
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Rumor Detection on Social Media with Reinforcement
Learning-based Key Propagation Graph Generator

Anonymous Author(s)
Submission Id: 1775∗

ABSTRACT
The spread of rumors on social media, particularly during signif-
icant events like the US elections and the COVID-19 pandemic,
poses a serious threat to social stability and public health. Current
rumor detection methods primarily rely on propagation graphs
to improve the model performance. However, the effectiveness of
these methods is often compromised by noisy and irrelevant struc-
tures in the propagation process. To tackle this issue, techniques
such as weight adjustment and data augmentation have been pro-
posed. However, they depend heavily on rich original propagation
structures, limiting their effectiveness in handling rumors that lack
sufficient propagation information, especially in the early stages of
dissemination. In this work, we introduce Key Propagation Graph
Generator (KPG), a novel reinforcement learning-based framework,
that generates contextually coherent and informative propagation
patterns for events with insufficient topology information and iden-
tifies significant substructures in events with redundant and noisy
propagation structures. KPG comprises two key components: the
Candidate Response Generator (CRG) and the Ending Node Selector
(ENS). CRG learns latent variable distributions from refined propa-
gation patterns to eliminate noise and generate new candidates for
ENS, while ENS identifies the most influential substructures in prop-
agation graphs and provides training data for CRG. Furthermore,
we develop an end-to-end framework that utilizes rewards derived
from a pre-trained graph neural network to guide the training pro-
cess. The resulting key propagation graphs are then employed in
downstream rumor detection tasks. Extensive experiments con-
ducted on four datasets demonstrate that KPG outperforms current
state-of-the-art methods.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
Rumor Detection, key propagation graph, reinforcement learning,
graph neural network, response generator

ACM Reference Format:
Anonymous Author(s). 2018. Rumor Detection on Social Media with Rein-
forcement Learning-based Key Propagation Graph Generator. In Proceedings

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

of Make sure to enter the correct conference title from your rights confirma-
tion emai (Conference acronym ’XX). ACM, New York, NY, USA, 11 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
As a primary medium for information dissemination, social me-
dia eliminates temporal and spatial constraints on communication,
facilitating the spread of information. However, the popularity of
certain topics on social media often leads to the propagation of
intentional or unintentional misinformation [68], negatively im-
pacting individual health and social stability [56, 66]. Unfortunately,
individuals who encounter unverified information often struggle
to distinguish between truth and falsehood. This difficulty can in-
advertently lead to the further spread of misinformation through
social media platforms [37, 68]. Additionally, this challenge extends
to sophisticated tools like large language models, which also strug-
gle to accurately identify and curb the spread of rumors on social
networks, as shown in the left subfigure of Fig. 1. The complexity
of this issue underscores the need for more nuanced approaches to
misinformation detection and management.

In recent years, rumor detection has gradually shifted from tradi-
tional machine learning approaches [31, 36, 53, 67], which require
the manual definition of content, structural, or information source
features, to deep learning approaches [6, 14, 19, 24, 29, 32, 44, 48, 50,
51, 62, 63]. Notably, graph neural network (GNN)-based rumor de-
tectors have achieved superb performance. These models leverage
both the textual content and the topology of propagation graphs
that represent the spread of posts on social networks. As illus-
trated in the right subfigure of Fig. 1, root nodes in the propagation
graphs represent the original posts, while other nodes represent
comments or retweets received during the spread. Edges indicate
the relationships of commenting and retweeting between nodes.

Although using propagation information improves rumor de-
tection accuracy, irrelevant or untrustworthy comments on social
networks significantly impair the reliability of propagation graphs
in identifying the veracity of claims, as noted in [44, 50]. To address
this challenge, techniques such as weight adjustment [49, 50] and
data augmentation [14, 26, 44] have been introduced. However,
these strategies rely on graphs with abundant structural informa-
tion, which is often lacking in rumors, especially in the early stages
of their spread on real-world social networks. Specifically, in the
early stages of spread, interactions among social network users
are limited due to the short duration of engagement. The original
post has not yet garnered a significant number of comments or
retweets, resulting in a relatively small propagation graph. This
small size renders existing solution ineffective because they are
based on edge reweighting or graph augmentation, which adjust
the topology of the input propagation graph but cannot generate
or expand the graph itself. Furthermore, as noted in recent studies

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1775

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

irrelevant

irrelevant

root post

comment comment

comment

comment

0.30

0.50

0.70

0.90

T15 T16 PHM WB

Acc.

Figure 1: Left: classification accuracy on four datasets, where
the white/crosshatched/black bars represent the results of
GPT-3.5/GPT-4/KPG, respectively. Right: an example propa-
gation graph of posts on social networks, including irrelevant
comments and retweets.

[27, 64], existing graph neural networks used in rumor detection
methods struggle to effectively address events with insufficient
topological information. The absence of distinguishable structures
in small graphs is the primary reason for unsatisfactory results
[27]. Overall, designing an effective rumor detector that can han-
dle both noisy propagation graphs with irrelevant comments and
small propagation graphs in the early stage of spread remains an
unresolved problem.

Motivated by these challenges, we propose KPG1 to generate
enhanced key propagation graphs for rumor detection. Our KPG
consists of two key components: the Candidate Response Genera-
tor (CRG) and the Ending Node Selector (ENS). First, we propose
the CRG module to address situations where propagation graphs
are too small to provide sufficient candidates for selection. CRG
generates new responses that are aligned with the structure and
contextual information of the graph. These responses are derived
from realistic yet refined noise propagation patterns, aiming to en-
hance the discrimination potential of the augmented graphs. Next,
we introduce ENS to explore the candidate graph from both local
and global perspectives. It identifies the key propagation graph by
iteratively selecting critical nodes from the candidate set. Instead
of choosing nodes based on the semantic relevance of comments,
ENS evaluates each node based on the contribution of its feature
and topology information to the classification performance of the
event. By incorporating these two modules, our KPG can select
distinguishable key patterns from the original noisy propagation
graphs and expand small propagation graphs with informative new
comments, thereby improving the overall model performance.

We further incorporate a reinforcement learning (RL) framework
to integrate the candidate node generation and key node selection
processes with graph classification accuracy. To achieve this, we
design rewards based on the classification accuracy obtained from a
pre-trained Graph Neural Network (GNN) classifier. Specifically, we
offer rewards for newly generated responsive features that show
superior performance compared to the original features in terms
of classification accuracy. Additionally, we encourage the selection
of nodes that enhance the discriminative capability of the graph
and maximize the expected cumulative performance improvement.
Finally, we develop KPG as an end-to-end framework that trains the
ENS and CRG alternately. This allows both components to generate

1Key Propagation Graph Generator

intermediate results for each other and be optimized iteratively.
On one hand, the CRG generates new responses to supplement
the candidate set of the ENS, enabling ENS to overcome limita-
tions imposed by insufficient input information. On the other hand,
the key patterns identified by ENS serve as training samples for
CRG, facilitating the extraction of latent variable distributions from
realistic and distinguishable propagation patterns. The final key
propagation graphs are then utilized to train a downstream GNN
classifier for the rumor detection task.

In summary, our contributions are as follows:
• We propose KPG, a novel rumor detection model comprising

two interdependent modules. It can augment small propagation
graphs with contextually relevant, reliable responses and pre-
cisely select the indicative key nodes considering both feature
and structural information.

• We incorporate the RL framework into propagation graph-based
rumor detection. The carefully designed rewards improve dis-
criminability during key graph generation process.

• Extensive experiments2 show that KPG achieves state-of-the-art
performance in the rumor detection task.

2 PRELIMINARIES
2.1 Notation
Let 𝑠 = {𝑟,𝐺 = (𝑉 , 𝐸,𝑿)} denote an event, where 𝑟 is the source
post and𝐺 indicates the propagation graph of the source post.𝐺 is
a directed acyclic tree rooted at the source post 𝑟 . The node set𝑉 =

{𝑟, 𝑣1, 𝑣2, · · · , 𝑣𝑛𝑠−1} contains all 𝑛𝑠 comments and retweets in the
propagation process. The text stored in node 𝑢 is denoted as text𝑢 .
The edge set 𝐸 =

{
(𝑣𝑖 , 𝑣 𝑗) |𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉

}
represents the propagating

relation between posts, i.e., there exists an directed edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸
if 𝑣 𝑗 is a comment or retweet of 𝑣𝑖 . 𝑿 ∈ R𝑛𝑠×𝑑 contains the initial
features of posts in the event 𝑠 . Each row of the feature matrix
𝑿 [𝑣𝑖] is a 𝑑-dimensional vector of the corresponding post 𝑣𝑖 . Table
6 in Appendix A lists the frequently used notations in this paper.
RumorDetection. Let𝑦𝑠 ∈ Y be the label of the event 𝑠 , indicating
the veracity of the event. The label set Y consists of non-rumors,
false rumors, true rumors, and unverified rumors. Some datasets
contain only two classes: rumors and non-rumors. Given a set of
events {𝑠0, 𝑠1, · · · } obtained from social networks, the goal of rumor
detection is to predict the veracity of each event.
Key Propagation Generation We formulate the key propagation
generation problem within the reinforcement learning framework.
At step 𝑡 , the state is the key propagation graph 𝑔𝑡 = {𝑉𝑔𝑡 , 𝐸𝑔𝑡 ,𝑿𝑔𝑡 },
where |𝑉𝑔𝑡 | = 𝑛𝑡 and |𝐸𝑔𝑡 | = 𝑚𝑡 . The initial state 𝑔0 contains
only the root node 𝑟 and its feature 𝑿 [𝑟]. The action 𝑎𝑡 = (𝑣𝑡 , 𝑒𝑡)
represents the node and edge to be added to 𝑔𝑡 for generating 𝑔𝑡+1.

2.2 Related Work
We briefly review existing graph-based rumor detection models. Ad-
ditional related work is discussed in Appendix B.

A line of research [15, 59, 60] constructs heterogeneous graphs
of publishers, tweets, and users to integrate both local and global
relationships. Based on these heterogeneous graphs, a series of
models have been proposed. For instance, GCAN [28] uses a dual

2Code available at https://anonymous.4open.science/r/KPG-A279/README.md

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Rumor Detection on Social Media with Reinforcement Learning-based Key Propagation Graph Generator Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

co-attention mechanism to provide reasonable explanations by
learning features from four aspects. Cui et al. [9] propose encoding
metapaths from heterogeneous graphs. FinerFact [16] reasons for
important evidence from a constructed claim-evidence graph us-
ing a mutual reinforcement mechanism [11]. SureFact [55] further
leverages RL to measure the importance of nodes and conducts sub-
graph reasoning. Note that additional information used to construct
the heterogeneous graphs, such as news-user discussion graphs,
user-user interaction graphs, news-post similarity graphs, is not
included in the datasets we used. To ensure a fair comparison, we
exclude these methods from our experiments.

Another line of research adopts GNN to enhance the exploitation
of the propagation graphs. For example, BiGCN [6] employs GCN
on both top-down and bottom-up propagation graphs. EBGCN [50]
and FGCN [49] suggest adjusting the weight of each edge to reflect
the intensity of interactions between comments. Models like RDEA
[14], GACL [44], TrustRD [26] and others [29, 61] employ data aug-
mentation strategies like edge perturbation andmasking to improve
the robustness of the model through contrastive learning. AARD
[42] generates position-aware adversarial responses to improve the
robustness of models.

However, current models heavily rely on the original topology
information to combat untrustworthy comments in propagation
graphs. Thus, these strategies are ineffective in the case of small
graphs with insufficient structural information. In contrast, our
KPG proposes two interdependent modules that generate key prop-
agation patterns for propagation graphs of varied sizes, achieving
superb performance, as shown in our experiments.

3 KEY PROPAGATION GRAPH GENERATOR
In this section, we present our KPGmodel, which comprises two key
components: the Candidate Response Generator (CRG) and the End
Node Selector (ENS). To address the limitations of existing models in
handling small input graphs with insufficient topological informa-
tion, we propose the CRG module to generate realistic and reliable
responses for expanding the propagation graph. Subsequently, the
ENS module generates a probability distribution for each node,
indicating the likelihood of the node being selected during the step-
by-step construction of the key propagation graph. Specifically,
we select propagation patterns that are critical and indicative for
classification, while filtering out irrelevant and noisy comments.
An RL framework is utilized to design rewards for both modules,
further enhancing the model performance on the generated key
propagation graphs. With the guidance of carefully designed re-
wards, the classification accuracy of the key propagation graph in
the current state is encouraged to surpass that of its preceding state,
ensuring continuous improvement throughout the generation pro-
cess. The rest of this section is arranged as follows. First, we present
the overall framework of KPG in Section 3.1. Then, we elaborate
on CRG and ENS in Sections 3.2 and 3.3, respectively. Finally, we
illustrate the reward functions used for guiding CRG and ENS, and
present the learning algorithm in Section 3.4.

3.1 Overview
Figure 2 illustrates the KPG framework at step 𝑡 , showing the gen-
eration process of the key propagation graph. At the bottom right

0

21

3 4
candidate graph 5!

7)!

if #!"# ≤ (

6'!

1[$!"#]

$′!"#

$′′!"#

!

1 − !
0

21
3 54

5!"#

CRG Training

;(# CVAE>6'! ?*

?*

CRG Generation

0

1
key propagation graph 4!

1'!

GNN0

21

(2 , (0, 2))8!=

!$%&

;("

0

1

1'!
node
pairs

ENS

4!

Figure 2: Framework of KPG.

of Figure 2, a toy example of a key propagation graph 𝑔𝑡 with two
nodes at step 𝑡 is presented. Suppose the current candidate graph
𝐺𝑡 is the graph at the middle left of Figure 2. If the number of
candidates is less than 𝛾 , the CRG 𝜋𝑅 (·) generates new responses
drawn from a learned latent distribution. In this example, node 5
is added into the new candidate graph 𝐺𝑡+1, aiding in generating
the candidate set 𝐶𝑡+1. Next, the ENS 𝜋𝑆 (·) encodes the current
graph 𝑔𝑡 using a GNN and concatenates the node representations
with candidate features 𝑋 [𝐶𝑡+1]. An MLP is then utilized to de-
rive the probability of each available action 𝑎𝑡 . For example, at
the bottom left of Figure 2, graph 𝑔𝑡+1 is updated based on action
𝑎𝑡 = (2, (0, 2)). Finally, the rewards 𝑅𝜋𝑆 and 𝑅𝜋𝑅 are designed to
increase the discriminative capacity of the generated key graph.
Next, we elaborate on the CRG component in KPG.

3.2 Candidate Response Generator
In this section, we present the CRG component 𝜋𝑅 (·). Existing data
augmentation approaches primarily focus on perturbing the input
structure. However, perturbation-based models struggle with small
propagation graphs, which inherently lack sufficient topology and
feature information. In contrast, CRG presents a novel approach by
generating entirely new content as responses to the given nodes,
thereby augmenting the graph in a contextually coherent manner.
Specifically, CRG supports event classification from three aspects:
• (i) Contextually coherent: generating responses relevant to the

original context in the propagation graph.
• (ii) Realistic yet refined from noise: generating responses that

reflect real-world social network propagation patterns while
being robust to noisy and irrelevant comments.

• (iii)Discriminative: generating distinct responses that contribute
to rumor detection and downstream performance improvement.

Among these objectives, we achieve (iii) through carefully designed
rewards, discussed in Section 3.4. The mechanisms behind (i) and
(ii) are detailed in this section.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1775

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

To achieve objective (i), we construct a conditional variational
auto-encoder (CVAE) [41]. This extension of the traditional VAE
[21] incorporates condition variables to generate new responses
following a latent distribution. By extracting this distribution from
real-world propagation patterns, CVAE effectively captures the data
distribution of existing responses, thereby facilitating the genera-
tion of responses that maintain contextual coherence.

To achieve objective (ii), we leverage the currently identified
key propagation graph 𝑔𝑡 rather than the original input graphs as
training data for CRG, filtering out noisy and irrelevant comments.
This approach allows CRG to learn from propagation patterns that
significantly contribute to the classification task, alleviating the
impact of noisy comments.
CRG Training. Let 𝑔𝑡 be a key propagation graph at step 𝑡 . We
extract all pairs from the current key propagation graph 𝑔𝑡 as the
training data. Let (𝑢, 𝑣) ∈ 𝑔𝑡 represent a context-response node pair,
where 𝑢 denotes the context and 𝑣 denotes the response. Initially, we
employ a GRU [8] to encode the text of 𝑢 and 𝑣 into representations
𝒉𝑢 and 𝒉𝑣 , respectively. To address the one-to-many problem [41],
we concatenate the latent representation of 𝑢 with its source post 𝑟
to strengthen the connection between 𝒉𝑢 and its central topic:

𝒉𝒖 = CONCAT (GRU(text𝑢),GRU(text𝑟)) , (1)
𝒉𝒗 = GRU (text𝑣) .

Next, representations 𝒉𝑢 and 𝒉𝑣 are fed into the CVAEmodel, which
includes an encoder 𝑞𝜑 (𝒛 |𝒉𝑢 ,𝒉𝑣) with latent space representation
𝒛, an MLP decoder, and a GRU decoder. Assume that 𝒛 follows a
Gaussian distribution N(𝝁,𝝈2). During the encoding phase, 𝒉𝑢
and 𝒉𝑣 are concatenated and fed into an MLP to learn distribution
parameters of the encoder:

𝝁 = MLP𝜇 (CONCAT(𝒉𝑢 ,𝒉𝑣)) , 𝝈2 = MLP𝜎 (CONCAT(𝒉𝑢 ,𝒉𝑣)) .
A sample 𝒛′ ∼ 𝑞𝜑 (𝒛 |𝒉𝑢 ,𝒉𝑣) is then drawn from the learned distribu-
tion N(𝝁,𝝈2) using the reparameterization trick [41]. This sample
is then combined with the context representation 𝒉𝒖 to reconstruct
the response through the MLP decoder:

𝒉𝑣 = MLP𝑑𝑒𝑐 (CONCAT(𝒛′,𝒉𝑢)) . (2)

The goal of CRG is to minimize the reconstruction error between
representations of the generated response �̂�𝑣 and the original re-
sponse 𝒉𝑣 , thereby extracting contextually coherent distributions.
Detailed loss functions and rewards are presented in Section 3.4.
Next, we elaborate on the candidate set generation process after
the completion of the CRG training.
CRG Generation. In the generation phase of CRG, we set a thresh-
old 𝛾 for the size of the candidate set, which is initialized using the
original graph. If the number of candidate nodes exceeds 𝛾 , the can-
didate graph remains unchanged and is inherited in the next step.
Otherwise, we uniformly sample nodes from the current candidate
graph 𝐺𝑡 as contexts and invoke the trained CRG to generate new
response nodes for these selected context nodes until the candidate
size requirement is satisfied.

Suppose at step 𝑡 , the size of the current candidate set is less than
or equal to 𝛾 , and we select a context node 𝑖 from the candidate
graph𝐺𝑡 . We first generate the topic-aware representation 𝒉𝑖 based
on Eq. (1). Next, 𝒛′ is sampled following the learned distribution 𝑞𝜑 .
We then combine 𝒛′ and 𝒉𝑖 to generate the response 𝒉 𝑗 according to

Eq. (2). The text of node 𝑖 can be generated using the GRU decoder
based on the decoded representation 𝒉 𝑗 . After that, we add the
node 𝑗 and edge (𝑖, 𝑗) to the candidate graph 𝐺𝑡 . This process will
continue until the size of candidate set exceeds 𝛾 .

After obtaining the updated candidate graph𝐺𝑡+1 with sufficient
nodes, we select candidates for the current identified key propa-
gation graph 𝑔𝑡 using a hybrid selection method. Specifically, we
consider two types of candidates. The first type, referred to as lo-
cal candidates, consists of the nodes that are directly connected to
nodes in the current key propagation graph 𝑔𝑡 :

𝐶
′
𝑡+1 = {𝑣 ∈ 𝑉𝐺𝑡+1 | (𝑢, 𝑣) ∈ 𝐸𝐺𝑡+1 , 𝑢 ∈ 𝑉𝑔𝑡 }.

The second type of nodes comprises those that exist in the candidate
graph𝐺𝑡+1 but are not present in the current propagation graph 𝑔𝑡 .
These nodes are referred to as global candidates:

𝐶
′′
𝑡+1 = {𝑣 ∈ 𝑉𝐺𝑡+1 |𝑣 ∉ 𝑉𝑔𝑡 }.

Example. In the example illustrated in Figure 2, 𝐺𝑡+1 consists of 6
nodes, and the current key propagation graph 𝑔𝑡 contains node 0
and node 1. Therefore, the local candidate set 𝐶

′
𝑡+1 = {2, 3} and the

global candidate set 𝐶
′′
𝑡+1 = {2, 3, 4, 5}.

By introducing the second type of nodes, we incorporate a restart
mechanism that allows all unselected nodes to be considered during
the node selection process. This approach strikes a balance between
localized exploration around the existing key nodes and a global
search across the entire candidate graph. Besides, a trade-off param-
eter 𝜖 ∈ [0, 1] is introduced to control the balance between these
two types of candidates. At each step 𝑡 , we either set 𝐶𝑡+1 = 𝐶

′
𝑡+1

with a probability of 𝜖 to locally explore the boundary of the current
key propagation graph 𝑔𝑡 , or set 𝐶𝑡+1 = 𝐶

′′
𝑡+1 with a probability of

(1 − 𝜖) to restart the exploration from one of the other nodes that
have not been selected before, enabling a global search across of
the entire graph. In our experiments, we set 𝜖 = 0.8 by default.

3.3 Ending Node Selector
In this section, we introduce the Ending Node Selector 𝜋𝑆 (·). At
each step 𝑡 , we first adopt CRG to update the candidate graph from
𝐺𝑡 to 𝐺𝑡+1. Subsequently, based on the current key propagation
graph 𝑔𝑡 and the candidate graph 𝐺𝑡+1, ENS predicts the probabili-
ties of candidates being selected for action 𝑎𝑡 . These probabilities
are determined by the potential improvement in event classification
performance. ENS aims to select the node that contributes most sig-
nificantly to enhancing classification accuracy while disregarding
those that are irrelevant to the veracity of the event.

To achieve this, we assess each node in the candidate set 𝐶𝑡+1
based on its own features and its connection with the current key
graph𝑔𝑡 . Specifically, ENS first encodes the current key propagation
graph 𝑔𝑡 using a GCN. Next, it augments the features of candidate
nodes through concatenation operations. The augmented features
of candidates are then fed into an MLP, followed by a softmax
function, to generate the probability distribution for the next action
𝑎𝑡 . Finally, the key propagation graph is updated accordingly.
ENS Component. Specifically, we aggregate neighbor features
through the graph structure using a Graph Convolutional Network
(GCN) [22], such that both textual and topological information in
the current key graph can be incorporated. Let𝑨𝑔𝑡 be the adjacency

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Rumor Detection on Social Media with Reinforcement Learning-based Key Propagation Graph Generator Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

matrix of 𝑔𝑡 and 𝑿𝑔𝑡 be the feature matrix associated with nodes in
𝑔𝑡 , we derive the representation for nodes in 𝑔𝑡 through a two-layer
GCN model:

𝑯𝑔𝑡 = 𝛿 (�̂�𝑔𝑡 𝛿 (�̂�𝑔𝑡𝑿𝑔𝑡𝑊1)𝑊2),

where �̂�𝑔𝑡 is the normalized adjacency matrix of 𝑔𝑡 with self-loops
and 𝛿 (·) is the activation function.

Next, we augment the candidate features by concatenating the
input candidate features with the representations of their parents
in 𝑯𝑔𝑡 . Given a candidate node 𝑣 ∈ 𝐶𝑡+1 with input feature 𝑿 [𝑣],
if its parent node 𝑣𝑝 ∈ 𝐺𝑡+1 also exists in the current propaga-
tion graph 𝑔𝑡 , ENS directly concatenates its feature 𝑿 [𝑣] with the
representation of 𝑣𝑝 :

𝑿 ′ [𝑣] = CONCAT(𝑿 [𝑣],𝑯𝑔𝑡 [𝑣𝑝]).

Otherwise, if the parent node 𝑣𝑝 ∉ 𝑔𝑡 , we pad its feature with a
zero vector:

𝑿 ′ [𝑣] = CONCAT(𝑿 [𝑣], 0).
After that, we employ an MLP with a softmax function to predict

the probability of each candidate being selected. Let 𝑿 ′ [𝐶𝑡+1] be
the collection of augmented features of candidates in set𝐶𝑡+1. Then,
the probability distribution 𝒑𝑡 is computed as follows:

𝒑𝑡 = softmax
(
MLP

(
𝑿 ′ [𝐶𝑡+1]

))
.

Finally, based on the probability distribution 𝒑𝑡 , action 𝑎𝑡 selects
a new node 𝑣𝑡 from 𝐶𝑡+1 to be added into 𝑔𝑡 . The probability of
node 𝑣𝑡 being selected by action 𝑎𝑡 , denoted as Pr[𝑎𝑡 = (𝑣𝑡 , 𝑒 (𝑣𝑡))],
is determined by the distribution 𝒑𝒕 :

Pr[𝑎𝑡 = (𝑣𝑡 , 𝑒 (𝑣𝑡))] = 𝒑𝑡 [𝑣𝑡], ∀𝑣𝑡 ∈ 𝐶𝑡+1 .

Here, 𝑒 (𝑣𝑡) represents the edge corresponding to 𝑣𝑡 . To explain,
if the parent node 𝑣𝑝 of 𝑣𝑡 exists in 𝑔𝑡 , we set 𝑒 (𝑣𝑡) = (𝑣𝑝 , 𝑣𝑡);
otherwise, we set 𝑒 (𝑣𝑡) = (𝑟, 𝑣𝑡) to emphasize the importance of
the root node 𝑟 . The key propagation graph 𝑔𝑡 is then updated to
𝑔𝑡+1 by adding the newly selected node and edge in action 𝑎𝑡 :

𝑔𝑡+1 =
(
𝑉𝑔𝑡 ∪ 𝑣𝑡 , 𝐸𝑔𝑡 ∪ 𝑒 (𝑣𝑡),𝑿𝑔𝑡 ∪ 𝑿 [𝑣𝑡]

)
.

Remark. As discussed in Section 3.2, when generating the candi-
date set𝐶𝑡+1, CRG considers two types of candidates and introduces
a trade-off parameter 𝜖 . This strategy is similar to the restart prob-
ability in the random walk [46]. We either select the next nodes
locally from the out-neighbors of the currently selected nodes with
𝜖 probability, or restart from another node in the remaining part
of the graph 𝐺𝑡+1 with (1 − 𝜖) probability, enabling a global explo-
ration. It is important to note that when restarting from other nodes,
it is possible to select a node 𝑣𝑡+1 that is not directly connected
to the current key propagation graph 𝑔𝑡 . In such cases, we add an
edge between the root node 𝑟 and 𝑣𝑡+1. This allows CRG to explore
additional key propagation patterns without being limited by the
structure of the current graph.

3.4 Model Integration
In this section, we introduce the rewards designed to guide the
training of both the ENS and CRGmodules. The objective is to select
actions that maximize the expected improvement in classification
accuracy during the key propagation graph generation process.

CRG Reward. Recap from Section 3.2 that the CRG aims to gener-
ate coherent responses that align with the contextual information
in the graph, thereby fulfilling objectives (i) and (ii). Besides, CRG
seeks to select informative responses in the propagation graph that
improve the overall classification performance, which corresponds
to objective (iii). To achieve this, we design the reward according to
the improvement of classification accuracy obtained by the updated
features of responses. Let 𝑦𝑠 denote the ground-truth label of event
𝑠 . The reward for CRG is defined as follows:

𝑅
(𝑡)
𝜋𝑅 = 𝑒−(𝑓 (𝑔

′
𝑡) [𝑦𝑠]−𝑓 (𝑔𝑡) [𝑦𝑠]) , (3)

where 𝑓 (·) is a BiGCN classifier with primary discrimination ability.
𝑔𝑡 is the current key propagation graph with original features, and
𝑔
′
𝑡 is the graph that shares the same topology as 𝑔𝑡 but is associated
with updated features generated by CRG. If CRG successfully ex-
tracts informative features during training, i.e., the updated features
lead to higher classification accuracy than the original features, we
reward the model; otherwise, we impose a penalty. Specifically, if
the generated responses contribute to the improved classification
confidence, we have 𝑅 (𝑡)𝜋𝑅 < 1, encouraging the module to maintain
its well-trained state. In contrast, if the responses are not informa-
tive, we obtain 𝑅 (𝑡)𝜋𝑅 ≥ 1, pushing the module away from its current
unsatisfactory state.

Besides, we adopt the stochastic gradient variational Bayes frame-
work to optimize the reconstruction error and the KL divergence
between the variational distribution and the prior distribution. The
loss function of CRG is defined as follows:

L (𝑡)𝜋𝑅 = 𝑅
(𝑡)
𝜋𝑅 · Σ(E𝑞𝜙 (𝒛 |𝒉𝒖 ,𝒉𝒗) [log𝑝𝜃 (𝒉𝒗 |𝒛,𝒉𝒖)]

− 𝐾𝐿(𝑞𝜙 (𝒛 |𝒉𝒖 ,𝒉𝒗)∥𝑝𝜃 (𝒛 |𝒉𝒖))).
(4)

ENS Reward. The ENS reward aims to generate a more discrimi-
native key propagation graph after adding a new node. To achieve
this, we design the reward of ENS from two aspects: (i) the improve-
ment of the prediction score and (ii) the enhancement of future
performance estimation. Specifically, we aim to achieve a higher
prediction score for class 𝑦𝑠 derived from the classifier 𝑓 (·) on the
updated key graph 𝑔𝑡+1 compared to 𝑔𝑡 . Simultaneously, we aim to
maximize the future performance of 𝑔𝑡+1 in the subsequent steps.

To simulate future actions, we employ a modified Rollout [5]
to select up to (𝑙 − 1) additional nodes from the current candidate
set. These 𝑙 nodes, including the selected one, are incrementally
added to the current key propagation graph 𝑔𝑡 , thereby simulating
potential actions over the next 𝑙 steps. We then combine the current
and the future prediction scores to calculate an overall score for
the updated key propagation graph 𝑔𝑡+1:

𝑟𝑡+1 =
1
2

(
𝑓 (𝑔𝑡+1) [𝑦𝑠] +

1
𝑙

(
𝑙∑︁

𝑖=1
𝑓 (𝑔𝑡+𝑖) [𝑦𝑠]

))
,

where 𝑔𝑡+𝑖 is the estimated future graph after 𝑖 steps. The reward
for ENS is defined as the margin between two scores:

𝑅
(𝑡)
𝜋𝑆 = 𝑒−(𝑟𝑡+1−𝑟𝑡) .

Similar to the rewards in CRG, if the performance improves after
action 𝑎𝑡 , we obtain 𝑅

(𝑡)
𝜋𝑆 < 1. Additionally, we introduce another

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1775

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

reward to penalize the module if the classification performance on
the current key propagation graph is unsatisfactory:

𝑅
(𝑡)
𝜋𝑆 = 1.5 − 𝑓 (𝑔𝑡+1) [𝑦𝑠] .

If the prediction score on class 𝑦𝑠 falls below 0.5, then 𝑅 (𝑡)𝜋𝑆 ≥ 1,
which penalizes the ENS module. The final loss of ENS is derived
by combining this penalty with the cross-entropy loss of the GNN:

L (𝑡)𝜋𝑆 = 𝑅
(𝑡)
𝜋𝑆 · 𝑅

(𝑡)
𝜋𝑆 · 𝐿𝐶𝐸 .

Training Pipeline. ENS and CRG modules are interdependent
within the KPG framework. On one hand, ENS relies on CRG to
generate new responses, ensuring that there are sufficient nodes in
the candidate set for selection. On the other hand, CRG requires ENS
to provide effective context-response pairs to accurately capture the
latent variable distribution of responses. Therefore, we employ an
alternative training approach that enables end-to-end learning of
both modules. Specifically, we first fix CRG 𝜋𝑅 and update ENS 𝜋𝑆
by minimizingL𝜋𝑆 using Eq. 3.4 through policy gradient [45]. Next,
we fix ENS 𝜋𝑆 and update CRG 𝜋𝑅 by minimizing L𝜋𝑅 using Eq. 4.
This iterative process continues until either the early stop condition
is met or the maximum number of steps is reached. Algorithm 1
summarizes the learning pipeline of KPG.

To enhance generalization and mitigate over-fitting, we adopt
batch training along with an early stop strategy. The final key
propagation graphs are used to train a new BiGCN classifier for
downstream rumor detection tasks. Following GACL [44], we con-
catenate the texts of the source post and comments in the propaga-
tion graph as the input text for a BERT classifier [10]. The results
from two classifiers are fused using the mean operation to derive
the final classification results. Additionally, we feed the training
events to the model in descending order based on the sizes of their
propagation graphs. This strategy ensures that both ENS and CRG
can learn from informative propagation patterns at the beginning
stage and better handle limited-spread events with small graphs.
Time Complexity. The time complexity of KPG per epoch is
𝑂 (𝐿(𝑀ℎ +𝑁ℎ2)), where 𝑁 and𝑀 denote the total nodes and edges
across all graphs, respectively, 𝐿 is the maximum number of genera-
tion steps, and ℎ is the dimension of hidden layers. The overall cost
is primarily determined by the step number 𝐿 and the cost of the
GNN model. In addition, the step number 𝐿 is a tunable parameter
that can be adjusted to balance processing time and model accuracy.
Experimental results on the Twitter16 dataset in Table 5 show that
KPG achieves superior classification accuracy compared to other
baseline methods, even with small 𝐿 values.

4 EXPERIMENT
In this section, we compare our KPG against 11 state-of-the-art com-
petitors on 4 datasets. We also conduct early-stage rumor detection
and the ablation study to demonstrate the effectiveness of each
component of KPG. Finally, we perform the parameter analysis to
examine the impact of the parameters on the model performance.

4.1 Datasets
We evaluate KPG on three real-world benchmark datasets: Twit-
ter15 [31], Twitter16 [31], and Pheme [69]. Twitter15 and Twitter16
are collected from the Twitter platform and divided into four rumor

classes: non-rumor (NR), true rumor (TR), false rumor (FR), and un-
verified rumor (UR). The Pheme dataset, also derived from Twitter,
is related to five events and is annotated with two labels: rumor (R)
and non-rumor (NR). These datasets are commonly used in existing
research studies [6, 32, 44] on rumor detection.

The Weibo dataset used in [6, 30] lacks critical information re-
quired for several baselines, including original comment text and
author details. However, these details cannot be fully recovered due
to the presence of many deleted user accounts and posts on Weibo.
In addition, the propagation patterns and topics of rumor in real-
world social networks have evolved rapidly. To address these issues,
we have constructed a new datasetWeibo22. Events inWeibo22 are
collected from SinaWeibo, one of the largest social media platforms
in China. The dataset covers events from November 2019 to March
2022, with more than half of the events related to the COVID-19
pandemic. Specifically, the events in Weibo22 are divided into two
categories, rumor and non-rumor, based on information provided
by Weibo Community Management Center [4] and China Internet
Joint Rumor Debunking Platform [2]. By using the Weibo API [3],
we collected 4,174 source posts with 960,000 microblogs, including
reposts and comments in their propagation graphs. For each mi-
croblog, we also collected user profile information, including the
number of followers, number of friends, verification status, verifi-
cation type, and verification reason. Detailed statistics of these four
datasets are shown in Table 7.

4.2 Experimental Settings
Baselines. We compare KPG with eleven state-of-the-art baselines,
including BERT, RvNN, BiGCN, EBGCN, RDEA, GACL, TrustRD,
SMG, AdaSNN, GLAN, SMAN, and SBAG. Detailed descriptions of
these baselines can be found in Appendix D.
Metrics and evaluation protocol. We adopt Accuracy (Acc.)
and micro 𝐹1 score (𝐹1) for each class as our evaluation metrics.
Notice that several baselines [6, 14, 26, 44, 50] utilize a batch-wise
averaging approach. However, this may introduce performance
variance, particularly when the final batch is smaller than the others.
For example, consider a dataset with 110 records and a batch size of
100. If the accuracy for the first batch is 0.8 and for the second batch
is 0.9, the batch-wise averaging yields a result of 0.85, obviously
skewed by the smaller second batch. To ensure a reliable evaluation,
we calculate the average accuracy across all batches in each epoch,
mitigating any impact from variations in the final batch size.

4.3 Experimental Results
Table 1 shows the performance of each model on four real-world
datasets. Note that we exclude any baseline that cannot complete
detection within 7 days. As observed, our KPG consistently achieves
the best accuracy across all datasets, demonstrating the effective-
ness and generalization capability of our proposed RL-based key
propagation graph generation method. On the Twitter15 and Twit-
ter16 datasets, our KPG outperforms the second-best results by
achieving an increase of 2.7% in the 𝐹1 score for the non-rumor
class. Additionally, on the Pheme and Weibo22 datasets, KPG leads
by 1.4% and 2.9% in the 𝐹1 score for the rumor class compared to
the second-best performances.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Rumor Detection on Social Media with Reinforcement Learning-based Key Propagation Graph Generator Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Results on four datasets. NR, FR, TR, UR, and R represents for non-rumor, false rumor, true rumor, unverified rumor,
and rumor, respectively. Best and second-best results are highlighted with bold and underlined text. We exclude methods that
cannot finish detection within 7 days. The last column reports the average rank over all datasets and metrics of each method.

Twitter15 Twitter16 Pheme Weibo22

Acc. NR-𝐹1 FR-𝐹1 TR-𝐹1 UR-𝐹1 Acc. NR-𝐹1 FR-𝐹1 TR-𝐹1 UR-𝐹1 Acc. R-𝐹1 NR-𝐹1 Acc. R-𝐹1 NR-𝐹1
Rank

BERT 0.784 0.841 0.771 0.811 0.714 0.753 0.804 0.660 0.837 0.699 0.816 0.809 0.815 0.887 0.888 0.886 11.3
RvNN 0.793 0.817 0.791 0.822 0.745 0.783 0.755 0.737 0.849 0.783 0.768 0.774 0.762 0.858 0.858 0.857 11.6
BiGCN 0.837 0.813 0.846 0.892 0.798 0.857 0.798 0.836 0.923 0.873 0.841 0.842 0.841 0.905 0.907 0.904 5.9
EBGCN 0.851 0.827 0.864 0.891 0.825 0.858 0.804 0.835 0.920 0.874 0.839 0.840 0.837 0.870 0.876 0.864 6.4
RDEA 0.860 0.872 0.866 0.888 0.815 0.868 0.861 0.817 0.920 0.871 0.838 0.840 0.837 0.918 0.920 0.917 5.1
GACL 0.785 0.877 0.740 0.780 0.738 0.758 0.814 0.686 0.801 0.719 0.836 0.839 0.833 0.885 0.884 0.886 10.2
TrustRD 0.866 0.875 0.871 0.896 0.821 0.869 0.844 0.827 0.929 0.874 0.846 0.846 0.846 0.918 0.920 0.917 3.1
SMG 0.828 0.861 0.840 0.869 0.736 0.841 0.812 0.812 0.898 0.839 0.830 0.830 0.830 - - - 9.1
AdaSNN 0.798 0.763 0.767 0.844 0.772 0.792 0.711 0.783 0.871 0.800 0.820 0.811 0.827 - - - 10.8
GLAN 0.827 0.820 0.839 0.871 0.779 0.831 0.756 0.805 0.923 0.843 0.845 0.849 0.840 0.902 0.903 0.902 7.4
SMAN 0.853 0.894 0.851 0.860 0.806 0.853 0.867 0.788 0.914 0.842 0.836 0.837 0.835 0.911 0.912 0.909 6.6
SBAG 0.862 0.876 0.862 0.887 0.821 0.870 0.863 0.836 0.913 0.866 0.841 0.842 0.841 0.912 0.912 0.911 4.4
KPG 0.893 0.921 0.898 0.903 0.847 0.889 0.894 0.836 0.930 0.896 0.859 0.863 0.854 0.949 0.949 0.948 1.0

 KPG KPG RDEARDEA TrustRDTrustRD

BiGCNBiGCN EBGCNEBGCN

0.82

0.84

0.86

0.88

0.90

20 60 120 240 full

Accuracy

Time (min)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

20 60 120 240 full

NR-F1

Time (min)

(a) Accuracy (b) F1 score on NR
Figure 3: Early stage rumor detection on Twitter16.

Moreover, KPG achieves the highest average ranking, highlight-
ing its superior ability to generalize across diverse datasets and
metrics. Specifically, compared to TrustRD, the model with the
second highest average rank, KPG takes the lead by 2.7% and 2%
in terms of accuracy on Twitter15 and Twitter16 datasets, respec-
tively. Furthermore, KPG outperforms models that use additional
user information, including GLAN, SMAN, and SBAG. Compared
to these three models, KPG leads by up to 6.6% on Twitter15 and
5.8% on Twitter16 in terms of accuracy, further showcasing the
effectiveness of KPG.

On our newly collected dataset, Weibo22, KPG outperforms all
competitors across all metrics. Compared to the second-best base-
line, KPG takes a lead by 3.1%, 2.9%, and 3.1% in terms of accuracy,
𝐹1 score for rumor, and 𝐹1 score for non-rumor, respectively, This
again demonstrates that our key graph generation method effec-
tively reduces noise while extracting more useful information.

4.4 Early Stage Rumor Detection
We also conduct experiments to validate the performance of KPG in
detecting rumors during the early stage of their spread. To achieve
this, we set a temporal threshold Δ to filter nodes within each
propagation graph. Specifically, for every node in a propagation
graph, we compute the time difference between the publication
time of the comment (or retweet) and the creation time of the root
claim. Nodes with a time difference less than Δ are retained, while
those exceeding Δ are excluded. We conduct experiments with
varying Δ ∈ {20, 60, 120, 240} minutes. We compare KPG with the

Table 2: Ablation study on Twitter15.

Acc. NR-𝐹1 FR-𝐹1 TR-𝐹1 UR-𝐹1

KPG 0.893 0.921 0.898 0.903 0.847
KPG\ens 0.886 0.920 0.877 0.900 0.847
KPG\crg 0.880 0.916 0.869 0.892 0.843

KPG\reward 0.883 0.915 0.875 0.896 0.845

Table 3: Ablation study on Twitter16.

Acc. NR-𝐹1 FR-𝐹1 TR-𝐹1 UR-𝐹1

KPG 0.889 0.894 0.836 0.930 0.896
KPG\ens 0.865 0.882 0.810 0.910 0.855
KPG\crg 0.861 0.878 0.806 0.908 0.849

KPG\reward 0.865 0.880 0.808 0.914 0.855

top four baselines in terms of average rank, excluding methods
that require additional author information. The results for TrustRD,
RDEA, BiGCN, EBGCN, and KPG in terms of accuracy and 𝐹1 score
on non-rumor events are presented in Figure 3. The results for 𝐹1
scores on the other three classes are similar to those of the NR class
and thus are omitted for brevity.

As we can see, during the early stage of spread, the textual fea-
tures and topology information contained in the propagation graphs
diminish, leading to a general decrease performance. However, the
performance of our KPG consistently surpasses that of other base-
lines across varying Δ values. When Δ = 20, KPG outperforms
TrustRD, the second-best baseline, in both accuracy and 𝐹1 score
for the non-rumor class, even though TrustRD utilizes full prop-
agation graphs. This superior performance further demonstrates
the effectiveness of our KPG, particularly the CRG module, which
generates realistic and informative responses and plays a crucial
role in early-stage rumor detection.

4.5 Ablation Study and Parameter Analysis
In this section, we first examine the effectiveness of each sub-
module in KPG, and then analyze the effects of hyperparameters.
Ablation Study.We implement three variants of KPG:
• KPG\ens: it randomly selects out-neighbors of existing nodes;

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1775

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Results with varying 𝜖 on Twitter16.

𝜖 1.0 0.8 0.6 0.4 0.2 0.0

Acc. 0.880 0.889 0.880 0.878 0.880 0.880
NR-𝐹1 0.884 0.894 0.881 0.884 0.880 0.888
FR-𝐹1 0.831 0.836 0.827 0.824 0.831 0.827
TR-𝐹1 0.922 0.930 0.927 0.922 0.924 0.923
UR-𝐹1 0.884 0.896 0.885 0.882 0.884 0.883

Table 5: Results with varying 𝜏 and 𝑙 on Twitter16.

𝜏 𝑙

0 21 22 23 0 5 10

Acc. 0.832 0.875 0.883 0.889 0.879 0.872 0.889
NR-𝐹1 0.763 0.878 0.896 0.896 0.891 0.870 0.894
FR-𝐹1 0.819 0.825 0.824 0.836 0.822 0.823 0.836
TR-𝐹1 0.887 0.923 0.932 0.930 0.919 0.918 0.930
UR-𝐹1 0.859 0.872 0.880 0.896 0.882 0.875 0.896

• KPG\crg: it removes the CRG module and stops generating extra
candidate nodes for small propagation graphs;

• KPG\reward: it eliminates rewards during training.
Tables 2-3 report the results of KPG and its three variants on the
Twitter15 and Twitter16 datasets, respectively. As we can observe,
the absence of any component leads to a decrease in rumor detection
performance. This decline not only demonstrates the effectiveness
of each module but also underscores the importance of synergy of
all three components.
The Effect of Parameter 𝜖 in Candidate Selection. The pa-
rameter 𝜖 ∈ [0, 1] serves as a trade-off between local and global
candidates. A larger 𝜖 indicates a higher probability for ENS to
select the next node from the local neighbors of currently selected
nodes, while a smaller 𝜖 increases the probability of selecting from
nodes that have not yet been selected.We vary the parameter 𝜖 from
0 to 1 and report the corresponding results on Twitter16 in Table 4.
The results on other datasets are similar to those on Twitter16 and
thus are omitted. In general, the model performance is influenced
by the balance between local and global exploration. Specifically, on
Twitter16, optimal performance is achieved when 𝜖 = 0.8. A similar
performance trend is observed across other datasets. Therefore, we
set 𝜖 = 0.8 for KPG in our experiments.
The Effect of the Maximum Generation Steps. Table 5 reports
the experimental results on Twitter16 with varying 𝜏 , which con-
trols the maximum size of the generated key propagation graph.
We set the maximum generation steps to 𝜏 times the median size of
original graphs, where 𝜏 is chosen from {0, 21, 22, 23}. When 𝜏 = 0,
only the root node is used for classification, resulting in the worst
performance across all metrics. This highlights the importance
of leveraging propagation graphs for effective rumor detection.
As 𝜏 increases, we observe a general performance improvement
across all metrics. When 𝜏 = 23, KPG achieves peak performance
on Twitter16. This can be attributed to the relatively small aver-
age graph size in the Twitter16 dataset. The results of the ablation
study further support this observation. Without the CRG compo-
nent, reaching the maximum generation step becomes challenging,
resulting in the most significant performance decline among three

Those who have hope, like the stars in the sky, will never be alone.

On June 27, due to the heavy rain in Yichang, Hubei Province and the

increased flood discharge of the Three Gorges, the whole city was

flooded, and the flooded residents could only move to higher floors.

The sprinkler continues to clean the road...

I hope that the good mood will appear every day as usual, and the

troubles will disappear forever.

Reflection is needed. That sprinkler is so awesome!

What's the situation? I also saw a person from Yichang posting on

Weibo saying not to spread rumors. It's just a bit of waterlogging.

Go away, you rumormonger! You should talk about the relationship

between waterlogging and flooding!

Waterlogging and flooding are intentionally indistinguishable[laughing]

Waterlogging caused by heavy rain; the water level of the Yichang

River is fine.

Figure 4: An example of the generated propagation graph.

variants. Compared to other baselines, KPG achieves superior accu-
racy across various 𝜏 values, even when 𝜏 is relatively small.
The Effect of the Maximum Step 𝑙 in Modified Rollout. Table
5 also reports the performance on Twitter16 with varying 𝑙 , which
is the maximum steps of the Rollout used to derive rewards for ENS.
We conduct experiments with 𝑙 ∈ {0, 5, 10}. As we can observe,
the model performance peaks at 𝑙 = 10, which demonstrates the
effectiveness of evaluating each node from a long-term perspective.

4.6 Case Study
To illustrate the functionality of our KPG, we present the key prop-
agation graph of a widespread rumor [1] from the Weibo22 dataset
in Figure 4. In the original propagation graph, the event cannot be
correctly classified by BiGCN. However, with the key propagation
graph generated by KPG, the rumor can be correctly identified.
Our observations indicate that KPG selects nodes (highlighted in
red) that enhance the discriminative capability of rumor detection
while disregarding irrelevant and noisy nodes. In particular, strong
emotional responses are selected to refute the rumor.

5 CONCLUSION
In this paper, we propose KPG, a reinforcement learning-based
model for rumor detection, comprised of two components: ENS
and CRG. With the cooperation of two modules, KPG effectively
identifies indicative substructures for events with noisy propaga-
tion information and generates realistic, reliable, and informative
responses for events with insufficient propagation. The two compo-
nents are trained alternately in an end-to-end framework, guided
by our carefully designed rewards, to improve the discriminative
ability of the generated key propagation graphs. Extensive experi-
ments conducted on four real-world datasets demonstrate that KPG
achieves state-of-the-art performance. Additionally, we construct a
new dataset, Weibo22, which contains posts with more recent dates
and topics, potentially contributing to the development of rumor
detection-related research.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Rumor Detection on Social Media with Reinforcement Learning-based Key Propagation Graph Generator Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] A rumor. https://m.thepaper.cn/newsDetail_forward_8568258.
[2] China Internet Joint Rumor Debunking Platform. https://www.piyao.org.cn/.
[3] Weibo API. https://open.weibo.com/wiki/API.
[4] Weibo Community Management Center. https://service.account.weibo.com/.
[5] D.P. Bertsekas. 1999. Rollout algorithms: an overview. In Proceedings of the 38th

IEEE Conference on Decision and Control, Vol. 1. 448–449 vol.1.
[6] Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing Huang, Yu Rong, and

Junzhou Huang. 2020. Rumor Detection on Social Media with Bi-Directional
Graph Convolutional Networks. In AAAI. 549–556.

[7] Zefeng Cai and Zerui Cai. 2022. PCVAE: Generating Prior Context for Dialogue
Response Generation. In IJCAI. 4065–4071.

[8] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
2014. On the Properties of Neural Machine Translation: Encoder–Decoder
Approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation. Association for Computational Linguistics.

[9] Jian Cui, Kwanwoo Kim, Seung Ho Na, and Seungwon Shin. 2022. Meta-Path-
based Fake News Detection Leveraging Multi-level Social Context Information.
In CIKM. 325–334.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT. 4171–4186.

[11] Yajuan Duan, Zhimin Chen, Furu Wei, Ming Zhou, and Heung-Yeung Shum.
2012. Twitter Topic Summarization by Ranking Tweets using Social Influence
and Content Quality. In COLING. 763–780.

[12] Faezeh Faez, Yassaman Ommi, Mahdieh Soleymani Baghshah, and Hamid R.
Rabiee. 2021. Deep Graph Generators: A Survey. IEEE Access 9 (2021), 106675–
106702.

[13] Xiaojie Guo and Liang Zhao. 2023. A Systematic Survey on Deep Generative
Models for Graph Generation. TPAMI 45, 5 (2023), 5370–5390.

[14] Zhenyu He, Ce Li, Fan Zhou, and Yi Yang. 2021. Rumor Detection on Social
Media with Event Augmentations. In SIGIR. 2020–2024.

[15] Zhen Huang, Zhilong Lv, Xiaoyun Han, Binyang Li, Menglong Lu, and Dong-
sheng Li. 2022. Social Bot-Aware Graph Neural Network for Early Rumor Detec-
tion. In COLING. 6680–6690.

[16] Yiqiao Jin, Xiting Wang, Ruichao Yang, Yizhou Sun, Wei Wang, Hao Liao, and
Xing Xie. 2022. Towards Fine-Grained Reasoning for Fake News Detection. In
AAAI. AAAI Press, 5746–5754.

[17] Mostafa Karimi, Arman Hasanzadeh, and Yang Shen. 2020. Network-principled
deep generative models for designing drug combinations as graph sets. Bioinfor-
matics 36 (2020), i445–i454.

[18] Yash Khemchandani, Stephen O’Hagan, Soumitra Samanta, Neil Swainston,
Timothy J. Roberts, Danushka Bollegala, and Douglas B. Kell. 2020. DeepGraph-
MolGen, a multi-objective, computational strategy for generating molecules with
desirable properties: a graph convolution and reinforcement learning approach.
J. Cheminformatics 12, 1 (2020), 53.

[19] Ling Min Serena Khoo, Hai Leong Chieu, Zhong Qian, and Jing Jiang. 2020.
Interpretable Rumor Detection in Microblogs by Attending to User Interactions.
In AAAI. 8783–8790.

[20] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[21] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
In ICLR.

[22] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. In ICLR.

[23] Jianxin Li, Qingyun Sun, Hao Peng, Beining Yang, Jia Wu, and Philip S. Yu. 2023.
Adaptive Subgraph Neural Network With Reinforced Critical Structure Mining.
IEEE Trans. Pattern Anal. Mach. Intell. 45, 7 (2023), 8063–8080.

[24] Quanzhi Li, Qiong Zhang, and Luo Si. 2019. Rumor Detection by Exploiting User
Credibility Information, Attention and Multi-task Learning. In ACL. 1173–1179.

[25] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter W. Battaglia. 2018.
Learning Deep Generative Models of Graphs. CoRR abs/1803.03324 (2018).

[26] Leyuan Liu, Junyi Chen, Zhangtao Cheng, Wenxin Tai, and Fan Zhou. 2023.
Towards Trustworthy Rumor Detection with Interpretable Graph Structural
Learning. In CIKM 2023. 4089–4093.

[27] Zemin Liu, Qiheng Mao, Chenghao Liu, Yuan Fang, and Jianling Sun. [n.d.]. On
Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks. In
WWW 2022. ACM, 1506–1516.

[28] Yi-Ju Lu and Cheng-Te Li. 2020. GCAN: Graph-aware Co-Attention Networks
for Explainable Fake News Detection on Social Media. In ACL. 505–514.

[29] Guanghui Ma, Chunming Hu, Ling Ge, Junfan Chen, Hong Zhang, and Richong
Zhang. 2022. Towards Robust False Information Detection on Social Networks
with Contrastive Learning. In CIKM. 1441–1450.

[30] Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon, Bernard J. Jansen, Kam-Fai
Wong, and Meeyoung Cha. 2016. Detecting Rumors from Microblogs with
Recurrent Neural Networks. In IJCAI 2016. IJCAI/AAAI Press, 3818–3824.

[31] Jing Ma, Wei Gao, and Kam-Fai Wong. 2017. Detect Rumors in Microblog Posts
Using Propagation Structure via Kernel Learning. In ACL. 708–717.

[32] Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Rumor Detection on Twitter with
Tree-structured Recursive Neural Networks. In ACL. 1980–1989.

[33] Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. 2019. Molec-
ularRNN: Generating realistic molecular graphs with optimized properties. arXiv
preprint arXiv:1905.13372 (2019).

[34] Feng Qian, Chengyue Gong, Karishma Sharma, and Yan Liu. 2018. Neural User
Response Generator: Fake News Detection with Collective User Intelligence. In
IJCAI. 3834–3840.

[35] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic
Backpropagation and Approximate Inference in Deep Generative Models. In
ICML, Vol. 32. 1278–1286.

[36] Nir Rosenfeld, Aron Szanto, and David C. Parkes. 2020. A Kernel of Truth:
Determining Rumor Veracity on Twitter by Diffusion Pattern Alone. In WWW.
1018–1028.

[37] Victoria L. Rubin. 2010. On deception and deception detection: Content analysis
of computer-mediated stated beliefs. In ASIST, Vol. 47. 1–10.

[38] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle
Pineau, Aaron C. Courville, and Yoshua Bengio. 2017. A Hierarchical Latent
Variable Encoder-Decoder Model for Generating Dialogues. In AAAI. 3295–3301.

[39] Xiaoyu Shen, Hui Su, Shuzi Niu, and Vera Demberg. 2018. Improving Variational
Encoder-Decoders in Dialogue Generation. In AAAI. 5456–5463.

[40] Fangzhou Shi, Shan You, and Chang Xu. 2019. Reinforced Molecule Generation
with Heterogeneous States. In ICDM. 548–557.

[41] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning Structured Output
Representation using Deep Conditional Generative Models. In NeurIPS, Vol. 28.

[42] Yun-Zhu Song, Yi-Syuan Chen, Yi-Ting Chang, Shao-Yu Weng, and Hong-Han
Shuai. 2021. Adversary-Aware Rumor Detection. In ACL/IJCNLP, Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.), Vol. ACL/IJCNLP 2021.
1371–1382.

[43] Bin Sun, Shaoxiong Feng, Yiwei Li, Jiamou Liu, and Kan Li. 2021. Generating
Relevant and Coherent Dialogue Responses using Self-Separated Conditional
Variational AutoEncoders. In ACL/IJCNLP. 5624–5637.

[44] Tiening Sun, Zhong Qian, Sujun Dong, Peifeng Li, and Qiaoming Zhu. 2022.
Rumor Detection on Social Media with Graph Adversarial Contrastive Learning.
InWWW. 2789–2797.

[45] Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour.
1999. Policy Gradient Methods for Reinforcement Learning with Function Ap-
proximation. In NeurIPS. 1057–1063.

[46] Hanghang Tong, Christos Faloutsos, and Jia-yu Pan. 2006. Fast Random Walk
with Restart and Its Applications. In Sixth International Conference on Data
Mining (ICDM’06).

[47] Rakshit Trivedi, Jiachen Yang, and Hongyuan Zha. 2020. GraphOpt: Learning
Optimization Models of Graph Formation. In ICML, Vol. 119. 9603–9613.

[48] Yaqing Wang, Fenglong Ma, Zhiwei Jin, Ye Yuan, Guangxu Xun, Kishlay Jha,
Lu Su, and Jing Gao. 2018. EANN: Event Adversarial Neural Networks for
Multi-Modal Fake News Detection. In KDD. 849–857.

[49] Lingwei Wei, Dou hu, Wei Zhou, Xin Wang, and Songlin hu. 2022. Modeling
the uncertainty of information propagation for rumor detection: A neuro-fuzzy
approach. IEEE Transactions on Neural Networks and Learning Systems (2022).

[50] Lingwei Wei, Dou Hu, Wei Zhou, Zhaojuan Yue, and Songlin Hu. 2021. To-
wards Propagation Uncertainty: Edge-enhanced Bayesian Graph Convolutional
Networks for Rumor Detection. In ACL/IJCNLP (1). 3845–3854.

[51] Penghui Wei, Nan Xu, and Wenji Mao. 2019. Modeling Conversation Structure
and Temporal Dynamics for Jointly Predicting Rumor Stance and Veracity. In
EMNLP-IJCNLP. 4786–4797.

[52] Bowen Wu, Mengyuan Li, Zongsheng Wang, Yifu Chen, Derek F. Wong, Qihang
Feng, Junhong Huang, and Baoxun Wang. 2020. Guiding Variational Response
Generator to Exploit Persona. In ACL. 53–65.

[53] Ke Wu, Song Yang, and Kenny Q. Zhu. 2015. False rumors detection on Sina
Weibo by propagation structures. In ICDE, Johannes Gehrke, Wolfgang Lehner,
Kyuseok Shim, Sang Kyun Cha, and Guy M. Lohman (Eds.). 651–662.

[54] Mingqi Yang, Yanming Shen, Heng Qi, and Baocai Yin. 2021. Soft-mask: Adaptive
Substructure Extractions for Graph Neural Networks. In The Web Conference
2021. 2058–2068.

[55] Ruichao Yang, Xiting Wang, Yiqiao Jin, Chaozhuo Li, Jianxun Lian, and Xing
Xie. 2022. Reinforcement Subgraph Reasoning for Fake News Detection. In KDD.
2253–2262.

[56] Shuo Yang, Kai Shu, Suhang Wang, Renjie Gu, Fan Wu, and Huan Liu. 2019.
Unsupervised Fake News Detection on Social Media: A Generative Approach. In
AAAI. 5644–5651.

[57] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, and Jure Leskovec. 2018.
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Gener-
ation. In NeurIPS. 6412–6422.

[58] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. 2018.
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. In
ICML, Vol. 80. 5694–5703.

9

https://m.thepaper.cn/newsDetail_forward_8568258
https://www.piyao.org.cn/
https://open.weibo.com/wiki/API
https://service.account.weibo.com/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1775

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 6: Frequently used notations.

Notations Descriptions
𝑟, 𝑠,𝑦𝑠 Source post, event, and its ground-truth label.
𝐺,𝑉 , 𝐸,𝑿 Input propagation graph, node set, edge set,

and feature matrix.
𝑔𝑡 ,𝐺𝑡 Key propagation graph and candidate

graph at step 𝑡 .
𝑣𝑡 , 𝑒𝑡 The newly added node and edge at step 𝑡 .
𝐶𝑡+1 Candidate set for ENS to select 𝑣𝑡 .
𝜖,𝛾 Trade-off parameter and threshold of

candidate sets.
𝑙 The max step in modified Rollout.
𝜏 Controlling the max generation step.

Algorithm 1: Training Pipeline of KPG
Input :Set of events {𝑠0, 𝑠1, · · · }, pre-trained BiGCN

classifier 𝑓 (·), maximum step 𝐿
Output :Key propagation graph for each event, 𝜋𝑆 , 𝜋𝑅

1 Initialize 𝜋𝑆 , 𝜋𝑅
2 for each epoch do
3 for each batch do
4 for step 𝑡 = 0 to 𝐿 do
5 Train 𝜋𝑅 using Eq. 4 with 𝜋𝑆 fixed
6 𝐺𝑡+1 ← 𝜋𝑅 (𝐺𝑡)
7 𝒑𝑡 ← 𝜋𝑆 (𝐺𝑡+1, 𝑔𝑡)
8 Sample action 𝑎𝑡 = (𝑣𝑡 , 𝑒 (𝑣𝑡)) based on 𝒑𝑡
9 Transfer to state

𝑔𝑡+1 = (𝑉𝑔𝑡 ∪ 𝑣𝑡 , 𝐸𝑔𝑡 ∪ 𝑒 (𝑣𝑡),𝑿𝑔𝑡 ∪ 𝑿 [𝑣𝑡])
10 Train 𝜋𝑆 using Eq. 3.4 with 𝜋𝑅 fixed

[59] Chunyuan Yuan, Qianwen Ma, Wei Zhou, Jizhong Han, and Songlin Hu. 2019.
Jointly Embedding the Local and Global Relations of Heterogeneous Graph for
Rumor Detection. In ICDM. 796–805.

[60] Chunyuan Yuan, Qianwen Ma, Wei Zhou, Jizhong Han, and Songlin Hu. 2020.
Early Detection of Fake News by Utilizing the Credibility of News, Publishers,
and Users based on Weakly Supervised Learning. In COLING. 5444–5454.

[61] Guixian Zhang, Rongjiao Liang, Zhongyi Yu, and Shichao Zhang. 2022. Rumour
Detection on Social Media with Long-Tail Strategy. In IJCNN. 1–8.

[62] Kaiwei Zhang, Junchi Yu, Haichao Shi, Jian Liang, and Xiaoyu Zhang. 2023.
Rumor Detection with Diverse Counterfactual Evidence. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
2023. ACM, 3321–3331.

[63] Qiang Zhang, Aldo Lipani, Shangsong Liang, and Emine Yilmaz. 2019. Reply-
Aided Detection of Misinformation via Bayesian Deep Learning. InWWW. 2333–
2343.

[64] Tianxiang Zhao, Dongsheng Luo, Xiang Zhang, and Suhang Wang. 2022.
TopoImb: Toward Topology-Level Imbalance in Learning From Graphs. In Learn-
ing on Graphs Conference, LoG 2022 (Proceedings of Machine Learning Research,
Vol. 198). PMLR, 37.

[65] Tiancheng Zhao, Ran Zhao, andMaxine Eskenazi. 2017. Learning Discourse-level
Diversity for Neural Dialog Models using Conditional Variational Autoencoders.
In ACL. 654–664.

[66] Xinyi Zhou, Apurva Mulay, Emilio Ferrara, and Reza Zafarani. 2020. ReCOVery:
A Multimodal Repository for COVID-19 News Credibility Research. In CIKM.
3205–3212.

[67] Xinyi Zhou and Reza Zafarani. 2019. Network-based Fake News Detection: A
Pattern-driven Approach. SIGKDD Explor. 21, 2 (2019), 48–60.

[68] Xinyi Zhou and Reza Zafarani. 2021. A Survey of Fake News: Fundamental
Theories, Detection Methods, and Opportunities. ACM Comput. Surv. 53, 5 (2021),
109:1–109:40.

[69] Arkaitz Zubiaga, Maria Liakata, and Rob Procter. 2016. Learning Reporting
Dynamics during Breaking News for Rumour Detection in Social Media. CoRR
abs/1610.07363 (2016).

A NOTATIONS
We summarize the frequently used notations in Table 6.

B ADDITIONAL RELATEDWORK
Graph Generation. Graph generation is the task of learning the
distribution of the observed graphs to generate new realistic graphs.
One of the criteria used for classifying graph generative models
is the generation process, including one-shot and sequential [13].
GraphRNN [58] lays the foundation for subsequent node-by-node
deep auto-regressive models. After that, MolecularRNN [33] ex-
tends GraphRNN to generate realistic molecular graphs with opti-
mized properties. DeepGMG [25] defines a sequential graph gener-
ation process as a sequence of decisions. Faez et al. summarize in
[12] that current reinforcement learning-based graph generators
typically use a sequential generation strategy. GCPN [57] and its
related methods [17, 18, 40, 47] employ a step-by-step approach
in generating molecular graphs by formulating the problem as a
Markov decision process. GraphOpt [47] simulates the decision
process for graph construction and searches for the reward func-
tion by optimizing the objective of assigning scores to the observed
graphs. These graph generators mainly focus on the generation of
chemical molecules, while we design a new dynamically updated
candidate set and effectively combine node features with structural
information for generating propagation graphs on social media.
Response Generation. The generation of responses for dialogue
services is an important task in natural language processing. Earlier
attempts [38], integrate the concept of variational auto-encoders
(VAE) [21, 35] into response generation. After that, advanced stud-
ies [7, 39, 43, 52, 65] are proposed to enhance response diversity
based on CVAE [41]. For instance, (kg)CVAE [65] integrates linguis-
tic prior knowledge. SepaCVAE [43] introduces contrastive learning
to leverage group information. PAGenerator [52] adds regulariza-
tion terms to guide the generation of personal-aware and relevant
responses. Instead of relying solely on news content [34], we ex-
ploit propagation graphs to learn the latent variable distribution of
responses that are more helpful to identify rumors in social media.

C ALGORITHM
The complete learning pipeline is presented in Algorithm 1.

D DATASETS AND BASELINES
Datasets. In our experiment, we utilize three commonly used
datasets, Twitter15, Twitter16, and Pheme, to evaluate the effective-
ness of our KPG. Besides, to explore the rumors with more recent
dates and topics, we have collected a new dataset, Weibo22. The
statistics of these four datasets are presented in Table 7.
Baselines.We introduce the eleven state-of-the-art baselinemodels
used in our experiments as follows.
• BERT [10]: a powerful pre-trained language model based on

bidirectional transformers;
• RvNN [32]: it employs tree-structured RNNs with GRUs to ex-

tract representations from the propagation structure in bottom-
up and top-down manners;

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Rumor Detection on Social Media with Reinforcement Learning-based Key Propagation Graph Generator Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 7: Statistic of datasets.

Statistic Twitter15 Twitter16 Pheme Weibo22

posts 41,194 18,618 67,238 961,962
users 34,668 16,805 34,287 705,831
events 1,490 818 3,720 4,174

Non-rumors 374 205 1,860 2,087
False rumors 370 205 1,860 2,087
True rumors 372 205 0 0

Unverified rumors 374 203 0 0
Avg. # posts / event 28 23 18 230
Med. # posts / event 16 13 15 7
Max # posts / event 304 250 346 30,791
Min # posts / event 1 1 2 1

• BiGCN [6]: a GCN-based model that learns features from both
propagation and dispersion structures;

• EBGCN [50]: it uses a Bayesian approach to adjust the weights of
uncertain relations and enforces consistency on latent relations
using an edge-wise training framework;

• RDEA [14]: a contrastive self-supervised learning based method
with event augmentation;
• GACL [44]: it designs graph perturbation methods based on

adversarial and supervised contrastive learning;
• TrustRD [26]: it incorporates self-supervised learning and a

Bayesian network to derive trustworthy predictions;
• SMG [54]: it learns graph representations from a sequence of

subgraphs to better capture task-relevant substructures and skip
noisy parts;

• AdaSNN[23]: it generates critical subgraphs with a bi-level mu-
tual information enhancement mechanism optimized in the re-
inforcement learning framework;

• GLAN [59]: it learns local semantic and global structural infor-
mation via attention mechanisms on the heterogeneous graph;

• SMAN [60]: it adopts a structure-aware multi-head attention
module on the heterogeneous graph to optimize the user credi-
bility prediction and rumor detection task jointly;

• SBAG [15], it adopts a pre-trained MLP to capture social bot
features in the propagation graph and uses it as a scorer to train
a social bot-aware GNN for rumor detection.

Remark. SBAG requires additional datasets to train the social bot
detection model while such additional information is unavailable in
our experiments. Thus, the second-best performing variant reported
in the original paper, SBAG-s, which scores the possibility of bots
randomly, is compared in our experiment. For the BERT baseline,
following [44], we concatenate the source post and all comment
posts in the same event as the input texts to fine-tune a BERT-based
classifier.

Among the baseline models, BERT is the only one that uti-
lizes text features without propagation structures. RvNN, BiGCN,
EBGCN, RDEA, GACL, and TrustRD are rumor detection meth-
ods utilizing the propagation structures of social network posts.
Additionally, we also include SMG and AdaSNN, which are not
specifically tailored for rumor propagation graphs, but for a general
spectrum of graphs. These two graphs are proposed with a focus
on handling graphs containing noisy or unreliable information.
Moreover, GLAN, SMAN, and SBAG employ additional user infor-
mation to construct heterogeneous graphs, while other competitors,
along with our KPG, do not use any user information, but only the
propagation structures in rumor detection.

E PARAMETER SETTING
Following [6, 14, 44, 50], we randomly split the datasets into five
parts and conduct 5-fold cross-validation to obtain the final results.
For each dataset, we use the same data split on all methods for
fair comparison. We set the maximum step of the key propagation
graph generation equal to 𝜏 times the median size of the original
graphs in each dataset, and we utilize grid search to set 𝜏 from
{21, 22, 23}. For Weibo22, considering that the median size of the
original graphs is much smaller than the average size, we add an
additional choice, 𝑠𝑎𝑣𝑔 , to the search list, where 𝑠𝑎𝑣𝑔 is the average
size of the original graphs. We set the threshold of candidates 𝛾 = 5
in CRG. We set the maximum step of rollout in ENS to 10, and
the trade-off parameter between two candidate sets 𝜖 = 0.8. We
pre-train the BiGCN classifier for 30 epochs to derive rewards.

After the generation of key propagation graphs, we train another
BiGCN classifier on the key graphs with 200 epochs to obtain the
final classification results. Our KPG is optimized by Adam algo-
rithm [20]. The learning rate is initialized to 5× 10−4 and gradually
decreases during training with a decay rate of 10−4. The dimension
of hidden feature vectors in all modules is set to 64, and the batch
size is set to 128.

11

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Related Work

	3 Key Propagation Graph Generator
	3.1 Overview
	3.2 Candidate Response Generator
	3.3 Ending Node Selector
	3.4 Model Integration

	4 Experiment
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Experimental Results
	4.4 Early Stage Rumor Detection
	4.5 Ablation Study and Parameter Analysis
	4.6 Case Study

	5 Conclusion
	References
	A Notations
	B Additional Related Work
	C Algorithm
	D Datasets and Baselines
	E Parameter Setting

