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Abstract
Two-dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopy, partic-
ularly Heteronuclear Single Quantum Coherence (HSQC) spectroscopy, plays a
critical role in elucidating molecular structures, interactions, and electronic prop-
erties. However, accurately interpreting 2D NMR data remains labor-intensive
and error-prone, requiring highly trained domain experts, especially for complex
molecules. Machine Learning (ML) holds significant potential in 2D NMR analy-
sis by learning molecular representations and recognizing complex patterns from
data. However, progress has been limited by the lack of large-scale and high-
quality annotated datasets. In this work, we introduce 2DNMRGym, the first
annotated experimental dataset designed for ML-based molecular representation
learning in 2D NMR. It includes over 22,000 HSQC spectra, along with the corre-
sponding molecular graphs and SMILES strings. Uniquely, 2DNMRGym adopts
a surrogate supervision setup: models are trained using algorithm-generated an-
notations derived from a previously validated method and evaluated on a held-out
set of human-annotated gold-standard labels. This enables rigorous assessment
of a model’s ability to generalize from imperfect supervision to expert-level
interpretation. We provide benchmark results using a series of 2D and 3D GNN
and GNN transformer models, establishing a strong foundation for future work.
2DNMRGym supports scalable model training and introduces a chemically
meaningful benchmark for evaluating atom-level molecular representations in
NMR-guided structural tasks. Our data and code is open-source and available at:
https://github.com/siriusxiao62/2DNMRGym.

1 Introduction
1.1 Overview

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique that uses the magnetic
properties of atomic nuclei to provide detailed insights into the structure and dynamics of chemical
compounds [1–3]. It can determine the types, quantities, and spatial arrangements of atoms within
molecules and their surrounding chemical environments, from small molecules to material polymers
and complex bio-macromolecules. In NMR spectrum analysis, chemists utilize prediction tools to
generate chemical shifts from molecular structures, comparing them with experimental values to
verify structural assignments. This comparison aids in assessing the accuracy of proposed molecular
structures and provides insights into the electronic and spatial environments of atoms within the
molecule.

Among NMR techniques, Heteronuclear Single Quantum Coherence (HSQC) spectroscopy [4] stands
out as a powerful two-dimensional (2D) Nuclear Magnetic Resonance (NMR) method that has
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become indispensable for the structural elucidation of complex molecules, especially when traditional
one-dimensional (1D) NMR techniques are insufficient [5, 6]. By correlating the chemical shifts of
proton nuclei with those of heteronuclei, typically 13C or 15N , via scalar coupling interactions, HSQC
enables the precise mapping of interatomic linkages within molecular frameworks. This method is
particularly valuable for identifying connectivity patterns between protons and adjacent heteronuclei,
thereby providing critical insights into chemical bonding, stereochemistry, and three-dimensional
molecular conformation.

Despite recent advancements in the prediction of 1D NMR spectra [7–10] and peak assignment
[11], the application of machine learning techniques to 2D NMR, such as HSQC spectra prediction,
remains constrained by the scarcity of annotated datasets for training. To the best of our knowledge,
no large-scale annotated dataset of experimental HSQC spectra is currently available for training
machine learning models. This is primarily due to the significant bottleneck in acquiring, processing,
and annotating 2D NMR data. Acquiring HSQC spectra is time-consuming, requires highly sensitive
instrumentation, and depends on the availability of pure samples at an appropriate concentration,
making the process highly labor-intensive. Typically, a research group can only produce 10-20
high-quality spectra per week. Furthermore, the complexity of molecular structures leads to spectral
overlap and signal degeneracy, complicating peak resolution. The presence of multiple chiral centers
in molecules can further complicate annotations (see Appendix A for annotation visualizations).
This process currently relies heavily on expert interpretation and domain knowledge, often requiring
trained chemists with advanced degrees (eg. PhD) and years of experience. Expermental conditions
also play a critical role in determining the quality of HSQC spectra. Consequently, the requirement
for expensive instruments, labor-intensive sample preparation, and specialized expertise in organic
chemistry severely limit the availability of large, annotated datasets.

Since there are no widely adopted, automated solutions exist that provide both accurate peak prediction
and atom-level annotation, deep learning methods are well-suited for this task, as it can capture
complex molecular patterns and interactions from data. The goal is twofold: (1) to overcome the
practical limitations of expert-only interpretation by automating annotation, and (2) to improve
the accuracy and scalability of spectral prediction, which can significantly accelerate molecular
analysis pipelines. To adapt many state-of-the-art deep learning architecture in this domain, a
high-quality, large-scale and annotated HSQC dataset is in great demand. To fill this gap, we
introduce the 2DNMRGym dataset (illustrated in Figure 1), including 22,348 experimental HSQC
spectra. Among these, 21,869 HSQC spectra with 33,8370 cross peaks were annotated using a
recently published algorithm [12] and 479 spectra with 7,310 peaks were manually annotated and
cross-validated by three domain experts. Each spectrum includes cross peaks annotated with their
corresponding molecular graphs, enabling supervised training and systematic evaluation of models
for HSQC peak prediction. What distinguishes 2DNMRGym is its dual-layer annotation strategy: the
large-scale algorithm-generated annotations serve as silver-standard supervision for model training,
while the expert-labeled subset provides a gold-standard benchmark to evaluate model robustness
and generalization. This setup uses surrogate and abundant training labels to enable deep learning
methods, and the high quality evaluation dataset to assess the ability of a model to learn meaningful
molecular representations at the atom level. As such, the dataset offers a benchmark for existing and
future GNN architectures in atom-level representation learning tasks.

In summary, the contribution of this work includes:

• Atom-level annotations and high-quality surrogate/gold-standard labels, which are not available
in the source datasets;

• A fine-grained atom-level prediction task, which goes beyond standard graph-level benchmarks
and promotes richer molecular representation learning;

• An innovative surrogate learning framework that enables large-scale training and fair model
comparison, using silver labels (algorithmic) for broad coverage and golden labels (expert) as a
trusted benchmark. This approach scales data while ensuring unbiased evaluation;

• A fully experimental benchmark based on HSQC spectra, which is unique in scope and scale,
and to our knowledge, not previously available in the literature.
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Figure 1: The 2DNMRGym dataset comprises multi-modal components, including the SMILES
representation of each molecule and its conversion to a molecular graph. This graph includes both
2D topological structures and Cartesian coordinates for 3D spatial information. The ground truth
spectrum is represented as cross peak tables, where the “Carbon Index” maps to the corresponding
carbons in the molecular topology graph.

1.2 Concepts and terminology in chemistry

SMILES. Simplified Molecular Input Line Entry System (SMILES) [13] is a textual representation
that employs short ASCII strings to describe chemical molecular structures. This notation system
utilizes a series of characters, including alphanumeric symbols and punctuation marks, to represent
the atoms, bonds, and connectivity within a molecule.

Chemical shift. Chemical shift is a measure of the resonant frequency of a nucleus relative to a
reference standard, expressed in parts per million (ppm), and reflects the electronic environment
surrounding the nucleus. In NMR spectroscopy, 1H chemical shifts typically range from 0 to 12 ppm,
while 13C chemical shifts span a broader range, from 0 to 220 ppm, due to greater variation in carbon
bonding environments. These shifts provide critical information about molecular structure, such as
hybridization states, functional groups, and local electron density.

HSQC. HSQC [4] is a 2D NMR spectroscopy technique used to elucidate the structure of molecules
by correlating the chemical shifts of hydrogen atoms with those of directly bonded heteronuclei,
typically carbon or nitrogen. This technique provides detailed insights into molecular connectivity
and is particularly useful for studying complex organic compounds where traditional 1D NMR
spectroscopy may not provide sufficient information. HSQC is instrumental in identifying atom-to-
atom connections and understanding the molecular architecture of a substance.

Tanimoto similarity. Tanimoto similarity is a widely used metric in cheminformatics for comparing
molecular fingerprints, which are typically represented as binary vectors [14]. It quantifies the
structural similarity between two molecules based on the presence or absence of shared substructures.

Scaffold. Scaffold refers to the core structural backbone of a molecule, typically consisting of the
ring systems and the connecting linkers, with side chains and substituents removed. It represents
the central topology that defines a molecule’s overall shape and connectivity. In cheminformatics,
scaffolds are often used to group molecules by structural similarity and to assess model generalization;
for example, Bemis–Murcko scaffolds [15] are commonly used to analyze scaffold diversity and
enable tasks like scaffold splitting in molecular datasets.
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Hybridization. Hybridization refers to the combination of atomic orbitals (e.g., sp3, sp2, sp) to form
new orbitals, which dictate the geometry of chemical bonds around an atom. This process affects both
the electron distribution and the local chemical environment, factors that are crucial in determining
NMR chemical shifts.

Chirality. Chirality is a molecular property where a compound exists as non-superimposable mirror
images, usually due to a carbon atom bonded to four different substituents. This stereochemical
feature affects the three-dimensional arrangement of atoms, which in turn influences the NMR signals,
particularly in chiral environments.

2 Related work

The landscape of NMR databases exhibits a significant disparity in development and structure between
1D and 2D NMR spectra. For instance, the nmrshiftdb2 [16] dataset provides a comprehensive
collection of 1D data, serving as an open-access platform for the sharing of chemical shift information.
This database is highly structured and extensively utilized across the computational chemistry
community, making it a valuable resource for researchers. In contrast, databases that catalog 2D
NMR spectra, such as those for HSQC, exhibit less cohesion and a greater degree of specialization,
often tailored to specific sub-realms or applications within the field. The Human Metabolome
Database (HMDB) [17], for example, is a rich resource that includes detailed HSQC spectra for
thousands of metabolites, coupled with extensive metadata on their structures, biochemical properties,
and roles in biological systems. This makes HMDB a vital tool for metabolomics research, aiding in
the identification and detailed analysis of metabolites across various biological samples. Another
dataset, CH-NMR-NP [18], focuses on natural products and provides essential NMR spectral data,
including HSQC spectra, for studying complex organic compounds. This dataset supports researchers
in chemistry and biology by providing insights into the structure and potential applications of natural
products, thus advancing the understanding of their biochemical pathways and therapeutic potentials.
These specialized databases are not only repositories of NMR spectra but also rich sources of varied
molecular dynamics and functional groups. Each database captures a unique slice of the chemical
universe, encompassing a broad spectrum of molecular structures, which are represented as diverse
graphs of varying sizes and complexities. This diversity is crucial for the development and evaluation
of machine learning techniques, especially in the fields of computational chemistry and bioinformatics.
While valuable, these databases were not designed with machine learning tasks in mind and lack
the structured annotations necessary for supervised learning. Last year, a multimodal spectroscopic
dataset for Chemistry [19] is published, comprising simulated 1H-NMR, 13C-NMR, HSQC-NMR,
Infrared, and Mass spectra (positive and negative ion modes) for 790k molecules extracted from
chemical reactions in patent data. However, only limited experimental data was collected and
provided, among which no experimental HSQC-NMR is included. This highlights the challenge of
collecting and annotation experimental HSQC-NMR data at scale.

Furthermore, most existing ML models such as GCN [20], GIN [21], GAT [22], GNN Trans-
former [23], ComENet [24] and SchNet [25] are trained at the molecule (graph-level) using coarse
labels such as molecular properties using datasets like MolecularNet [26], QMugs [27], GEOM [28]
etc., rather than capturing the finer atom-level interactions, as required in analyzing NMR spectra.
Prior datasets rarely support this granularity, and those that do often rely on simulated data derived
from quantum chemistry rather than real experimental spectra.

To address this gap, we introduce 2DNMRGym, a comprehensive, unified repository for experimental
2D NMR data. Unlike previous datasets, 2DNMRGym provides atom-level annotations, linking each
cross peak to a specific hydrogen–heteronucleus bond within a molecular graph. The annotation
process is labor-intensive and requires expert-level understanding of NMR and organic chemistry. To
scale this effort, we adopt a dual-labeling strategy, combining algorithm-generated pseudo labels with
a human-annotated subset for evaluation. This enables a unique atom-level representation learning
task using surrogate supervision, where models are trained on imperfect algorithmic labels and
evaluated against expert-labeled ground truth. In doing so, 2DNMRGym advances beyond traditional
molecular fingerprinting and graph-level tasks, offering a new benchmark for fine-grained, chemically
grounded prediction that bridges NMR spectroscopy and machine learning. This one-stop resource
aims to streamline access and analysis of two-dimensional NMR spectra across various chemical
contexts.
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3 Constructing the 2DNMRGym dataset

Our 2DNMRGym dataset consists of over 22,000 HSQC spectra, where a small subset of 479
molecules with 7,310 cross peaks were randomly sampled for expert annotation as a held-out test set
for evaluation.

Figure 2 summarizes key statistics of the training and test sets, which exhibit similar distributions in
terms of total atom count, molecular weight, and Tanimoto similarity, indicating that the test set fairly
represents the broader dataset and supports robust model evaluation. On average, molecules contain
58 atoms and have a molecular weight of approximately 400 Daltons. Over 25% of the molecules
exceed 75 atoms and 500 Daltons in weight. The Tanimoto similarity plot reveals that most molecule
pairs have a similarity score below 0.1, highlighting the structural diversity of the dataset.

Figure 2: Data statistics by number of atoms, molecular weight, and tanimoto similarity.

To enable few-shot and zero-shot learning, we performed scaffold analysis for both the training and
testing dataset. The test dataset contains 397 unique scaffolds, 148 of which are novel scaffolds that
can be used for zero-shot learning. For scaffolds that appeared less than 10 times in the training set,
they are used for few-shot learning. Figure 3 summarizes the distribution and top scaffolds in the
data.
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Figure 3: Scaffold analysis for training and test dataset.

3.1 Collection of HSQC spectra and SMILES

We meticulously curated 22,348 experimental HSQC spectra, together with their associated NMR
conditions and CAS Registry Numbers. The spectra were obtained from the Human Metabolome
Database (HMDB) [17] (CC-NC-4.0 license) and CH-NMR-NP [18]. For each molecule, the
corresponding CAS Registry Numbers and SMILES representations were retrieved from PubChem
[29].

3.2 Generation of molecular graphs

Molecular graphs with stable 3D structures are derived from SMILES strings using the RDKit [30]
package, and formatted in Python Geometric format for computational processing. In the process
of converting SMILES representations into molecular graphs, challenges arose with disjoint graphs,
primarily due to the presence of floating ions. To ensure data quality and model accuracy, these
anomalies are systematically identified and excluded from the dataset. Additionally, certain SMILES
strings fail to yield energy-stable 3D structures despite multiple optimization attempts. These
instances suggest structural inconsistencies or complexities that RDKit cannot resolve adequately.
Such unstable entries are also eliminated to maintain the structural integrity and reliability of our
dataset. This meticulous preprocessing ensures that our dataset only includes high-quality, consistent
molecular graphs that are suitable for subsequent analysis and modeling. For 3D-based models
(e.g., SchNet[25], ComENet[24]), molecular geometries were generated from SMILES when the
lowest-energy conformer was retained. While this ensures consistency across molecules, it does not
account for conformational diversity in solution, which can influence NMR shifts. Incorporating
conformer ensembles or Boltzmann-weighted sampling could further improve 3D model robustness.

Furthermore, using the RDKit [30] package, we enrich the molecular graphs with node and edge
features to infuse domain-specific insights into our Chemistry-Informed ML development. Three
features are provided for each node: atomic type, chirality, and hybridization. Also, two features are
considered for each edge: bond type and bond direction. Bond types include Single, Double, Triple,
and Aromatic, each reflecting a distinct configuration of electron sharing between atoms. Bond
direction includes None, EndUpRight, and EndDownRight, primarily representing stereochemistry
in double bonds. ML practitioners have the option to incorporate these hand-crafted, domain-
specific features in the model training process, which not only helps in understanding how traditional
chemical knowledge translates into computational predictions but also explores how machine learning
techniques can uncover patterns and relationships that might elude conventional domain expertise.
This dual approach allows our models to benefit from established chemical theory while potentially
discovering novel insights into molecular behavior that could redefine our understanding of NMR
shifts and molecular interactions. Such findings could provide valuable contributions to the field,
suggesting new areas of research or improvements to existing chemical theories.
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3.3 Annotation process

Silver-standard labels. We use a framework proposed in [12] to generate pseudo lables for 21,869
molecules. This model was first trained on extensive 1D NMR data, which establishes a robust
foundation for understanding basic molecular interactions and chemical shift patterns. Afterwards,
the model was fine-tuned on a diverse set of 2D NMR data, enhancing its ability to generalize across
different molecular structures and solvent environments. With an accurate prediction of 2D NMR
cross peaks, the model uses a matching algorithm to assign the predicted cross peaks to the most
plausible observed peaks in the HSQC spectra, thus creating a direct linkage between each observed
peak and its corresponding C–H bonds within the molecular graph. To test its annotation capability,
we compared the annotation generated by this model to the expert annotations on our test dataset.
Table 1 displays the result. Out of the 479 test molecules, the algorithm accurately annotates all peaks
for 456 of the molecules (95.21%). For the remaining 23 molecules, the model was able to annotate
81.56% of the peaks accurately.

Table 1: Pseudo-label Accuracy

Fully-Correct Molecule (%) Peak Accuracy (%) for Partial-Correct Molecule
95.21% 81.56%

Golden-standard labels. The test dataset, comprising 479 molecules, underwent a rigorous multi-
step annotation and validation process involving three domain experts to ensure the accuracy and
reliability of labels used for model evaluation. The experts all have more than 10 years of experience
in Organic Chemistry and NMR analysis, from Harvard University, Boston College and University of
Georgia. Initially, all molecules were annotated by Expert A. Afterwards, the dataset was split into
two subsets, each independently annotated and cross-checked by Expert B and Expert C. In cases of
disagreement between the initial and secondary annotations, the molecule was flagged and reviewed
by the third expert to resolve inconsistencies. The final consensus annotation agreed upon by at least
two experts was recorded as the ground truth.

4 2DNMRGym benchmark
To guide Machine Learning (ML) practitioners using 2DNMRGym, we provide benchmarks for
cross peak prediction, an atom level representation learning task, described in Section 1 and Figure
4. Models are evaluated on the held-out test set annotated by domain experts to ensure high-quality
assessment. In addition to overall performance, we report results under few-shot and zero-shot
evaluation settings to assess generalization. Specifically, a test molecule is considered few-shot if its
scaffold appears fewer than 10 times in the training set, and zero-shot if its scaffold is not observed at
all during training.

Figure 4: A demonstration workflow using 2DNMRGym dataset to train GNN models. The learnt
graph representation from these benchmark models can be evaluated in the downstream HSQC cross
peak prediction task.
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4.1 Baseline models

To benchmark atom-level cross-peak prediction, we evaluate several representative GNN archi-
tectures. For 2D GNNs, we include GCN [20], which performs neighborhood aggregation with
normalized message passing; GIN [21], designed for maximal expressive power in distinguishing
graph structures; and GAT [22], which introduces attention mechanisms to weight neighbor contri-
butions adaptively. We also incorporate GNN-Transformer [23], a hybrid model combining GNNs
with global self-attention and structural encodings to capture both local and long-range dependencies,
which has shown strong performance on chemical and biological benchmarks. For 3D molecular
graphs, we consider SchNet [25], which leverages continuous-filter convolutions to model spatial
interactions, and ComENet [24], which ensures full utilization of 3D geometric information within
a 1-hop neighborhood. Together, these models provide a diverse baseline for evaluating atom-level
representation learning on our 2DNMRGym dataset. The model details are included in Appendix C.

4.2 Training and evaluation

Train/validation split. In our experiments, the data is randomly split into 80% for training, 20% for
model selection, and the expert-annotated test dataset is used for model evaluation. For each model,
we repeat the experiments using random seeds of 0, 42 and 66 and report the mean and standard
deviatiion of Mean Absolute Error (MAE).

Pre-processing. The value ranges of the 13C- and 1H-shifts are quite different, 0 - 200 ppm for 13C
versus 0-12 ppm for 1H. To reduce bias and achieve better training, we normalized them to make
their value range comparable by dividing 13C-shifts by 200 and 1H-shifts by 10.

Error measurement. As 2D NMR captures atomic interactions in two dimensions, specifically
13C-shift and 1H-shift, the model is trained using the Mean Absolute Error (MAE) of 13C-shifts and
1H-shifts, assigning them equal weights. The evaluation of the model’s performance for both shifts
are conducted using the MAE values calculated from the original values of the 13C- and 1H-shifts
without normalization. This approach ensures that the model’s predictions are assessed directly
against the experimental chemical shift values, without any scaling or normalization, providing an
unbiased assessment of its predictive capabilities for the two types of atomic interactions captured in
2D NMR spectra. MAE was selected as both the training loss and evaluation metric to align with
prior NMR shift prediction literature and ensure interpretability in ppm units.

4.3 Benchmark results

All experiments were run using one V100 GPU. The performance of the baseline models is summa-
rized in Table 2 and Table 3. Additional error measurement can be found in Appendix E. For each
model, we adjusted its hyperparameters, including the hidden dimensions for GNN node representa-
tions, the hidden dimensions for edge representations (where applicable), the number of GNN layers,
and the hidden channels of MLP layers for 13C-shifts and 1H-shifts predictions. Additionally for
ComENet, we tune the number of layers inside the interaction module for node and edges during
message passing. For SchNet, we also tune the number of filters in its filter-generating network. All
models in this experiment are trained for 100 epochs with batch size set to 32.

For all GNN models, adding the transformer component in model architecture generally improve
performance and reduces variances, while not to a large margin. This suggests that while HSQC
correlations are primarily local, through-space interactions and solvent effects can modulate the
observed shifts, indicating a nuanced interplay between local and global molecular features. Among
GNN architectures, GIN models perform the best in our task due to their strong discriminative power,
which is essential for capturing subtle structural variations that influence NMR shifts. Unlike GCN
and GAT, GIN uses injective aggregation functions that better preserve node uniqueness within
molecular graphs. Compared to GAT models, GIN is also architecturally simpler and tends to be more
robust, especially when the dataset contains noise or biases introduced by silver standard labeling.
This robustness makes GIN more reliable in learning meaningful representations from limited or
noisy training data.

HSQC spectra primarily reflect short-range correlations governed by the 2D molecular structure, such
as connectivity, atom types, hybridization, and chirality. These features, which are directly encoded
in our graph representations, are sufficient to capture the stereoelectronic environments that determine
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Model Type Model All-test MAE Few-shot MAE Zero-shot MAE
13C 1H 13C 1H 13C 1H

2D GNN
GCN 3.035

(0.039)
0.229
(0.002)

3.014
(0.011)

0.227
(0.001)

3.103
(0.038)

0.242
(0.002)

GIN 2.370
(0.007)

0.203
(0.003)

2.274
(0.022)

0.192
(0.002)

2.587
(0.005)

0.230
(0.003)

GAT 2.574
(0.045)

0.206
(0.004)

2.524
(0.042)

0.201
(0.003)

2.811
(0.066)

0.226
(0.003)

3D GNN ComENet 3.143
(0.018)

0.238
(0.003)

3.178
(0.015)

0.233
(0.002)

3.348
(0.042)

0.262
(0.003)

SchNet 3.156
(0.022)

0.240
(0.001)

3.183
(0.014)

0.239
(0.001)

3.369
(0.031)

0.261
(0.001)

Transformer
GCN-Trans 2.911

(0.044)
0.221
(0.003)

2.869
(0.036)

0.215
(0.004)

3.017
(0.055)

0.241
(0.004)

GIN-Trans 2.348
(0.031)

0.198
(0.000)

2.281
(0.016)

0.188
(0.001)

2.620
(0.039)

0.228
(0.003)

GAT-Trans 2.543
(0.097)

0.206
(0.005)

2.493
(0.104)

0.200
(0.006)

2.740
(0.079)

0.228
(0.005)

Table 2: Comparison of MAE in ppm for 13C and 1H chemical shift predictions across different
GNN models. The best model parameters are documented in Appendix D.

Model Type Model All-test R2 Few-shot R2 Zero-shot R2

13C 1H 13C 1H 13C 1H

2D GNN
GCN 0.9784

(0.0002)
0.9680
(0.0002)

0.9889
(0.0001)

0.9781
(0.0001)

0.9591
(0.0001)

0.9453
(0.0001)

GIN 0.9822
(0.0002)

0.9713
(0.0002)

0.9926
(0.0001)

0.9827
(0.0003)

0.9626
(0.0005)

0.9472
(0.0001)

GAT 0.9811
(0.0004)

0.9709
(0.0003)

0.9916
(0.0003)

0.9813
(0.0005)

0.9615
(0.0005)

0.9479
(0.0001)

3D GNN ComENet 0.9589
(0.0004)

0.9411
(0.0009)

0.9681
(0.0004)

0.9456
(0.0011)

0.9335
(0.0008)

0.9147
(0.0007)

SchNet 0.9602
(0.0003)

0.9349
(0.0004)

0.9697
(0.0004)

0.9328
(0.0009)

0.9364
(0.0005)

0.9132
(0.0004)

Transformer
GCN-Trans 0.9794

(0.0004)
0.9679
(0.0006)

0.9902
(0.0003)

0.9792
(0.0006)

0.9602
(0.0006)

0.9440
(0.0009)

GIN-Trans 0.9823
(0.0000)

0.9708
(0.0005)

0.9929
(0.0000)

0.9825
(0.0004)

0.9626
(0.0002)

0.9473
(0.0010)

GAT-Trans 0.9812
(0.0007)

0.9704
(0.0006)

0.9919
(0.0004)

0.9818
(0.0008)

0.9620
(0.0006)

0.9469
(0.0008)

Table 3: Comparison of R2 for 13C and 1H chemical shift predictions across different GNN and
Transformer models. The best results in each column are highlighted in bold.

chemical shifts. In contrast, 3D models like ComENet or SchNet rely on atomic coordinates that may
not be optimal, as a molecule can adopt many possible conformers in solution. When only a single
RDKit-embedded conformer is used, 3D models risk learning from spurious geometrical patterns or
overfitting to noise in the 3D structure, leading to degraded performance compared to 2D models.

To investigate the sources of model error, we grouped the 23 molecules with partially correct
annotations based on their molecular scaffolds. While the errors did not cluster around a specific
scaffold type or chemical shift range, we observed that structurally complex molecules, such as those
containing flexible ring systems and multiple chiral centers, tended to exhibit higher annotation errors.
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Additionally, some atoms are pseudo-chemically symmetric, existing in nearly identical chemical
and electronic environments, which may further complicate accurate peak assignment. These results
and visualizations are shown in Appendix F.

5 Discussion and conclusion
Our curated 2DNMRGym dataset is the first experimental, centralized, annotated, and high-quality
dataset for learning atom-level molecular representation in the 2D NMR space. Significant effort
was invested in the database’s construction, with the cross-validation from three domain experts. Our
dataset includes multimodal inputs such as text and graphs, and covers a wide range of molecules of
varying sizes and scaffolds, providing valuable insights for evaluating representation learning models.
To establish benchmark results, we tested a variety of 2D and 3D GNN models to predict HSQC cross
peaks from molecular topologies/structures, paving the way for more advanced machine learning
models for predicting HSQC cross peaks. The benchmarking results indicate that GIN stands out
among the 2D and 3D GNN models that we have tried. This highlights the potential for developing 3D
GNN models to capture spatial information such as chirality centers and hybridization, for atom-level
tasks, which is potentially a major advance in NMR spectroscopy. Also, since each molecule is
represented by a single low-energy conformer generated by RDKit in the 3D representation, it may
not fully capture the conformational ensemble relevant to NMR shifts, where multiple states coexist in
solution. Future work incorporating conformational averaging or Boltzmann weighting could provide
a more physically faithful representation. There is plenty of room for improvements in prediction
precision, aiming for an ideal MAE of less than 2 ppm for 13C and less than 0.1 ppm for 1H.

Currently, the database contains only HSQC experimental data, which was generated to interrogate
C–H interactions. Nevertheless, we expect the models trained on this HSQC data can be easily
adapted or fine-tuned for other types of 2D NMR data. Looking ahead, the 2DNMRGym dataset
is poised for further expansion to include a broader range of NMR techniques, such as HMBC and
COSY, which probe different aspects of atomic interactions within molecules. Such expansions will
enable the development of more advanced ML techniques for analyzing a wider array of NMR spectra,
facilitating a more integrated approach to molecular characterization. Additionally, we note that
although an accurate spectra prediction given the molecular SMILE representation aids in structural
elucidation and discrimination between isomers, it is not a direct structural prediction from spectra.
Framing spectral data as input and structural output as targets remains a long-standing challenge in
the chemistry community, and the 2DNMRGym dataset can also serve as a valuable asset for the
development of effective deep learning model architectures and pipelines.
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A Annotation challenges
2D NMR annotation, which involves associating the chemical shifts of each atom pair with the
observed signals from experiments, is a highly challenging task. Using the HSQC spectrum as an
example, the signals observed in the 2D spectrum correspond to the chemical shifts of hydrogen atoms
directly bonded to heteronuclei, typically 13C or 15N. Annotating these signals requires accurately
mapping the observed cross-peaks to specific hydrogen-heteronucleus pairs within the molecule.
However, this process is complicated by several factors, including spectral overlap, signal degeneracy,
and sensitivity to experimental conditions.

Spectral overlap occurs when multiple signals appear at similar chemical shift values, making it
difficult to distinguish and assign them correctly. This issue is exacerbated in larger molecules with
numerous hydrogen-heteronucleus pairs, leading to increased signal density and potential overlap.
Additionally, signal degeneracy, where multiple atom pairs share the same chemical shift, further
complicates the annotation process. Figure 5 shows an example of a large molecule in our dataset.
Moreover, the observed chemical shifts are highly sensitive to the experimental conditions, such as
temperature, solvent, pH, and sample concentration. Even slight variations in these conditions can
cause detectable shifts in the signals, making it challenging to reliably match the experimental data
with reference values or theoretical predictions.

B Additional Concepts and terminology in chemistry
Solvent. A solvent, typically a liquid, is used to dissolve other substances (solutes), resulting in the
formation of a solution. In the context of HSQC spectroscopy, solvent selection is paramount due to
its profound influence on the chemical environment of the sample, thereby affecting the observed
chemical shifts in NMR spectra. These shifts serve as pivotal indicators for accurately interpreting
molecular structures as solvents can alter interactions such as hydrogen bonding, change molecular
conformations, and affect the dynamics within a molecule. Thus, selecting an appropriate solvent and
understanding its influence is essential for achieving precise and meaningful HSQC spectral analysis.
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Figure 5: An annotation example. To avoid overcrowded, only a few “C-H bond – peak” associations
are shown. For a large molecule with complex structure like this, aligning the chemical bonds with
the cross peaks is extremely difficult due to signal overlap and degeneracy. The bottom-right of the
HSQC spectrum shows a 3D abstract skeleton of the molecule.

HOSE codes. HOSE [31] codes are a method used in NMR spectroscopy for predicting chemical
shifts. These codes function by encoding the structural environment of a nucleus in concentric
spheres, capturing the types and positions of neighboring atoms up to several bonds away. Each
sphere represents a distinct “shell” of neighbors, and the method relies on a database of known
chemical shifts to predict the shift for a given atom based on its specific environment. This approach
is empirical, utilizing accumulated historical data to make predictions.

DFT. Density Functional Theory (DFT) [32] is a quantum mechanical method used to investigate
the electronic properties of molecules and solids. In the context of NMR, DFT can be used to calculate
chemical shifts by simulating the electronic environment around nuclei. This involves solving the
Schrödinger equation for electrons in a molecule under the influence of a magnetic field, allowing for
the prediction of NMR properties based on fundamental physical principles. DFT is known for its
accuracy and ability to handle complex molecules, though it is computationally intensive compared
to empirical methods like HOSE codes.

Traditional tools in chemistry. Two software tools are commonly used for processing, visualizing,
simulating, and analyzing NMR spectral data, ChemDraw [33] and Mestrenova [34]. They can serve
as baselines for Machine Learning based methods.

C Benchmark GNN models
C.1 2D GNN models

GCN. Graph Convolutional Networks (GCNs) [20] is designed to efficiently learn node representa-
tions by leveraging the graph’s structural information. The update rule for a GCN layer is formulated
as follows:

h(k+1)
v = σ

W (k)
∑

u∈N (v)∪{v}

1√
deg(v)deg(u)

h(k)
u

 , (1)

where h
(k)
v represents the feature vector of node v at layer k, N (v) denotes the set of neighbors of

node v, W (k) is the weight matrix at the k-th layer, and σ is a non-linear activation function (e.g.,
ReLU), and deg(v) and deg(u) are the degrees of nodes v and u, respectively. This approach, by
normalizing based on node degrees, mitigates the problem of scale differences in node degrees, thus
ensuring stable training and effective feature learning.

GIN. Graph Isomorphism Networks (GIN) [21] are introduced to enhance the ability of GNNs to
capture the structural nuances of graphs more effectively. Traditional GNN models often struggle

13



2DNMRGym

to distinguish non-isomorphic graphs due to their limited expressiveness, akin to the Weisfeiler-
Lehman (WL) graph isomorphism test. GINs are designed to address this issue by achieving maximal
expressiveness in distinguishing graph structures. The general update rule for a GIN model is defined
as follows:

h(k+1)
v = MLP(k)

(
1 + ϵ(k)

)
· h(k)

v +
∑

u∈N (v)

h(k)
u

 , (2)

where h
(k)
v is the feature vector of node v at layer k, N (v) denotes the set of neighbors of node v,

MLP(k) represents a multi-layer perceptron used at the k-th layer, ϵ(k) is a learnable parameter or a
fixed scalar that can be tuned to adjust the model’s sensitivity to the central node’s features.

GAT. Graph Attention Networks (GATs) [22] incorporates the mechanism of attention into the
GNN by dynamically assigning importance to nodes within a local neighborhood. The core update
rule for a GAT model is expressed as follows:

h(k+1)
v = σ

 ∑
u∈N (v)∪{v}

α(k)
vu W

(k)h(k)
u

 , (3)

where h
(k)
v is the representation of node v at layer k, N (v) denotes the neighbors of node v, W (k)

is a weight matrix for the k-th layer, α(k)
vu represents the attention coefficient between nodes v and

u, and σ is a nonlinear activation function. The attention coefficients α(k)
vu are computed through a

learnable function of the features of nodes v and u, allowing the model to focus more on relevant
features during aggregation.

GNN transformer. The GNNTrans [23] model introduces a hybrid architecture that combines
the expressive power of Graph Neural Networks (GNNs) with the global attention mechanism of
Transformers to better capture both local and long-range dependencies in graph-structured data. By
integrating structural encodings and a novel graph token, the model effectively handles graph-level
tasks, achieving state-of-the-art performance on multiple benchmarks. This approach bridges the
gap between sequential attention models and relational inductive biases in graphs. The model also
achieves promising results on biological and chemical benchmarks, making it a suitable benchmark
for our dataset.

C.2 3D GNN models

ComENet. ComENet [24] offers an efficient message passing network designed specifically for
3D GNNs. It incorporates a new message passing scheme that ensures complete utilization of 3D
information by operating within a 1-hop neighborhood, achieving both global and local completeness.

SchNet. SchNet is another 3D GNN architecture designed for modeling atomic-scale interactions
within molecules and materials [25]. It employs a unique continuous-filter convolutional approach to
capture the complex interatomic forces and represents interatomic distances through a radial basis
function expansion using a flexible number of Gaussian functions.

D Model parameters
The optimal hyperparameters for each model in Table 2 are summarized below. For each model type,
extensive parameter tuning was conducted. The number of GNN layers tested included 3, 4, 5, 6,
with hidden dimensions of 256, 374, 512. Prediction head configurations evaluated included [256,
128], [128, 64], [256], [128]. Solvent embedding dimensions were selected from 16, 32. For the
Transformer module, the hidden dimensions considered were 128, 256, the number of attention heads
2, 3, 4, feedforward dimensions 256, 512, and the number of Transformer layers 3, 4, 5.
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Table 4: Model configurations for transformer GNN models

Batch
size

GNN
type

GNN
layer

Hid
dim

Pred
head (C)

Pred
head (H)

Solvent
emb
(C)

Solvent
emb
(H)

Trans
hid
dim

Num
of
heads

Trans
ff
dim

Trans
layer

32 gin 5 512 [128, 64] [128, 64] 16 16 128 4 512 3
32 gcn 5 512 [128, 64] [128, 64] 16 16 128 4 256 5
32 gat 5 512 [128, 64] [128, 64] 16 16 128 2 512 5

Table 5: Model configurations for GNN-only models

Batch
size

GNN
type

GNN
layer

Hidden
dim

Pred
head (C)

Pred
head (H)

Solvent
emb
(C)

Solvent
emb
(H)

Filters Gaussians

32 gat 5 512 [128, 64] [128, 64] 32 16 – –
32 gat 5 512 [128, 64] [128, 64] 32 32 – –
32 gcn 5 512 [128, 64] [128, 64] 32 32 – –
32 gin 5 512 [128, 64] [128, 64] 32 16 – –
32 gin 5 512 [128, 64] [128, 64] 32 32 – –
32 schnet 3 512 [128, 64] [128, 64] 16 16 128 50
32 comenet 6 512 [128, 64] [128, 64] 16 16 – –

E Model Comparison (RMSE)

Besides the MAE and R-squared tables (Table 2 and Table 3 in the main text), we also compared the
model performance in RMSE.

Model
Type

Model All-test
RMSE

Few-shot
RMSE

Zero-shot
RMSE

13C 1H 13C 1H 13C 1H

2D GNN
GCN 5.9709

(0.0217)
0.4009
(0.0011)

4.1757
(0.0144)

0.3195
(0.0004)

7.9259
(0.0126)

0.5028
(0.0005)

GIN 5.4207
(0.0335)

0.3798
(0.0012)

3.3935
(0.0243)

0.2837
(0.0021)

7.5856
(0.0490)

0.4941
(0.0006)

GAT 5.5895
(0.0601)

0.3821
(0.0022)

3.6252
(0.0604)

0.2947
(0.0037)

7.6914
(0.0538)

0.4905
(0.0004)

3D GNN ComENet 6.2520
(0.0398)

0.4448
(0.0042)

5.0769
(0.0137)

0.4032
(0.0049)

8.1323
(0.0597)

0.5292
(0.0026)

SchNet 6.1147
(0.0280)

0.4275
(0.0017)

4.8947
(0.0406)

0.4593
(0.0036)

7.9078
(0.0365)

0.5348
(0.0014)

Transformer
GCN-
Trans

5.8389
(0.0617)

0.4016
(0.0035)

3.9218
(0.0616)

0.3110
(0.0045)

7.8195
(0.0603)

0.5085
(0.0039)

GIN-
Trans

5.4041
(0.0343)

0.3828
(0.0036)

3.3318
(0.0087)

0.2852
(0.0030)

7.5851
(0.0177)

0.4932
(0.0048)

GAT-
Trans

5.5714
(0.0972)

0.3857
(0.0038)

3.5712
(0.0876)

0.2912
(0.0061)

7.6412
(0.0593)

0.4953
(0.0038)

Table 6: Comparison of RMSE in ppm for 13C and 1H chemical shift predictions across different
GNN and Transformer models. Best results in each column are highlighted in bold.
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F Additional model error analysis
We observed that structurally complex molecules, such as those containing flexible ring systems and
multiple chiral centers, tended to exhibit higher annotation errors. Additionally, some atoms are
pseudo-chemically symmetric, existing in nearly identical chemical and electronic environments,
which may further complicate accurate peak assignment.

Figure 6: In molecules with pseudo-chemically symmetric atoms, the local environments are
effectively indistinguishable at typical spectral resolution, leading to near-degenerate chemical shifts;
this underdetermines one-to-one atom–peak assignment and leads to annotation error.
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Figure 7: Multiple-ring architectures concentrate many near-isotopic chemical environments into
narrow chemical-shift windows. Ring-current anisotropy, repeated CH motifs, and conformational
averaging in flexible rings yield near-degenerate shifts and broadened/overlapping HSQC cross-peaks.
Together these effects crowd the spectrum and underdetermine one-to-one assignments, increasing
annotation error. (More figure in the next page)
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Figure 7: Multiple-ring architectures (continued).
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