease optimization and improve gradient flow.
These works frame skip connections primarily as a tool for optimization stability rather than for
generalization guarantees. A complementary line of research examines the role of parameter cor-
relations induced by modern architectures. Jin et al.| (2020) studied how weight correlation within
layers affects generalization and illustrated that correlated parameters can implicitly constrain hy-
pothesis complexity and lead to sharper theoretical bounds, while the cross-layer correlations that
are naturally amplified by skip connections due to the direct reuse of features and gradients across
depth remain unexplored. Existing work analyses primarily account for the optimization benefits
of skip connections, while their impact on generalization remains largely unexplored, with no prior
work employing PAC-Bayesian theory to study them.
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3 PRELIMINARY

Our analysis is based on supervised classification. Let x € X C R? denote the input, y € Y =
{1,..., K} the label, and D the unknown data distribution over X x ). A hypothesis h € H maps
inputs to predictions in [0, 1]". Given i.i.d. samples S = {(z;,y;)}?,; ~ D™ and a loss function
0:[0,1]" x Y — RT, we denote natural and empirical risks as

R(D) = B gy (@) )] RO = 3" (), i), n

Neural Network Classifier. Here, we consider our hypothesis as a neural network and we define
it recursively. Given input « € X, the hidden representations are computed as

z = (W), (2a)
Zi+1 :¢(W(l)zl)+ szv l= 13"'7L71a (2b)
keZ;
h(x) = Softmax(WH) 2, ), (2c)
where ¢ is a non-linear activation and Z; C {1,...,l — 1} denotes the set of skip connections into

layer I. For example, in a 3-layer network, if we add a skip from layer 1 to 3, then Z3 = {1}. And
since we start from the first layer, Z; = (). For analytical tractability, we model skip connections as
additive terms after activation. Bias parameters can be concatenated in weights.

Matrix Normal Distribution. Skip connections couple the outputs of entire layers, inducing de-
pendencies across full weight matrices. To model such correlations in a tractable way, we adopt
the matrix normal distribution (MND), which naturally captures row- and column-wise covariance
structures.

Definition 3.1 (Matrix Normal Distribution). Let X € R"*P be a random matrix. Given positive
definite covariance matrices U € St and V € S;H', we say that X follows a matrix normal

distribution with mean M € R™*P, denoted
X ~ MNp, p(M,U, V),
if its density is
exp (-3 tr[VHX - M)TU (X — M)])
(2m)me/2 det(V)™/2 det (U )P/2
Equivalently, vec(X) ~ N (vec(M),V ® U), where ® denotes the Kronecker product, and vec(+)
is the vectorization operation for matrices.

Remark 3.2. Matrix-normal priors and posteriors (often with Kronecker-factored covariance) are
common in Bayesian deep learning and variational approximations (Ritter et al., 2018; Huang et al.},
2020; Schnaus et al.| 2023)). Here we employ them as a stylized but tractable tool to capture cross-
layer dependencies.

p(X | M,U,V) =

PAC-Bayesian Bound. The generalization gap is the difference between natural and empirical
risks (Eq.[I). Although directly computing this gap is infeasible for modern neural networks, PAC-
Bayesian theory provides a principled way to bound it in terms of the KL divergence between poste-
rior and prior distributions over weights. We recall McAllester’s classical bound (McAllester, |1998;
Guedj & Shawe-Taylor, |2019), which forms the basis of our analysis.

Theorem 3.3 (McAllester’s bound). Given h € H and S = {(x;,y;)}—q ~ D" be n i.i.d. samples.
For any prior distribution P € P(H) independent of S, and any posterior distribution QQ € P(H)
possibly dependent on S, with probability at least 1 — § over S, we have

KL(Q||P) + In(*%)
2n ’

YQ € P(H), EnvglR(R)] < EnvolR(h)] + \/ 3)
This theorem highlights the important role of the KL term in upper-bounding the generalization
gap, where it typically serves as a complexity measure. However, existing work rarely captures
architectural factors such as skip connections. In the following, we propose a complexity measure
that accounts for these factors.
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4 MAIN RESULTS

In this section, we present the main results of the paper. We begin by recalling the KL divergence
for matrix-normal distributions (MNDs), then introduce our proposed measure for cross-layer cor-
relation, followed by two theorems capturing the key correlation patterns observed in MLPs and
CNNE.

Proposition 4.1 (KL divergence between MNDs). Ler Q = MN,, ,(Mg,Ug,Vg) and P =
MN o (Mp,Up,Vp) be two matrix normal distributions with means Mg, Mp € R™*P, row
covariances Ug,Up € SSt, and column covariances Vi, Vp € S+, Then the KL divergence
admits a closed form

m

KL(QIIP) = 5 u[(VaVi") @ (UgUi")] + 5t [Vis (Mg — Mp) U (Mg — Mp)]

_mp_ m log det(Vp) 4P og det(Up) “4)
2 det(UQ)'

2 2 det(VQ)
The proof of Prop. #.1]is deferred to Appendix [E-I] Since the weight matrices of neural networks
may have different shapes, we first pad them to a common size for notational simplicity. Appendix[C]
shows that padding with non-trainable standard Gaussian entries leaves the KL divergence un-
changed. Thus, without loss of generality, we concatenate the weights as W = (Wq, Wa, ..., Wp),

where foreach ! = 1,2,..., L, W; € R™*" and Zle Ty =p.

Following standard assumptions in the literature (Jiang et al., [2019; Jin et al., |2020), we take the
prior distribution to be P = MN m,p(W(o), ol I,), which corresponds, after vectorization, to an
isotropic Gaussian prior vec(W) ~ N (vec(W ) ¢21,,,,,). While recent work has explored data-
dependent priors for achieving tighter bounds, we adopt this simpler form in order to focus on the
effect of skip connections.

Assumption on posteriors A full covariance structure for the posterior captures all information
contained in the trained neural network. However, estimating such a distribution is typically infea-
sible in practice, and simplified assumptions are adopted to balance tractability with the ability to
capture the most influential factors. FollowingJiang et al.|(2019); Jin et al.[(2020; |2022)), we assume
that the variance of each parameter is unchanged (diag(X¢g) = diag(Xp)). In contrast to earlier
works, we relax two strong assumptions: the isotropy of weight matrices within each layer (Jiang
et al., [2019) and the independence of weights across layers (Jin et al., |2020; 2022). Under these
settings, the KL divergence simplifies to

WONT (W _ 0] 4 7 1 p am
P) Mg —— 4 Pyog T
L(Q|P) Ztr{ )W =W 4 log det(Vg) T2 8 den(Ug)

®)

We follow the notion of weight correlation (Jin et al., 2020) between rows of weight matrix for in a
given layer, and extend to correlation across different layers. To simplify the following analysis, we
let the size of all weights be the same (i.e., VI, r; = 7).

4.1 GENERAL WEIGHT CORRELATION

We extend the notion of weight correlation Jin et al.| (2020) to cover the relation between layers.
Therefore, we can analyse its impact on generalization gap.

Definition 4.2 (General weight correlation). Given weight matrix W;, W at [-th and s-th layers, the
generalized weight correlation is defined as
(WEWs ]

A
= —— (6)
Z_: IWeillz, W jll2”

where W ; is the i-th row of the matrix W, corresponding to the i-th at [-th layer.
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We recall the weight correlation (Jin et al |2020), and show that weight correlation is just a spe-
cial case of our formulation as it measures the same weights. This connection is discussed in Ap-

pendix [D]
4.2 CONNECTION TO FLATNESS OF LOSS SURFACE

Let w = vec(W) and w* denote the MAP estimate of the posterior weights. The log-likelihood
of the posterior (i.e., log p(w | S)) can then be approximated by a second-order Taylor expansion,
as shown in Eq. [/| This approximation forms the basis for analyzing how skip connections affect
posterior correlations and, consequently, generalization.

1
logp(w | 8) = logp(w” | §) = 5 (w = w") " Es[H](w — ") (7

Hence, the posterior can be approximated as Gaussian,
w = vec(W) ~ N (vec(W*), Eg[H] ™) (8)

Computing the inverse of the full Hessian matrix is infeasible. An approximation is to conduct the
Kronecker product decomposition, and we have for each weight matrix

Wi ~ MN (W, Es[Vig] "} Es[U] ) ©)

4.3 ANALYSIS OF CROSS-LAYER CORRELATION PATTERNS

To examine the impact of general weight correlation, we further decompose the column-wise cor-
relation Vy and establish the following lemma. We then investigate two characteristic patterns
corresponding to sparse skip connections and dense connections.

Proposition 4.3. Let the weights of neural networks be W, € R™*", and let matrix R = (p; ;)i j,
defined in Def. Let
Vo =diag(l —p11,...,1 —pr) @I+ R® J (10)

where J = 117 is the dot product of all one vector 1. Then,

L

logdet(Vg) = (r — 1) Zlog(l — p11) + log det(diag(1 — p11,...,1 —pr.r) +7R). (11)
=1

The proof is in Appendix [E2] The weight correlation is just a special case of our formulation by
letting R = diag(p1.1, 022, ---,pL,1)- The detailed discussion is in Appendix@

Def. 2] and Prop. .3 both assume 7; = r for simplicity. However this assumption can be relaxed
with mixed correlation between rows and columns for weights of different layers, allowing mismatch
of size for weights.

Now, we consider a case where there is a correlation between adjacent layers. This is particularly
the case for MLPs, as is shown in Fig. 24|

Proposition 4.4 (Adjacent Connection). Given the neural network defined in Eq. 220 and[2d and
KL divergence in Eq. let R be I-banded matrix, i.e.,
R = diag(p1,1,- .., pr,L) +diag;(p12,...,pr—1,0) +diag_;(p12,...,pr,L—1) 12)

where diag, (- - - ) and diag_, (- - - ) are superdiagonal matrices shifted one element from the diago-
nal. Let

Ay = det(diag(l — p11,...,1 —pr.) + rR) (13)
which can be represented recursively as
Ap =01+ (r—1Dprr]Ar—1—1r°p]_1  Ar—2 (14)
andforalll =2,...,L,
0AL <0. (15)
3/)1—1,!
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We provide a more general version of the proposition, with the proof deferred to Appendix [E-4]
Prop. establishes a monotonic relationship between the term log det(Vy) and the correlations
pi—1,1 between adjacent layers, corresponding to the case illustrated in Fig. For MLPs without
skip connections, this relation holds directly; however, introducing a long skip connection can alle-
viate the effect, as shown in Fig. resulting in a smaller generalization gap (since it is positively
related to the KL divergence).

We also consider the case where correlations across different layers differ only minimally, similar
to the scenarios in Fig.[2c] Fig.[2¢] and Fig. 2} Dense connections in 5-layer MLPs (Fig. ) can be
approximated under this setting by using a single scalar to represent all general weight correlations
among layers.

Proposition 4.5 (Homogeneous Connection). Consider the same conditions in Prop. and let

R =diag(p1,1,---,pr,0) +p(Jr —I1) (16)
where Jy, = 117 and I}, is identity matrix of size L. Hence, we have
L L ro
Ap= 1131(1 + (= Dpra —7p) (1 + ; Ty m) (17)
Andforanyl=1,...Lif
o p ()

the derivative of Ay, w.r.t p will be unstable such that A, (p) — oc.

The proof is provided in Appendix[E-4} Prop.[f.3reveals an interesting phenomenon: as cross-layer
correlation approaches a certain point, it can significantly degrade generalization performance. This
behavior aligns with the large empirical generalization gaps observed for MLP; 5 1(2) in Tab. and
CNN3 5 1(1) in Tab.

5 EXPERIMENT

Network PEN PSN PBC PBGC A Loss

MLPy 0 1.20e+05 | 2.70e+03 | 3.62e+03 | 3.18e+03 | 5.31e-01 (4-7.4e-04)

MLP o1 1.41e+05 | 4.47e+03 | 3.97e+03 | 3.55¢+03 | 4.55e-01 (+1.3e-04)
MLPg 1 0(1) | 1.31e+05 | 2.86e+03 | 3.74e+03 | 3.22e+03 | 4.75e-01 (£4.8e-04)
MLPj1,0(2) | 1.34e405 | 4.29¢+03 | 4.84e+03 | 3.73e+03 | 4.19¢-01 (£3.1e-04)
MLP, o0(1) | 1.47e+05 | 4.18e+03 | 3.97e+03 | 3.53e+03 | 4.51e-01 (£4.2e-04)
MLP; 0(2) | 1.36e+05 | 2.51e+03 | 4.39e+03 | 3.73e+03 | 3.67e-01 (£3.7e-04)
MLP; 0,0(3) | 1.02e+05 | 1.05e+03 | 3.28¢+03 | 2.90e+03 | 3.76e-01 (£9.0e-04)
MLP, 1:(1) | 7.41e+04 | 3.98¢+03 | 5.42e+03 | 8.27e+03 | 4.53e-01 (£3.9¢-03)
MLP;351(2) | 9.64e+06 | 9.37e+06 | 1.38¢+04 | 2.20e+04 | 7.32¢-02 (£1.3e-03)
MLP321(3) | 5.26e+04 | 1.47e+03 | 4.32¢+03 | 6.11e+03 | 4.51e-01 (£1.2¢-03)
MLP;551(1) | 6.48¢+04 | 9.48¢+02 | 4.09¢+03 | 5.35e+03 | 4.91e-01 (£1.2¢-03)

Kendall 7 -2.02e-01 | -8.69e-02 | 1.45e-02 | 7.24e-02 1

Table 1: Selective results for skip connections with different complexity and performance metrics
on 5-layer MLPs. This table reports four complexity measures (PFN, PSN, PBC, and PBGC). The
full results are provided in Tab. [f] ALoss denotes the empirical generalization gap, defined as the
difference between test and training loss. Each model is further trained for 5 additional epochs with
a small learning rate, and we report the mean and standard deviation across runs. The last row
reports Kendall’s 7 correlation. Bold numbers indicate the highest value, while underlined numbers
correspond to the PBC method.

To study the effect of skip connections on generalization gaps, we trained 5-layer MLPs on Fashion-
MNIST and 5-layer CNNs on CIFAR-10 with all possible skip-connection configurations. For
CNNSs, we consider both versions with and without batch normalization. All MLPs use a hidden
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size of 256, while CNNs use 256 channels per layer with 3 x 3 kernels. Models are trained for 80
epochs using SGD with a learning rate of 2 x 102, momentum of 0.9, and weight decay of 1074,
For the toy example used to compute full covariance matrices, we train a smaller 5-layer MLP with
input dimension 8 for 100 epochs. All experiments were run on a single NVIDIA RTX 3090 GPU
with Python 3.9.7 and PyTorch 1.9.1.

5.1 COMPLEXITY MEASURE
To benchmark our approach, we compare it against several established complexity measures:

* Product of Frobenius Norms (PFN): Defined as the product of Frobenius norms of all
weight matrices, PFN reflects the overall magnitude of network parameters across layers.

* Product of Spectral Norms (PSN) Bartlett et al.[(2017): Computed as the product of spectral
norms of the weight matrices, PSN emphasizes the worst-case layer-wise amplification
effect and has been widely studied in generalization bounds.

* PAC-Bayes & Correlation (PBC) Jin et al.[(2020): An extension of the PAC-Bayes frame-
work that incorporates weight correlations, capturing richer dependencies among parame-
ters than standard PAC-Bayes bounds.

* We refer to our method as PAC-Bayes & Generalization Correlation (PBGC), which ex-
plicitly incorporates the proposed General Weight Correlation (GWC).

For evaluation, we assess the agreement between empirical rankings of generalization perfor-
mance and those predicted by different complexity measures using Kendall’s 7 correlation coef-
ficient (Kendall, [1938). This statistic quantifies rank similarity by comparing the number of con-
cordant and discordant pairs, with values ranging from -1 (complete disagreement) to 1 (perfect
agreement).

To present our results clearly, we first introduce the notation for our models. We use MLP and CNN
to denote the model type. A superscript b, such as CNNP, indicates the use of batch normalization.
Skip connections are considered only in hidden layers (as is typical, since classification networks
rarely connect hidden layers directly to inputs or output intermediate features). We represent skip-
connection patterns with a triple index—for example, (0,0, 0) denotes the number of connections
at each position (corresponding to |Z;| in Eq. . When multiple connection types share the same
number, we use an additional index to distinguish patterns. The detailed notations are summarized
in Tab.[5} For cases with a unique configuration, we omit the index for brevity.

5.2 RESULTS OF MLP

Tab. [I| summarizes the results for skip connections in 5-layer MLPs. The last row reports Kendall’s
T correlation. As shown, our proposed method achieves the highest Kendall 7 among PFN, PSN,
and PBC, indicating that it more effectively captures the influence of skip connections.

Comparing MLPy ¢ o with MLP; o ¢(3) in Tab. [} we observe that MLP; ¢ ¢(3)—which includes a
long skip connection from the first hidden layer to the last hidden layer—exhibits both a smaller
empirical generalization gap (3.76e-01 vs. 5.31e-01) and a lower PBGC measure (2.90e+03 vs.
3.18e+03). Consistently, Fig. [2a]and Fig. 2c|show that the cross-layer weight correlation is reduced
for MLP; ¢ ¢(3). These results provide strong evidence in support of Prop. From Fig. [2] it
is evident that the general weight correlation effectively reflects the skip connections in MLPs. In
contrast, CNNs exhibit markedly different behaviour.

5.3 RESULT OF CNN

Unlike MLPs, the impact of skip connections on CNNs is almost negligible. As shown in Fig.[2¢|and
Fig.[2f] the hidden-layer patterns exhibit no discernible differences. Consistently, the generalization
gap in Tab. [2| shows only a slight reduction for CNN ¢ o (from 5.31e-01 to 4.53e-01), while both
PBC and PBGC increase. This suggests that, for CNNs, skip connections do not primarily act
through general weight correlation. Kendall’s 7 further supports this observation: although PBGC
improves marginally over PBC, it is not the best-performing measure—the highest correlation is
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Figure 2: The figures visualize the general weight correlation matrix R defined in Prop. For
CNNs, the first and last layers are omitted since they are not directly comparable; we therefore
compute the general weight correlation only across hidden channels.

achieved by PFN. This implies that the influence of skip connections in CNNs may instead be linked
to the norms of the weight matrices.

In contrast, CNNs with batch normalization behave quite differently. As illustrated in Fig. 2g| and
Fig. , CNNZ{J’1 exhibits patterns similar to MLPg o 0. Interestingly, this indicates that batch-
normalized CNNs demonstrate an effect opposite to that observed in MLPs.

We validate the Gaussian approximation using diagnostics in Tab.[3] Parameters are projected onto a
30-dimensional PCA subspace, and we evaluate three standard metrics: the Shapiro—Wilk rejection
rate, the Anderson—Darling statistic, and the effective sample size (ESS). As shown in Tab. 1, the
Shapiro—Wilk rejection rates are low, the mean ESS values are stable, and the Anderson-Darling
statistics are small across all architectures and skip configurations. These results indicate that the
Gaussian approximation provides a reliable local model of the posterior in our setting.

We extend our evaluation to ResNet-18 on CIFAR-100 (Tab. f) and additionally report Spearman
and distance correlation (dCor), along with their corresponding p-values. Since ResNet-18 has 256
possible skip-connection configurations, we include several representative examples in the main
text and visualize the correlation trends in Fig. 4 (appendix). As shown in Tab. 2, our proposed
complexity measure consistently yields the strongest correlations across all three statistics, with
significance levels below 1%.

6 CONCLUSION AND LIMITATION

We introduced a PAC-Bayesian framework that makes explicit the role of architectural structure in
generalization via General Weight Correlation (GWC) and its induced matrix k. By Kronecker-
factoring the posterior covariance, our method extends weight correlation to capture cross-layer
dependencies created by skip connections. The theory shows that adjacent-layer correlations enlarge
the KL term and thus hinder generalization, while heterogeneous, layer-specific correlations are
beneficial. Empirically, PBGC best aligns (via Kendall’s 7) with observed generalization trends
across all skip patterns in MLPs, and reveals a contrasting picture for CNNs, where skip connections
have limited effect unless batch normalization is present. These results isolate when and how skip
connections help from a PAC-Bayesian viewpoint, providing actionable guidance for non-parametric
architectural design. The limitation includes extension to more general and complex models, e.g.,
transformer-based models.
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Network PFN PSN PBC PBGC A Loss
CNNy,0,0 1.20e+05 | 2.70e+03 | 3.62e+03 | 3.18e+03 | 5.31e-01 (£7.4e-04)
CNNpo 0,1 1.41e+05 | 4.47e+03 | 3.97e+03 | 3.55e+03 | 4.55e-01 (&1.3e-04)
CNNy,10(1) | 1.31e+05 | 2.86e+03 | 3.74e+03 | 3.22¢+03 | 4.75¢-01 (£4.8e-04)
CNNp,1,0(2) | 1.34e+05 | 4.29¢+03 | 4.84e+03 | 3.73e+03 | 4.19¢-01 (£3.1e-04)
CNNy 00(1) | 1.47e+05 | 4.18¢+03 | 3.97e+03 | 3.53e+03 | 4.51e-01 (+4.2¢-04)
CNNy00(2) | 1.36e+05 | 2.51e+03 | 4.39e+03 | 3.73e+03 | 3.67e-01 (£3.7¢-04)
CNNj 0,0(3) | 1.02e+05 | 1.05e+03 | 3.28¢+03 | 2.90e+03 | 3.76e-01 (£9.0e-04)
CNN; 11(1) | 7.41e+04 | 3.98¢+03 | 5.42e+03 | 8.27e+03 | 4.53e-01 (£3.9¢-03)
CNN32.1(2) | 5.32e+04 | 3.19e+04 | 1.13e+04 | 1.32e+05 | 6.90e-01 (£1.6e-04)
CNN221(3) | 3.76e+04 | 1.72e+04 | 1.00e+04 | 1.03e+05 | 5.70e-01 (£3.6e-04)
CNN;321(1) | 7.85e+04 | 3.19¢+04 | 1.07e+04 | 1.11e+05 | 7.90e-01 (£1.6e-04)
Kendall 7 2.96e-01 | 2.41e-01 | 2.09e-01 | 2.17e-01* 1

Table 2: Selective results for skip connections with different complexity and performance metrics
on 5-layer CNNs. Bold numbers denote the highest values, underlined numbers correspond to the
PBC method, and starred numbers indicate our proposed method.

Table 3: Summary of Distribution Diagnostics (Projected to £ = 30) Across Skip Configura-
tions.

Skip Config | Mean ESS Min ESS  Shapiro reject rate  Mean AD stat
CNNy,0,0 287.6 225.0 0.00% 0.397
CNNy 1,1 (1) 283.8 227.1 3.33% 0.436
CNNy 1 ,1(1) 270.3 163.3 0.00% 0.375
CNN221(1) 272.1 163.8 0.00% 0.380
CNN32.1(1) 289.1 196.0 3.33% 0.352
CNNB’O}O(l) 279.8 171.6 0.00% 0.376
CNN$ 11(1) 300.0 300.0 0.00% 0.306
CNNj, (1) 288.3 288.2 0.00% 0.442
CNN12’72,1(1) 285.6 226.5 3.33% 0.436
CNN} 2.1(1) 281.1 219.2 0.00% 0.342
MLP ¢,0(1) 281.7 235.6 0.00% 0.397
MLP; ; 1(1) 272.9 163.0 0.00% 0.368
MLP;1(1) 270.3 158.5 3.33% 0.403
MLP; 21(1) 268.8 170.1 0.00% 0.384
MLP; 2 1(1) 282.3 216.7 0.00% 0.347
MLP3 5 1(1) 270.8 105.0 0.00% 0.348

Table 4: Correlation Analysis Between Model Complexity Measures and the Empirical Com-
plexity Gap. The experiment is conducted on representative skip-connection configurations of
ResNet18 on CIFAR-100.

Measure Kendall 7 (p-val) Spearman p (p-val) dCor (p-val)

PFN —4.12¢-01 (2e-02)  —6.37e-01 (4e-03) 3.96e-01 (1e-01)

PSN —4.25e-01 (1e-02)  —6.45e-01 (4e-03) 4.29e-01 (8e-02)

PB —4.51e-01(9e-03)  —6.49e-01 (4e-03) 5.77e-01 (2e-02)

PBC 4.90e-01 (4e-03) 6.66e-01 (3e-03) 8.35e-01 (0e+00)

PBGC 5.42¢-01 (1e-03) 7.09¢-01 (9e-04)  8.41e-01 (0e+00)
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A NOTATION OF NEURAL NETWORKS

Connection Notation I I3 1y
0,0,0 - - -
0,0,1 - - {3}

07 170(1) - {2} -

07 170(2) - - {2}
17070(1) {]} - -
17070(2) - {1} -
17070(3) - - {l}
1,1,1(1) {1y [ {2} {3}
1,1,1(2) | - | ey
1,1,1(3) S| {3
1,1,1(4) -y |3y
1,1,1(5) - {2p | {13}
1,1,1(6) - - {1,2,3}
1,2,1(1) {1} | {2} | {23}
1,2,1(2) {1,2} - {2,3}
1,2,1(3) 123
2,1,1(1) oy (1127 3]
2,1,1(2) {1y | {1y | 2.3}
2,1,1(3) {1} | {2} | {13}
2,1,1(4) | - a2y
2,1,1(5) - {1,2} {1,3}
2,1,1(6) - {1} | {123}
2,2,1(1) {1y ] {12} | {23}
2,2,1(2) {1y | {2} | {12}
2,2,1(3) - {1,2} | {1,2,3}
3,2,1(1) {1} | {12} | {123}

Table 5: Notation table for configuration of skip-connections
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Here, we provide the notation for the skip-connection configurations corresponding to Z; in
Eq. equation [2b] The use of Z; is for mathematical rigor. Intuitively, the number in the tuple in-
dicates the starting layer of the skip connection, while the number in parentheses enumerates the
different variants.

HHHD SR e
dbps e P

(a) 0,0,0 & 3-2-1 (b) 1,0,0(2) & 1,0,0(1) (c) 1-1-1(1) & 1-1-1(3)

Figure 3: Illustration of skip configurations. The three numbers in the tuple denote the starting
points of the skip connections. For example, Fig. B3] shows an MLP without any skip and dense
connections. The number in parentheses in Fig. [3b]and Bd specifies the detailed skip configuration,
which is further explained in Tab. El

Here, we provide a toy experiment for 5-Layer MLPs on resized MNIST. The model architectures
with different skip-connection configurations are illustrated in Fig.[J] To have enough samples for
covariance matrix, we resize the MNIST dataset from 1 x 28 x 28 to 1 x 4 x 4. We set the width of
each hidden layer to 8, hence the total number of parameters is controlled around 500. The model is
trained for 100 epochs using the Adam optimizer until convergence. After convergence, we continue
training with a very small learning rate to induce mild perturbations around the local minimum.
During this phase, we record the network parameters after each batch update, resulting in over 2000
samples. To mitigate the drift introduced by the continued optimization, we apply a sliding window
of 100 samples to compute the rolling mean and subtract it from the recorded parameters. The
empirical covariance matrix is then computed from these de-meaned samples, providing a stable
and accurate estimate.

Typical SWAG performs sampling to obtain a low-rank approximation of the posterior covariance.
This is crucial for large models, but unnecessary in our setting since the network is small. There-
fore, we use the standard unbiased empirical estimator to compute the full covariance matrix. In
addition, we employ a sliding-window rolling mean instead of an overall average to better correct
for drift during sampling. Fig. [I] presents the resulting covariance matrix after removing the rows
and columns corresponding to parameters that do not change around the minimum (such parameters
lead to NaN entries in the covariance).

Here, we provide the details about how we conduct the estimation of posterior covariance matrix in
Fig.[[] We first provide the training details, then show how we estimate the covariance.

C PADDING THE WEIGHT MATRIX

We show that padding the weight matrices of a neural network with non-trainable entries does not
affect the KL divergence between prior and posterior weight distributions.

Consider an L-layer network with weights {Wj,Ws,..., W} before padding and
{Wy,Ws,...,Wr} after padding. Let P and ) denote the prior and posterior distributions,

13
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respectively. Define the vectorized parameters

vec(TW7) vec(Wh)
vec(Ws) _ vec(Ws)

w = . ) w = . ; (19)
vec(WL) vec(;WvL)

where vec(-) denotes column-wise vectorization.

The KL divergence between Gaussian posterior QQ = N (pg, X¢) and prior P = N (pup,Xp) is

KL(Q|IP) = + |1og 9 (2r)

= - Tyt - Yo1Y0)] . 2

Padding is implemented by augmenting each W;,l = 1,2... L with non-trainable entries (stan-
dard Gaussian), so that all weight matrices share the same maximal row/column dimensions. Since
padding entries are non-trainable, their quadratic contribution in Eq.[20|cancels, i.e.

(ko — 1p) S5 (g — pp) = (ig — Fir) S5 (g — fip). (21)

Let padding be an independent standard Gaussian (v ~ N(0, I)), and re-arrange the variants as

- w
o= (2). @)
For the covariance structure, this implies

coim (5 0\ (Zg 0\ _ (=%, 0
EPEQ_((})D 1)(0 I)‘(Po I) 23)

The determinant factor is likewise preserved:

det(E) = det (% ?) = det(X). (24)

Thus all terms in equation 20|remain unchanged under padding. Hence the KL divergence between
prior and posterior distributions is invariant to padding.

Remark C.1. Padding simply appends additional coordinates that are identically distributed under
both the prior and posterior (standard Gaussian, independent of the trainable weights). Since KL
divergence only measures discrepancies between two distributions, these extra variables contribute
zero to the KL.

D CONNECTION TO WEIGHT CORRELATION

We make segmentation for column covariance V' according to columns of weights at each layer,
and consider the factorization of the covariance matrix for vectorized weights from all layers that
Y=V ®U, we have

VipnoeU ViU --- ViU
Voao®@U Voo@U - ViU
VU= . . . . (25)
Viao@U ViU --- VppeU
LetV;; = 0,Vi # j, U = 0] and
Lopi o
pi 1 ... pi
Vie=1. . . - (26)

We show that —logdet(V; ; ® U) is indeed the weight correlation factor in the KL-divergence.
Another notion related to our work is weight volume Jin et al.| (2022) as defined in

14



Under review as a conference paper at ICLR 2026

Definition D.1 (Weight Volume (Jin et al., 2022)). Let

Y, =E [(Vec(VVl) — E(vec(W)))(vec(W;) — E(Vec(Wl)))T] 27)
be the weight covariance matrix in a neural network. The weight volume is defined as
det(Zl)
vol(W;) £ . (28)
[L:[2i

This provides a more general notion that accounts for all possible correlations within a given weight
matrix. In our setting, it can be estimated as vol(WW;) = det(V,; @ U).

E OMITTED PROOFS

Lemma E.1 (KL divergence between MNDs). Let Q@ = MN,, ,(Mg,Uqg,Vg) and P =
MN o (Mp,Up, Vp) be two matrix normal distributions with means Mg, Mp € R™*P, row
covariances Ug,Up € S}, and column covariances Vg, Vp € S}T. Then the KL divergence
admits a closed form

KL(Q|IP) = 5 tr[(VQVp ) ® (UQUph)] + tr [Vp ' (Mg — Mp)"Up' (Mq — Mp)]
(29)
_mp 71 det(Vp)  p log det(Up).
2  det(Vo) 2 % det(Ug)
Proof. Starts from Def.[3.1] we have
1
KL(Q||P) = 5Eqtr [Vgl(X — Mp)TUR(X — Mp) — V5 U (X — Mo) UL (X ~ MQ)}
(30)
m.  det(Vp) p. det(Up)
518 Gt ) T 28 det(to) D
= %EQtr [Vp (X — Mg + Mg — Mp)"Up' (X — Mg + Mg — Mp)] (32)
1
- 5Eq [vec(X — M) (V' @ Uy )vee(X — MQ)} (33)
L m det(Vp)  p. det(Up) (34)

1 £

3 8 det (V) T 2 28 det(Ug)
1 _ _ 1 _ _

= SEqtr (Vi (X — Mg)"UR" (X — Mg)| + St [Vp ' (Mg — Mp)TUR" (Mg — Mp)]

(35)

mp m_  det(Vp) p det(U )
—7+—log + = log (36)

2 2 7det(Vg) 2 det(Ug)

1

= §tr[(VQV};1) (UQUpM) + tr (Ve ' (Mg — Mp)TUR" (Mg — Mp)] (37)

mp m . det(Vp) p. det(Up)
- — —1 =1 38
> T2 ey T 218 dertg) (38)
O

LemmaE.2. Ler A, B € REXL and J € S,.. Then,

det (A® I, + B® J) = [ [ det (A + \;B). (39)

i=1

where I, is the identity matrix of size r.
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Proof. Let Q be the orthogonal matrix diagonalizing J, i.e., QT JQ = diag(\1,...,\.) = A. By
similarity invariance of the determinant,

det (A9, +B®J) =det (I, ® Q)" (A® I, +B®J)(I,®Q)). (40)
Using the mixed-product property of Kronecker products, this equals
det (A® I, + B®A). (41)
Consider commutation matrix K such that
det (A® I, + B A) =det (K(A® I, + Be A)KT) 42)
=det (I, ® A+ A ® B) (43)
Hence the determinant factorizes as
[I det(A+XiB). (44)
i=1
O
Lemma E.3 (Determinant of block correlation matrix with heterogeneous sizes). Let r1,...,rp €
N and define
. L
V = dla‘g ((1 - pl,l)IT17 crt (1 - pL,L)IrL) + (pl,k‘ Jle’f’k)ng:N (45)
where J,, », = 1,, 172 Let
D = diag(1 —p11,---,1 — pr.1), R = (pLe/TiT%) et (46)
Hence,
L
log det(V Z r; — 1) log(1 — py;) + log det (D + R) 47)

=1

Proof. For each block [, define v; = 1,,/,/r; and extend it to an orthogonal basis Q; = [w,U;] €
R"*7t Then,

Ve o 0
QI LQu=1,  QJnnQu=| + - | (48)
0 e 0
Let @ = diag(Q1,...,Qr). By similarity invariance of the determinant, for the second term in
Eq.[45] we have
L .
dlag( Lo ,Qg)(pl,k"]rlﬂ'k-)l)k;:ldla‘g(Qla"' ,QL) = (49)
Qf 0+ 0N\ /pade pradee o prrdee) (@ 0 - O
0 Qg e 0 p2,1']7"2,r1 p2,2<]7'2,r2 e pZ,LJV'g,TL 0 QQ o 0
0 O Q,}: pL,lJTL,rl pL,2JrL,r2 pL’LJrL’rL 0 O QL
(50)
pP1,1T1€1,1 P12y/T172€1,2 -+ pP1,L/T1TL€1,L
P2,1/T271€2,1 P2,272€2 2 o pP2,LN/T2TLel L 51)
PL,1y/TLT1€L1 pPL2\/TLT2€L1 -°* PL,LTLEL.L

where e; 5, € R** denotes the matrix with first elements of 1 and others are all 0. Hence, with a
commutative matrix K, such that

L
det(V) = det(KVKT) = (H (1= prs ”—1> det(D + R). (52)
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Here, we recall Prop. [4.5]and provides the proof.
Proposition E.4. Consider the same conditions in Prop. and let

R= diag(pl,lv v 7pL,L) + p(‘]L - IL)
where Jp, = 117 and Iy, is identity matrix of size L. Hence, we have

L L
AL—H(H(rl)pz,lm)(HZH i )
=1

Py (r=1pg—rp

Andforanyl=1,...Lif

the derivative of Ay, w.r.t p will be unstable such that A, (p) — oc.

Proof. Since
Ap =det(diag(l — p1,1,...,1 —pr,1) +TR)
=det (diag(1 + (r —1)p11 —rp,..., 1+ (r—Dprr —rp) +rpJr)
= det (diag(1+ (r — )p1,1 —7p, ..., 1+ (r = D)pp, 1 — rp) + rpll”)

L
= H(l +(r—=1)pis —rp) (L+rpl" A1)
=1

where A = diag(1 —rp+ (r — 1)p1,1,...,1 —rp+ (r — 1)pr,1). Hence,

AL:IIQ+%T—UMJ—TM<1+§:1+@ufp )

1=1 1=1 Dpre—rp

Now, we show the derivative of A w.r.t p. Let us consider p = rp

L 1
A(ngl—i—(r—

Dpii—p

we have

L
fie 1
A(ﬁ)—;(u(r—l)pz,l—ﬁ)?

Then take logarithm on A, and take derivative

ALP) _ Z ~1 L AD) +PAR)
Ar(p) = A+ (r—=1)p—p) 1+ pA(p)
AD) + A" ()
D=5 PA(p)
AR - A7)
T+ A7)
Since p = rp,
2 (Al 2
oy A, TP(A(rp) = A%(rp))
Aule) = AL A G)
The sign of the derivative depends on
1

Alrp) = A%(rp) ==

72 L+ (r =Dy —rp)(L+(r = Dps,s —1p)

M should be avoid or it will be instable.

Notice that p =

17

(53)

(54)

(55)

(56)
(57)
(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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E.1 PROOF OF Pror.[4 4

In this section, to accommodate a more general prior distribution, we establish a broader proposition
in place of Prop.[4.4] from which Lem. [d.4]follows as a direct consequence.

Proposition E.5. Let w; = vec(W;) € RNiNi-1 [ € [L] be the vectorized weight matrix on l-th
layer;, P be fixed prior Gaussian probability measure and Q) be the posterior Gaussian probability
that dependent of the training process. We assume that the covariance matrices for P and Q) are

0'21:,1] 0 0 0 0'321[ KLQ 0 0
) T 2
0 0'123721 0 0 K172 O'Q2I K2,3 0
sp=| O 0 opgl - 0 | ;o= | 0 Kfy ojsl - 0
0 0 0 o o3, 0 0 0 0 o o} T
(68)

where o Pl] O'Q I are covariance matrices of w; on probability measure P and () separately.
K s,1,s € [L] denotes the cross-covariance. Assume that X.¢ is not degenerated. We further

assume that each pair of elements between adjacent layers shares the same correlation coefficient,
we have

Ki1p=0p1-10,p1-111Nn,_,,N, (69)

where 1y, | N, is Ni—1 X Ny matrix each element of which is 1. Therefore, we have

LS~ (1Bl = Exlnl B o (%0, O oo TT det( A
L(p||m) = 52 =y + NiNj1 o2 2Ly 85 —OgH et(A;)

=1 ™l Pl =1
(70)
(71)
and det(A;) is determined by the recursive difference equation
Nl—lNlTﬁl l
det(4;)) =1— ———= 72
et(A) det(4;_1) 72)

OKL(pllr)
o 2

> 0 showing that the KL-divergence will increase as each pl271 | increases.
1—1,1 ’

and we have

Proof. Assume that ¢ is not degenerated, and let w be the concatenation of all vectorized weight
matrices and pp = Ep|w], pg = Eq|w] for simplicity. Hence, the KL divergence for () and P is

1 det(X2 _ _
KI(QIP) = 38 [tog S = (0~ 10) 23! w o) + (& — ) 55w = )
(73)
1] det(z L
—_— ~ >N "N/N,_ - Ty-l - tr (235
5 |log det(Tq) ; N1+ (g — pp) S5 (g — pp) +tr (35750)
] (74)
1] det(Sp) & |Eqlwi] —Eplwi]l3 .
= — [log ——2~ N; N, o
5 Ogdet(ZQ Z N 1+; = +ir (Sp'80)| (79)
1] det(Sp) | o~ [ [Eqlwi] — Eplwill3 Qz
= |log ——+% + + NN | 5= — (76)
2 det (ZQ) Z Upl ' UPl
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where Ny denotes the input dimension. In order to approximate log det(X¢), we try to triangularize
Y@, and we have

IgT 0 0 Ung Kig - 0
N 021,2 I -+ 0 KlﬂjQ 0-32721 . 0
det (Sq) = det | 7o . C . (77)
0 0 I 0 0 UQ,LI
UQ,ll KLQ 0
T
N
= det Q1 . (78)
0 0 ‘e U2Q,LI
Let Ay =Tand Ay =1 — fl 251 2 and it is invertible, since we assume that all the eigenvalues in
Q,17Q,2

KT, K L . . .

g - are between [0, 1). This is quite reasonable. If violated, some weights could be entirely
0.,19Q,2

represented by others. we have

U%%’AQ [2(23[ 8
det (Sg) = o2 Moger | 20 7@ T (79)
6 O cré:LI
_IZQT,I;A21 ? _— U?(’szg fg:} S
= oGy det re L A :) - : (80)
(:) () [ O 0 O'é;LI
02, Ay Ko 0
— 020 et = | 81)
6 O O’é:LI

T -1
Kl—l,lAl—lKl*Ll

Define A; =1 — ,1 € [L] and continue doing this we have

0'2 0'2

Q.1-19Q,1
L

det (30) H SNV et (A)). (82)

Since, A; = I and let /3?—1,1 = Nl—lNlPl_l,l for simplicity, we have for [ = 2

A2 =1I- p%,21%2,N1 1N1,N2 (83)
1
=I— N1N2p§2ﬁ1N2,N2 (84)
2
1
=1- IB)%,QE]'NLNE (85)
by the Neuman series and the fact det(Ay) = 1 — pf ,, we have
e n 1
A7l = Z (715) 1w, (86)
n=0 2
1 1
= T e (87)
1,2
1 1
det(Ap) Ny V272 (85)
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and also
P
det(As) =1 — =, 89
et(42) det(A;) (89)
By induction let
1 1
Al = —— _~— 1 90
-1 — det(Al 1) N, Ni—1,Ni—1 (90)
Hence,
Av=T=pl v, AT NN 1)
~2
Pi—iy 1
=/-———1 92
det(Al_l) Nl NNy ( )
and
~ 2
Pi-1, Ni—1Nipi_y
det(4)=1-—7—"7"=1—- ——F———> 93
et(4r) det(Ar1) det (A1) ©3)
Now we prove that M > 0. To this end, we only need to prove that w < 0. Since
z 1,0 -1,
det(A;) recursively depends onall p2_; _ by det(A,), s < I. Hence by China rule
OTIE, det(A) det(A;)
= det(A4;) l g 94
op?_, s H et(Ar) 9 2 (94)
T ps s+1 Prier ) Odet(Ay)
=[] det(A) ( IT det() + H det(A;) + H dot (A > E
=1 l=s+1 s—1,s
95)

and because A; > 0,1 € [L] is positive definite, we have det(A;) > 0. Hence, the sign of the above
equation depends on
8det(As) Ns—le

o7, det(A,y) " (96)

Discussion on 4; > 0 Here we explain why A4; > 0. We start from As. According to Eq. equa-
tion [83| we claim that p? p1 2 < 1 which represent the total variance of weights at first layer that can
be exp ained by the second layer. We assume that none of the weights at the first layer can be totally
explained by the second layer. O

F ADDITIONAL EXPERIMENTS

In this section, we add some additional experiments to support our conclusion. The Tab. [f] and [f]
are the complete experiment results regarding 5-layer MLPs and CNNs separately. Fig. ] shows the
heatmaps for MLPs and CNNs with dense skip configurations.

Tab. [8] summarizes the results of different skip-connection configurations for ResNet-18. The
network contains eight skip connections in total, each represented by a binary indicator of 0 or
1. We remove selected skip connections (denoted by 0) and compute several complexity mea-
sures—including an additional spectrum-based metric (PSN)—and report their Kendall’s 7, Spear-
man’s p, and dCor correlations with the empirical generalization gap. As shown, our proposed mea-
sure achieves the highest correlation across all three metrics, indicating that it effectively captures
the inter-layer interactions.

Tab. 9| presents the extended experiments across different architectures. As shown, our measure
continues to achieve the highest Kendall’s 7.

Fig. ] and Fig. [f] visualize the complexity measures. The red dashed line denotes the empirical
generalization gap.
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Table 6: Comparison of Skip-Connection Configurations in 5-Layer MLPs on Fashion MNIST.
We omit some of the configurations, since they cannot achieve comparable performance. All models
are trained with similar accuracy, and the Kendall method is provided to see whether our method
indeed captures the influence of skip-connection.

Network PFN PSN #Param PBC PBGC WC GWC Loss Acc. A Loss
MLPy (1) | 1.20e+05 | 2.70e+03 | 4.00e+05 | 3.62e+03 | 3.18¢+03 | 3.15e+03 | 2.71e+03 | 5.40e-01 | 8.98e+01 | 5.31e-01 (£7.4e-04)
MLPg,1(1) | 1.41e+05 | 4.47e+03 | 4.00e+05 | 3.97e+03 | 3.55¢+03 | 3.49¢+03 | 3.07e+03 | 4.80e-01 | 8.90e+01 | 4.55¢-01 (£1.3e-04)
MLPg 1 0(1) [ 1.31e+05 | 2.86e+03 | 4.00e+05 | 3.74e+03 | 3.22e+03 | 3.26e+03 | 2.74e+03 | 4.90e-01 | 8.95e+01 | 4.75¢-01 (£4.8¢-04)
MLPg 1,0(2) | 1.34e+05 | 4.29e+03 | 4.00e+05 | 4.84e+03 | 3.73e+03 | 4.35¢+03 | 3.25e+03 | 4.50e-01 | 8.97e+01 | 4.19e-01 (£3.1e-04)
MLP; oo(1) | 1.47e+05 | 4.18e+03 | 4.00e+05 | 3.97e+03 | 3.53¢+03 | 3.48¢+03 | 3.04e+03 | 4.70e-01 | 8.96e+01 | 4.51e-01 (£4.2e-04)

MLP; 0,0(2) | 1.36e+05 | 2.51e+03 | 4.00e+05 | 4.39e+03 | 3.73e+03 | 3.90e+03 | 3.24e+03 | 4.10e-01 | 9.00e+01 | 3.67e-01 (£3.7e-04)
MLP; o(3) | 1.02e+05 | 1.05e+03 | 4.00e+05 | 3.28e+03 | 2.90e+03 | 2.83e+03 | 2.45e+03 | 4.10e-01 | 8.93e+01 | 3.76e-01 (+9.0e-04)
MLP, ; 1(1) | 7.41e+04 | 3.98e+03 | 4.00e+05 | 5.42¢+03 | 8.27e+03 | 4.74e+03 | 7.59e+03 | 4.90e-01 | 8.94e+01 | 4.53e-01 (+3.9¢-03)
MLP; ;1 1(2) | 4.80e+04 | 2.72e+03 | 4.00e+05 | 4.96e+03 | 7.31e+03 | 4.28¢+03 | 6.63e+03 | 5.20e-01 | 8.88e+01 | 4.82e-01 (+3.1e-03)
MLP; 1 1(3) | 4.77e+04 | 2.51e+03 | 4.00e+05 | 4.90e+03 | 7.11e+03 | 4.22e+03 | 6.44e+03 | 5.20e-01 | 8.86e+01 | 4.76e-01 (+2.8¢-03)
MLP; ;1(4) | 5.57e+04 | 2.99e+03 | 4.00e+05 | 4.80e+03 | 5.86e+03 | 4.11e+03 | 5.17e+03 | 5.30e-01 | 8.90e+01 | 4.92e-01 (+3.8¢-03)
MLP; 1 1(5) | 3.20e+04 | 1.89¢+03 | 4.00e+05 | 4.90e+03 | 5.74e+03 | 4.22e+03 | 5.05e+03 | 5.30e-01 | 8.91e+01 | 4.97e-01 (+3.7¢-03)
MLP, ; 1(6) | 1.88e+04 | 9.34e+02 | 4.00e+05 | 4.60e+03 | 5.56e+03 | 3.93e+03 | 4.89e+03 | 4.90e-01 | 8.92e+01 | 4.48e-01 (+3.5¢-03)
MLP; 5 1(1) | 6.87e+04 | 3.12e+03 | 4.00e+05 | 4.52e+03 | 6.61e+03 | 3.92¢+03 | 6.01e+03 | 5.10e-01 | 8.92e+01 | 4.62e-01 (+8.0e-04)
MLP; 51(2) | 1.15e+05 | 2.24e+03 | 4.00e+05 | 3.99e+03 | 3.92e+03 | 3.34e+03 | 3.26e+03 | 6.20e-01 | 8.92e+01 | 6.14e-01 (+7.8e-04)
MLP; 5,(3) | 7.81e+04 | 2.03e+03 | 4.00e+05 | 4.01e+03 | 3.91e+03 | 3.36e+03 | 3.26e+03 | 6.80e-01 | 8.90e+01 | 6.75¢-01 (+1.2¢-03)
MLP; 1 1(1) | 7.15e+04 | 2.56e+03 | 4.00e+05 | 4.66e+03 | 6.63e+03 | 4.06e+03 | 6.03e+03 | 5.10e-01 | 8.92e+01 | 4.61e-01 (£1.5¢-03)
MLP;1,1(2) | 7.37e+04 | 2.33e+03 | 4.00e+05 | 4.19e+03 | 5.05¢+03 | 3.58e+03 | 4.44e+03 | 5.10e-01 | 8.92e+01 | 4.73e-01 (£1.4e-03)
MLP;,1(3) | 6.54e+04 | 2.25e+03 | 4.00e+05 | 4.38e+03 | 5.88¢+03 | 3.78e+03 | 5.28e+03 | 5.10e-01 | 8.90e+01 | 4.59¢-01 (£2.8¢-03)
MLP;,1(4) | 5.97e+04 | 1.98e+03 | 4.00e+05 | 4.28e+03 | 4.80e+03 | 3.67e+03 | 4.19¢+03 | 5.60e-01 | 8.88e+01 | 5.16e-01 (£1.9¢-03)
MLP;1,1(5) | 5.66e+04 | 1.92e+03 | 4.00e+05 | 4.37e+03 | 5.98¢+03 | 3.77¢+03 | 5.39e+03 | 5.30e-01 | 8.88e+01 | 4.79¢-01 (£2.8¢-03)
MLP;1,1(6) | 6.02e+04 | 1.99e+03 | 4.00e+05 | 4.35e+03 | 6.16e+03 | 3.75e+03 | 5.56e+03 | 5.20e-01 | 8.84e+01 | 4.63e-01 (£2.1e-03)
MLP; 5 1(2) | 9.64e+06 | 9.37e+06 | 4.00e+05 | 1.38e+04 | 2.20e+04 | I.14e+04 | 1.97e+04 | 4.50e-01 | 8.43e+01 | 7.32¢-02 (£1.3e-03)
MLP;51(3) | 5.26e+04 | 1.47e+03 | 4.00e+05 | 4.32e+03 | 6.11e+03 | 3.73e+03 | 5.52e+03 | 5.00e-01 | 8.88e+01 | 4.51e-01 (£1.2e-03)
)

MLP; 5 (1) | 6.48e+04 | 9.48e+02 | 4.00e+05 | 4.09e+03 | 5.35e+03 | 3.57e+03 | 4.83e+03 | 5.50e-01 | 8.84e+01 | 4.91e-01 (£1.2e-03)
Kendall -2.02e-01 | -8.69¢-02 nan 1.45e-02 | 7.24e-02 | -4.34e-02 | 7.25¢-02 nan nan nan

Table 7: Comparison of skip connection configurations CNNs on CIFAR10.

Network PEN PSN #Param PBC PBV WC GWC Loss Acc. A Loss
CNNy0,0(1) | 2.20e+04 | 6.50e+03 | 4.40e+06 | 9.47e+03 | 8.95¢+04 | 9.12e+03 | 8.91e+04 | 1.00e+00 | 6.58e+01 | 3.70e-01 (£2.5e-04)
CNN0,1(1) | 2.42e+04 | 7.20e+03 | 4.40e+06 | 9.47e+03 | 8.94e+04 | 9.11e+03 | 8.90e+04 | 9.97e-01 | 6.67e+01 | 5.10e-01 (+1.3e-04)
CNNy,1,0(1) | 2.47e+04 | 7.30e+03 | 4.40e+06 | 9.45¢+03 | 8.90e+04 | 9.10e+03 | 8.87e+04 | 1.05e+00 | 6.59e+01 | 6.40e-01 (£1.7e-04)
CNNy,1,0(2) | 2.70e+04 | 8.00e+03 | 4.40e+06 | 9.49e+03 | 9.02e+04 | 9.14e+03 | 8.98e+04 | 1.04e+00 | 6.57e+01 | 5.40e-01 (+1.2e-04)
CNNj ,0(2) | 2.72e+04 | 8.10e+03 | 4.40e+06 | 9.49¢+03 | 9.02e+04 | 9.14e+03 | 8.98e+04 | 1.10e+00 | 6.42e+01 | 6.40e-01 (+2.3e-04)
CNNj 0,0(3) | 2.92e+04 | 9.40e+03 | 4.40e+06 | 9.54e+03 | 9.21e+04 | 9.19e+03 | 9.17e+04 | 1.10e+00 | 6.15e+01 | 4.60e-01 (+1.5¢-04)
CNNy 1,1(1) | 3.47e+04 | 1.70e+04 | 4.40e+06 | 1.02e+04 | 1.07e+05 | 9.84e+03 | 1.07e+05 | 1.07e+00 | 6.23e+01 | 3.90e-01 (+1.6e-04)
CNNy1,1(2) | 3.38e+04 | 1.55e+04 | 4.40e+06 | 9.84e+03 | 9.86e+04 | 9.48e+03 | 9.82e+04 | 1.07e+00 | 6.19¢+01 | 4.00e-01 (+7.5¢-05)
CNNy,1,1(3) | 3.06e+04 | 1.04e+04 | 4.40e+06 | 9.61e+03 | 9.32e+04 | 9.26e+03 | 9.29e+04 | 1.08e+00 | 6.23e+01 | 4.40e-01 (+1.5¢-04)
CNNy1,1(4) | 3.29e+04 | 1.47e+04 | 4.40e+06 | 9.57e+03 | 9.18e+04 | 9.22e+03 | 9.14e+04 | 1.06e+00 | 6.26e+01 | 3.90e-01 (+1.4e-04)
CNNy1,1(5) | 3.13e+04 | 1.14e+04 | 4.40e+06 | 9.68e+03 | 9.52e+04 | 9.33e+03 | 9.48e+04 | 1.07e+00 | 6.31e+01 | 4.40e-01 (+6.0e-05)
CNNy 1,1(6) | 3.04e+04 | 1.03e+04 | 4.40e+06 | 9.53e+03 | 9.15e+04 | 9.18e+03 | 9.11e+04 | 1.08e+00 | 6.22e+01 | 4.30e-01 (+1.1e-04)
CNNj 2,1 (1) | 4.43e+04 | 2.74e+04 | 4.40e+06 | 1.18e+04 | 1.44e+05 | 1.14e+04 | 1.44e+05 | 1.03e+00 | 6.49¢+01 | 4.90e-01 (+2.2¢-04)
CNN;2.1(3) | 3.21e+04 | 1.36e+04 | 4.40e+06 | 9.71e+03 | 9.48e+04 | 9.35e+03 | 9.44e+04 | 1.06e+00 | 6.28e+01 | 4.20e-01 (+1.3e-04)
CNNy 1,1 (1) | 4.26e+04 | 2.11e+04 | 4.40e+06 | 1.05e+04 | 1.12e+05 | 1.01e+04 | 1.11e+05 | 1.02e+00 | 6.57e+01 | 5.40e-01 (+1.9¢-04)
CNN31,1(2) | 4.08e+04 | 2.29e+04 | 4.40e+06 | 1.01e+04 | 1.05e+05 | 9.77e+03 | 1.05e+05 | 1.02e+00 | 6.55¢+01 | 5.30e-01 (+1.4e-04)
CNN31,1(3) | 3.79e+04 | 1.81e+04 | 4.40e+06 | 1.00e+04 | 1.03e+05 | 9.68e+03 | 1.02e+05 | 1.05e+00 | 6.43e+01 | 5.60e-01 (+3.2¢-04)
CNNy 1 1(4) | 3.75e+04 | 2.02e+04 | 4.40e+06 | 1.02e+04 | 1.07e+05 | 9.81e+03 | 1.06e+05 | 1.06e+00 | 6.38e+01 | 5.70e-01 (£1.3e-04)
CNNy 1 ,1(5) | 3.82e+04 | 1.46e+04 | 4.40e+06 | 9.82e+03 | 9.76e+04 | 9.46e+03 | 9.72e+04 | 1.06e+00 | 6.43e+01 | 6.10e-01 (£1.3e-04)
CNNy 1,1(6) | 3.72e+04 | 1.33e+04 | 4.40e+06 | 9.77e+03 | 9.69e+04 | 9.41e+03 | 9.65e+04 | 1.04e+00 | 6.49e+01 | 5.90e-01 (£1.7e-04)
CNNy 5 1(2) | 5.32e+04 | 3.19¢+04 | 4.40e+06 | 1.13e+04 | 1.32e+05 | 1.09e+04 | 1.32e+05 | 1.09e+00 | 6.43e+01 | 6.90e-01 (£1.6e-04)
CNNy 2 1(3) | 3.76e+04 | 1.72e+04 | 4.40e+06 | 1.00e+04 | 1.03e+05 | 9.69e+03 | 1.03e+05 | 1.03e+00 | 6.51e+01 | 5.70e-01 (£3.6e-04)
CNN3 . 1(1) | 7.85e+04 | 3.19e+04 | 4.40e+06 | 1.07e+04 | I.11e+05 | 1.03e+04 | 1.11e+05 | 1.13e+00 | 6.45e+01 | 7.90e-01 (£1.6e-04)

Kendall 2.96e-01 | 2.41e-01 nan 2.09e-01 | 2.17e-01 | 2.10e-01 | 2.18e-01 nan nan nan
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Figure 4: The visualization of general weight correlation R for dense connections. We show the
dense connections on 5-Layer MLPs, CNNs and CNNs with batch norms.
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Table 8: Correlation Between Complexity Measures and the Empirical Complexity Gap. We
select several representative skip-connection configurations for ResNet-18. The network contains
eight shortcuts, where “1” indicates the presence of a shortcut and “0” denotes its removal. In
addition to Kendall’s 7, we also include Spearman’s p and distance-based correlation measures.

Skip-Config. PFN PSN PB PBC PBGC Empirical Gap
00-00-00-00 | 1.08e+20 | 5.0le+19 | 5.17e+03 | 1.05e+05 | 1.15e+05 -3.61e+01
00-00-00-10 | 8.33e+18 | 3.64e+18 | 4.91e+03 | 1.04e+05 | 1.12e+05 -3.64e+01
00-00-11-11 | 1.85e+19 | 5.92e+18 | 4.69¢+03 | 1.12e+05 | 1.30e+05 -4.36e+01
00-11-11-00 | 3.76e+18 | 1.34e+18 | 4.92e+03 | 1.18e+05 | 1.42e+05 -4.24e+01
00-11-11-11 | 8.08e+17 | 2.53e+17 | 4.53e+03 | 1.12e+05 | 1.31e+05 -4.26e+01
01-01-01-01 | 2.41e+19 | 8.17e+18 | 5.07e+03 | 1.15e+05 | 1.36e+05 -4.21e+01
01-11-11-11 | 2.77e+17 | 8.64e+16 | 4.49e+03 | 1.12e+05 | 1.30e+05 -4.19e+01
10-00-00-00 | 1.13e+20 | 5.07e+19 | 5.18e+03 | 1.06e+05 | 1.15e+05 -3.69e+01
10-01-10-01 | 4.43e+20 | 1.56e+20 | 5.09e+03 | 1.12e+05 | 1.30e+05 -4.17e+01
10-10-10-10 | 6.32e+19 | 2.41e+19 | 4.81e+03 | 1.13e+05 | 1.31e+05 -4.12e+01
11-00-00-11 | 1.03e+20 | 4.0le+19 | 4.97e+03 | 1.08e+05 | 1.20e+05 -4.13e+01
11-00-11-11 | 1.89e+18 | 6.28e+17 | 4.61e+03 | 1.13e+05 | 1.32e+05 -4.29e+01
11-01-10-11 | 1.86e+19 | 6.38e+18 | 4.73e+03 | 1.10e+05 | 1.25e+05 -4.19e+01
11-11-00-00 | 4.32e+20 | 1.71e4+20 | 5.21e+03 | 1.10e+05 | 1.24e+05 -4.11e+01
11-11-00-11 | 3.23e+19 | 1.09e+19 | 4.84e+03 | 1.09e+05 | 1.23e+05 -4.11e+01
11-11-11-00 | 1.07e+18 | 3.76e+17 | 4.84e+03 | 1.17e+05 | 1.41e+05 -4.18e+01
11-11-11-10 | 1.81e+17 | 6.26e+16 | 4.53e+03 | 1.16e+05 | 1.38e+05 -4.24e+01
11-11-11-11 | 1.40e+17 | 4.49e+16 | 4.47e+03 | 1.12e+05 | 1.31e+05 -4.20e+01
Kendall 7 | -4.12e-01 | -4.25e-01 | -4.51e-01 | 4.90e-01 | 5.42e-01 1
Spearman p | -6.37e-01 | -6.45e-01 | -6.49e-01 | 6.66e-01 | 7.09e-01 1
dCor 3.96e-01 | 4.29e-01 | 5.77e-01 | 8.35e-01 | 8.41e-01 1

Table 9: Correlation Between Complexity Measures and the Empirical Complexity Gap Across
Architectures. As shown, our proposed measure consistently achieves the highest Kendall’s 7
across different architectures. In addition, we also include the wall clock run time in the table.

DL Models PEN PSN # Params PB PBC PBGC | Emprical Gap | Run Time(s)
ResNet50 3.96e+58 | 1.44e+58 | 2.37e+07 | 2.75¢+04 | 1.84e+06 | 1.84e+05 2.96e-01 124
DenseNet121 | 2.40e+75 | 4.42e+75 | 6.97e+06 | 1.17e+04 | 3.09e+05 | 2.82e+05 3.20e-01 9.62
VGG16 2.65e+19 | 5.42e+17 | 1.35e+08 | 1.24e+04 | 1.04e+05 | 2.12e+04 2.80e-01 1.77
WRNS50 2.08e+63 | 6.78e+62 | 6.70e+07 | 3.78e+04 | 3.26e+06 | 2.33e+05 2.91e-01 21.81
Kendell’'s 7 | 6.67e-01 | 6.67e-01 -1 -3.33e-01 0 6.67e-01 1

# Params B

Emprical Gap

-
sl

Figure 5: Comparison of Complexity Measures Across Skip-Connection Configurations in
ResNet-18 on CIFAR-100. We normalize each measure to the range [0, 1] to enable better compar-
ison.
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Figure 6: Comparison of Complexity Measures Across Architectures on CIFAR-100. We nor-
malize each measure to the range [0, 1] to facilitate better comparison.
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