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Abstract— In this paper, we propose a semi-empirical ap-
proach for simulating robot locomotion on granular media. We
first develop a contact model based on the stick-slip behavior
between rigid objects and granular grains, which is then learned
through running extensive experiments. The contact model
represents all possible contact wrenches that the granular
substrate can provide as a convex volume, which our method
formulates as constraints in an optimization-based contact force
solver. During simulation, granular substrates are treated as
rigid objects that allow penetration and the contact solver solves
for wrenches that maximize frictional dissipation. We show that
our method is able to simulate plausible interaction response
with several granular media at interactive rates.

I. INTRODUCTION

Physics simulators are widely used in robotics. They may
be used to design and evaluate mechanisms and behaviors,
and can be used inside motion planners and grasp planners to
predict the outcomes of actions. Rigid body simulators model
robots and objects as collections of articulated rigid bodies
with either hard or spring-like point contacts with coulomb
friction, and are quite commonly used [1]. Finite Element
Method (FEM) simulations are used to predict the behav-
ior of deformable materials [2], [3], and Discrete Element
Method (DEM) simulations are used to predict the behavior
of granular media such as sand and mud. Although FEM and
DEM simulators can capture a greater variety of phenomena
than rigid body simulations, their computational expense
is prohibitive for most uses in robotics. For example, one
study reports using 3.2 hours of computation on a 20-core
processor to perform 1 s of DEM simulation for a vehicle
moving on granular media composed of 150,000 bodies
[4]. Hence, we ask the question, can empirical models be
incorporated into rigid body simulation to efficiently simulate
interaction with more complex deformable materials?

We focus on the problem of simulating robot locomotion
on granular media. The interaction between a rigid foot and
a granular medium is quite complex and cannot be captured
accurately using analytic models. Our novel contribution
is a semi-empirical simulation approach [5], [6], where a
substrate contact model is first learned via extensive exper-
iments, and then is used in a contact force solver for rigid-
body simulation.
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We take advantage of the stick-slip behavior of a rigid
object, in our case a robot foot, moving on a granular
substrate and model this interaction as a single contact
resisted by a frictional wrench inside a (non-Coulomb)
frictional wrench space. The wrench space varies with the
foot’s depth and orientation within the substrate. During data
acquisition, we use a vector of parameters (referred to as the
configuration) to define the relative pose between the foot
and substrate. For a single configuration, we record a set of
frictional wrenches exerted on the foot moving at different
directions. The database is constructed by repeating this for
a set of discrete configurations. Data can be gathered from
a DEM simulation or a physical testing apparatus. DEM
simulation has the advantage of easy setup and can scale
using high performance computing resources, but it can be
difficult to tune parameters to fit real world materials. We
also constructed a physical testing apparatus in this paper.

During the simulation stage, both foot and substrate are
modeled as rigid objects and are allowed to interpenetrate.
The ground reaction wrench is constrained to lie within the
predicted wrench space at the current foot-terrain configu-
ration, and contact forces are calculated using a maximum
dissipation principle (MDP) optimization. Due to convexity
assumptions, which we find to be satisfied well in practice,
the optimization problem can be solved in time polynomial in
the number of robot links. As a result, we are able to simulate
robot locomotion on granular media in interactive time.
Simulation results are demonstrated on both a single foot
and a model of the Robosimian quadruped robot traversing
flat and sloped terrains composed of granular materials.

II. RELATED WORK

Several works have studied legged motion on granular
media. Some authors employ simple spring-damper [7], [8]
or vistoplastic [9] models for terrain deformations. Despite
the convenience of these models, they can deviate far from
the empirical behavior of granular media. Xiong et al record
the stress that a plate experiences when penetrating a sub-
strate and integrates the stress to determine the stability of
a robotic leg with a plate-shaped foot while standing [10].
Using this as a stability region criterion, a controller is
developed to produce stable walking gaits for a planar biped
traversing flat granular terrain. This model is limited to
stability determination and can not predict force response
while the object is moving. Li et al develop a method based
on resistive force theory to predict the resistance on a thin-
plate-shaped leg moving through granular media [11]. It
theorizes that the net resistive force acting on an object is
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the linear superposition of resistive forces on infinitesimal
leg elements. They predict net force on a leg by integrating
empirically-determined stress on leg elements and achieve
about 30% error. This algorithm treats the penetration as
a kinematic event and can not predict static stability. In
contrast, our method unifies static and kinematic events and
simulates dynamic motions of rigid body interacting with
deformable terrains.

A related community studies off-road vehicle locomotion.
Various empirical, semi-empirical and physics-based models
for tire-terrain interaction have been proposed. A compre-
hensive survey [12] reviews the main efforts in this area.
Empirical and semi-empirical methods build upon empirical
tire-terrain interaction equations. Meanwhile, physics-based
solutions rely on DEM and FEM simulations, which are
computationally heavy [4]. Because the geometry and elastic
properties of tires differ greatly from that of robot feet, the
methods developed for off-road vehicles are not suitable for
legged robot locomotion.

Data-driven simulation approaches have been adopted in
many contexts. Bauza et al use a variation of Gaussian
Process (GP) to learn the outcome of planar pushing (treated
as a kinematic event) and its variability [13]. The method
is able to outperform analytic models after learning only
100 pushing samples. Although it is also possible to use
a pure data-driven approach in our case, we employ a semi-
empirical approach to reduce the amount of training data.
Another work proposes a data-driven method to predict
the post-collision velocity of a planar object [14]. This
method learns the optimal parameters of an analytic model
given pre-impact states and outperforms pure analytic model.
Our work is similar to this method in that we are also
learning parameters for a contact model. However, instead
of optimizing the parameters by minimizing the discrepancy
between simulation and reality, we are extracting parameters
directly from experiments. Wang et al use a data-driven
piece-wise linear model to simulate cloth, which often has
complicated nonlinear, anisotropic elastic behavior due to
woven pattern and fiber properties [15]. Local stress-strain
parameters are obtained by linearly interpolating the local
strain and angle relative to woven pattern from a database
obtained through experiments. Bickel et al use a similar
approach to learn the local stress-strain relationship through
Radial Basis Function (RBF) interpolation on a database
of real experiment samples and use these parameters for
FEM simulation [16]. Both papers are able to capture the
non-linear and heterogeneous deformation behaviors of the
materials studied. Like these two works, we are also learning
model parameters that capture dominant physical properties
and performing dynamics simulations. But in our case, rather
than modeling the material stress-strain response, we are
concerned with approximating the macroscopic response of
granular media on a penetrating rigid object.

III. METHODS

The structure of our method is summarized in Fig. 1.
During offline learning, we run experiments on a granular

Fig. 1. The structure of our semi-empirical simulation framework.

medium to gather empirical force/torque for our contact
model at different configurations. Then we learn a model
to predict the wrench space for a new configurations. For
each time step during online simulation, we predict the
wrench space for each contact between a robot and the
granular substrate. Finally, the wrench space constraints are
incorporated in an optimization-based contact wrench solver.

A. Contact Model

The interaction between rigid objects and granular media
is complex, and in this work, we only model the most
dominant stick-slip behavior observed in low-velocity mo-
tion. Other properties like memory effects, high-velocity
inertial effects [17], force “overshoot” [10], and force fluc-
tuations [18], are left to future work.

An object moving in granular media causes the grains
around it to rearrange and slip against each other. Dry
friction between the grains contributes to the majority of
the resistance the object experiences. If the external force
applied on an object is too weak to cause slippage between
the grains, the object sits still. Studies have shown that at
low speeds, velocity-independent drag force dominates [19]
and this drag increases with larger penetration depth [10].
In addition, this drag is independent of the surface friction
between the object and an individual grain [18].

Our proposed contact model limits the possible frictional
contact wrenches between a rigid object and a substrate to
a given feasible wrench space. In the planar case considered
here we look at only a 3D wrench space (2D force and 1D
torque). The reference frames in this model are shown in
Fig. 2. We assume a roughly cylindrical shape of the object.
Point pr is a fixed point on the object, and will be the point
about which torques are measured. We define it on the central
axis of the cylinder and 0.25 m away from the center of the
bottom plate pcenter. Point pc is the closest point on the
surface of the substrate to pcenter. Frame Fc is centered at
pc and its z-axis points is the outward normal of the surface
of the substrate. Frame Fr has the same orientation as Fc
but its origin lies on pr.

The feasible wrench space W (Fig. 3a) is defined as a
set of all wrenches w ∈ R3 that can be exerted by the
substrate on the object, with forces and torques measured
with respect to Fr. When the force and torque needed to
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Fig. 2. Reference frames of a granular contact as described in the text.
The configuration of the cylinder relative to the substrate is parametrized
by d and φ. FG is the global frame.

(a) 3D view, with torque drawn in
the out-of-plane direction.

(b) View of (a) in Fx-Fz plane.

(c) Tilted foot. (d) Upright foot, greater depth.

Fig. 3. Visualizations of the resistance wrenches faced by a rigid cylinder
on pebbles.

achieve equilibrium is within W , the object remains still.
When the object starts moving/slipping, the friction resisting
the object lies on the boundary ∂W . This volume also
changes depending on the depth d and orientation φ of
the object relative to the surface frame Fc. We capture
dependent parameters of one object-substrate contact in a
vector θ = (d, φ). Our method uses machine learning to
predict the feasible wrench space W(θ), including its depth-
and orientation-dependence.

It may be possible to generalize θ to include other depen-
dent parameters, such as 3D orientation, the local geometry
of the substrate, the geometry of the foot, and granular
medium type. However, when more parameters are used,
the amount of data needed to model W accurately grows
rapidly. We focused on d and φ to strike a balance between
data acquisition difficulty and generalization.

B. Database and Learning

1) Data Formulation: To model W(θ) we capture points
on its limit surface; this exploits the property that if w ∈ W ,
then cw ∈ W for all c ∈ [0, 1] [20]. Our approach moves
the foot through a granular substrate in various directions and
record the resistance wrenches. By the stick-slip assumption,

this populates a set of points on ∂W(θ). W(θ) is then
approximated as the convex hull of the measured boundary
wrenches. Later, we show this assumption to hold well in
practice.

Specifically, we sample n parameter values θ1, . . . , θn, and
for each θj we obtain m points w1,j , . . . , wm,j on ∂W(θj).
To obtain wi,j , we move the foot through the substrate at the
depth and orientation specified by θj at a given velocity vj .
Then, wi,j is simply the measured resistance wrench.

2) Data Acquisition: It may be tempting to gather these
measurements simply by moving to a given value of θ,
and executing short movements with different velocities.
However, this poorly ensures that the medium is in slip
phase, due to elastic deformation and force overshoot [10].
Moreover, the medium is disturbed and compacted when the
foot moves through it, which runs the risk of inconsistent
measurement due to irregular loading. To address these
issues, our acquisition method executes longer controlled
trajectories and resets the material in-between runs.

For one run with parameter θdes and velocity vdes, both
defined with respect to Fc, we prepare the substrate in a
consistent manner and follow a constant-velocity trajectory
that passes through θdes. We record the resistance along the
trajectory, filter it, and then obtain a wrench estimate at the
instant when the foot is at θdes.

Specifically, we choose the duration of the whole tra-
jectory to be ttotal and pass θdes at 0.8 · ttotal, which
is chosen for consistency of repeated measurements. The
process follows these steps, as shown in Fig. 5:

1) Prepare the surface such that it is flat and not com-
pacted.

2) Move the foot from above the granular surface directly
to the starting point of the trajectory. This point is
θdes − 0.8ttotalvdes.

3) Start moving at velocity vdes for duration ttotal, while
recording force, torque and position.

4) Filter the data with a low-pass filter to remove noise.
Calculate exactly when the configuration reaches θdes
and record the wrench at this time.

5) Transform the wrench to frame Fr.
The simulation and real robot setup we use for acquiring
data is shown in Fig. 4. Simulation is performed using
YADE [21], an open-source DEM software, where a floating
cylinder is moved through a box of 58,500 spheres. The robot
we use is Robosimian, a quadruped with 28 active degrees
of freedom and F/T sensors on the ends of its four limbs.
One of the feet is driven through a container filled with a
granular medium and acquire measurements with the F/T
sensor connecting the foot and ankle links.

3) Learning: Our database consists of n parameter values
θ1, . . . , θn, and for each θj we have m extreme wrenches
w1,j , . . . , wm,j on ∂W(θj). To model ∂W(θ), we learn m
regression models that predict the m extreme wrenches for a
novel value of θ. Specifically, each wrench regression wi(θ)
is learned so that wi(θj) ≈ wi,j for j = 1, . . . , n.

Experiments find that Radial Basis Function (RBF) in-
terpolation, Gaussian Process (GP), and SVM regression
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(a) Simulation setup in the DEM
simulator YADE for data acqui-
sition.

(b) Data acquisition apparatus
with Robosimian.

Fig. 4. Data acquisition is performed in simulation or a physical robot.

(a) Force acquisition tra-
jectory.

(b) Force-torque data along trajectory.

Fig. 5. The robot foot trajectory for a run with θdes = [−0.03, π
2
, 0] and

vdes = [0.014,−0.014, 0] in sand. The four milestones are: (1) starting
pose for the foot, (2) start of the constant velocity trajectory, (3) the robot
reaches θdes, (4) end of trajectory.

achieve similar performance. Results using 5-fold cross
validation show that RBF interpolation outperforms GP and
SVM slightly on our dataset, so we use it in our experiments.

In order to approximate W(θ), we then take the convex
hull of w1(θ), . . . , wm(θ) and represent the feasible set using
the minimal half-space represention:

A(θ)w ≤ b(θ). (1)

C. Simulation Framework

Our simulation framework is built upon the work of [22],
which solves for contact forces based on the Maximum
Dissipation Principle (MDP). Specifically, at each time step
the simulation calculates the friction forces maximize the
rate of energy dissipation, i.e., minimizing kinetic energy
at the next simulation frame. Compared to more traditional
linear complementary problem (LCP) methods [23], [24],
this method has comparable accuracy and is more convenient
for extending simulations beyond Coulomb friction models.

When applying MDP to our case, we note that the move-
ment of particles in the granular substrate also contributes
KE to the system. While we cannot know the microscopic
movements of all the particles, we assume that the aggregate
velocity of the particles is a multiple of the velocity at the
bottom of the foot. Our approach then minimizes the sum
of the KE of simulated bodies and the approximated KE of
granular particles.

We use generalized coordinate representation, and define
the following notation:

• h: time step size
• q, v: generalized coordinates and velocities
• u: joint torque control inputs
• k: generalized external forces
• M : generalized inertia matrix
• Ju: joint control torque jacobian
• ct: stacked vector of contact wrench impulses
• cj : stacked vector of joint constraint impulses
• Jt: contact wrench Jacobian
• Jc: joint constraint Jacobian
• Jp: pcenter velocity Jacobian
• Mg: mass matrix of the granular particles
During each simulation step, a contact detector examines

whether foot i penetrates the granular medium, and if so,
calculates the contact parameters θi. We clamp φi to be
between −π2 and π

2 because more extreme angles would be
quite far from the sampled data. The bodies are considered to
be in contact when di is negative. The foot may still touch the
substrate if di > 0 and φi 6= 0. However, since the resistance
is small in this case, we ignore it for simplicity. For wider
feet, one might not want to leave this out. For each contact,
we predict its corresponding feasible wrench space W(θi)
using the learned model in the foot’s local reference frame,
rotate it to the global frame if it is on a slope and convert it
to half-space representation.

Then, we calculate the joint and contact wrench impulses
by solving the following optimization problem:

min
ct,cj

vt+1TMvt+1+(Jpv
t+1)TMg(Jpv

t+1) s.t.

Jcv
t+1 =0

hA1(θ1)ct1 ≤ b1(θ1)
...

hAN (θN )ctN ≤ bN (θN ).

(2)

In this problem, the velocity on the next time step is vt+1 =
M−1(JTt ct + JTc cj + JTu u+ hk) + vt. The second term in
the objective represents the kinetic energy of the granular
substrate. Jp transforms the velocity at center of mass of
each foot to that at pcenter. Mg is used to approximate the
aggregate momentum of change of the grains as a function
of the velocity of pcenter. The resulting problem is a QP
and can be solved in polynomial time. The position is then
updated according to qt+1 = qt + hvt+1.

IV. EXPERIMENTS AND RESULTS

A. Data Generation

We test on 1 granular medium in DEM simulation and 2
physical media. The DEM simulation medium (Beads) uses
particles with the following properties:

• Young’s modulus: 3 ∗ 108
• Poisson’s ratio: 0.3
• Density: 1631 kg/m3

• Coefficient of friction: 0.577
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Fig. 6. Pebbles and sand used in our experiments. A 0.25 USD coin is
shown for scale.

TABLE I
DISCRETIZED CONFIGURATIONS FOR THREE MEDIA.

Medium Depth d(m) Tilt φ(rad)
Beads [0,-0.06,-0.12,-0.18,-0.24] [0,0.25,0.5,0.75,1,1.25,1.5]
Pebbles [0,-0.015,-0.03,-0.045] [0,0.3,0.6,0.9]
Sand [0,-0.01,-0.03,-0.05,-0.07] [0,0.3,0.6,0.9]

• Shape: spheres with radius of 0.01 m.
The physical granular media are pond pebbles with diameter
of about 0.8-1.0 cm (Pebbles) and fine play sand (Sand),
shown in Fig. 6.

We sample n configurations on a grid of d and φ. The
ranges respect the size of the foot and the torque limits of the
robot, such that the foot does not get submerged completely
into the medium or exceed the stall force of the robot. The
resolution of the grid is chosen according to practical time
and computational resource limitations. Table I summarizes
the the grid parameters. At zero depth, we do not run any
experiments and set all wrenches to zero. Also, to achieve
better data efficiency, we exploit symmetry in the foot shape,
so that the wrench space of (di, φi) has the same shape as
that of (di,−φi), but with the signs of force in the x direction
and torque flipped.

For each configuration, we sample a uniform grid of
m velocities on the surface on a 3D unit sphere using
spherical coordinates. The unit velocities are then scaled
in the x, z, and φ axes by (0.2m/s, 0.2m/s 0.6 rad/s) for
Beads and (0.02m/s, 0.02m/s 0.3 rad/s) for Pebbles and
Sand. The discrepancy comes from the fact that the latter
two are much stiffer and the robot foot cannot penetrate
into them too much. For DEM simulation, we collect data
for m=26 and m=58. Running our simulators using these
two different densities of sampling, we do not observe a
significant difference in the object’s post-contact motion. For
real world experiments, which are more time consuming, we
collect data for m=26 only.

B. Validity of Convexity Assumption

We evaluate the extent to which the wrench space con-
vexity assumption holds. As a concavity metric, we use
the relative distance between the convex hull surface and
innermost point in the convex hull. Specifically, for a given θj
this dimensionless measure is Concavityj = maxi((b(θj) −
A(θj)wi,j)/‖wi,j‖). To avoid points with small magnitude,
we exclude data where depth is zero, or the magnitude of the
point is less then 1. If all of the inner points are less than 1,

TABLE II
CONCAVITY OF EMPIRICAL WRENCH SPACES

Medium Average Concavity Worst Concavity
Beads 0.0174 0.1207
Pebbles 0.0013 0.0155
Sand 0 0

(a) Robot foot trajec-
tory (to scale)

(b) Wrenches, Sand

Fig. 7. Comparing measured wrenches between the physical Robosimian
and our simulator using a straight path and the Sand medium.

we treat the concavity as zero. Tab. II lists for each medium
the average concavity across configurations as well as the
worst case. Most of the wrench spaces are convex. There
are only a few wrench spaces with concavity larger than
10%, and these occur at wrenches with small magnitudes.

C. Simulation Experiments

1) Accuracy Test: To evaluate the accuracy of our method,
we command a foot to follow a trajectory and compare
the resistance on the robot acquired from experiments
and our simulator. Our simulator uses a simple PID con-
troller to follow the reference trajectory. The mass and
the moment of inertia of the simulated foot are 7.357 kg
and 0.061 kg·m2. The PID gains being used are Kp =
[8000, 20000, 300], Ki = [4000, 6000, 1000] and Kd =
[200, 400, 10]. Mg is tuned empirically by matching sim-
ulated and measured trajectories and wrenches, and we
use Mg = diag(14.714, 14.714, 0.122), which is twice the
inertia of the foot.

Fig. 7 shows a good match between the simulated re-
sistance and measured resistance on a straight trajectory in
Sand, showing resistance force and torque increasing with
depth. This is similar for Pebbles medium and is not shown
here. Results for a curved path in Pebbles are shown in
Fig. 8b. The simulator is able to predict the general trend
and approximate magnitudes of the resistance. However, the
simulated resistance stays high as the downward movement
slows, while the actual resistance drops. We believe that
the discrepancy is caused by un-modelled memory effects,
such as compaction, and some integral wind-up from the
simulated PID controller. Modeling memory effects would
be an interesting problem for future work.
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(a) Robot foot trajectory
(not to scale)

(b) Wrenches, Pebbles

Fig. 8. Comparing measured wrenches between physical Robosimian and
our simulator using a curved path and the Pebbles medium.

(a) Drop on a slope. (b) Tilted drop on a
flat surface.

Fig. 9. Drop tests.

2) Drop Test with a Single Foot: Next, we perform a
test of dropping behavior with one single object. We drop
the object from a small height at two different surface
orientations, displayed in Fig. 9. When the object is dropped
in vertical orientation of flat terrain, it remains erect. In
slightly sloped terrain, the object begins to tip, but ultimately
is able to balance because the medium is able to provide
a resistance torque. When slightly tilted at 0.2 radian, the
object tips over and eventually stops on a flat surface.

3) 2D Quadruped Locomotion Test: Our next tests per-
form a highly simplified model of the sagittal movement of
a quadruped walking on soft terrain. Fig. 10 shows images
from the resulting animations. Note that the robot faces to
the right of the pageand the simulated terrain is sand, if not
specified. In the first simulation, the robot has its weight
shifted to the rear legs and pushes the front feet forward.
Because the rear feet are able to resist a larger force, only
the front feet slip. The second simulation is one trotting gait,
where the diagonal two limbs move simultaneously. The feet
sink and lift realistically as the weight of the body shifts.
In the third simulation, the robot is dropped onto a sloped
terrain, with its joints locked. The robot initially slides and
accelerates, but eventually stops when the terrain flattens.
Pebbles allow shallower penetration and stops the robot at a
higher potential energy, compared to sand. This is expected
because pebbles are able to provide greater resistance force
at the same penetration depth.

4) Computation Speed: In this test, we use a more
complicated quadruped model that includes 1 body and 4
limbs, with each limb consisting of 2 links and 1 foot. In
total, a system of 13 rigid bodies and 12 revolute joints are

(a) Pushing the front feet forward. Because the rear legs are sunk
deeper in the sand, they resist motion more, so the front feet slip.

(b) A trot gait showing deeper penetration during the two-foot phase.

(c) Sliding on a slope and eventually stopping, with
joints fixed. The red and green lines show the trace
of the front and rear feet, respectively. The snapshots
of the robot are from the simulation on pebbles.

Fig. 10. Locomotion tests with different terrains on a simplified 2D
Robosimian model facing right.

simulated in Matlab on a standard PC with an Intel i7 2.4GHz
processor. The resultant optimization problem has 4 contacts,
36 variables, 24 constraints associated with joints, and 4 sets
of constraints from granular contacts. One frame on average
takes about 0.343 s to compute, with about 90% of the time
spent on solving the optimization, and about 5% on interpo-
lating the wrench spaces. By utilizing a complied language
and a more task-specific convex optimization package, we
expect to speed up computation significantly.

V. CONCLUSION

This paper proposed a contact model for rigid objects
and granular media to capture depth-dependent stick-slip
phenomena. We present a procedure to acquire data-driven
feasible wrench spaces and learn the parameters for this
contact model. An optimization-based rigid contact force
solver is developed to use this data to simulate continuous
granular contact with multiple contacts at interactive rates.
Future work should consider improving the prediction accu-
racy by incorporating memory effects of granular material
like compaction and pile formation. Also, it is important
to examine improving the data efficiency of the learning
approach as more parameters are included in the model,
which makes generalization more challenging.
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