

000 001 002 003 004 005 SKIP CONNECTIONS AND GENERALIZATION: A PAC- 006 BAYESIAN PERSPECTIVE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

With the growing popularity of large-scale models, neural networks with massive numbers of parameters and increasingly complex architectures have been widely deployed in practice. While significant theoretical efforts have been devoted to understanding generalization in the overparameterized regime, the role of non-parametric architectural structures remains less well understood. In this paper, we study the structural influence of skip connections on generalization through the lens of the PAC-Bayesian framework. We introduce a notion of general weight correlation to formally capture inter-layer dependencies induced by skip connections. Based on this framework, we theoretically show that correlations between adjacent layers hinder generalization, thereby explaining why ResNet-style skip connections provide an advantage. We further analyze the interaction between cross-layer and intra-layer correlations and prove that heterogeneous correlation structures across layers promote generalization. Finally, we empirically validate our framework on all skip-connection configurations in multilayer perceptrons and convolutional networks, demonstrating that our approach effectively isolates the contribution of skip connections to generalization.

1 INTRODUCTION

With the rapid growth of computational resources, neural networks with increasingly large parameter counts have become ubiquitous across diverse application domains. Beyond sheer model size, architectural innovations have also been a key driver of progress Xu et al. (2024). Among these, skip connections have emerged as a fundamental component of modern deep networks since their introduction in ResNet. By introducing direct links across layers, skip connections not only stabilize training but also enhance generalization performance. A substantial body of work has sought to explain these benefits. However, most existing studies approach the problem from a single perspective—such as optimization Li et al. (2018), algorithmic stability Hardt et al. (2016), or the Neural Tangent Kernel (NTK) Arora et al. (2019)—and typically restrict their analysis to one specific form of skip connection.

Fig. 1 illustrates the correlation matrices of posterior weights for different skip-connection configurations in a 5-layer MLP. The posterior distribution is obtained by applying small-learning-rate perturbations. Notably, the correlation structure of the weights changes substantially even with minimal architectural modifications—for instance, adding a single skip connection at the second layer (Fig. 1b) or removing one connection (Fig. 1c). These results suggest that skip connections strongly influence cross-layer dependencies captured in the posterior. Such sensitivity provides a natural entry point for PAC-Bayesian analysis, which explicitly links posterior correlations to generalization. From this perspective, we can theoretically characterize how generalization varies with different skip-connection patterns, offering principled guidance for designing non-parametric architectures.

However, even for a toy MLP with fewer than 500 parameters, approximating the full correlation matrix requires at least 2,000 runs (roughly four times the number of parameters) to obtain a reasonable estimate. This quickly becomes infeasible for modern neural networks with billions of parameters. Inspired by Laplace approximation of Hessian matrices (Ritter et al., 2018), we factorize the correlation matrix by using the Kronecker product. Our approach naturally extends prior work on weight correlation (Jin et al., 2020) and weight volume (Jin et al., 2022), both of which focus only on intra-layer correlations while treating layers independently. In contrast, skip connections inherently

induce dependencies across layers. To capture this effect, we introduce the notion of general weight correlation, which models inter-layer dependencies, and propose a correlation matrix R to explicitly represent the influence of skip connections (see Fig. 2). We then provide a theoretical analysis of how different structures of R affect generalization, thereby explaining the discrepancies observed across different types of skip connections. To validate our framework, we conduct experiments on MLPs with Fashion-MNIST and CNNs with CIFAR-10. We evaluate our method using Kendall’s τ correlation coefficient Kendall (1938) and demonstrate its ability to effectively capture the role of skip connections.

Our main contributions are summarized as follows:

- To the best of our knowledge, this is the first work to analyze the non-parametric structural influence of skip connections on generalization gaps from a PAC-Bayesian perspective. We introduce the concept of general weight correlation to capture inter-layer dependencies induced by skip connections.
- Within this framework, we theoretically prove that correlations between adjacent layers impede generalization, thereby explaining the generalization advantage of ResNet-style skip connections.
- We further show how cross-layer weight correlations interact with intra-layer correlations under the setting of homogeneous cross-layer dependence. Our analysis reveals that generalization benefits from heterogeneous (layer-specific) correlation structures.
- We empirically validate our framework on all possible skip-connection configurations in 5-layer MLPs and CNNs. The results demonstrate that our method effectively captures the influence of skip connections, isolating their contribution to generalization.

2 RELATED WORK

2.1 PAC-BAYES GENERALIZATION BOUNDS

Classical PAC-Bayesian analyses bound the true risk of a Gibbs or posterior-averaged predictor by balancing the empirical risk with a complexity term measured by a Kullback-Leibler divergence between a posterior over hypotheses and a prior (McAllester, 1999; Langford et al., 2001; Catoni, 2007). These early works established data-independent priors, generic KL penalties, and temperature-style trade-offs that remain the backbone of modern formulations. Recent work adapts these ideas to deep networks and stochastic training pipelines. Dziugaite & Roy (2017; 2018) construct non-vacuous, data-dependent bounds for overparameterized nets by optimizing the posterior and sometimes the prior subject to PAC-Bayes constraints. Margin information has been incorporated to tighten the empirical term and connect PAC-Bayes to classical margin theory (Neyshabur, 2017). Other directions study how SGD implicitly induces “flat” posteriors or noise-averaging effects that PA–Bayes can capture through perturbation-sensitive priors/posteriors and training-time noise models (Letarte et al., 2019). Complementary threads relate PAC-Bayes to norm- or compression-based capacities, spectral controls, and sharpness-style surrogates, yielding bounds that move with optimization geometry rather than parameter count. However, most works focus on overall generalization but do not analyze cross-layer parameter correlations or the role of skip connections.

Flatness-based generalization measures typically rely on estimating the Hessian or Fisher Information Matrix and relate reduced sharpness of the loss landscape to improved generalization (Zhang et al., 2025). These approaches emphasize local geometric properties—such as curvature, layer-wise sensitivity, or perturbation stability—but largely overlook interactions across layers. In contrast, our work focuses on cross-layer parameter correlations, offering a measure that clarifies how skip connections influence generalization.

Information-theoretic analyses (Xu & Raginsky, 2017) instead study mutual information between data and parameters, providing a global characterization of information flow in learning. Our approach differs in that we examine the correlation structure among weights themselves, motivated by structured dependencies induced by architectural elements such as skip connections. For this purpose, McAllester’s PAC-Bayesian framework offers a simple and interpretable tool for connecting such structural correlations to generalization behavior.

Figure 1: Full Correlation Matrices of Posterior Weights with Different Skip Connection Patterns. We train a toy 5-layer MLP with parameters less than 500 to show the full Correlation Matrices. We sample the posterior samples of weight by SWAG Maddox et al. (2019) which is scalable method to conduct uncertainty estimation. It is achieved by perturbation around the local minima with a small learning rate on loss surface. Details about sampling is shown in Appendix A. The first figure corresponds to the MLP without skip connections. The second establishes connections only at the 2nd layers. The third figure includes skip connections that exclude only the 2nd layer, and the last one shows the dense MLP.

2.2 FLAT MINIMA AND GENERALIZATION

The connection between the geometry of the loss landscape and generalization has been studied for several decades. Early work by Hochreiter & Schmidhuber (1997) introduced the idea that flat minima, where the loss remains nearly constant under small perturbations of the parameters, are strongly associated with improved generalization. Their argument, grounded in a Minimum Description Length (MDL) perspective, suggested that flatness reflects the robustness of the learned solution. Subsequent empirical and theoretical studies reinforced this principle. Keskar & Socher (2017) provided evidence that sharp minima often correspond to poor generalization, particularly when training with large-batch methods. Li et al. (2018) developed visualization tools to illustrate how optimization trajectories converge to regions of varying sharpness, offering geometric intuition for the flatness–generalization link. Jiang et al. (2019) further connected margin-based generalization to flatness, showing that flatter minima correlate with wider margins and tighter generalization bounds. While the flatness perspective provides a compelling explanation of generalization, existing work largely treats it as an isolated principle, without integration into PAC-Bayesian frameworks or explicit consideration of architectural mechanisms such as skip connections.

2.3 SKIP CONNECTIONS AND THEORETICAL ANALYSIS

Skip connections, first popularized by residual networks He et al. (2016), are widely recognized for their empirical benefits in stabilizing optimization and enabling the training of very deep models. From the optimization perspective, theoretical studies have demonstrated that residual links reshape the loss landscape to reduce sharpness and ease convergence. Zhang et al. (2019) provided early evidence that skip connections facilitate gradient flow and mitigate vanishing or exploding gradients, while Li et al. (2021) analyzed how skip connections ease optimization and improve gradient flow. These works frame skip connections primarily as a tool for optimization stability rather than for generalization guarantees. A complementary line of research examines the role of parameter correlations induced by modern architectures. Jin et al. (2020) studied how weight correlation within layers affects generalization and illustrated that correlated parameters can implicitly constrain hypothesis complexity and lead to sharper theoretical bounds, while the cross-layer correlations that are naturally amplified by skip connections due to the direct reuse of features and gradients across depth remain unexplored. Existing work analyses primarily account for the optimization benefits of skip connections, while their impact on generalization remains largely unexplored, with no prior work employing PAC-Bayesian theory to study them.

162 **3 PRELIMINARY**
 163

164 Our analysis is based on supervised classification. Let $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$ denote the input, $y \in \mathcal{Y} =$
 165 $\{1, \dots, \kappa\}$ the label, and D the unknown data distribution over $\mathcal{X} \times \mathcal{Y}$. A hypothesis $h \in \mathcal{H}$ maps
 166 inputs to predictions in $[0, 1]^\kappa$. Given i.i.d. samples $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n \sim D^n$ and a loss function
 167 $\ell : [0, 1]^\kappa \times \mathcal{Y} \rightarrow \mathbb{R}^+$, we denote natural and empirical risks as

168
$$R(h) = \mathbb{E}_{(\mathbf{x}, y) \sim D} [\ell(h(\mathbf{x}), y)], \quad \widehat{R}(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(\mathbf{x}_i), y_i). \quad (1)$$

 169
 170

171 **Neural Network Classifier.** Here, we consider our hypothesis as a neural network and we define
 172 it recursively. Given input $\mathbf{x} \in \mathcal{X}$, the hidden representations are computed as
 173

174
$$\mathbf{z}_1 = \phi(W^{(1)}\mathbf{x}), \quad (2a)$$

175
$$\mathbf{z}_{l+1} = \phi(W^{(l)}\mathbf{z}_l) + \sum_{k \in \mathcal{I}_l} \mathbf{z}_k, \quad l = 1, \dots, L-1, \quad (2b)$$

 176

177
$$h(\mathbf{x}) = \text{Softmax}(W^{(L)}\mathbf{z}_L), \quad (2c)$$

 178

179 where ϕ is a non-linear activation and $\mathcal{I}_l \subseteq \{1, \dots, l-1\}$ denotes the set of skip connections into
 180 layer l . For example, in a 3-layer network, if we add a skip from layer 1 to 3, then $\mathcal{I}_3 = \{1\}$. And
 181 since we start from the first layer, $\mathcal{I}_1 = \emptyset$. For analytical tractability, we model skip connections as
 182 additive terms after activation. Bias parameters can be concatenated in weights.

183 **Matrix Normal Distribution.** Skip connections couple the outputs of entire layers, inducing de-
 184 pendencies across full weight matrices. To model such correlations in a tractable way, we adopt
 185 the *matrix normal distribution* (MND), which naturally captures row- and column-wise covariance
 186 structures.

187 **Definition 3.1** (Matrix Normal Distribution). Let $X \in \mathbb{R}^{m \times p}$ be a random matrix. Given positive
 188 definite covariance matrices $U \in \mathbb{S}_m^{++}$ and $V \in \mathbb{S}_p^{++}$, we say that X follows a matrix normal
 189 distribution with mean $M \in \mathbb{R}^{m \times p}$, denoted

190
$$X \sim \mathcal{MN}_{m,p}(M, U, V),$$

 191

192 if its density is

193
$$p(X | M, U, V) = \frac{\exp\left(-\frac{1}{2} \text{tr}[V^{-1}(X - M)^T U^{-1}(X - M)]\right)}{(2\pi)^{mp/2} \det(V)^{m/2} \det(U)^{p/2}}.$$

 194

195 Equivalently, $\text{vec}(X) \sim \mathcal{N}(\text{vec}(M), V \otimes U)$, where \otimes denotes the Kronecker product, and $\text{vec}(\cdot)$
 196 is the vectorization operation for matrices.

197 *Remark 3.2.* Matrix-normal priors and posteriors (often with Kronecker-factored covariance) are
 198 common in Bayesian deep learning and variational approximations (Ritter et al., 2018; Huang et al.,
 199 2020; Schnaus et al., 2023). Here we employ them as a stylized but tractable tool to capture cross-
 200 layer dependencies.

201 **PAC-Bayesian Bound.** The *generalization gap* is the difference between natural and empirical
 202 risks (Eq. 1). Although directly computing this gap is infeasible for modern neural networks, PAC-
 203 Bayesian theory provides a principled way to bound it in terms of the KL divergence between poste-
 204 rior and prior distributions over weights. We recall McAllester’s classical bound (McAllester, 1998;
 205 Guedj & Shawe-Taylor, 2019), which forms the basis of our analysis.

206 **Theorem 3.3** (McAllester’s bound). *Given $h \in \mathcal{H}$ and $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n \sim D^n$ be n i.i.d. samples.
 207 For any prior distribution $P \in \mathcal{P}(\mathcal{H})$ independent of S , and any posterior distribution $Q \in \mathcal{P}(\mathcal{H})$
 208 possibly dependent on S , with probability at least $1 - \delta$ over S , we have*

209
$$\forall Q \in \mathcal{P}(\mathcal{H}), \quad \mathbb{E}_{h \sim Q}[R(h)] \leq \mathbb{E}_{h \sim Q}[\widehat{R}(h)] + \sqrt{\frac{KL(Q \| P) + \ln(\frac{\sqrt{n}}{\delta})}{2n}}. \quad (3)$$

 210
 211

212 This theorem highlights the important role of the KL term in upper-bounding the generalization
 213 gap, where it typically serves as a complexity measure. However, existing work rarely captures
 214 architectural factors such as skip connections. In the following, we propose a complexity measure
 215 that accounts for these factors.

216 **4 MAIN RESULTS**
 217

218 In this section, we present the main results of the paper. We begin by recalling the KL divergence
 219 for matrix-normal distributions (MNDs), then introduce our proposed measure for cross-layer cor-
 220 relation, followed by two theorems capturing the key correlation patterns observed in MLPs and
 221 CNNs.

222 **Proposition 4.1** (KL divergence between MNDs). *Let $Q = \mathcal{MN}_{m,p}(M_Q, U_Q, V_Q)$ and $P =$
 223 $\mathcal{MN}_{m,p}(M_P, U_P, V_P)$ be two matrix normal distributions with means $M_Q, M_P \in \mathbb{R}^{m \times p}$, row
 224 covariances $U_Q, U_P \in \mathbb{S}_m^{++}$, and column covariances $V_Q, V_P \in \mathbb{S}_p^{++}$. Then the KL divergence
 225 admits a closed form*

$$227 \quad \text{KL}(Q\|P) = \frac{1}{2} \text{tr}[(V_Q V_P^{-1}) \otimes (U_Q U_P^{-1})] + \frac{1}{2} \text{tr}[V_P^{-1}(M_Q - M_P)^T U_P^{-1}(M_Q - M_P)] \\ 228 \quad - \frac{mp}{2} + \frac{m}{2} \log \frac{\det(V_P)}{\det(V_Q)} + \frac{p}{2} \log \frac{\det(U_P)}{\det(U_Q)}. \quad (4)$$

231 The proof of Prop. 4.1 is deferred to Appendix E.1. Since the weight matrices of neural networks
 232 may have different shapes, we first pad them to a common size for notational simplicity. Appendix C
 233 shows that padding with non-trainable standard Gaussian entries leaves the KL divergence un-
 234 changed. Thus, without loss of generality, we concatenate the weights as $W = (W_1, W_2, \dots, W_L)$,
 235 where for each $l = 1, 2, \dots, L$, $W_l \in \mathbb{R}^{m \times r_l}$ and $\sum_{l=1}^L r_l = p$.

237 Following standard assumptions in the literature (Jiang et al., 2019; Jin et al., 2020), we take the
 238 prior distribution to be $P = \mathcal{MN}_{m,p}(W^{(0)}, \sigma I_m, I_p)$, which corresponds, after vectorization, to an
 239 isotropic Gaussian prior $\text{vec}(W) \sim \mathcal{N}(\text{vec}(W^{(0)}), \sigma^2 I_{mp})$. While recent work has explored data-
 240 dependent priors for achieving tighter bounds, we adopt this simpler form in order to focus on the
 241 effect of skip connections.

242 **Assumption on posteriors** A full covariance structure for the posterior captures all information
 243 contained in the trained neural network. However, estimating such a distribution is typically infea-
 244 sible in practice, and simplified assumptions are adopted to balance tractability with the ability to
 245 capture the most influential factors. Following Jiang et al. (2019); Jin et al. (2020; 2022), we assume
 246 that the variance of each parameter is unchanged ($\text{diag}(\Sigma_Q) = \text{diag}(\Sigma_P)$). In contrast to earlier
 247 works, we relax two strong assumptions: the isotropy of weight matrices within each layer (Jiang
 248 et al., 2019) and the independence of weights across layers (Jin et al., 2020; 2022). Under these
 249 settings, the KL divergence simplifies to

$$252 \quad \text{KL}(Q\|P) = \sum_{l=1}^L \text{tr}[(W_l^{(F)} - W_l^{(0)})^T (W_l^{(F)} - W_l^{(0)})] + \frac{m}{2} \log \frac{1}{\det(V_Q)} + \frac{p}{2} \log \frac{\sigma^{2m}}{\det(U_Q)}. \quad (5)$$

256 We follow the notion of weight correlation (Jin et al., 2020) between rows of weight matrix for in a
 257 given layer, and extend to correlation across different layers. To simplify the following analysis, we
 258 let the size of all weights be the same (i.e., $\forall l, r_l = r$).

260 **4.1 GENERAL WEIGHT CORRELATION**
 261

262 We extend the notion of weight correlation Jin et al. (2020) to cover the relation between layers.
 263 Therefore, we can analyse its impact on generalization gap.

264 **Definition 4.2** (General weight correlation). Given weight matrix W_l, W_s at l -th and s -th layers, the
 265 generalized weight correlation is defined as

$$267 \quad \rho_{l,s} \triangleq \frac{1}{mr} \sum_{i,j=1}^m \frac{|W_{l,i}^T W_{s,j}|}{\|W_{l,i}\|_2, \|W_{s,j}\|_2}, \quad (6)$$

269 where $W_{l,i}$ is the i -th row of the matrix W_l , corresponding to the i -th at l -th layer.

We recall the weight correlation (Jin et al., 2020), and show that *weight correlation* is just a special case of our formulation as it measures the same weights. This connection is discussed in Appendix D.

4.2 CONNECTION TO FLATNESS OF LOSS SURFACE

Let $\omega = \text{vec}(W)$ and ω^* denote the MAP estimate of the posterior weights. The log-likelihood of the posterior (i.e., $\log p(\omega | S)$) can then be approximated by a second-order Taylor expansion, as shown in Eq. 7. This approximation forms the basis for analyzing how skip connections affect posterior correlations and, consequently, generalization.

$$\log p(\omega | S) \approx \log p(\omega^* | S) - \frac{1}{2}(\omega - \omega^*)^T \mathbb{E}_S[H](\omega - \omega^*) \quad (7)$$

Hence, the posterior can be approximated as Gaussian,

$$\omega = \text{vec}(W) \sim \mathcal{N}(\text{vec}(W^*), \mathbb{E}_S[H]^{-1}) \quad (8)$$

Computing the inverse of the full Hessian matrix is infeasible. An approximation is to conduct the Kronecker product decomposition, and we have for each weight matrix

$$W_l \sim \mathcal{MN}(W_l^*, \mathbb{E}_S[V_{l,l}]^{-1}, \mathbb{E}_S[U]^{-1}) \quad (9)$$

4.3 ANALYSIS OF CROSS-LAYER CORRELATION PATTERNS

To examine the impact of general weight correlation, we further decompose the column-wise correlation V_Q and establish the following lemma. We then investigate two characteristic patterns corresponding to sparse skip connections and dense connections.

Proposition 4.3. *Let the weights of neural networks be $W_l \in \mathbb{R}^{m \times r}$, and let matrix $R = (\rho_{i,j})_{i,j}$, defined in Def. 4.2. Let*

$$V_Q = \text{diag}(1 - \rho_{1,1}, \dots, 1 - \rho_{L,L}) \otimes I + R \otimes J \quad (10)$$

where $J = \mathbf{1}\mathbf{1}^T$ is the dot product of all one vector $\mathbf{1}$. Then,

$$\log \det(V_Q) = (r-1) \sum_{l=1}^L \log(1 - \rho_{l,l}) + \log \det(\text{diag}(1 - \rho_{1,1}, \dots, 1 - \rho_{L,L}) + rR). \quad (11)$$

The proof is in Appendix E.2. The weight correlation is just a special case of our formulation by letting $R = \text{diag}(\rho_{1,1}, \rho_{2,2}, \dots, \rho_{L,L})$. The detailed discussion is in Appendix D.

Def. 4.2 and Prop. 4.3 both assume $r_l = r$ for simplicity. However this assumption can be relaxed with mixed correlation between rows and columns for weights of different layers, allowing mismatch of size for weights.

Now, we consider a case where there is a correlation between adjacent layers. This is particularly the case for MLPs, as is shown in Fig. 2a.

Proposition 4.4 (Adjacent Connection). *Given the neural network defined in Eq. 2a, 2b and 2c and KL divergence in Eq. 20, let R be 1-banded matrix, i.e.,*

$$R = \text{diag}(\rho_{1,1}, \dots, \rho_{L,L}) + \text{diag}_1(\rho_{1,2}, \dots, \rho_{L-1,L}) + \text{diag}_{-1}(\rho_{1,2}, \dots, \rho_{L,L-1}) \quad (12)$$

where $\text{diag}_1(\dots)$ and $\text{diag}_{-1}(\dots)$ are superdiagonal matrices shifted one element from the diagonal. Let

$$\Delta_L = \det(\text{diag}(1 - \rho_{1,1}, \dots, 1 - \rho_{L,L}) + rR) \quad (13)$$

which can be represented recursively as

$$\Delta_L = [1 + (r-1)\rho_{L,L}] \Delta_{L-1} - r^2 \rho_{L-1,L}^2 \Delta_{L-2} \quad (14)$$

and for all $l = 2, \dots, L$,

$$\frac{\partial \Delta_L}{\partial \rho_{l-1,l}} \leq 0. \quad (15)$$

We provide a more general version of the proposition, with the proof deferred to Appendix E.4. Prop. 4.4 establishes a monotonic relationship between the term $\log \det(V_Q)$ and the correlations $\rho_{l-1,l}$ between adjacent layers, corresponding to the case illustrated in Fig. 2a. For MLPs without skip connections, this relation holds directly; however, introducing a long skip connection can alleviate the effect, as shown in Fig. 2c, resulting in a smaller generalization gap (since it is positively related to the KL divergence).

We also consider the case where correlations across different layers differ only minimally, similar to the scenarios in Fig. 2c, Fig. 2e, and Fig. 2f. Dense connections in 5-layer MLPs (Fig. 4) can be approximated under this setting by using a single scalar to represent all general weight correlations among layers.

Proposition 4.5 (Homogeneous Connection). *Consider the same conditions in Prop. 4.4, and let*

$$R = \text{diag}(\rho_{1,1}, \dots, \rho_{L,L}) + \rho(J_L - I_L) \quad (16)$$

where $J_L = \mathbf{1}\mathbf{1}^T$ and I_L is identity matrix of size L . Hence, we have

$$\Delta_L = \prod_{l=1}^L (1 + (r-1)\rho_{l,l} - r\rho) \left(1 + \sum_{l=1}^L \frac{r\rho}{1 + (r-1)\rho_{l,l} - r\rho} \right) \quad (17)$$

And for any $l = 1, \dots, L$ if

$$\rho \approx \rho_{l,l} + \frac{1 - \rho_{l,l}}{r} \quad (18)$$

the derivative of Δ_L w.r.t ρ will be unstable such that $\Delta'_L(\rho) \rightarrow \infty$.

The proof is provided in Appendix E.4. Prop. 4.5 reveals an interesting phenomenon: as cross-layer correlation approaches a certain point, it can significantly degrade generalization performance. This behavior aligns with the large empirical generalization gaps observed for $\text{MLP}_{2,2,1}(2)$ in Tab. 1 and $\text{CNN}_{3,2,1}(1)$ in Tab. 2.

5 EXPERIMENT

Network	PFN	PSN	PBC	PBGC	Δ Loss
$\text{MLP}_{0,0,0}$	1.20e+05	2.70e+03	3.62e+03	3.18e+03	5.31e-01 ($\pm 7.4e-04$)
$\text{MLP}_{0,0,1}$	1.41e+05	4.47e+03	3.97e+03	3.55e+03	4.55e-01 ($\pm 1.3e-04$)
$\text{MLP}_{0,1,0}(1)$	1.31e+05	2.86e+03	3.74e+03	3.22e+03	4.75e-01 ($\pm 4.8e-04$)
$\text{MLP}_{0,1,0}(2)$	1.34e+05	4.29e+03	4.84e+03	3.73e+03	4.19e-01 ($\pm 3.1e-04$)
$\text{MLP}_{1,0,0}(1)$	1.47e+05	4.18e+03	3.97e+03	3.53e+03	4.51e-01 ($\pm 4.2e-04$)
$\text{MLP}_{1,0,0}(2)$	1.36e+05	2.51e+03	4.39e+03	3.73e+03	3.67e-01 ($\pm 3.7e-04$)
$\text{MLP}_{1,0,0}(3)$	1.02e+05	1.05e+03	3.28e+03	2.90e+03	3.76e-01 ($\pm 9.0e-04$)
$\text{MLP}_{1,1,1}(1)$	7.41e+04	3.98e+03	5.42e+03	8.27e+03	4.53e-01 ($\pm 3.9e-03$)
$\text{MLP}_{2,2,1}(2)$	9.64e+06	9.37e+06	1.38e+04	2.20e+04	7.32e-02 ($\pm 1.3e-03$)
$\text{MLP}_{2,2,1}(3)$	5.26e+04	1.47e+03	4.32e+03	6.11e+03	4.51e-01 ($\pm 1.2e-03$)
$\text{MLP}_{3,2,1}(1)$	6.48e+04	9.48e+02	4.09e+03	5.35e+03	4.91e-01 ($\pm 1.2e-03$)
Kendall τ	-2.02e-01	-8.69e-02	1.45e-02	7.24e-02	1

Table 1: Selective results for skip connections with different complexity and performance metrics on 5-layer MLPs. This table reports four complexity measures (PFN, PSN, PBC, and PBGC). The full results are provided in Tab. 6. Δ Loss denotes the empirical generalization gap, defined as the difference between test and training loss. Each model is further trained for 5 additional epochs with a small learning rate, and we report the mean and standard deviation across runs. The last row reports Kendall’s τ correlation. Bold numbers indicate the highest value, while underlined numbers correspond to the PBC method.

To study the effect of skip connections on generalization gaps, we trained 5-layer MLPs on Fashion-MNIST and 5-layer CNNs on CIFAR-10 with all possible skip-connection configurations. For CNNs, we consider both versions with and without batch normalization. All MLPs use a hidden

378 size of 256, while CNNs use 256 channels per layer with 3×3 kernels. Models are trained for 80
 379 epochs using SGD with a learning rate of 2×10^{-2} , momentum of 0.9, and weight decay of 10^{-4} .
 380 For the toy example used to compute full covariance matrices, we train a smaller 5-layer MLP with
 381 input dimension 8 for 100 epochs. All experiments were run on a single NVIDIA RTX 3090 GPU
 382 with Python 3.9.7 and PyTorch 1.9.1.

384 5.1 COMPLEXITY MEASURE

385 To benchmark our approach, we compare it against several established complexity measures:

- 388 • Product of Frobenius Norms (PFN): Defined as the product of Frobenius norms of all
 389 weight matrices, PFN reflects the overall magnitude of network parameters across layers.
- 390 • Product of Spectral Norms (PSN) Bartlett et al. (2017): Computed as the product of spectral
 391 norms of the weight matrices, PSN emphasizes the worst-case layer-wise amplification
 392 effect and has been widely studied in generalization bounds.
- 393 • PAC-Bayes & Correlation (PBC) Jin et al. (2020): An extension of the PAC-Bayes frame-
 394 work that incorporates weight correlations, capturing richer dependencies among parame-
 395 ters than standard PAC-Bayes bounds.
- 396 • We refer to our method as PAC-Bayes & Generalization Correlation (PBCG), which ex-
 397 plicitly incorporates the proposed General Weight Correlation (GWC).

399 For evaluation, we assess the agreement between empirical rankings of generalization perfor-
 400 mance and those predicted by different complexity measures using Kendall’s τ correlation coef-
 401 ficient (Kendall, 1938). This statistic quantifies rank similarity by comparing the number of con-
 402 cordant and discordant pairs, with values ranging from -1 (complete disagreement) to 1 (perfect
 403 agreement).

404 To present our results clearly, we first introduce the notation for our models. We use MLP and CNN
 405 to denote the model type. A superscript b , such as CNN^b , indicates the use of batch normalization.
 406 Skip connections are considered only in hidden layers (as is typical, since classification networks
 407 rarely connect hidden layers directly to inputs or output intermediate features). We represent skip-
 408 connection patterns with a triple index—for example, $(0, 0, 0)$ denotes the number of connections
 409 at each position (corresponding to $|\mathcal{I}_l|$ in Eq. 2b). When multiple connection types share the same
 410 number, we use an additional index to distinguish patterns. The detailed notations are summarized
 411 in Tab. 5. For cases with a unique configuration, we omit the index for brevity.

412 5.2 RESULTS OF MLP

414 Tab. 1 summarizes the results for skip connections in 5-layer MLPs. The last row reports Kendall’s
 415 τ correlation. As shown, our proposed method achieves the highest Kendall τ among PFN, PSN,
 416 and PBC, indicating that it more effectively captures the influence of skip connections.

417 Comparing $\text{MLP}_{0,0,0}$ with $\text{MLP}_{1,0,0}(3)$ in Tab. 1, we observe that $\text{MLP}_{1,0,0}(3)$ —which includes a
 418 long skip connection from the first hidden layer to the last hidden layer—exhibits both a smaller
 419 empirical generalization gap (3.76e-01 vs. 5.31e-01) and a lower PBGC measure (2.90e+03 vs.
 420 3.18e+03). Consistently, Fig. 2a and Fig. 2c show that the cross-layer weight correlation is reduced
 421 for $\text{MLP}_{1,0,0}(3)$. These results provide strong evidence in support of Prop. 4.4. From Fig. 2, it
 422 is evident that the general weight correlation effectively reflects the skip connections in MLPs. In
 423 contrast, CNNs exhibit markedly different behaviour.

425 5.3 RESULT OF CNN

427 Unlike MLPs, the impact of skip connections on CNNs is almost negligible. As shown in Fig. 2e and
 428 Fig. 2f, the hidden-layer patterns exhibit no discernible differences. Consistently, the generalization
 429 gap in Tab. 2 shows only a slight reduction for $\text{CNN}_{0,0,0}$ (from 5.31e-01 to 4.53e-01), while both
 430 PBC and PBGC increase. This suggests that, for CNNs, skip connections do not primarily act
 431 through general weight correlation. Kendall’s τ further supports this observation: although PBGC
 improves marginally over PBC, it is not the best-performing measure—the highest correlation is

Figure 2: The figures visualize the general weight correlation matrix R defined in Prop. 4.3. For CNNs, the first and last layers are omitted since they are not directly comparable; we therefore compute the general weight correlation only across hidden channels.

achieved by PFN. This implies that the influence of skip connections in CNNs may instead be linked to the norms of the weight matrices.

In contrast, CNNs with batch normalization behave quite differently. As illustrated in Fig. 2g and Fig. 2h, $\text{CNN}_{1,1,1}^b$ exhibits patterns similar to $\text{MLP}_{0,0,0}$. Interestingly, this indicates that batch-normalized CNNs demonstrate an effect opposite to that observed in MLPs.

We validate the Gaussian approximation using diagnostics in Tab. 3. Parameters are projected onto a 30-dimensional PCA subspace, and we evaluate three standard metrics: the Shapiro–Wilk rejection rate, the Anderson–Darling statistic, and the effective sample size (ESS). As shown in Tab. 1, the Shapiro–Wilk rejection rates are low, the mean ESS values are stable, and the Anderson–Darling statistics are small across all architectures and skip configurations. These results indicate that the Gaussian approximation provides a reliable local model of the posterior in our setting.

We extend our evaluation to ResNet-18 on CIFAR-100 (Tab. 4) and additionally report Spearman and distance correlation (dCor), along with their corresponding p-values. Since ResNet-18 has 256 possible skip-connection configurations, we include several representative examples in the main text and visualize the correlation trends in Fig. 4 (appendix). As shown in Tab. 2, our proposed complexity measure consistently yields the strongest correlations across all three statistics, with significance levels below 1%.

6 CONCLUSION AND LIMITATION

We introduced a PAC-Bayesian framework that makes explicit the role of architectural structure in generalization via General Weight Correlation (GWC) and its induced matrix R . By Kronecker-factoring the posterior covariance, our method extends weight correlation to capture cross-layer dependencies created by skip connections. The theory shows that adjacent-layer correlations enlarge the KL term and thus hinder generalization, while heterogeneous, layer-specific correlations are beneficial. Empirically, PBGC best aligns (via Kendall’s τ) with observed generalization trends across all skip patterns in MLPs, and reveals a contrasting picture for CNNs, where skip connections have limited effect unless batch normalization is present. These results isolate when and how skip connections help from a PAC-Bayesian viewpoint, providing actionable guidance for non-parametric architectural design. The limitation includes extension to more general and complex models, e.g., transformer-based models.

Network	PFN	PSN	PBC	PBGC	Δ Loss
CNN _{0,0,0}	1.20e+05	2.70e+03	3.62e+03	3.18e+03	5.31e-01 (\pm 7.4e-04)
CNN _{0,0,1}	1.41e+05	4.47e+03	3.97e+03	3.55e+03	4.55e-01 (\pm 1.3e-04)
CNN _{0,1,0} (1)	1.31e+05	2.86e+03	3.74e+03	3.22e+03	4.75e-01 (\pm 4.8e-04)
CNN _{0,1,0} (2)	1.34e+05	4.29e+03	4.84e+03	3.73e+03	4.19e-01 (\pm 3.1e-04)
CNN _{1,0,0} (1)	1.47e+05	4.18e+03	3.97e+03	3.53e+03	4.51e-01 (\pm 4.2e-04)
CNN _{1,0,0} (2)	1.36e+05	2.51e+03	4.39e+03	3.73e+03	3.67e-01 (\pm 3.7e-04)
CNN _{1,0,0} (3)	1.02e+05	1.05e+03	3.28e+03	2.90e+03	3.76e-01 (\pm 9.0e-04)
CNN _{1,1,1} (1)	7.41e+04	3.98e+03	5.42e+03	8.27e+03	4.53e-01 (\pm 3.9e-03)
CNN _{2,2,1} (2)	5.32e+04	3.19e+04	1.13e+04	1.32e+05	6.90e-01 (\pm 1.6e-04)
CNN _{2,2,1} (3)	3.76e+04	1.72e+04	1.00e+04	1.03e+05	5.70e-01 (\pm 3.6e-04)
CNN _{3,2,1} (1)	7.85e+04	3.19e+04	1.07e+04	1.11e+05	7.90e-01 (\pm 1.6e-04)
Kendall τ	2.96e-01	2.41e-01	2.09e-01	2.17e-01*	1

Table 2: Selective results for skip connections with different complexity and performance metrics on 5-layer CNNs. Bold numbers denote the highest values, underlined numbers correspond to the PBC method, and starred numbers indicate our proposed method.

Table 3: **Summary of Distribution Diagnostics (Projected to $k = 30$) Across Skip Configurations.**

Skip Config	Mean ESS	Min ESS	Shapiro reject rate	Mean AD stat
CNN _{0,0,0}	287.6	225.0	0.00%	0.397
CNN _{1,1,1} (1)	283.8	227.1	3.33%	0.436
CNN _{2,1,1} (1)	270.3	163.3	0.00%	0.375
CNN _{2,2,1} (1)	272.1	163.8	0.00%	0.380
CNN _{3,2,1} (1)	289.1	196.0	3.33%	0.352
CNN _{0,0,0} ^b (1)	279.8	171.6	0.00%	0.376
CNN _{1,1,1} ^b (1)	300.0	300.0	0.00%	0.306
CNN _{2,1,1} ^b (1)	288.3	288.2	0.00%	0.442
CNN _{2,2,1} ^b (1)	285.6	226.5	3.33%	0.436
CNN _{3,2,1} ^b (1)	281.1	219.2	0.00%	0.342
MLP _{0,0,0} (1)	281.7	235.6	0.00%	0.397
MLP _{1,1,1} (1)	272.9	163.0	0.00%	0.368
MLP _{2,1,1} (1)	270.3	158.5	3.33%	0.403
MLP _{1,2,1} (1)	268.8	170.1	0.00%	0.384
MLP _{2,2,1} (1)	282.3	216.7	0.00%	0.347
MLP _{3,2,1} (1)	270.8	105.0	0.00%	0.348

Table 4: **Correlation Analysis Between Model Complexity Measures and the Empirical Complexity Gap.** The experiment is conducted on representative skip-connection configurations of ResNet18 on CIFAR-100.

Measure	Kendall τ (p-val)	Spearman ρ (p-val)	dCor (p-val)
PFN	-4.12e-01 (2e-02)	-6.37e-01 (4e-03)	3.96e-01 (1e-01)
PSN	-4.25e-01 (1e-02)	-6.45e-01 (4e-03)	4.29e-01 (8e-02)
PB	-4.51e-01 (9e-03)	-6.49e-01 (4e-03)	5.77e-01 (2e-02)
PBC	4.90e-01 (4e-03)	6.66e-01 (3e-03)	8.35e-01 (0e+00)
PBGC	5.42e-01 (1e-03)	7.09e-01 (9e-04)	8.41e-01 (0e+00)

REFERENCES

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On exact computation with an infinitely wide neural net. In *NeurIPS*, 2019.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural networks. *Advances in neural information processing systems*, 30, 2017.

540 Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning.
 541 *arXiv preprint arXiv:0712.0248*, 2007.
 542

543 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
 544 deep (stochastic) neural networks with many more parameters than training data. *arXiv preprint*
 545 *arXiv:1703.11008*, 2017.

546 Gintare Karolina Dziugaite and Daniel M Roy. Data-dependent pac-bayes priors via differential
 547 privacy. *Advances in neural information processing systems*, 31, 2018.

548

549 Benjamin Guedj and John Shawe-Taylor. A primer on pac-bayesian learning. In *ICML 2019-Thirty-
 550 sixth International Conference on Machine Learning*, 2019.

551

552 Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
 553 stochastic gradient descent. In *ICML*, 2016.

554

555 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual net-
 556 works. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-
 557 lands, October 11–14, 2016, Proceedings, Part IV 14*, pp. 630–645. Springer, 2016.

558

559 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
 1735–1780, 1997.

560

561 Chin-Wei Huang, Ahmed Touati, Pascal Vincent, Gintare Karolina Dziugaite, Alexandre Lacoste,
 562 and Aaron Courville. Stochastic neural network with kronecker flow. In *International Conference
 563 on Artificial Intelligence and Statistics*, pp. 4184–4194. PMLR, 2020.

564

565 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
 566 tic generalization measures and where to find them. In *International Conference on Learning
 567 Representations*, 2019.

568

569 Gaojie Jin, Xinpeng Yi, Liang Zhang, Lijun Zhang, Sven Schewe, and Xiaowei Huang. How does
 570 weight correlation affect generalisation ability of deep neural networks? *Advances in Neural
 571 Information Processing Systems*, 33:21346–21356, 2020.

572

573 Gaojie Jin, Xinpeng Yi, Pengfei Yang, Lijun Zhang, Sven Schewe, and Xiaowei Huang. Weight
 574 expansion: A new perspective on dropout and generalization. *arXiv preprint arXiv:2201.09209*,
 575 2022.

576

577 Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1-2):81–93, 1938.

578

579 Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
 580 adam to sgd. *arXiv preprint arXiv:1712.07628*, 2017.

581

582 John Langford, Matthias Seeger, and Nimrod Megiddo. An improved predictive accuracy bound for
 583 averaging classifiers. In *ICML*, pp. 290–297, 2001.

584

585 Gaël Letarte, Pascal Germain, Benjamin Guedj, and François Laviolette. Dichotomize and gen-
 586 eralize: Pac-bayesian binary activated deep neural networks. *Advances in Neural Information
 587 Processing Systems*, 32, 2019.

588

589 Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
 590 with 1000 layers. In *International conference on machine learning*, pp. 6437–6449. PMLR, 2021.

591

592 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
 593 scape of neural nets. In *NeurIPS*, 2018.

594

595 Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
 596 A simple baseline for bayesian uncertainty in deep learning. *Advances in neural information
 597 processing systems*, 32, 2019.

598

599 David A McAllester. Some pac-bayesian theorems. In *Proceedings of the eleventh annual confer-
 600 ence on Computational learning theory*, pp. 230–234, 1998.

594 David A McAllester. Pac-bayesian model averaging. In *Proceedings of the twelfth annual conference on Computational learning theory*, pp. 164–170, 1999.
 595
 596

597 Behnam Neyshabur. Implicit regularization in deep learning. *arXiv preprint arXiv:1709.01953*,
 598 2017.

599 Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural
 600 networks. In *6th international conference on learning representations, ICLR 2018-conference*
 601 *track proceedings*, volume 6. International Conference on Representation Learning, 2018.
 602

603 Dominik Schnaus, Jongseok Lee, Daniel Cremers, and Rudolph Triebel. Learning expressive priors
 604 for generalization and uncertainty estimation in neural networks. In *International Conference on*
 605 *Machine Learning*, pp. 30252–30284. PMLR, 2023.

606 Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of learning
 607 algorithms. *Advances in neural information processing systems*, 30, 2017.
 608

609 Guoping Xu, Xiaxia Wang, Xinglong Wu, Xuesong Leng, and Yongchao Xu. Development of skip
 610 connection in deep neural networks for computer vision and medical image analysis: A survey.
 611 *arXiv preprint arXiv:2405.01725*, 2024.

612 Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
 613 normalization. *arXiv preprint arXiv:1901.09321*, 2019.
 614

615 Qiaozhe Zhang, Jun Sun, Ruijie Zhang, and Yingzhuang Liu. R backslash'enyi sharpness: A novel
 616 sharpness that strongly correlates with generalization. *arXiv preprint arXiv:2510.07758*, 2025.
 617

618

619 A NOTATION OF NEURAL NETWORKS

620

621 Connection Notation	\mathcal{I}_2	\mathcal{I}_3	\mathcal{I}_4
622 0, 0, 0	-	-	-
623 0, 0, 1	-	-	{3}
624 0, 1, 0(1)	-	{2}	-
625 0, 1, 0(2)	-	-	{2}
626 1, 0, 0(1)	{1}	-	-
627 1, 0, 0(2)	-	{1}	-
628 1, 0, 0(3)	-	-	{1}
629 1, 1, 1(1)	{1}	{2}	{3}
630 1, 1, 1(2)	{1}	-	{2,3}
631 1, 1, 1(3)	-	{1,2}	{3}
632 1, 1, 1(4)	-	{1}	{2,3}
633 1, 1, 1(5)	-	{2}	{1,3}
634 1, 1, 1(6)	-	-	{1,2,3}
635 1, 2, 1(1)	{1}	{2}	{2,3}
636 1, 2, 1(2)	{1,2}	-	{2,3}
637 1, 2, 1(3)	-	{2}	{1,2,3}
638 2, 1, 1(1)	{1}	{1,2}	{3}
639 2, 1, 1(2)	{1}	{1}	{2,3}
640 2, 1, 1(3)	{1}	{2}	{1,3}
641 2, 1, 1(4)	{1}	-	{1,2,3}
642 2, 1, 1(5)	-	{1,2}	{1,3}
643 2, 1, 1(6)	-	{1}	{1,2,3}
644 2, 2, 1(1)	{1}	{1,2}	{2,3}
645 2, 2, 1(2)	{1}	{2}	{1,2}
646 2, 2, 1(3)	-	{1,2}	{1,2,3}
647 3, 2, 1(1)	{1}	{1,2}	{1,2,3}

Table 5: Notation table for configuration of skip-connections

648 Here, we provide the notation for the skip-connection configurations corresponding to \mathcal{I}_l in
 649 Eq. equation 2b. The use of \mathcal{I}_l is for mathematical rigor. Intuitively, the number in the tuple indicates
 650 the starting layer of the skip connection, while the number in parentheses enumerates the
 651 different variants.
 652
 653
 654

655 B TOY EXPERIMENT WITH TINY MLPs ON MNIST

656 Figure 3: **Illustration of skip configurations.** The three numbers in the tuple denote the starting
 657 points of the skip connections. For example, Fig. 3a shows an MLP without any skip and dense
 658 connections. The number in parentheses in Fig. 3b and 3c specifies the detailed skip configuration,
 659 which is further explained in Tab. 5.

660 Here, we provide a toy experiment for 5-Layer MLPs on resized MNIST. The model architectures
 661 with different skip-connection configurations are illustrated in Fig. 3. To have enough samples for
 662 covariance matrix, we resize the MNIST dataset from $1 \times 28 \times 28$ to $1 \times 4 \times 4$. We set the width of
 663 each hidden layer to 8, hence the total number of parameters is controlled around 500. The model is
 664 trained for 100 epochs using the Adam optimizer until convergence. After convergence, we continue
 665 training with a very small learning rate to induce mild perturbations around the local minimum.
 666 During this phase, we record the network parameters after each batch update, resulting in over 2000
 667 samples. To mitigate the drift introduced by the continued optimization, we apply a sliding window
 668 of 100 samples to compute the rolling mean and subtract it from the recorded parameters. The
 669 empirical covariance matrix is then computed from these de-means samples, providing a stable
 670 and accurate estimate.

671 Typical SWAG performs sampling to obtain a low-rank approximation of the posterior covariance.
 672 This is crucial for large models, but unnecessary in our setting since the network is small. Therefore,
 673 we use the standard unbiased empirical estimator to compute the full covariance matrix. In
 674 addition, we employ a sliding-window rolling mean instead of an overall average to better correct
 675 for drift during sampling. Fig. 1 presents the resulting covariance matrix after removing the rows
 676 and columns corresponding to parameters that do not change around the minimum (such parameters
 677 lead to NaN entries in the covariance).

678 Here, we provide the details about how we conduct the estimation of posterior covariance matrix in
 679 Fig. 1. We first provide the training details, then show how we estimate the covariance.

695 C PADDING THE WEIGHT MATRIX

696 We show that padding the weight matrices of a neural network with non-trainable entries does not
 697 affect the KL divergence between prior and posterior weight distributions.

698 Consider an L -layer network with weights $\{W_1, W_2, \dots, W_L\}$ before padding and
 699 $\{\widetilde{W}_1, \widetilde{W}_2, \dots, \widetilde{W}_L\}$ after padding. Let P and Q denote the prior and posterior distributions,

702 respectively. Define the vectorized parameters
 703

$$704 \quad \boldsymbol{\omega} = \begin{pmatrix} \text{vec}(W_1) \\ \text{vec}(W_2) \\ \vdots \\ \text{vec}(W_L) \end{pmatrix}, \quad \tilde{\boldsymbol{\omega}} = \begin{pmatrix} \text{vec}(\tilde{W}_1) \\ \text{vec}(\tilde{W}_2) \\ \vdots \\ \text{vec}(\tilde{W}_L) \end{pmatrix}, \quad (19)$$

709 where $\text{vec}(\cdot)$ denotes column-wise vectorization.

710 The KL divergence between Gaussian posterior $Q = \mathcal{N}(\boldsymbol{\mu}_Q, \Sigma_Q)$ and prior $P = \mathcal{N}(\boldsymbol{\mu}_P, \Sigma_P)$ is
 711

$$712 \quad \text{KL}(Q\|P) = \frac{1}{2} \left[\log \frac{\det(\Sigma_P)}{\det(\Sigma_Q)} - m + (\boldsymbol{\mu}_Q - \boldsymbol{\mu}_P)^T \Sigma_P^{-1} (\boldsymbol{\mu}_Q - \boldsymbol{\mu}_P) + \text{tr}(\Sigma_P^{-1} \Sigma_Q) \right]. \quad (20)$$

714 Padding is implemented by augmenting each $W_l, l = 1, 2 \dots L$ with non-trainable entries (standard
 715 Gaussian), so that all weight matrices share the same maximal row/column dimensions. Since
 716 padding entries are non-trainable, their quadratic contribution in Eq. 20 cancels, i.e.
 717

$$718 \quad (\boldsymbol{\mu}_Q - \boldsymbol{\mu}_P)^T \Sigma_P^{-1} (\boldsymbol{\mu}_Q - \boldsymbol{\mu}_P) = (\tilde{\boldsymbol{\mu}}_Q - \tilde{\boldsymbol{\mu}}_P)^T \tilde{\Sigma}_P^{-1} (\tilde{\boldsymbol{\mu}}_Q - \tilde{\boldsymbol{\mu}}_P). \quad (21)$$

719 Let padding be an independent standard Gaussian ($\boldsymbol{\nu} \sim \mathcal{N}(\mathbf{0}, I)$), and re-arrange the variants as
 720

$$721 \quad \tilde{\boldsymbol{\omega}} = \begin{pmatrix} \boldsymbol{\omega} \\ \boldsymbol{\nu} \end{pmatrix}. \quad (22)$$

723 For the covariance structure, this implies

$$724 \quad \tilde{\Sigma}_P^{-1} \tilde{\Sigma}_Q = \begin{pmatrix} \Sigma_P^{-1} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma_Q & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} \Sigma_P^{-1} \Sigma_Q & 0 \\ 0 & I \end{pmatrix}. \quad (23)$$

725 The determinant factor is likewise preserved:

$$726 \quad \det(\tilde{\Sigma}) = \det \begin{pmatrix} \Sigma & 0 \\ 0 & I \end{pmatrix} = \det(\Sigma). \quad (24)$$

727 Thus all terms in equation 20 remain unchanged under padding. Hence the KL divergence between
 728 prior and posterior distributions is invariant to padding.

729 *Remark C.1.* Padding simply appends additional coordinates that are identically distributed under
 730 both the prior and posterior (standard Gaussian, independent of the trainable weights). Since KL
 731 divergence only measures discrepancies between two distributions, these extra variables contribute
 732 zero to the KL.

733 D CONNECTION TO WEIGHT CORRELATION

734 We make segmentation for column covariance V according to columns of weights at each layer,
 735 and consider the factorization of the covariance matrix for vectorized weights from all layers that
 736 $\Sigma = V \otimes U$, we have

$$737 \quad V \otimes U = \begin{pmatrix} V_{1,1} \otimes U & V_{1,2} \otimes U & \cdots & V_{1,L} \otimes U \\ V_{2,1} \otimes U & V_{2,2} \otimes U & \cdots & V_{2,L} \otimes U \\ \vdots & \vdots & \ddots & \vdots \\ V_{L,1} \otimes U & V_{L,2} \otimes U & \cdots & V_{L,L} \otimes U \end{pmatrix} \quad (25)$$

738 Let $V_{i,j} = 0, \forall i \neq j$, $U = \sigma^2 I$ and

$$739 \quad V_{i,i} = \begin{pmatrix} 1 & \rho_i & \cdots & \rho_i \\ \rho_i & 1 & \cdots & \rho_i \\ \vdots & \vdots & \ddots & \vdots \\ \rho_i & \rho_i & \cdots & 1 \end{pmatrix}. \quad (26)$$

740 We show that $-\log \det(V_{i,i} \otimes U)$ is indeed the weight correlation factor in the KL-divergence.
 741 Another notion related to our work is *weight volume* Jin et al. (2022) as defined in D.1.

756 **Definition D.1** (Weight Volume (Jin et al., 2022)). Let
 757

$$758 \quad \Sigma_l = \mathbb{E} [(\text{vec}(W_l) - \mathbb{E}(\text{vec}(W_l)))(\text{vec}(W_l) - \mathbb{E}(\text{vec}(W_l)))^T] \quad (27)$$

759 be the weight covariance matrix in a neural network. The *weight volume* is defined as
 760

$$761 \quad \text{vol}(W_l) \triangleq \frac{\det(\Sigma_l)}{\prod_i [\Sigma_l]_{ii}}. \quad (28)$$

764 This provides a more general notion that accounts for all possible correlations within a given weight
 765 matrix. In our setting, it can be estimated as $\text{vol}(W_l) = \det(V_{l,l} \otimes U)$.
 766

767 E OMITTED PROOFS

769 **Lemma E.1** (KL divergence between MNDs). Let $Q = \mathcal{MN}_{m,p}(M_Q, U_Q, V_Q)$ and $P =$
 770 $\mathcal{MN}_{m,p}(M_P, U_P, V_P)$ be two matrix normal distributions with means $M_Q, M_P \in \mathbb{R}^{m \times p}$, row
 771 covariances $U_Q, U_P \in \mathbb{S}_m^{++}$, and column covariances $V_Q, V_P \in \mathbb{S}_p^{++}$. Then the KL divergence
 772 admits a closed form
 773

$$774 \quad \text{KL}(Q\|P) = \frac{1}{2} \text{tr}[(V_Q V_P^{-1}) \otimes (U_Q U_P^{-1})] + \text{tr}[V_P^{-1}(M_Q - M_P)^T U_P^{-1}(M_Q - M_P)] \\ 775 \quad - \frac{mp}{2} + \frac{m}{2} \log \frac{\det(V_P)}{\det(V_Q)} + \frac{p}{2} \log \frac{\det(U_P)}{\det(U_Q)}. \quad (29)$$

779 *Proof.* Starts from Def. 3.1, we have
 780

$$781 \quad \text{KL}(Q\|P) = \frac{1}{2} \mathbb{E}_Q \text{tr} \left[V_P^{-1}(X - M_P)^T U_P^{-1}(X - M_P) - V_Q^{-1}(X - M_Q)^T U_Q^{-1}(X - M_Q) \right] \\ 782 \quad + \frac{m}{2} \log \frac{\det(V_P)}{\det(V_Q)} + \frac{p}{2} \log \frac{\det(U_P)}{\det(U_Q)} \quad (30)$$

$$783 \quad = \frac{1}{2} \mathbb{E}_Q \text{tr} \left[V_P^{-1}(X - M_Q + M_Q - M_P)^T U_P^{-1}(X - M_Q + M_Q - M_P) \right] \quad (32)$$

$$784 \quad - \frac{1}{2} \mathbb{E}_Q \left[\text{vec}(X - M_Q)^T (V_Q^{-1} \otimes U_Q^{-1}) \text{vec}(X - M_Q) \right] \quad (33)$$

$$785 \quad + \frac{m}{2} \log \frac{\det(V_P)}{\det(V_Q)} + \frac{p}{2} \log \frac{\det(U_P)}{\det(U_Q)} \quad (34)$$

$$786 \quad = \frac{1}{2} \mathbb{E}_Q \text{tr} \left[V_P^{-1}(X - M_Q)^T U_P^{-1}(X - M_Q) \right] + \frac{1}{2} \text{tr} \left[V_P^{-1}(M_Q - M_P)^T U_P^{-1}(M_Q - M_P) \right] \\ 787 \quad - \frac{mp}{2} + \frac{m}{2} \log \frac{\det(V_P)}{\det(V_Q)} + \frac{p}{2} \log \frac{\det(U_P)}{\det(U_Q)} \quad (35)$$

$$788 \quad - \frac{mp}{2} + \frac{m}{2} \log \frac{\det(V_P)}{\det(V_Q)} + \frac{p}{2} \log \frac{\det(U_P)}{\det(U_Q)} \quad (36)$$

$$789 \quad = \frac{1}{2} \text{tr}[(V_Q V_P^{-1}) \otimes (U_Q U_P^{-1})] + \frac{1}{2} \text{tr} \left[V_P^{-1}(M_Q - M_P)^T U_P^{-1}(M_Q - M_P) \right] \quad (37)$$

$$790 \quad - \frac{mp}{2} + \frac{m}{2} \log \frac{\det(V_P)}{\det(V_Q)} + \frac{p}{2} \log \frac{\det(U_P)}{\det(U_Q)} \quad (38)$$

803 \square
 804

805 **Lemma E.2.** Let $A, B \in \mathbb{R}^{L \times L}$ and $J \in \mathbb{S}_r$. Then,
 806

$$807 \quad \det(A \otimes I_r + B \otimes J) = \prod_{i=1}^r \det(A + \lambda_i B). \quad (39)$$

808 where I_r is the identity matrix of size r .
 809

810 *Proof.* Let Q be the orthogonal matrix diagonalizing J , i.e., $Q^T J Q = \text{diag}(\lambda_1, \dots, \lambda_r) = \Lambda$. By
811 similarity invariance of the determinant,

$$812 \det(A \otimes I_r + B \otimes J) = \det((I_L \otimes Q)^T (A \otimes I_r + B \otimes J) (I_L \otimes Q)). \quad (40)$$

814 Using the mixed-product property of Kronecker products, this equals

$$815 \det(A \otimes I_r + B \otimes \Lambda). \quad (41)$$

816 Consider *commutation matrix* K such that

$$817 \det(A \otimes I_r + B \otimes \Lambda) = \det(K(A \otimes I_r + B \otimes \Lambda)K^T) \quad (42)$$

$$819 = \det(I_r \otimes A + \Lambda \otimes B) \quad (43)$$

820 Hence the determinant factorizes as

$$821 \prod_{i=1}^r \det(A + \lambda_i B). \quad (44)$$

824 \square

826 **Lemma E.3** (Determinant of block correlation matrix with heterogeneous sizes). *Let $r_1, \dots, r_L \in \mathbb{N}$ and define*

$$828 V = \text{diag}((1 - \rho_{1,1})I_{r_1}, \dots, (1 - \rho_{L,L})I_{r_L}) + (\rho_{l,k} J_{r_l, r_k})_{l,k=1}^L, \quad (45)$$

830 where $J_{r_l, r_k} = \mathbf{1}_{r_l} \mathbf{1}_{r_k}^T$. Let

$$831 D = \text{diag}(1 - \rho_{1,1}, \dots, 1 - \rho_{L,L}), \quad R = (\rho_{l,k} \sqrt{r_l r_k})_{l,k=1}^L. \quad (46)$$

832 Hence,

$$834 \log \det(V) = \sum_{l=1}^L (r_l - 1) \log(1 - \rho_{l,l}) + \log \det(D + R). \quad (47)$$

837 *Proof.* For each block l , define $u_l = \mathbf{1}_{r_l} / \sqrt{r_l}$ and extend it to an orthogonal basis $Q_l = [u_l U_l] \in \mathbb{R}^{r_l \times r_l}$. Then,

$$840 Q_l^T I_{r_l} Q_l = I_{r_l}, \quad Q_l^T J_{r_l, r_k} Q_k = \begin{pmatrix} \sqrt{r_l r_k} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}. \quad (48)$$

844 Let $Q = \text{diag}(Q_1, \dots, Q_L)$. By similarity invariance of the determinant, for the second term in
845 Eq. 45. we have

$$846 \text{diag}(Q_1^T, \dots, Q_L^T) (\rho_{l,k} J_{r_l, r_k})_{l,k=1}^L \text{diag}(Q_1, \dots, Q_L) = \quad (49)$$

$$848 \begin{pmatrix} Q_1^T & 0 & \cdots & 0 \\ 0 & Q_2^T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Q_L^T \end{pmatrix} \begin{pmatrix} \rho_{1,1} J_{r_1, r_1} & \rho_{1,2} J_{r_1, r_2} & \cdots & \rho_{1,L} J_{r_1, r_L} \\ \rho_{2,1} J_{r_2, r_1} & \rho_{2,2} J_{r_2, r_2} & \cdots & \rho_{2,L} J_{r_2, r_L} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{L,1} J_{r_L, r_1} & \rho_{L,2} J_{r_L, r_2} & \cdots & \rho_{L,L} J_{r_L, r_L} \end{pmatrix} \begin{pmatrix} Q_1 & 0 & \cdots & 0 \\ 0 & Q_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Q_L \end{pmatrix} \quad (50)$$

$$854 = \begin{pmatrix} \rho_{1,1} r_1 \mathbf{e}_{1,1} & \rho_{1,2} \sqrt{r_1 r_2} \mathbf{e}_{1,2} & \cdots & \rho_{1,L} \sqrt{r_1 r_L} \mathbf{e}_{1,L} \\ \rho_{2,1} \sqrt{r_2 r_1} \mathbf{e}_{2,1} & \rho_{2,2} r_2 \mathbf{e}_{2,2} & \cdots & \rho_{2,L} \sqrt{r_2 r_L} \mathbf{e}_{2,L} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{L,1} \sqrt{r_L r_1} \mathbf{e}_{L,1} & \rho_{L,2} \sqrt{r_L r_2} \mathbf{e}_{L,2} & \cdots & \rho_{L,L} r_L \mathbf{e}_{L,L} \end{pmatrix} \quad (51)$$

858 where $\mathbf{e}_{l,k} \in \mathbb{R}^{l \times k}$ denotes the matrix with first elements of 1 and others are all 0. Hence, with a
859 commutative matrix K , such that

$$860 \det(V) = \det(K V K^T) = \left(\prod_{l=1}^L (1 - \rho_{l,l})^{r_l-1} \right) \det(D + R). \quad (52)$$

863 \square

864 Here, we recall Prop. 4.5 and provides the proof.
 865
 866

Proposition E.4. *Consider the same conditions in Prop. 4.4, and let*

$$867 \quad R = \text{diag}(\rho_{1,1}, \dots, \rho_{L,L}) + \rho(J_L - I_L) \quad (53)$$

868 where $J_L = \mathbf{1}\mathbf{1}^T$ and I_L is identity matrix of size L . Hence, we have
 869

$$870 \quad \Delta_L = \prod_{l=1}^L (1 + (r-1)\rho_{l,l} - r\rho) \left(1 + \sum_{l=1}^L \frac{r\rho}{1 + (r-1)\rho_{l,l} - r\rho} \right) \quad (54)$$

873 And for any $l = 1, \dots, L$ if

$$874 \quad \rho \approx \rho_{l,l} + \frac{1 - \rho_{l,l}}{r} \quad (55)$$

876 the derivative of Δ_L w.r.t ρ will be unstable such that $\Delta'_L(\rho) \rightarrow \infty$.
 877

878 *Proof.* Since
 879

$$880 \quad \Delta_L = \det(\text{diag}(1 - \rho_{1,1}, \dots, 1 - \rho_{L,L}) + rR) \quad (56)$$

$$881 \quad = \det(\text{diag}(1 + (r-1)\rho_{1,1} - r\rho, \dots, 1 + (r-1)\rho_{L,L} - r\rho) + r\rho J_L) \quad (57)$$

$$882 \quad = \det(\text{diag}(1 + (r-1)\rho_{1,1} - r\rho, \dots, 1 + (r-1)\rho_{L,L} - r\rho) + r\rho \mathbf{1}\mathbf{1}^T) \quad (58)$$

$$884 \quad = \prod_{l=1}^L (1 + (r-1)\rho_{l,l} - r\rho) (1 + r\rho \mathbf{1}^T \Lambda^{-1} \mathbf{1}) \quad (59)$$

887 where $\Lambda = \text{diag}(1 - r\rho + (r-1)\rho_{1,1}, \dots, 1 - r\rho + (r-1)\rho_{L,L})$. Hence,
 888

$$889 \quad \Delta_L = \prod_{l=1}^L (1 + (r-1)\rho_{l,l} - r\rho) \left(1 + \sum_{l=1}^L \frac{r\rho}{1 + (r-1)\rho_{l,l} - r\rho} \right) \quad (60)$$

891 Now, we show the derivative of Δ w.r.t ρ . Let us consider $\tilde{\rho} = r\rho$
 892

$$893 \quad A(\tilde{\rho}) = \sum_{l=1}^L \frac{1}{1 + (r-1)\rho_{l,l} - \tilde{\rho}} \quad (61)$$

895 we have

$$897 \quad A'(\tilde{\rho}) = \sum_{l=1}^L \frac{1}{(1 + (r-1)\rho_{l,l} - \tilde{\rho})^2} \quad (62)$$

900 Then take logarithm on Δ_L and take derivative
 901

$$902 \quad \frac{\Delta'_L(\tilde{\rho})}{\Delta_L(\tilde{\rho})} = \sum_{l=1}^L \frac{-1}{(1 + (r-1)\rho_{l,l} - \tilde{\rho})} + \frac{A(\tilde{\rho}) + \tilde{\rho}A'(\tilde{\rho})}{1 + \tilde{\rho}A(\tilde{\rho})} \quad (63)$$

$$905 \quad = -A(\tilde{\rho}) + \frac{A(\tilde{\rho}) + \rho A'(\tilde{\rho})}{1 + \tilde{\rho}A(\tilde{\rho})} \quad (64)$$

$$907 \quad = \frac{\tilde{\rho}(A'(\tilde{\rho}) - A^2(\tilde{\rho}))}{1 + \tilde{\rho}A(\tilde{\rho})} \quad (65)$$

909 Since $\tilde{\rho} = r\rho$,
 910

$$911 \quad \Delta'_L(\rho) = \Delta_L \frac{r^2 \rho (A'(r\rho) - A^2(r\rho))}{1 + r\rho A(r\rho)} \quad (66)$$

913 The sign of the derivative depends on
 914

$$915 \quad A'(r\rho) - A^2(r\rho) = - \sum_{l \neq s} \frac{1}{(1 + (r-1)\rho_{l,l} - r\rho)(1 + (r-1)\rho_{s,s} - r\rho)} \quad (67)$$

917 Notice that $\rho = \frac{1 + (r-1)\rho_{l,l}}{r}$ should be avoid or it will be instable. \square

918 E.1 PROOF OF PROP. 4.4
919920 In this section, to accommodate a more general prior distribution, we establish a broader proposition
921 in place of Prop. 4.4, from which Lem. 4.4 follows as a direct consequence.
922923 **Proposition E.5.** *Let $\omega_l = \text{vec}(W_l) \in \mathbb{R}^{N_l N_{l-1}}$, $l \in [L]$ be the vectorized weight matrix on l -th
924 layer; P be fixed prior Gaussian probability measure and Q be the posterior Gaussian probability
925 that dependent of the training process. We assume that the covariance matrices for P and Q are*
926

927
$$\Sigma_P = \begin{pmatrix} \sigma_{P,1}^2 I & 0 & 0 & \cdots & 0 \\ 0 & \sigma_{P,2}^2 I & 0 & \cdots & 0 \\ 0 & 0 & \sigma_{P,3}^2 I & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma_{P,L}^2 I \end{pmatrix}, \Sigma_Q = \begin{pmatrix} \sigma_{Q,1}^2 I & K_{1,2} & 0 & \cdots & 0 \\ K_{1,2}^T & \sigma_{Q,2}^2 I & K_{2,3} & \cdots & 0 \\ 0 & K_{2,3}^T & \sigma_{Q,3}^2 I & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma_{Q,L}^2 I \end{pmatrix} \quad (68)$$

928

929 where $\sigma_{P,l}^2 I, \sigma_{Q,l}^2 I$ are covariance matrices of ω_l on probability measure P and Q separately.
930 $K_{l,s}, l, s \in [L]$ denotes the cross-covariance. Assume that Σ_Q is not degenerated. We further
931 assume that each pair of elements between adjacent layers shares the same correlation coefficient,
932 we have
933

934
$$K_{l-1,l} = \sigma_{\rho,l-1} \sigma_{\rho,l} \rho_{l-1,l} \mathbf{1}_{N_{l-1}, N_l} \quad (69)$$

935

936 where $\mathbf{1}_{N_{l-1}, N_l}$ is $N_{l-1} \times N_l$ matrix each element of which is 1. Therefore, we have
937

938
$$KL(\rho \| \pi) = \frac{1}{2} \sum_{l=1}^L \left(\frac{\|\mathbb{E}_\rho[\omega_l] - \mathbb{E}_\pi[\omega_l]\|_2^2}{\sigma_{\pi,l}^2} + N_l N_{l-1} \left(\frac{\sigma_{\rho,l}^2}{\sigma_{\pi,l}^2} + \log \frac{\sigma_{\pi,l}^2}{\sigma_{\rho,l}^2} - 1 \right) \right) - \log \prod_{l=1}^L \det(A_l) \quad (70)$$

939

940

941 and $\det(A_l)$ is determined by the recursive difference equation
942

943
$$\det(A_l) = 1 - \frac{N_{l-1} N_l \tau_{l-1,l}^2}{\det(A_{l-1})} \quad (71)$$

944

945 and we have $\frac{\partial KL(\rho \| \pi)}{\partial \tau_{l-1,l}^2} \geq 0$ showing that the KL-divergence will increase as each $\rho_{l-1,l}^2$ increases.
946947 *Proof.* Assume that Σ_Q is not degenerated, and let ω be the concatenation of all vectorized weight
948 matrices and $\mu_P = \mathbb{E}_P[\omega]$, $\mu_Q = \mathbb{E}_Q[\omega]$ for simplicity. Hence, the KL divergence for Q and P is
949

950
$$KL(Q \| P) = \frac{1}{2} \mathbb{E}_Q \left[\log \frac{\det(\Sigma_P)}{\det(\Sigma_Q)} - (\omega - \mu_Q)^T \Sigma_Q^{-1} (\omega - \mu_Q) + (\omega - \mu_P)^T \Sigma_P^{-1} (\omega - \mu_P) \right] \quad (73)$$

951

952
$$= \frac{1}{2} \left[\log \frac{\det(\Sigma_P)}{\det(\Sigma_Q)} - \sum_{l=1}^L N_l N_{l-1} + (\mu_Q - \mu_P)^T \Sigma_P^{-1} (\mu_Q - \mu_P) + \text{tr}(\Sigma_P^{-1} \Sigma_Q) \right] \quad (74)$$

953

954
$$= \frac{1}{2} \left[\log \frac{\det(\Sigma_P)}{\det(\Sigma_Q)} - \sum_{l=1}^L N_l N_{l-1} + \sum_{l=1}^L \frac{\|\mathbb{E}_Q[\omega_l] - \mathbb{E}_P[\omega_l]\|_2^2}{\sigma_{P,l}^2} + \text{tr}(\Sigma_P^{-1} \Sigma_Q) \right] \quad (75)$$

955

956
$$= \frac{1}{2} \left[\log \frac{\det(\Sigma_P)}{\det(\Sigma_Q)} + \sum_{l=1}^L \left(\frac{\|\mathbb{E}_Q[\omega_l] - \mathbb{E}_P[\omega_l]\|_2^2}{\sigma_{P,l}^2} + N_l N_{l-1} \left(\frac{\sigma_{Q,l}^2}{\sigma_{P,l}^2} - 1 \right) \right) \right] \quad (76)$$

957

972 where N_0 denotes the input dimension. In order to approximate $\log \det(\Sigma_Q)$, we try to triangularize
 973 Σ_Q , and we have
 974

$$975 \det(\Sigma_Q) = \det \begin{pmatrix} I & 0 & \cdots & 0 \\ -\frac{K_{1,2}^T}{\sigma_{Q,1}^2} & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I \end{pmatrix} \begin{pmatrix} \sigma_{Q,1}^2 I & K_{1,2} & \cdots & 0 \\ K_{1,2}^T & \sigma_{Q,2}^2 I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{Q,L}^2 I \end{pmatrix} \quad (77)$$

$$980 = \det \begin{pmatrix} \sigma_{Q,1}^2 I & K_{1,2} & \cdots & 0 \\ 0 & \sigma_{Q,2}^2 I - \frac{K_{1,2}^T K_{1,2}}{\sigma_{Q,1}^2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{Q,L}^2 I \end{pmatrix}. \quad (78)$$

985 Let $A_1 = I$ and $A_2 = I - \frac{K_{1,2}^T K_{1,2}}{\sigma_{Q,1}^2 \sigma_{Q,2}^2}$ and it is invertible, since we assume that all the eigenvalues in
 986 $\frac{K_{1,2}^T K_{1,2}}{\sigma_{Q,1}^2 \sigma_{Q,2}^2}$ are between $[0, 1)$. This is quite reasonable. If violated, some weights could be entirely
 987 represented by others. we have
 988

$$990 \det(\Sigma_Q) = \sigma_{Q,1}^{2N_1 N_0} \det \begin{pmatrix} \sigma_{Q,2}^2 A_2 & K_{2,3} & \cdots & 0 \\ K_{2,3}^T & \sigma_{Q,3}^2 I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{Q,L}^2 I \end{pmatrix} \quad (79)$$

$$995 = \sigma_{Q,1}^{2N_1 N_0} \det \begin{pmatrix} I & 0 & \cdots & 0 \\ -\frac{K_{2,3}^T}{\sigma_{Q,2}^2} A_2^{-1} & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I \end{pmatrix} \begin{pmatrix} \sigma_{Q,2}^2 A_2 & K_{2,3} & \cdots & 0 \\ K_{2,3}^T & \sigma_{Q,3}^2 I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{Q,L}^2 I \end{pmatrix} \quad (80)$$

$$1000 = \sigma_{Q,1}^{2N_1 N_0} \det \begin{pmatrix} \sigma_{Q,2}^2 A_2 & K_{2,3} & \cdots & 0 \\ 0 & \sigma_{Q,3}^2 I - \frac{K_{2,3}^T A_2^{-1} K_{2,3}}{\sigma_{Q,2}^2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{Q,L}^2 I \end{pmatrix} \quad (81)$$

1006 Define $A_l = I - \frac{K_{l-1,l}^T A_{l-1}^{-1} K_{l-1,l}}{\sigma_{Q,l-1}^2 \sigma_{Q,l}^2}$, $l \in [L]$ and continue doing this we have
 1007

$$1008 \det(\Sigma_Q) = \prod_{l=1}^L \sigma_{Q,l}^{2N_l N_{l-1}} \det(A_l). \quad (82)$$

1011 Since, $A_1 = I$ and let $\tilde{\rho}_{l-1,l}^2 = N_{l-1} N_l \rho_{l-1,l}^2$ for simplicity, we have for $l = 2$

$$1012 A_2 = I - \rho_{1,2}^2 \mathbf{1}_{N_2, N_1}^T \mathbf{1}_{N_1, N_2} \quad (83)$$

$$1014 = I - N_1 N_2 \rho_{1,2}^2 \frac{1}{N_2} \mathbf{1}_{N_2, N_2} \quad (84)$$

$$1016 = I - \tilde{\rho}_{1,2}^2 \frac{1}{N_2} \mathbf{1}_{N_2, N_2} \quad (85)$$

1018 by the Neuman series and the fact $\det(A_2) = 1 - \tilde{\rho}_{1,2}^2$, we have
 1019

$$1020 A_2^{-1} = \sum_{n=0}^{\infty} (\tilde{\rho}_{1,2}^2)^n \frac{1}{N_2} \mathbf{1}_{N_2, N_2} \quad (86)$$

$$1022 = \frac{1}{1 - \tilde{\rho}_{1,2}^2} \frac{1}{N_2} \mathbf{1}_{N_2, N_2} \quad (87)$$

$$1024 = \frac{1}{\det(A_2)} \frac{1}{N_2} \mathbf{1}_{N_2, N_2} \quad (88)$$

1026 and also

1027
1028
$$\det(A_2) = 1 - \frac{\tilde{\rho}_{1,2}^2}{\det(A_1)}. \quad (89)$$

1029

1030 By induction let

1031
1032
$$A_{l-1}^{-1} = \frac{1}{\det(A_{l-1})} \frac{1}{N_{l-1}} \mathbf{1}_{N_{l-1}, N_{l-1}} \quad (90)$$

1033

1034 Hence,

1035
1036
$$A_l = I - \rho_{l-1,l}^2 \mathbf{1}_{N_l, N_{l-1}}^T A_{l-1}^{-1} \mathbf{1}_{N_{l-1}, N_l} \quad (91)$$

1037

1038
1039
$$= I - \frac{\tilde{\rho}_{l-1,l}^2}{\det(A_{l-1})} \frac{1}{N_l} \mathbf{1}_{N_l, N_l} \quad (92)$$

1040 and

1041
1042
$$\det(A_l) = 1 - \frac{\tilde{\rho}_{l-1,l}^2}{\det(A_{l-1})} = 1 - \frac{N_{l-1} N_l \rho_{l-1,l}^2}{\det(A_{l-1})} \quad (93)$$

1043 Now we prove that $\frac{\partial KL(\rho \parallel \pi)}{\partial \rho_{l-1,l}^2} \geq 0$. To this end, we only need to prove that $\frac{\partial \prod_{l=1}^L \det(A_l)}{\partial \rho_{l-1,l}^2} \leq 0$. Since
1044
1045 $\det(A_l)$ recursively depends on all $\rho_{s-1,s}^2$ by $\det(A_s)$, $s < l$. Hence by *China rule*

1046
1047
$$\frac{\partial \prod_{l=1}^L \det(A_l)}{\partial \rho_{s-1,s}^2} = \prod_{l=1}^{s-1} \det(A_l) \frac{\partial \prod_{l=s}^L \det(A_l)}{\partial \rho_{s-1,s}^2} \quad (94)$$

1048

1049
1050
$$= \prod_{l=1}^{s-1} \det(A_l) \left(\prod_{l=s+1}^L \det(A_l) + \frac{\tilde{\rho}_{s,s+1}^2}{\det(A_s)} \prod_{l=s+2}^L \det(A_l) + \dots + \prod_{l=s}^{L-1} \frac{\tilde{\rho}_{l,l+1}^2}{\det(A_l)} \right) \frac{\partial \det(A_s)}{\partial \rho_{s-1,s}^2} \quad (95)$$

1051
1052
1053

1054 and because $A_l \succ 0, l \in [L]$ is positive definite, we have $\det(A_l) > 0$. Hence, the sign of the above
1055 equation depends on

1056
1057
$$\frac{\partial \det(A_s)}{\partial \rho_{s-1,s}^2} = -\frac{N_{s-1} N_s}{\det(A_{s-1})} < 0 \quad (96)$$

1058

1059 **Discussion on $A_l \succ 0$** Here we explain why $A_l \succ 0$. We start from A_2 . According to Eq. equation
1060 83, we claim that $\tilde{\rho}_{1,2}^2 < 1$ which represent the total variance of weights at first layer that can
1061 be explained by the second layer. We assume that none of the weights at the first layer can be totally
1062 explained by the second layer. \square

1063

1064 F ADDITIONAL EXPERIMENTS
10651066 In this section, we add some additional experiments to support our conclusion. The Tab. 6 and 6
1067 are the complete experiment results regarding 5-layer MLPs and CNNs separately. Fig. 4 shows the
1068 heatmaps for MLPs and CNNs with dense skip configurations.1069 Tab. 8 summarizes the results of different skip-connection configurations for ResNet-18. The
1070 network contains eight skip connections in total, each represented by a binary indicator of 0 or
1. We remove selected skip connections (denoted by 0) and compute several complexity
1071 measures—including an additional spectrum-based metric (PSN)—and report their Kendall’s τ , Spear-
1072 man’s ρ , and dCor correlations with the empirical generalization gap. As shown, our proposed
1073 measure achieves the highest correlation across all three metrics, indicating that it effectively captures
1074 the inter-layer interactions.1075
1076 Tab. 9 presents the extended experiments across different architectures. As shown, our measure
1077 continues to achieve the highest Kendall’s τ .1078 Fig. 5 and Fig. 6 visualize the complexity measures. The red dashed line denotes the empirical
1079 generalization gap.

1080 **Table 6: Comparison of Skip-Connection Configurations in 5-Layer MLPs on Fashion MNIST.**
1081 We omit some of the configurations, since they cannot achieve comparable performance. All models
1082 are trained with similar accuracy, and the Kendall method is provided to see whether our method
1083 indeed captures the influence of skip-connection.

Network	PFN	PSN	#Param	PBC	PBGC	WC	GWC	Loss	Acc.	Δ Loss
MLP _{0,0,0} (1)	1.20e+05	2.70e+03	4.00e+05	3.62e+03	3.18e+03	3.15e+03	2.71e+03	5.40e-01	8.98e+01	5.31e-01 (\pm 7.4e-04)
MLP _{0,0,1} (1)	1.41e+05	4.47e+03	4.00e+05	3.97e+03	3.55e+03	3.49e+03	3.07e+03	4.80e-01	8.90e+01	4.55e-01 (\pm 1.3e-04)
MLP _{0,1,0} (1)	1.31e+05	2.86e+03	4.00e+05	3.74e+03	3.22e+03	3.26e+03	2.74e+03	4.90e-01	8.95e+01	4.75e-01 (\pm 4.8e-04)
MLP _{0,1,0} (2)	1.34e+05	4.29e+03	4.00e+05	4.84e+03	3.73e+03	4.35e+03	3.25e+03	4.50e-01	8.97e+01	4.19e-01 (\pm 3.1e-04)
MLP _{1,0,0} (1)	1.47e+05	4.18e+03	4.00e+05	3.97e+03	3.53e+03	3.48e+03	3.04e+03	4.70e-01	8.96e+01	4.51e-01 (\pm 4.2e-04)
MLP _{1,0,0} (2)	1.36e+05	2.51e+03	4.00e+05	4.39e+03	3.73e+03	3.90e+03	3.24e+03	4.10e-01	9.00e+01	3.67e-01 (\pm 3.7e-04)
MLP _{1,0,0} (3)	1.02e+05	1.05e+03	4.00e+05	3.28e+03	2.90e+03	2.83e+03	2.45e+03	4.10e-01	8.93e+01	3.76e-01 (\pm 9.0e-04)
MLP _{1,1,1} (1)	7.41e+04	3.98e+03	4.00e+05	5.42e+03	8.27e+03	4.74e+03	7.59e+03	4.90e-01	8.94e+01	4.53e-01 (\pm 3.9e-03)
MLP _{1,1,1} (2)	4.80e+04	2.72e+03	4.00e+05	4.96e+03	7.31e+03	4.28e+03	6.63e+03	5.20e-01	8.88e+01	4.82e-01 (\pm 3.1e-03)
MLP _{1,1,1} (3)	4.77e+04	2.51e+03	4.00e+05	4.90e+03	7.11e+03	4.22e+03	6.44e+03	5.20e-01	8.86e+01	4.76e-01 (\pm 2.8e-03)
MLP _{1,1,1} (4)	5.57e+04	2.99e+03	4.00e+05	4.80e+03	5.86e+03	4.11e+03	5.17e+03	5.30e-01	8.90e+01	4.92e-01 (\pm 3.8e-03)
MLP _{1,1,1} (5)	3.20e+04	1.89e+03	4.00e+05	4.90e+03	5.74e+03	4.22e+03	5.05e+03	5.30e-01	8.91e+01	4.97e-01 (\pm 3.7e-03)
MLP _{1,1,1} (6)	1.88e+04	9.34e+02	4.00e+05	4.60e+03	5.56e+03	3.93e+03	4.89e+03	4.90e-01	8.92e+01	4.48e-01 (\pm 3.5e-03)
MLP _{1,2,1} (1)	6.87e+04	3.12e+03	4.00e+05	4.52e+03	6.61e+03	3.92e+03	6.01e+03	5.10e-01	8.92e+01	4.62e-01 (\pm 8.0e-04)
MLP _{1,2,1} (2)	1.15e+05	2.24e+03	4.00e+05	3.99e+03	3.92e+03	3.34e+03	3.26e+03	6.20e-01	8.92e+01	6.14e-01 (\pm 7.8e-04)
MLP _{1,2,1} (3)	7.81e+04	2.03e+03	4.00e+05	4.01e+03	3.91e+03	3.36e+03	3.26e+03	6.80e-01	8.90e+01	6.75e-01 (\pm 1.2e-03)
MLP _{2,1,1} (1)	7.15e+04	2.56e+03	4.00e+05	4.66e+03	6.63e+03	4.06e+03	6.03e+03	5.10e-01	8.92e+01	4.61e-01 (\pm 1.5e-03)
MLP _{2,1,1} (2)	7.37e+04	2.33e+03	4.00e+05	4.19e+03	5.05e+03	3.58e+03	4.44e+03	5.10e-01	8.92e+01	4.73e-01 (\pm 1.4e-03)
MLP _{2,1,1} (3)	6.54e+04	2.25e+03	4.00e+05	4.38e+03	5.88e+03	3.78e+03	5.28e+03	5.10e-01	8.90e+01	4.59e-01 (\pm 2.8e-03)
MLP _{2,1,1} (4)	5.97e+04	1.98e+03	4.00e+05	4.28e+03	4.80e+03	3.67e+03	4.19e+03	5.60e-01	8.88e+01	5.16e-01 (\pm 1.9e-03)
MLP _{2,1,1} (5)	5.66e+04	1.92e+03	4.00e+05	4.37e+03	5.98e+03	3.77e+03	5.39e+03	5.30e-01	8.88e+01	4.79e-01 (\pm 2.8e-03)
MLP _{2,1,1} (6)	6.02e+04	1.99e+03	4.00e+05	4.35e+03	6.16e+03	3.75e+03	5.56e+03	5.20e-01	8.84e+01	4.63e-01 (\pm 2.1e-03)
MLP _{2,2,1} (1)	9.64e+06	9.37e+06	4.00e+05	1.38e+04	2.20e+04	1.14e+04	1.97e+04	4.50e-01	8.43e+01	7.32e-02 (\pm 1.3e-03)
MLP _{2,2,1} (2)	5.26e+04	1.47e+03	4.00e+05	4.32e+03	6.11e+03	3.73e+03	5.52e+03	5.00e-01	8.88e+01	4.51e-01 (\pm 1.2e-03)
MLP _{3,2,1} (1)	6.48e+04	9.48e+02	4.00e+05	4.09e+03	5.35e+03	3.57e+03	4.83e+03	5.50e-01	8.84e+01	4.91e-01 (\pm 1.2e-03)
Kendall	-2.02e-01	-8.69e-02	nan	1.45e-02	7.24e-02	-4.34e-02	7.25e-02	nan	nan	nan

Table 7: Comparison of skip connection configurations CNNs on CIFAR10.

Network	PFN	PSN	#Param	PBC	PBV	WC	GWC	Loss	Acc.	Δ Loss
CNN _{0,0,0} (1)	2.20e+04	6.50e+03	4.40e+06	9.47e+03	8.95e+04	9.12e+03	8.91e+04	1.00e+00	6.58e+01	3.70e-01 (\pm 2.5e-04)
CNN _{0,0,1} (1)	2.42e+04	7.20e+03	4.40e+06	9.47e+03	8.94e+04	9.11e+03	8.90e+04	9.97e-01	6.67e+01	5.10e-01 (\pm 1.3e-04)
CNN _{0,1,0} (1)	2.47e+04	7.30e+03	4.40e+06	9.45e+03	8.90e+04	9.10e+03	8.87e+04	1.05e+00	6.59e+01	4.40e-01 (\pm 1.7e-04)
CNN _{0,1,0} (2)	2.70e+04	8.00e+03	4.40e+06	9.49e+03	9.02e+04	9.14e+03	8.98e+04	1.04e+00	6.57e+01	5.40e-01 (\pm 1.2e-04)
CNN _{1,0,0} (2)	2.72e+04	8.10e+03	4.40e+06	9.49e+03	9.02e+04	9.14e+03	8.98e+04	1.10e+00	6.42e+01	6.40e-01 (\pm 2.3e-04)
CNN _{1,0,0} (3)	2.92e+04	9.40e+03	4.40e+06	9.54e+03	9.21e+04	9.19e+03	9.17e+04	1.10e+00	6.15e+01	4.60e-01 (\pm 1.5e-04)
CNN _{1,1,1} (1)	3.47e+04	1.70e+04	4.40e+06	1.02e+04	1.07e+05	9.84e+03	1.07e+05	1.07e+00	6.23e+01	3.90e-01 (\pm 1.6e-04)
CNN _{1,1,1} (2)	3.38e+04	1.55e+04	4.40e+06	9.84e+03	9.86e+04	9.48e+03	9.82e+04	1.07e+00	6.19e+01	4.00e-01 (\pm 7.5e-05)
CNN _{1,1,1} (3)	3.06e+04	1.04e+04	4.40e+06	9.61e+03	9.32e+04	9.26e+03	9.29e+04	1.08e+00	6.23e+01	4.40e-01 (\pm 1.5e-04)
CNN _{1,1,1} (4)	3.29e+04	1.47e+04	4.40e+06	9.57e+03	9.18e+04	9.22e+03	9.14e+04	1.06e+00	6.26e+01	3.90e-01 (\pm 1.4e-04)
CNN _{1,1,1} (5)	3.13e+04	1.14e+04	4.40e+06	9.68e+03	9.52e+04	9.33e+03	9.48e+04	1.07e+00	6.31e+01	4.40e-01 (\pm 6.0e-05)
CNN _{1,1,1} (6)	3.04e+04	1.03e+04	4.40e+06	9.53e+03	9.15e+04	9.18e+03	9.11e+04	1.08e+00	6.22e+01	4.30e-01 (\pm 1.1e-04)
CNN _{1,2,1} (1)	4.43e+04	2.74e+04	4.40e+06	1.18e+04	1.44e+05	1.14e+04	1.44e+05	1.03e+00	6.49e+01	4.90e-01 (\pm 2.2e-04)
CNN _{1,2,1} (2)	3.21e+04	1.36e+04	4.40e+06	9.71e+03	9.48e+04	9.35e+03	9.44e+04	1.06e+00	6.28e+01	4.20e-01 (\pm 1.3e-04)
CNN _{2,1,1} (1)	4.26e+04	2.11e+04	4.40e+06	1.05e+04	1.12e+05	1.01e+04	1.11e+05	1.02e+00	6.57e+01	5.40e-01 (\pm 1.9e-04)
CNN _{2,1,1} (2)	4.08e+04	2.29e+04	4.40e+06	1.01e+04	1.05e+05	9.77e+03	1.05e+05	1.02e+00	6.55e+01	5.30e-01 (\pm 1.4e-04)
CNN _{2,1,1} (3)	3.79e+04	1.81e+04	4.40e+06	1.00e+04	1.03e+05	9.68e+03	1.02e+05	1.05e+00	6.43e+01	5.60e-01 (\pm 3.2e-04)
CNN _{2,1,1} (4)	3.75e+04	2.02e+04	4.40e+06	1.02e+04	1.07e+05	9.81e+03	1.06e+05	1.06e+00	6.38e+01	5.70e-01 (\pm 1.3e-04)
CNN _{2,1,1} (5)	3.82e+04	1.46e+04	4.40e+06	9.82e+03	9.76e+04	9.46e+03	9.72e+04	1.06e+00	6.43e+01	6.10e-01 (\pm 1.3e-04)
CNN _{2,1,1} (6)	3.72e+04	1.33e+04	4.40e+06	9.77e+03	9.69e+04	9.41e+03	9.65e+04	1.04e+00	6.49e+01	5.90e-01 (\pm 1.7e-04)
CNN _{2,2,1} (2)	5.32e+04	3.19e+04	4.40e+06	1.13e+04	1.32e+05	1.09e+04	1.32e+05	1.09e+00	6.43e+01	6.90e-01 (\pm 1.6e-04)
CNN _{2,2,1} (3)	3.76e+04	1.72e+04	4.40e+06	1.00e+04	1.03e+05	9.69e+03	1.03e+05	1.03e+00	6.51e+01	5.70e-01 (\pm 3.6e-04)
CNN _{3,2,1} (1)	7.85e+04	3.19e+04	4.40e+06	1.07e+04	1.11e+05	1.03e+04	1.11e+05	1.13e+00	6.45e+01	7.90e-01 (\pm 1.6e-04)
Kendall	2.96e-01	2.41e-01	nan	2.09e-01	2.17e-01	2.10e-01	2.18e-01	nan	nan	nan

Figure 4: The visualization of general weight correlation R for dense connections. We show the dense connections on 5-Layer MLPs, CNNs and CNNs with batch norms.

1134

1135 Table 8: **Correlation Between Complexity Measures and the Empirical Complexity Gap.** We
 1136 select several representative skip-connection configurations for ResNet-18. The network contains
 1137 eight shortcuts, where “1” indicates the presence of a shortcut and “0” denotes its removal. In
 1138 addition to Kendall’s τ , we also include Spearman’s ρ and distance-based correlation measures.
 1139

Skip-Config.	PFN	PSN	PB	PBC	PBGC	Empirical Gap
00-00-00-00	1.08e+20	5.01e+19	5.17e+03	1.05e+05	1.15e+05	-3.61e+01
00-00-00-10	8.33e+18	3.64e+18	4.91e+03	1.04e+05	1.12e+05	-3.64e+01
00-00-11-11	1.85e+19	5.92e+18	4.69e+03	1.12e+05	1.30e+05	-4.36e+01
00-11-11-00	3.76e+18	1.34e+18	4.92e+03	1.18e+05	1.42e+05	-4.24e+01
00-11-11-11	8.08e+17	2.53e+17	4.53e+03	1.12e+05	1.31e+05	-4.26e+01
01-01-01-01	2.41e+19	8.17e+18	5.07e+03	1.15e+05	1.36e+05	-4.21e+01
01-11-11-11	2.77e+17	8.64e+16	4.49e+03	1.12e+05	1.30e+05	-4.19e+01
10-00-00-00	1.13e+20	5.07e+19	5.18e+03	1.06e+05	1.15e+05	-3.69e+01
10-01-10-01	4.43e+20	1.56e+20	5.09e+03	1.12e+05	1.30e+05	-4.17e+01
10-10-10-10	6.32e+19	2.41e+19	4.81e+03	1.13e+05	1.31e+05	-4.12e+01
11-00-00-11	1.03e+20	4.01e+19	4.97e+03	1.08e+05	1.20e+05	-4.13e+01
11-00-11-11	1.89e+18	6.28e+17	4.61e+03	1.13e+05	1.32e+05	-4.29e+01
11-01-10-11	1.86e+19	6.38e+18	4.73e+03	1.10e+05	1.25e+05	-4.19e+01
11-11-00-00	4.32e+20	1.71e+20	5.21e+03	1.10e+05	1.24e+05	-4.11e+01
11-11-00-11	3.23e+19	1.09e+19	4.84e+03	1.09e+05	1.23e+05	-4.11e+01
11-11-11-00	1.07e+18	3.76e+17	4.84e+03	1.17e+05	1.41e+05	-4.18e+01
11-11-11-10	1.81e+17	6.26e+16	4.53e+03	1.16e+05	1.38e+05	-4.24e+01
11-11-11-11	1.40e+17	4.49e+16	4.47e+03	1.12e+05	1.31e+05	-4.20e+01
Kendall τ	-4.12e-01	-4.25e-01	-4.51e-01	4.90e-01	5.42e-01	1
Spearman ρ	-6.37e-01	-6.45e-01	-6.49e-01	6.66e-01	7.09e-01	1
dCor	3.96e-01	4.29e-01	5.77e-01	8.35e-01	8.41e-01	1

1160

1161

1162

1163 Table 9: **Correlation Between Complexity Measures and the Empirical Complexity Gap Across**
 1164 **Architectures.** As shown, our proposed measure consistently achieves the highest Kendall’s τ
 1165 across different architectures. In addition, we also include the wall clock run time in the table.

DL Models	PFN	PSN	# Params	PB	PBC	PBGC	Empirical Gap	Run Time(s)
ResNet50	3.96e+58	1.44e+58	2.37e+07	2.75e+04	1.84e+06	1.84e+05	2.96e-01	12.4
DenseNet121	2.40e+75	4.42e+75	6.97e+06	1.17e+04	3.09e+05	2.82e+05	3.20e-01	9.62
VGG16	2.65e+19	5.42e+17	1.35e+08	1.24e+04	1.04e+05	2.12e+04	2.80e-01	1.77
WRN50	2.08e+63	6.78e+62	6.70e+07	3.78e+04	3.26e+06	2.33e+05	2.91e-01	21.81
Kendall’s τ	6.67e-01	6.67e-01	-1	3.33e-01	0	6.67e-01	1	

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184 Figure 5: **Comparison of Complexity Measures Across Skip-Connection Configurations in**
 1185 **ResNet-18 on CIFAR-100.** We normalize each measure to the range [0, 1] to enable better compar-
 1186 ison.

Figure 6: **Comparison of Complexity Measures Across Architectures on CIFAR-100.** We normalize each measure to the range $[0, 1]$ to facilitate better comparison.

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241