

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

BEHAVIOR LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Interpretable machine learning is increasingly vital for scientific research, yet the performance–interpretability trade-off, insufficient alignment with scientific theory, and non-identifiability limit its scientific credibility. Grounded in behavioral science, we propose *Behavior Learning* (BL), a novel general-purpose ML framework that unifies predictive performance, intrinsic interpretability, and identifiability for scientifically credible modeling. BL discovers interpretable and identifiable optimization structures from data. It does so by parameterizing a compositional utility function built from intrinsically interpretable modular blocks, which induces a data distribution for prediction and generation. Each block represents and can be written in symbolic form as a utility maximization problem (UMP), a foundational paradigm in behavioral science and a universal framework of optimization. BL supports architectures ranging from a single UMP to hierarchical compositions, the latter modeling hierarchical optimization systems that offer both expressiveness and structural transparency. Its smooth and monotone variant (IBL) guarantees identifiability under mild conditions. Theoretically, we establish the universal approximation property of both BL and IBL, and analyze the M-estimation properties of IBL. Empirically, BL demonstrates strong predictive performance, intrinsic interpretability and scalability to high-dimensional data.

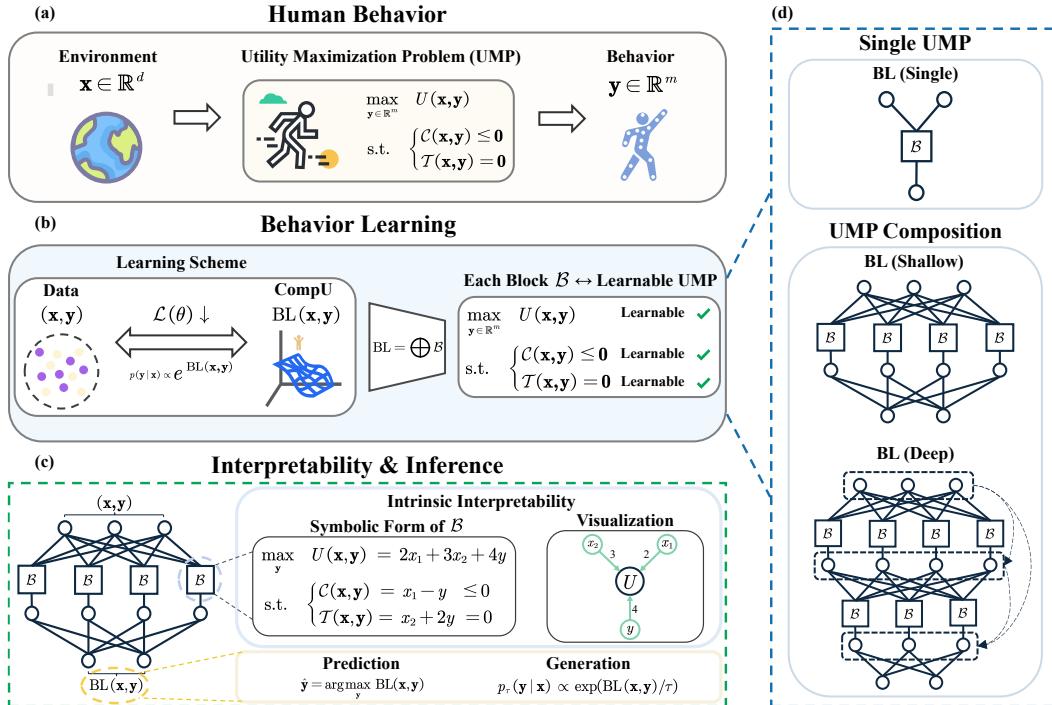


Figure 1: **Behavior Learning (BL).** (a) Human behavior modeled as a UMP. (b) Learning scheme of BL, where CompU denotes the compositional utility function. (c) BL offers intrinsic interpretability (via symbolic form as an optimization problem), identifiability (via unique parameterization), and inference capability. (d) Three architectural variants of BL, from single UMP to deep compositions.

054
055
056
057

1 INTRODUCTION

058
059
060
061
062
063
064
065
066

Scientific research often grapples with phenomena that resist precise formalization (Anderson, 1972; Mitchell, 2009), including human and social domains (Simon, 1955; Arthur, 2009). Such phenomena are difficult to predict and even harder to falsify through theory alone. Interpretable machine learning (Interpretable ML) (Molnar, 2020), with its powerful approximation capabilities and built-in transparency, offers a promising alternative for modeling such phenomena. Yet a long-standing tension remains unresolved: model predictive performance and intrinsic interpretability often trade off—a challenge commonly known as the *performance–interpretability trade-off* (Arrieta et al., 2020). High-performing models such as deep neural networks (LeCun et al., 2015) typically lack transparency, while intrinsically interpretable models struggle to capture complex nonlinear patterns.

066
067
068
069
070
071
072

Some efforts have been made to mitigate the performance–interpretability trade-off, and the main existing approaches can be broadly grouped into four categories. (i) Additive models (Caruana et al., 2015; Hastie, 2017; Nori et al., 2019; Agarwal et al., 2021; Chang et al., 2021). (ii) Concept-based models (Alvarez Melis & Jaakkola, 2018; Kim et al., 2018; Koh et al., 2020). (iii) Rule- and score-based systems (Ustun & Rudin, 2016; Angelino et al., 2018). (iv) Shape-constrained neural networks (You et al., 2017). Recent additional interpretable modeling frameworks include Kraus et al. (2024); Liu et al. (2024b); Plonsky et al. (2025). These approaches demonstrate varied strengths.

073
074
075
076
077
078
079
080
081
082
083
084
085

However, two fundamental limitations remain, restricting their scientific applicability. (i) *Insufficient alignment with scientific theories*. Most approaches focus on extending existing machine learning methods to achieve interpretability, rather than developing a scientifically grounded framework (e.g., based on optimization problems or differential equations). This often hinders alignment with scientific theories and limits the ability to extract scientific knowledge from learned models (Roscher et al., 2020; Bereska & Gavves, 2024; Longo et al., 2024). (ii) *Non-uniqueness of interpretations*. Most models are *non-identifiable*—their interpretations are not uniquely determined by observable predictions in a mathematical sense (Ran & Hu, 2017; Méloux et al., 2025). As a result, such models cannot support reliable estimation of ground-truth parameters (Newey & McFadden, 1994; Van der Vaart, 2000), and may even lack Popperian falsifiability (Popper, 2005), ultimately limiting their scientific credibility. These limitations naturally raise a key question: can we design an interpretable ML framework that mitigates the performance–interpretability trade-off while being scientifically grounded and identifiable?

086
087
088
089
090
091
092
093
094
095
096

Grounded in behavioral science, we propose **Behavior Learning (BL)**: a novel, general-purpose interpretable ML framework for scientifically credible modeling. It unifies high predictive performance, intrinsic interpretability, and identifiability. As illustrated in Figure 1, BL builds on one of the most fundamental paradigms in behavioral science—utility maximization—which posits that human behavior arises from solving a *utility maximization problem* (UMP) (Samuelson, 1948; Debreu, 1959; Mas-Colell et al., 1995). Motivated by this paradigm, BL learns interpretable latent optimization structures from data. It models responses (y) as drawn from a probability distribution induced by a UMP or a composition of multiple interacting UMPs. This distribution is parameterized by a compositional utility function $BL(x, y)$, constructed from intrinsically interpretable modular blocks $\mathcal{B}(x, y)$. Each block is a learnable penalty-based formulation that represents a **optimization problem** (UMP), which can be written in symbolic form and offers transparency comparable to linear regression.

097
098
099
100
101
102
103
104

BL admits three architectural variants: *BL(Single)*, defined by a single block; *BL(Shallow)*, a moderately layered composition of blocks; and *BL(Deep)*, a deep hierarchical composition of multiple blocks. The latter two model, and can be symbolically interpreted as, **hierarchical optimization systems**. All variants are trained end-to-end to induce a conditional Gibbs distribution for prediction and generation. By refining the penalty functions in each block into smooth and monotone forms, we develop *Identifiable BL* (IBL), the identifiable variant of BL. Under mild conditions, IBL guarantees unique intrinsic interpretability. This property ensures the scientific credibility of its explanations and further supports recovery of the ground-truth model under appropriate conditions.

105
106
107

While motivated by behavioral science, *BL* is not domain-specific. It applies broadly to any scientific domain where observed outcomes arise as solutions to (explicit or latent) optimization problems—such as macroeconomics (Ramsey, 1928; Ljungqvist & Sargent, 2018), statistical physics (Gibbs, 1902; Landau & Lifshitz, 2013), or evolutionary biology (Wright et al., 1932; Fisher, 1999).

108 This generality is supported by a key theoretical insight (Theorem 2.2): any optimization problem
 109 can be equivalently written as a UMP. This makes BL a general-purpose modeling framework for
 110 *data-driven inverse optimization* (Ahuja & Orlin, 2001) across diverse scientific disciplines.
 111

112 BL connects to three major research areas. (i) *Interpretable machine learning*. BL introduces a
 113 novel framework of interpretable ML that are optimization-grounded, symbolically expressible, and
 114 identifiable, thereby supporting scientifically credible modeling. (ii) *Inverse optimization*. BL re-
 115 lates to data-driven inverse optimization (Ahuja & Orlin, 2001; Keshavarz et al., 2011) and inverse
 116 reinforcement learning (Ng et al., 2000; Wulfmeier et al., 2015), but differs by learning the full con-
 117 strained optimization structure, its associated training scheme, and the hierarchical compositions
 118 built upon it. (iii) *Energy-based models*. BL shares training techniques with energy-based mod-
 119 els (LeCun et al., 2006), such as Gibbs-style modeling and denoising score matching (Hyvärinen
 120 & Dayan, 2005; Vincent, 2011). Instead of learning an opaque neural energy function, BL learns
 121 compositions of interpretable optimization problems.

122 We study BL both theoretically and empirically. Theoretically, we show that both BL and IBL ad-
 123 mit universal approximation under mild assumptions (Section 2.2). For IBL, we further establish its
 124 M-estimation properties (Section 2.3), including identifiability, consistency, universal consistency,
 125 asymptotic normality, and asymptotic efficiency. Empirically, we evaluate BL across four tasks.
 126 Standard prediction tasks (Section 3.1) demonstrate its strong predictive performance. Counter-
 127 factual prediction (Section 3.2) highlights its potential applications in causal inference. A qual-
 128 itative case study (Section 3.3) illustrates its intrinsic interpretability. Finally, prediction on high-
 129 dimensional inputs (Section 3.4) demonstrates its scalability to high-dimensional data. Due to lim-
 130 ited space, we defer related works to Appendix A.

131 Overall, our key contributions are threefold. (i) We propose Behavior Learning (BL), a novel
 132 general-purpose machine learning framework grounded in behavioral science, which unifies high
 133 predictive performance, intrinsic interpretability, identifiability, and scalability. (ii) For scientific re-
 134 search, BL offers a scientifically grounded and identifiable interpretable ML approach for modeling
 135 complex phenomena that defy precise formalization. BL applies broadly to scientific disciplines
 136 associated with optimization. (iii) At the paradigm level, BL learns from data the optimization
 137 structure of either a single optimization problem or a hierarchical composition of problems through
 138 distributional modeling, contributing a new methodology to data-driven inverse optimization.

2 BEHAVIOR LEARNING (BL)

2.1 UTILITY MAXIMIZATION PROBLEM (UMP)

142 The modeling of human behavior, particularly in behavioral science and decision theory, often be-
 143 gins with the assumption that observed outcomes arise from a latent optimization process. A canon-
 144 ical formulation of this idea is the Utility Maximization Problem (UMP) (Mas-Colell et al., 1995),
 145 in which an agent selects actions $\mathbf{y} \in \mathcal{Y}$ in response to contextual features $\mathbf{x} \in \mathcal{X}$ by solving:

$$\max_{\mathbf{y} \in \mathcal{Y}} U(\mathbf{x}, \mathbf{y}) \quad \text{s.t.} \quad \mathcal{C}(\mathbf{x}, \mathbf{y}) \leq 0, \quad \mathcal{T}(\mathbf{x}, \mathbf{y}) = 0 \quad (1)$$

146 Here, $U(\cdot)$ denotes a subjective utility function encoding the agent’s internal preferences or goals.
 147 The inequality constraint $\mathcal{C}(\cdot)$ captures resource constraints, while the equality constraint $\mathcal{T}(\cdot)$ en-
 148 codes either endogenous belief consistency or exogenous conservation laws.

149 The UMP can be recast as a cost–benefit framework, where the agent trades off utility gains against
 150 constraint violations. Formally, under mild regularity conditions, it admits an equivalent uncon-
 151 strained reformulation via a penalty formulation (Han & Mangasarian, 1979), as formalized below.

152 **Theorem 2.1** (Penalty Function Equivalence for UMP). *Let $\mathcal{X} \subset \mathbb{R}^{d_x}$ and $\mathcal{Y} \subset \mathbb{R}^{d_y}$ be nonempty
 153 compact sets, and let $U : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, $\mathcal{C} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^m$, and $\mathcal{T} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^p$ be Lipschitz
 154 continuous. Assume Slater’s condition holds for the Utility Maximization Problem (UMP). Then
 155 there exist $\lambda_0 > 0$, $\lambda_1 \in \mathbb{R}_{++}^m$, $\lambda_2 \in \mathbb{R}_{++}^p$ such that the unconstrained objective*

$$\max_{\mathbf{y} \in \mathcal{Y}} \lambda_0 \phi(U(\mathbf{x}, \mathbf{y})) - \lambda_1^\top \rho(\mathcal{C}(\mathbf{x}, \mathbf{y})) - \lambda_2^\top \psi(\mathcal{T}(\mathbf{x}, \mathbf{y})) \quad (2)$$

156 have the same global maximizers. Here, $\phi : \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing C^1 map, and $\rho, \psi : \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ are convex “penalty” functions satisfying $\rho(z) = 0$ for $z \leq 0$, $\rho(z) > 0$ for $z > 0$; and
 157 $\psi(-z) = \psi(z)$, $\psi(0) = 0$, $\psi(z) > 0$ for $z \neq 0$.

162 The proof is provided in Appendix F.1. This unconstrained reformulation offers greater tractability
 163 for both theoretical analysis and model training.

164 While motivated by behavioral modeling, the UMP formulation is not domain-specific. It applies
 165 to any setting where observed outcomes are solutions to (explicit or latent) optimization problems.
 166 This is because any optimization problem can be equivalently formulated as a UMP. We state this in
 167 the following result, while the formal statement and proof are provided in Appendix F.1.

168 **Theorem 2.2 (Universality of UMP).** *Any optimization problem of the form $\max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y})$ or
 169 $\min_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y})$, subject to equality and inequality constraints, is equivalent to a UMP.*

171 2.2 BL ARCHITECTURE
 172

173 Figure 1(b-d) illustrates the architecture of BL. We consider samples $(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}$, where $\mathbf{x} \in \mathbb{R}^d$
 174 denotes contextual features and \mathbf{y} is the response, represented as $(\mathbf{y}^{\text{disc}}, \mathbf{y}^{\text{cont}}) \in \mathcal{Y}_{\text{disc}} \times \mathbb{R}^{m_c}$, cap-
 175 turing its hybrid structure. Responses are assumed to be stochastically generated by solving multiple
 176 interacting UMPs, each with a penalty-based formulation, which together compose a compositional
 177 utility function $\text{BL}(\mathbf{x}, \mathbf{y})$. On this basis, we model the data using a conditional Gibbs distribution
 178 (Gibbs, 1902) parameterized by $\text{BL}_{\Theta}(\mathbf{x}, \mathbf{y})$:

$$179 \quad p_{\tau}(\mathbf{y} \mid \mathbf{x}; \Theta) = \frac{\exp(\text{BL}_{\Theta}(\mathbf{x}, \mathbf{y})/\tau)}{Z_{\tau}(\mathbf{x}; \Theta)}, \quad Z_{\tau}(\mathbf{x}; \Theta) = \int_{\mathcal{Y}} \exp(\text{BL}_{\Theta}(\mathbf{x}, \mathbf{y}')/\tau) d\mathbf{y}' \quad (3)$$

181 Here the temperature parameter $\tau > 0$ controls the randomness of the response. As $\tau \rightarrow 0$, the
 182 distribution in equation 3 converges to a Dirac measure supported on $\arg \max_{\mathbf{y}} \text{BL}(\mathbf{x}, \mathbf{y})$, thereby
 183 recovering the deterministic best response obtained by solving the composed UMPs.

185 **Model Structure of $\text{BL}(\mathbf{x}, \mathbf{y})$.** To represent the composition of multiple UMPs, we build
 186 $\text{BL}(\mathbf{x}, \mathbf{y})$ by composing fundamental modular blocks $\mathcal{B}(\mathbf{x}, \mathbf{y})$. Each block provides a penalty-based
 187 formulation of a single UMP, and together they yield the overall compositional utility function.
 188 Motivated by Theorem 2.1, we parameterize $\mathcal{B}(\mathbf{x}, \mathbf{y})$ as

$$189 \quad \mathcal{B}(\mathbf{x}, \mathbf{y}; \theta) := \lambda_0^{\top} \phi(U_{\theta_U}(\mathbf{x}, \mathbf{y})) - \lambda_1^{\top} \rho(C_{\theta_C}(\mathbf{x}, \mathbf{y})) - \lambda_2^{\top} \psi(T_{\theta_T}(\mathbf{x}, \mathbf{y})) \quad (4)$$

190 where $\theta := (\lambda_0, \lambda_1, \lambda_2, \theta_U, \theta_C, \theta_T)$ denotes the complete set of learnable parameters. Following
 191 Theorem 2.1, ϕ is an increasing function; ρ penalizes inequality violations; and ψ captures symmet-
 192 ric deviations. Each block can be written as a well-defined UMP.

193 We then compose $\text{BL}(\mathbf{x}, \mathbf{y})$ from multiple \mathcal{B} -blocks in three structural forms to improve its repre-
 194 sentational power for optimization structures, as illustrated in Figure 1(d).

195 1. BL(Single) applies a single instance of $\mathcal{B}(\mathbf{x}, \mathbf{y})$ as defined in equation 4, without any additional
 196 layers. It can be viewed as learning a single UMP, and offers maximal interpretability.

197 2. BL(Shallow) uses $\mathcal{B}(\mathbf{x}, \mathbf{y})$ as the fundamental modular block to construct a shallow net-
 198 work. It introduces one or two intermediate layers of computation. Each layer \mathbb{B}_{ℓ}
 199 stacks multiple parallel $\mathcal{B}_{\ell, i}$ blocks to produce a vector in $\mathbb{R}^{d_{\ell}}$, i.e., $\mathbb{B}_{\ell}(\mathbf{x}, \mathbf{y}; \theta_{\ell}) :=$
 200 $[\mathcal{B}_{\ell, 1}(\mathbf{x}, \mathbf{y}; \theta_{\ell, 1}), \dots, \mathcal{B}_{\ell, d_{\ell}}(\mathbf{x}, \mathbf{y}; \theta_{\ell, d_{\ell}})]^{\top}$. The output of \mathbb{B}_{ℓ} is directly fed into the next $\mathbb{B}_{\ell+1}$,
 201 and only the final output is passed through a learnable affine transformation.

202 3. BL(Deep) extends the BL(Shallow) architecture to more than two layers, enabling richer hierar-
 203 chical compositions of UMPs while maintaining the same recursive structure. As before, only
 204 the final output is affine transformed.

205 The overall structure of BL(Shallow) and BL(Deep) can be expressed in a unified form, where the
 206 shallow case corresponds to $L \leq 2$ and the deep case to $L > 2$:

$$207 \quad \text{BL}(\mathbf{x}, \mathbf{y}) := \mathbf{W}_L \cdot \mathbb{B}_L(\cdots \mathbb{B}_2(\mathbb{B}_1(\mathbf{x}, \mathbf{y})) \cdots) \quad (5)$$

208 **Learning Objective.** The response \mathbf{y} may contain both discrete and continuous components. For
 209 discrete responses, we directly apply cross-entropy (Kullback & Leibler, 1951) on \mathbf{y}^{disc} . For continuous
 210 responses, since the compositional utility function is analogous to an energy function (LeCun
 211 et al., 2006), we employ denoising score matching (Vincent, 2011) on \mathbf{y}^{cont} . The final objective
 212 combines the two with nonnegative weights γ_d, γ_c :

$$213 \quad \mathcal{L}(\theta) = \gamma_d \mathbb{E}[-\log p_{\tau}(\mathbf{y}^{\text{disc}} \mid \mathbf{x})] + \gamma_c \mathbb{E}[\|\nabla_{\tilde{\mathbf{y}}^{\text{cont}}} \log p_{\tau}(\tilde{\mathbf{y}}^{\text{cont}} \mid \mathbf{x}) + \sigma^{-2}(\tilde{\mathbf{y}}^{\text{cont}} - \mathbf{y}^{\text{cont}})\|^2] \quad (6)$$

216 **Implementation Details.** Here, we describe the key implementation choices for the general form
 217 of BL, taken as defaults unless otherwise noted. Further details are provided in Appendix E.3.

218 • Function Instantiation. Following equation 4, we instantiate the function $\mathcal{B}(\mathbf{x}, \mathbf{y})$ as

219
$$\mathcal{B}(\mathbf{x}, \mathbf{y}) = \lambda_0^\top \tanh(\mathbf{p}_u(\mathbf{x}, \mathbf{y})) - \lambda_1^\top \text{ReLU}(\mathbf{p}_c(\mathbf{x}, \mathbf{y})) - \lambda_2^\top |\mathbf{p}_t(\mathbf{x}, \mathbf{y})| \quad (7)$$

220 where $\mathbf{p}_u, \mathbf{p}_c, \mathbf{p}_t$ are polynomial feature maps of bounded degree, providing interpretable
 221 representations of utility, inequality, and equality terms, respectively. The bounded tanh reflects
 222 the principle of diminishing marginal utility (Jevons, 2013), a commonly assumed principle in
 223 behavioral science, while ReLU and $|\cdot|$ introduce soft penalties for constraint violations.

224 • Polynomial Maps. In BL(Single), the structure of polynomial maps is optional. In BL(Shallow)
 225 and BL(Deep), each \mathcal{B} -block employs affine transformations as its polynomial maps, with
 226 higher-degree and interaction terms omitted by default for computational efficiency.

227 • Skip Connections. For deep variants, skip connections can be optionally introduced to improve
 228 representational efficiency.

229 **Theoretical Guarantees.** Under the given architecture, the BL framework has universal approxi-
 230 mation power: it can approximate any continuous conditional distribution arbitrarily well, provided
 231 that BL has sufficient capacity, as stated below. The proof is given in Appendix F.2.

232 **Theorem 2.3 (Universal Approximation of BL).** *Let $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} \subset \mathbb{R}^m$ be compact sets, and let
 233 $p^*(\mathbf{y} \mid \mathbf{x})$ be any continuous conditional density such that $p^*(\mathbf{y} \mid \mathbf{x}) > 0$ for all $(\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y}$.
 234 Then for any $\tau > 0$ and $\varepsilon > 0$, there exists a finite BL architecture (with depth and width depending
 235 on ε) and a parameter θ^* such that the Gibbs distribution in equation 18 satisfies*

236
$$\sup_{\mathbf{x} \in \mathcal{X}} \text{KL}(p^*(\cdot \mid \mathbf{x}) \parallel p_\tau(\cdot \mid \mathbf{x}; \theta^*)) < \varepsilon. \quad (8)$$

237 **Interpretability.** Alongside its expressive power, BL also exhibits strong intrinsic interpretability.
 238 (i) Each \mathcal{B} -block can be expressed in **symbolic form** as an optimization problem (UMP): the tanh
 239 term defines the objective, the ReLU term corresponds to an inequality constraint, and the absolute-
 240 value term corresponds to an equality constraint. Thus, BL(Single) can be directly expressed as
 241 a symbolic UMP, whereas deeper architectures can be interpreted as compositions of UMPs, with
 242 each block retaining interpretability. (ii) The **polynomial basis** ensures a level of **transparency**
 243 **comparable to linear regression**, as both objectives and constraints can be represented as linear
 244 combinations of polynomial features. It can further be visualized as a computational graph (Figure
 245 6), in which each input’s influence on every \mathcal{B} -block is traceable through compositional pathways.
 246 (iii) **BL(Deep)** composes \mathcal{B} -blocks in a layered manner, forming a **hierarchical optimization**
 247 **system**. Interpretation proceeds in a bottom-up fashion, where the relation between any two consec-
 248 utive layers can be viewed as aggregation or coarse-grained observation. Overall, the interpretive
 249 pathway is: *raw input features \rightarrow micro-level optimization blocks \rightarrow macro-level aggregation or*
 250 *coarse-grained behavioral constructs \rightarrow macro-level optimization systems*. Appendix B provides a
 251 detailed description of this interpretation procedure. (iv) BL also offers multiple architectural de-
 252 grees of freedom that provide flexibility but simultaneously affect the resulting interpretability. In
 253 deep variants, skip connections introduce cross-layer dependency structures that are modeled in
 254 statistical physics (Yang & Schoenholz, 2017). Replacing polynomial maps with affine transformations
 255 preserves the underlying optimization semantics but reduces symbolic granularity, yielding a more
 256 qualitative rather than symbolic interpretation of each block. (v) BL can be interpreted as a single
 257 UMP when the final layer contains only one \mathcal{B} -block, since all lower-layer structures aggregate into
 258 a unified optimization problem. When the final layer contains multiple \mathcal{B} -blocks, BL corresponds to
 259 a linear trade-off among multiple optimization problems

260

2.3 IDENTIFIABLE BEHAVIOR LEARNING (IBL)

261 Beyond prediction and interpretability, the BL framework supports a third fundamental goal: *the*
 262 *identification of ground-truth parameters*, which in turn endows BL with the capacity for scientific-
 263 ally credible modeling. We refer to this setting as **Identifiable Behavior Learning (IBL)**. In the
 264 IBL setting, we define the modular block as

265
$$\mathcal{B}^{\text{id}}(\mathbf{x}, \mathbf{y}; \theta) := \lambda_0^\top \phi^{\text{id}}(U_{\theta_U}(\mathbf{x}, \mathbf{y})) - \lambda_1^\top \rho^{\text{id}}(\mathcal{C}_{\theta_C}(\mathbf{x}, \mathbf{y})) - \lambda_2^\top \psi^{\text{id}}(\mathcal{T}_{\theta_T}(\mathbf{x}, \mathbf{y})) \quad (9)$$

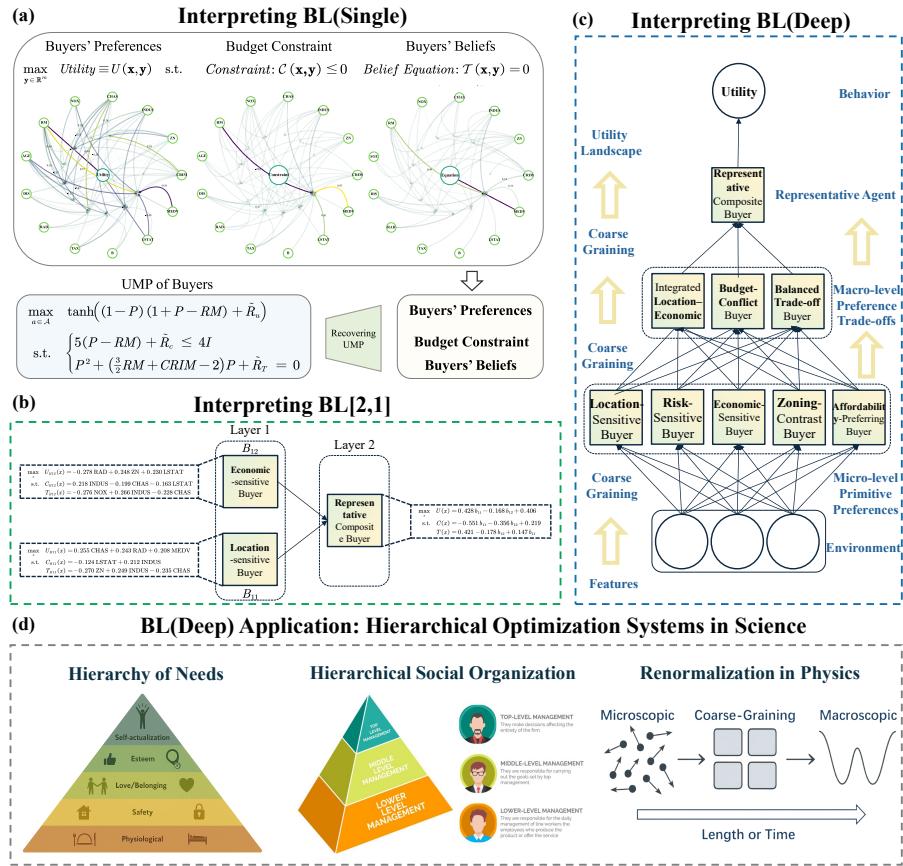


Figure 2: (a) Visualization and symbolic form of BL(Single) trained on the *Boston Housing* dataset, modeling the UMP ($\max U \text{ s.t. } \mathcal{C} \leq 0, \mathcal{T} = 0$) of a representative buyer in Boston housing (details in Section 3.3). Top: computational graphs of the polynomials inside the three penalty functions— \tanh (preference), ReLU (budget), and $|\cdot|$ (belief). Each graph is respectively centered on $\tanh^{-1}(U)$, \mathcal{C} , and \mathcal{T} from left to right, with surrounding nodes representing input features. Directed edges (shown only if coefficient ≥ 0.3) indicate how each feature contributes to the corresponding term. Bottom: approximate symbolic formulation of the trained BL model as a UMP. (b) The BL[2,1] architecture. Layer 1 identifies two key micro-level preference types: the *Economic-sensitive Buyer* and the *Location-sensitive Buyer*. Layer 2 aggregates these two components into an effective representative buyer. (c) The BL(Deep) [5,3,1] architecture. Layer 1 recovers five distinct micro-level housing preference types. Layer 2 identifies three macro-level trade-off types capturing different ways these primitive preferences interact. Layer 3 aggregates them into the overall representative buyer. Table 11 provides detailed descriptions of each type. BL(Deep) provides a hierarchical explanation consistent with the coarse-graining principle (Kadanoff, 1966) in statistical physics, reconstructing the full micro-to-macro optimization hierarchy. In addition, the preference and trade-off patterns uncovered by BL(Deep) are well documented in the classical economics literature (see Table 12). (d) BL can be applied to a broad class of hierarchical optimization systems in science, including hierarchical need structures, hierarchical social-organizational systems, and renormalization-style coarse-grained systems in physics.

Unlike BL, which uses general nonlinearities, the IBL architecture imposes stricter structural constraints: ϕ^{id} and ρ^{id} are strictly increasing, while ψ^{id} is symmetric and strictly increasing in $|\cdot|$. In addition, all three functions are C^1 . These properties ensure that each UMP block stays responsive and adjusts smoothly to objectives and constraints. In practice, we instantiate equation 9 as

$$\mathcal{B}^{\text{id}}(\mathbf{x}, \mathbf{y}) = \lambda_0^\top \tanh(\mathbf{p}_u(\mathbf{x}, \mathbf{y})) - \lambda_1^\top \text{softplus}(\mathbf{p}_c(\mathbf{x}, \mathbf{y})) - \lambda_2^\top (\mathbf{p}_t(\mathbf{x}, \mathbf{y}))^{\odot 2} \quad (10)$$

where $(\cdot)^{\odot 2}$ denotes elementwise square.

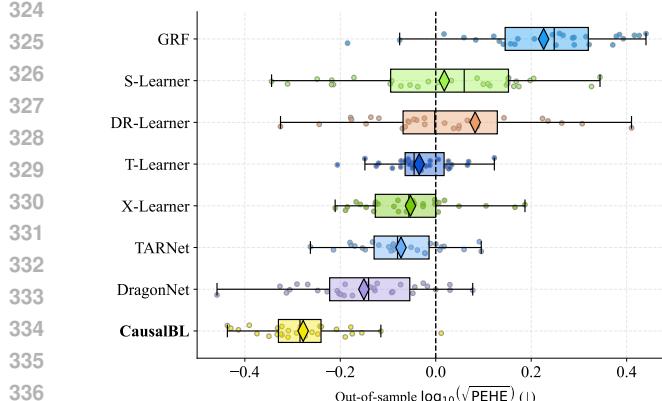


Figure 3: Counterfactual prediction performance (synthetic dataset). *IBL-based model significantly outperforms models based on NN, trees, and regression.*

Table 1: Within- and out-of-sample mean \pm std of $\sqrt{\text{PEHE}}$ on the synthetic dataset. Top two per column are highlighted in blue and red. The dataset is synthetically generated via nonlinear mathematical simulations with noise (see Appendix H.3.1).

Model	Synthetic Dataset	
	Within-sample	Out-of-sample
IBL-based model	0.53 ± 0.09	0.54 ± 0.13
DR-Learner	2.11 ± 3.52	1.89 ± 3.03
DragonNet	0.82 ± 0.22	0.73 ± 0.20
GRF	1.91 ± 0.65	1.77 ± 0.54
S-Learner	1.22 ± 0.41	1.13 ± 0.45
TARNet	0.92 ± 0.21	0.86 ± 0.17
T-Learner	0.94 ± 0.13	0.93 ± 0.15
X-Learner	0.94 ± 0.14	0.91 ± 0.22

We design IBL in three architectural forms. Similar to BL, the *IBL(Single)* directly uses $\mathcal{B}^{\text{id}}(\mathbf{x}, \mathbf{y})$ as the compositional utility function. The *IBL(Shallow)* and *IBL(Deep)* variants are defined recursively as

$$\text{IBL}(\mathbf{x}, \mathbf{y}) := \mathbf{W}_L^{\circ} \cdot \mathbb{B}_L^{\text{id}}(\cdots \mathbb{B}_2^{\text{id}}(\mathbb{B}_1^{\text{id}}(\mathbf{x}, \mathbf{y})) \cdots), \quad L \geq 1 \quad (11)$$

where $\mathbb{B}_\ell^{\text{id}}$ stacks multiple parallel blocks $\mathcal{B}_{\ell,i}^{\text{id}}(\mathbf{x}, \mathbf{y})$, and \mathbf{W}_L° is a learnable affine transformation without bias. All other design choices follow the BL setting.

Theoretical Foundation. IBL admits favorable properties for ground-truth identification. We begin by establishing identifiability, which is fundamental for statistical inference. We first state our key assumption (see Assumption F.1 for details).

Assumption 2.1. *Let $\bar{\Psi}$ denote the quotient space of atomic parameters. We assume that the map $\bar{\Psi} \rightarrow \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}$, $\bar{\psi} \mapsto g_{\bar{\psi}}$, is injective, and that any finite set of distinct atoms is linearly independent. We further restrict attention to minimal representations with no duplicate atoms and a fixed canonical ordering.*

Theorem 2.4 (Identifiability of IBL). *Under Assumption F.1, the architectures IBL(Single), IBL(Shallow), and IBL(Deep) are identifiable in the parameter quotient space $\bar{\Theta}$.*

Theorem 2.5 (Loss Identifiability of IBL). *The IBL model is parameterized by $\theta \in \Theta$. Suppose Θ is compact. Then under Assumption F.1, the population loss \mathcal{L} defined in equation 6 satisfies:*

- If $\gamma_c > 0$, it admits a **unique** minimizer in the quotient space $\bar{\Theta}$;
- If $\gamma_c = 0$, it admits a **unique** minimizer in the scale-invariant quotient space $\tilde{\Theta}$.

Theorems 2.4 and 2.5 together establish the identifiability of IBL. Theorem 2.4 shows that if two IBL models of the same structure induce the same compositional utility, then their parameters coincide up to an equivalence class. Theorem 2.5 further extends this result to loss-based identifiability. These results jointly imply that IBL admits a unique parameter estimate up to an equivalence class, and thus yields intrinsic interpretability that is unique up to the same class.

Building on identifiability, Theorem 2.6 establishes the statistical consistency of IBL: under compactness of the parameter space, the learned parameters converge in probability to a minimizer of the population loss as the sample size $n \rightarrow \infty$. If the model is correctly specified, the estimator further converges to the ground-truth parameter, recovering the true underlying model, thereby endowing IBL with the potential to recover the ground-truth model.

Theorem 2.6 (Consistency of IBL). *Let Ξ denote the relevant parameter quotient space: $\Xi = \bar{\Theta}$ if $\gamma_c > 0$, and $\Xi = \tilde{\Theta}$ if $\gamma_c = 0$. Let $\hat{\theta}_n \in \arg \min_{\theta \in \Theta} \mathcal{M}_n(\theta)$ denote the empirical minimizer, and let $\theta^* \in \arg \min_{\theta \in \Theta} \mathcal{M}(\theta)$ denote the population minimizer. Then under the conditions of Theorem F.5,*

$$\hat{\theta}_n \xrightarrow{p} \theta^* \quad \text{in } \Xi, \quad \mathcal{M}(\hat{\theta}_n) \xrightarrow{p} \mathcal{M}(\theta^*).$$

378 Moreover, if the model is correctly specified (i.e., the data distribution is realized by some $\theta^* \in \Theta$),
 379 then $\theta^* = \theta^*$ in Ξ , and thus $\hat{\theta}_n \xrightarrow{p} \theta^*$.
 380

381 Correct specification is a strong and often unrealistic assumption. Fortunately, the IBL frame-
 382 work—like BL—also enjoys a **universal approximation guarantee** (Theorem F.6). Building on
 383 this result, we further establish the **universal consistency** of IBL: *even under misspecification, IBL*
 384 *is capable of recovering the ground-truth model* with sufficiently large sample sizes.

385 **Theorem 2.7** (Universal Consistency of IBL). *Under the conditions of Theorem F.7, for any admissible*
 386 *data-generating distribution p^\dagger satisfying the regularity assumptions of Theorem F.6, the IBL*
 387 *posterior sequence $\{p_{\hat{\theta}_n}\}$ satisfies*

$$\sup_{x \in \mathcal{X}} \text{KL}(p^\dagger(\cdot | x) \| p_{\hat{\theta}_n}(\cdot | x)) \xrightarrow{p} 0,$$

391 *i.e., the learned conditional distributions $\{p_{\hat{\theta}_n}\}$ converge in KL to p^\dagger uniformly over x .*

392 Specifically, this result implies that, even under model misspecification, the learned predictive dis-
 393 tribution $p_{\hat{\theta}_n}$, parameterized by the IBL model, converges uniformly in KL to the true conditional
 394 distribution p^\dagger , provided that the capacity of the IBL architecture grows with the sample size n .
 395

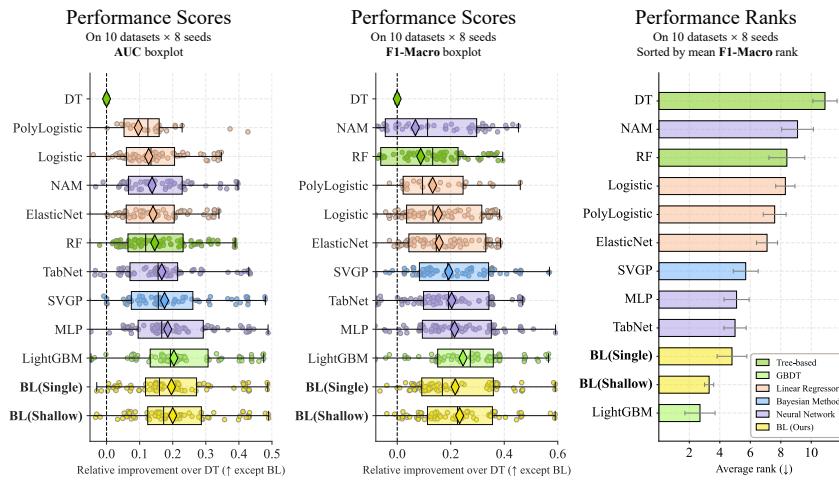
396 We also establish the **asymptotic normality** of IBL estimators (Theorem F.9), showing that the pa-
 397 rameter estimates converge in distribution to a normal law as the sample size increases. Furthermore,
 398 under additional regularity conditions, the asymptotic variance attains the **efficient information**
 399 **bound** (Theorem F.10), demonstrating the statistical optimality of IBL.

400 Formal statements and proofs of all theorems in this part are deferred to Appendix F.3.
 401

402 3 EXPERIMENTS

404 In this section, we conduct four groups of experiments to systematically evaluate the capabilities of
 405 BL. Due to space constraints, details are provided in Appendix H.

407 3.1 STANDARD PREDICTION TASKS



425 Figure 4: Predictive performance of BL and baselines. Left/Middle: relative AUC and F1-Macro
 426 gains over DT, sorted by mean (excluding BL). Right: mean F1-Macro ranks (\downarrow better). BL achieves
 427 first-tier performance in both metrics. Its variants rank second and third in mean F1-Macro rank,
 428 with BL(Shallow) showing no statistically significant difference from state-of-the-art models.
 429

430 *Is BL accurate enough for standard prediction tasks?* In this part, we evaluate the predictive
 431 performance of BL on 10 datasets (Table 3), covering diverse sample sizes, feature dimensions,
 and scientific domains. For fair comparison, we consider two BL variants—BL(Single) and

432 BL(Shallow)—and compare them against *10 baseline models* (Table 4) drawn from five method-
 433 ological families: neural networks, tree-based models, gradient boosting methods, Bayesian meth-
 434 ods, and linear regressors. All methods share a unified preprocessing and tuning pipeline.
 435

436 **Predictive Performance.** Figure 4 shows that BL attains first-tier predictive performance overall,
 437 achieving the best results among intrinsically interpretable models. Notably, BL(Shallow) surpasses
 438 MLP, highlighting that BL delivers interpretability without sacrificing performance.
 439

440 3.2 COUNTERFACTUAL PREDICTION

441 *Does BL exhibit potential for causal inference?* To investigate this, we propose a causal extension of
 442 IBL designed to estimate individual treatment effects (ITEs), with details provided in Appendix G.
 443 We evaluate IBL-based model on *three datasets*: a synthetic dataset with known individual treatment
 444 effects (ITEs), the semi-synthetic IHDP-100 (Hill, 2011), and the real-world Jobs dataset (LaLonde,
 445 1986). The synthetic dataset follows de Vassimon Manela et al. (2024), with added covariate nonlin-
 446 earity and stochastic noise to increase complexity (Appendix H.3.1), and includes 30 replications;
 447 IHDP and Jobs contain 100 and 10 realizations, respectively. IBL-based model is compared against
 448 *seven widely used baselines* (Table 8) spanning four methodological families: tree-based models,
 449 representation-learning networks, meta-learners, and doubly robust methods.
 450

451 **Counterfactual Prediction Performance.** Figure 3, Table 1 and Table 9 report counterfactual
 452 prediction results on three datasets. On the synthetic dataset, IBL-based model consistently outper-
 453 forms all baselines with the lowest variance, demonstrating its strong capacity to model complex
 454 nonlinear structures. On IHDP, IBL-based model achieves the second-lowest $\sqrt{\text{PEHE}}$ and ATE rel-
 455 ative error, while on Jobs it attains the lowest $|\text{ATT}|$ error. Notably, **IBL-based model is the only**
 456 **intrinsically interpretable model** among all competitors.
 457

458 3.3 INTERPRETING BL: A CASE STUDY

459 *How can BL be interpreted in practice?* This part presents a case study using the *Boston Housing*
 460 dataset, where we train a supervised BL(Single) model with a degree-2 polynomial basis, a BL[2,1]
 461 model (i.e., a two-layer BL with two B-blocks in the first layer and one in the second layer), and
 462 a BL(Deep) model with a [5,3,1] architecture to predict median home values. We illustrate how
 463 the internal structure of BL can be interpreted as explicit optimization problems and their hier-
 464 archical versions, accompanied by complementary visualizations. Further details are provided in
 465 Appendix H.4 and H.9.
 466

467 **Symbolic Form of BL(Single) as a UMP.** As shown in Figure 2, the trained BL(Single) model
 468 can be interpreted as the UMP of a *representative buyer* in the Boston Housing market, comprising
 469 a single objective, inequality, and equality term. Each term is represented by an estimated quadratic
 470 polynomial. For parsimony, we extract approximate symbolic expressions by retaining only the
 471 monomials with the largest (2–5) absolute coefficients, while collecting the remaining terms (in-
 472 cluding constants) into a residual term \tilde{R} . For example, the utility term can be written as:
 473

$$\mathbf{p}_u = -0.56 \cdot P^2 - 0.6 \cdot \text{RM} + 0.57 \cdot \text{RM} \cdot P + \tilde{R}_u \approx (1 - P)(1 + P - \text{RM}) + \tilde{R}_u$$

474 We similarly simplify the budget and belief terms to recover an approximate UMP for the buyer.
 475 The full symbolic form is illustrated at the bottom of Figure 2.
 476

477 **Interpreting BL(Single) via Model Visualization.** Visualizations of each term’s polynomial re-
 478 veal how features constitute the UMP. Three insights emerge from the visualizations in Figure 2.
 479 (i) *Median housing price (MEDV)* and *average number of rooms (RM)* are dominant across all
 480 terms—MEDV negatively affects utility in a near-quadratic form, while RM modulates its marginal
 481 effect. (ii) *Proportion of lower-income residents (LSTAT)* features prominently in the budget con-
 482 straint, reflecting implicit resource limitations. (iii) *Crime rate (CRIM)* appears only in the belief
 483 term, suggesting that buyers treat it as influencing others’ behavior rather than their own preferences.
 484

485 **Interpreting BL(Deep).** (1) Figure 2 (b) illustrates the optimization problems learned by the
 486 BL[2,1] model. Layer 1 identifies two micro-level preference types: an *Economic-sensitive Buyer*,

whose utility and constraint terms load primarily on ZN (Large-lot residential share) and LSTAT (Proportion of lower-income residents); and a *Location-sensitive Buyer*, driven mainly by CHAS (Charles River indicator) and RAD (Highway accessibility). Layer 2 aggregates these basic preferences, yielding an effective “representative buyer” that integrates the two preference types. (2) Figure 2 (c) presents the internal structure of the BL[5,3,1] model. In Layer 1, BL recovers five distinct *micro-level preference* types characterizing heterogeneous patterns in the housing market. Layer 2 identifies three macro-level representative agents, each capturing a different *macro-level trade-off* among the basic preferences. Layer 3 then aggregates these components into a single high-level mechanism, yielding the overall representative buyer. Table 11 provides detailed descriptions of each type. (3) Beyond interpretability, we find that each preference pattern and trade-off recovered by BL(Deep) aligns with established findings in the economics literature (see Table 12). This indicates that BL successfully reconstructs underlying scientific knowledge.

3.4 PREDICTION ON HIGH-DIMENSIONAL INPUTS

Is BL scalable to high-dimensional inputs? We evaluate BL against the *energy-based MLP* (E-MLP) baseline across network depths $d \in \{1, 2, 3\}$, with all models implemented without skip connections. Experiments are conducted on *four datasets* spanning both image and text domains, and are evaluated using *six metrics*: in-distribution accuracy, calibration metrics (ECE and NLL), and OOD robustness metrics (AUROC, AUPR, and FPR@95). For OOD evaluation, we adopt symmetric ID \leftrightarrow OOD splits, using MNIST (LeCun et al., 2002) and Fashion-MNIST (Xiao et al., 2017) as one pair, and AG News and Yelp Polarity (Zhang et al., 2015) as another. E-MLP and BL are controlled to have comparable parameters.

Scalability on High-Dimensional Inputs. Figure 5 and Table 2 present results for BL and E-MLP across network depths. Overall, the two models exhibit comparable ID accuracy and OOD AUROC across datasets. On both the Fashion-MNIST and AGNews datasets, however, BL generally achieves higher OOD AUROC than E-MLP at similar accuracy levels. This indicates its stronger out-of-distribution generalization and robustness. **BL also achieves better ECE and NLL (Table 19).**

Downward Shift of the Pareto Frontier. Table 14 reports the parameter counts of BL and E-MLP across four tasks, and Tables 15-18 summarize their runtimes. The two models have highly comparable parameter sizes. Notably, BL runs substantially faster than E-MLP on text datasets, while being slightly slower on image datasets. These results indicate that BL achieves a *downward shift of the Pareto frontier*.

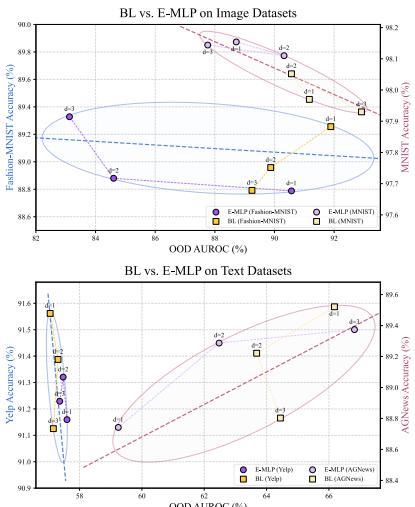


Figure 5: Comparison of BL and E-MLP on image and text datasets; d denotes model depth.

Table 2: ID accuracy and OOD AUROC (%) on image and text datasets. BL and E-MLP are evaluated at depths 1–3 with matched parameter counts, both without skip connections. Top-two per column are blue and red.

Model	Image Datasets			
	MNIST Accuracy	OOD AUROC	Fashion-MNIST Accuracy	OOD AUROC
E-MLP (depth=1)	98.15 ± 0.07	88.72 ± 1.36	88.79 ± 0.29	90.57 ± 1.39
BL (depth=1)	97.97 ± 0.18	91.17 ± 2.68	89.26 ± 0.22	91.89 ± 0.71
E-MLP (depth=2)	98.11 ± 0.08	90.32 ± 1.74	88.88 ± 0.26	84.61 ± 2.56
BL (depth=2)	98.05 ± 0.12	90.57 ± 2.49	88.96 ± 0.39	89.87 ± 2.48
E-MLP (depth=3)	98.14 ± 0.11	87.76 ± 2.55	89.33 ± 0.25	83.13 ± 1.90
BL (depth=3)	97.93 ± 0.27	92.92 ± 1.69	88.79 ± 0.25	89.24 ± 4.18

Model	Text Datasets			
	AG News Accuracy	OOD AUROC	Yelp Accuracy	OOD AUROC
E-MLP (depth=1)	88.74 ± 0.26	59.24 ± 0.21	91.16 ± 0.02	57.60 ± 0.31
BL (depth=1)	89.52 ± 0.16	66.18 ± 0.20	91.56 ± 0.04	57.06 ± 0.10
E-MLP (depth=2)	89.29 ± 0.20	62.48 ± 0.76	91.32 ± 0.09	57.47 ± 0.21
BL (depth=2)	89.22 ± 0.20	63.68 ± 0.46	91.39 ± 0.06	57.31 ± 0.27
E-MLP (depth=3)	89.37 ± 0.21	66.82 ± 1.01	91.23 ± 0.07	57.36 ± 0.27
BL (depth=3)	88.80 ± 0.18	64.44 ± 0.52	91.13 ± 0.09	57.16 ± 0.48

540 REFERENCES
541

542 Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geoffrey E Hinton.
543 Neural additive models: Interpretable machine learning with neural nets. *arXiv preprint*
544 *arXiv:2004.13912*, 2020.

545 Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
546 and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
547 *Advances in neural information processing systems*, 34:4699–4711, 2021.

548 Ravindra K Ahuja and James B Orlin. Inverse optimization. *Operations research*, 49(5):771–783,
549 2001.

550 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
551 A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM*
552 *SIGKDD international conference on knowledge discovery & data mining*, pp. 2623–2631, 2019.

553 Genevera I Allen, Luqin Gan, and Lili Zheng. Interpretable machine learning for discovery: Statis-
554 tical challenges and opportunities. *Annual Review of Statistics and Its Application*, 11, 2023.

555 David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
556 neural networks. *Advances in neural information processing systems*, 31, 2018.

557 Philip W Anderson. More is different: broken symmetry and the nature of the hierarchical structure
558 of science. *Science*, 177(4047):393–396, 1972.

559 Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin. Learning
560 certifiably optimal rule lists for categorical data. *Journal of Machine Learning Research*, 18(234):
561 1–78, 2018.

562 Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In *Proceedings*
563 *of the AAAI conference on artificial intelligence*, volume 35, pp. 6679–6687, 2021.

564 Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
565 Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, et al.
566 Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges to-
567 ward responsible ai. *Information fusion*, 58:82–115, 2020.

568 W Brian Arthur. Complexity and the economy. In *Handbook of Research on Complexity*. Edward
569 Elgar Publishing, 2009.

570 Anil Aswani, Zuo-Jun Shen, and Auyon Siddiq. Inverse optimization with noisy data. *Operations*
571 *Research*, 66(3):870–892, 2018.

572 Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. 2019.

573 Santiago R Balseiro, Omar Besbes, and Gabriel Y Weintraub. Dynamic mechanism design with
574 budget-constrained buyers under limited commitment. *Operations Research*, 67(3):711–730,
575 2019.

576 Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, and Vasilis
577 Syrgkanis. Econml: A python package for ml-based heterogeneous treatment effects estimation.
578 *Version 0.16.0*, 2019.

579 Patrick Bayer, Fernando Ferreira, and Robert McMillan. A unified framework for measuring pref-
580 erences for schools and neighborhoods. *Journal of political economy*, 115(4):588–638, 2007.

581 Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety—a review. *arXiv*
582 *preprint arXiv:2404.14082*, 2024.

583 Steven T Berry, James A Levinsohn, and Ariel Pakes. Automobile prices in market equilibrium:
584 Part i and ii, 1993.

594 Sandra E Black. Do better schools matter? parental valuation of elementary education. *The quarterly*
 595 *journal of economics*, 114(2):577–599, 1999.
 596

597 Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intel-
 598 ligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In
 599 *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and*
 600 *data mining*, pp. 1721–1730, 2015.

601 Timothy CY Chan, Rafid Mahmood, and Ian Yihang Zhu. Inverse optimization: Theory and appli-
 602 *cations. Operations Research*, 73(2):1046–1074, 2025.
 603

604 Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. Node-gam: Neural generalized additive
 605 model for interpretable deep learning. *arXiv preprint arXiv:2106.01613*, 2021.
 606

607 Kenneth Y Chay and Michael Greenstone. Does air quality matter? evidence from the housing
 608 market. *Journal of political Economy*, 113(2):376–424, 2005.
 609

610 Huigang Chen, Totte Harinen, Jeong-Yoon Lee, Mike Yung, and Zhenyu Zhao. Causalml: Python
 611 package for causal machine learning. *arXiv preprint arXiv:2002.11631*, 2020.
 612

613 Daniel de Vassimon Manela, Laura Battaglia, and Robin Evans. Marginal causal flows for validation
 614 and inference. *Advances in Neural Information Processing Systems*, 37:9920–9949, 2024.
 615

616 Gerard Debreu. *Theory of value: An axiomatic analysis of economic equilibrium*, volume 17. Yale
 617 University Press, 1959.
 618

619 Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
 620 *arXiv preprint arXiv:1702.08608*, 2017.
 621

622 Jeffrey A Dubin and Daniel L McFadden. An econometric analysis of residential electric appliance
 623 holdings and consumption. *Econometrica: Journal of the Econometric Society*, pp. 345–362,
 624 1984.
 625

626 Ronald Aylmer Fisher. *The genetical theory of natural selection: a complete variorum edition*.
 627 Oxford University Press, 1999.
 628

629 Randy A Freeman and Petar V Kokotovic. Inverse optimality in robust stabilization. *SIAM journal*
 630 *on control and optimization*, 34(4):1365–1391, 1996.
 631

632 Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson.
 633 Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In *Advances*
 634 *in Neural Information Processing Systems*, 2018.
 635

636 Stephen Gibbons and Stephen Machin. Valuing rail access using transport innovations. *Journal of*
 637 *urban Economics*, 57(1):148–169, 2005.
 638

639 Josiah Willard Gibbs. *Elementary principles in statistical mechanics: developed with especial ref-*
 640 *erence to the rational foundations of thermodynamics*. C. Scribner's sons, 1902.
 641

642 Edward L Glaeser and Joseph Gyourko. The impact of building restrictions on housing affordability.
 643 *Federal Reserve Bank of New York, Economic Policy Review*, 2002:1–19, 2002.
 644

645 Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
 646 for unnormalized statistical models. In *Proceedings of the thirteenth international conference on*
 647 *artificial intelligence and statistics*, pp. 297–304. JMLR Workshop and Conference Proceedings,
 648 2010.
 649

650 S-P Han and Olvi L Mangasarian. Exact penalty functions in nonlinear programming. *Mathematical*
 651 *programming*, 17(1):251–269, 1979.
 652

653 W Michael Hanemann. Discrete/continuous models of consumer demand. *Econometrica: Journal*
 654 *of the Econometric Society*, pp. 541–561, 1984.
 655

656 Trevor J Hastie. Generalized additive models. *Statistical models in S*, pp. 249–307, 2017.
 657

648 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
 649 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 650 770–778, 2016.

651 Jennifer L Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational*
 652 and *Graphical Statistics*, 20(1):217–240, 2011.

654 Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. *Neural*
 655 *computation*, 14(8):1771–1800, 2002.

656 Kurt Hornik. Approximation capabilities of multilayer feedforward networks. *Neural networks*, 4
 657 (2):251–257, 1991.

659 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
 660 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern*
 661 *recognition*, pp. 4700–4708, 2017.

663 Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
 664 *Journal of Machine Learning Research*, 6(4), 2005.

665 Jaehwi Jang, Minjae Song, and Daehyung Park. Inverse constraint learning and generalization by
 666 transferable reward decomposition. *IEEE Robotics and Automation Letters*, 9(1):279–286, 2023.

668 William Jevons. *The theory of political economy*. Springer, 2013.

669 Leo P Kadanoff. Scaling laws for ising models near t c. *Physics Physique Fizika*, 2(6):263, 1966.

671 Rudolf Emil Kalman. When is a linear control system optimal? 1964.

673 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 674 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

675 Amr Kayid, Nicholas Frosst, and Geoffrey E Hinton. Neural additive models library, 2020.

677 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
 678 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural*
 679 *information processing systems*, 30, 2017.

680 Edward H Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
 681 *Electronic Journal of Statistics*, 17(2):3008–3049, 2023.

683 Arezou Keshavarz, Yang Wang, and Stephen Boyd. Imputing a convex objective function. In *2011*
 684 *IEEE international symposium on intelligent control*, pp. 613–619. IEEE, 2011.

685 Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
 686 Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
 687 (tcav). In *International conference on machine learning*, pp. 2668–2677. PMLR, 2018.

689 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 690 2014.

692 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
 693 Percy Liang. Concept bottleneck models. In *International conference on machine learning*, pp.
 694 5338–5348. PMLR, 2020.

695 Mathias Kraus, Daniel Tschernutter, Sven Weinzierl, and Patrick Zschech. Interpretable generalized
 696 additive neural networks. *European Journal of Operational Research*, 317(2):303–316, 2024.

697 Solomon Kullback and Richard A Leibler. On information and sufficiency. *The annals of mathe-
 698 matical statistics*, 22(1):79–86, 1951.

700 Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heteroge-
 701 neous treatment effects using machine learning. *Proceedings of the national academy of sciences*,
 116(10):4156–4165, 2019.

702 Robert J LaLonde. Evaluating the econometric evaluations of training programs with experimental
 703 data. *The American economic review*, pp. 604–620, 1986.
 704

705 Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. *Statistical Physics: Volume 5*, volume 5.
 706 Elsevier, 2013.

707 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 708 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 2002.
 709

710 Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-
 711 based learning. *Predicting structured data*, 1(0), 2006.

712 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 713 2015.

714

715 Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of inter-
 716 pretability is both important and slippery. *Queue*, 16(3):31–57, 2018.

717

718 Guiliang Liu, Sheng Xu, Shicheng Liu, Ashish Gaurav, Sriram Ganapathi Subramanian, and Pascal
 719 Poupart. A comprehensive survey on inverse constrained reinforcement learning: Definitions,
 720 progress and challenges. *arXiv preprint arXiv:2409.07569*, 2024a.

721

722 Shicheng Liu and Minghui Zhu. Meta inverse constrained reinforcement learning: Convergence
 723 guarantee and generalization analysis. International Conference on Learning Representations,
 724 2024.

725

726 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
 727 Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. *arXiv preprint
 728 arXiv:2404.19756*, 2024b.

729

730 Lennart Ljung and Torkel Glad. On global identifiability for arbitrary model parametrizations. *au-
 731 tomatica*, 30(2):265–276, 1994.

732

733 Lars Ljungqvist and Thomas J Sargent. *Recursive macroeconomic theory*. MIT press, 2018.

734

735 Luca Longo, Mario Brcic, Federico Cabitza, Jaesik Choi, Roberto Confalonieri, Javier Del Ser,
 736 Riccardo Guidotti, Yoichi Hayashi, Francisco Herrera, Andreas Holzinger, et al. Explainable
 737 artificial intelligence (xai) 2.0: A manifesto of open challenges and interdisciplinary research
 738 directions. *Information Fusion*, 106:102301, 2024.

739

740 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 741 arXiv:1711.05101*, 2017.

742

743 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances
 744 in neural information processing systems*, 30, 2017.

745

746 Shehryar Malik, Usman Anwar, Alireza Aghasi, and Ali Ahmed. Inverse constrained reinforcement
 747 learning. In *International conference on machine learning*, pp. 7390–7399. PMLR, 2021.

748

749 Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. *Microeconomic theory*, vol-
 750 ume 1. Oxford university press New York, 1995.

751

752 Daniel McFadden. Conditional logit analysis of qualitative choice behavior. 1972.

753

754 Daniel McFadden. Modelling the choice of residential location. 1977.

755

756 Maxime Méloux, Silviu Maniu, François Portet, and Maxime Peyrard. Everything, everywhere, all
 757 at once: Is mechanistic interpretability identifiable? *arXiv preprint arXiv:2502.20914*, 2025.

758

759 Melkamu Mersha, Khang Lam, Joseph Wood, Ali K Alshami, and Jugal Kalita. Explainable artificial
 760 intelligence: A survey of needs, techniques, applications, and future direction. *Neurocomputing*,
 761 599:128111, 2024.

762

763 Melanie Mitchell. *Complexity: A guided tour*. Oxford university press, 2009.

756 Christoph Molnar. *Interpretable machine learning*. Lulu. com, 2020.
 757

758 Whitney K Newey and Daniel McFadden. Large sample estimation and hypothesis testing. *Hand-
 759 book of econometrics*, 4:2111–2245, 1994.

760 Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In *Icml*, vol-
 761 ume 1, pp. 2, 2000.
 762

763 Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. Interpretml: A unified framework for
 764 machine learning interpretability. *arXiv preprint arXiv:1909.09223*, 2019.

765 Daehyung Park, Michael Noseworthy, Rohan Paul, Subhro Roy, and Nicholas Roy. Inferring task
 766 goals and constraints using bayesian nonparametric inverse reinforcement learning. In *Conference
 767 on robot learning*, pp. 1005–1014. PMLR, 2020.

768 Ori Plonsky, Reut Apel, Eyal Ert, Moshe Tennenholz, David Bourgin, Joshua C Peterson, Daniel
 769 Reichman, Thomas L Griffiths, Stuart J Russell, Even C Carter, et al. Predicting human decisions
 770 with behavioural theories and machine learning. *Nature Human Behaviour*, pp. 1–14, 2025.
 771

772 Karl Popper. *The logic of scientific discovery*. Routledge, 2005.
 773

774 Frank Plumpton Ramsey. A mathematical theory of saving. *The economic journal*, 38(152):543–
 775 559, 1928.

776 Zhi-Yong Ran and Bao-Gang Hu. Parameter identifiability in statistical machine learning: a review.
 777 *Neural Computation*, 29(5):1151–1203, 2017.

778 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
 779 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference
 780 on knowledge discovery and data mining*, pp. 1135–1144, 2016.

781 Ribana Roscher, Bastian Bohn, Marco F Duarte, and Jochen Garcke. Explainable machine learning
 782 for scientific insights and discoveries. *Ieee Access*, 8:42200–42216, 2020.

783 Sherwin Rosen. Hedonic prices and implicit markets: product differentiation in pure competition.
 784 *Journal of political economy*, 82(1):34–55, 1974.

785 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
 786 use interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.

787 Paul Anthony Samuelson. Foundations of economic analysis. *Science and Society*, 13(1), 1948.
 788

789 Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
 790 ization bounds and algorithms. In *International conference on machine learning*, pp. 3076–3085.
 791 PMLR, 2017.

792 Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation of treatment
 793 effects. *Advances in neural information processing systems*, 32, 2019.

794 Herbert A Simon. A behavioral model of rational choice. *The quarterly journal of economics*, pp.
 795 99–118, 1955.

796 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 797 *Advances in neural information processing systems*, 32, 2019.

798 Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
 799 *Advances in neural information processing systems*, 33:12438–12448, 2020.

800 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 801 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 802 arXiv:2011.13456*, 2020.

803 Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood
 804 gradient. In *Proceedings of the 25th international conference on Machine learning*, pp. 1064–
 805 1071, 2008.

810 Berk Ustun and Cynthia Rudin. Supersparse linear integer models for optimized medical scoring
811 systems. *Machine Learning*, 102(3):349–391, 2016.
812

813 Aad W Van der Vaart. *Asymptotic statistics*, volume 3. Cambridge university press, 2000.
814

815 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computa-*
816 *tion*, 23(7):1661–1674, 2011.
817

818 Sewall Wright et al. The roles of mutation, inbreeding, crossbreeding, and selection in evolution.
1932.

819

820 Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
821 ment learning. *arXiv preprint arXiv:1507.04888*, 2015.
822

823 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
824 ing machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.
825

826 Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. *Advances*
827 *in neural information processing systems*, 30, 2017.
828

829 Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and Maya Gupta. Deep lattice networks and
830 partial monotonic functions. *Advances in neural information processing systems*, 30, 2017.
831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A RELATED WORK
865866 A.1 INTERPRETABILITY
867

868 Interpretability has become increasingly vital in machine learning (Lipton, 2018; Molnar, 2020),
869 especially for scientific domains (Doshi-Velez & Kim, 2017; Roscher et al., 2020). Ensuring interpre-
870 tability fosters transparency and reproducibility, and may further provide insights into underly-
871 ing scientific principles. The ideal form of interpretability is **intrinsic interpretability**, in which
872 a model’s structure or parameters are directly understandable to humans. However, intrinsic inter-
873 pretability is challenging to achieve in some widely used high-capacity models such as deep neural
874 networks (LeCun et al., 2015). This has motivated **post-hoc interpretability** methods (Ribeiro
875 et al., 2016; Lundberg & Lee, 2017), which seek to explain a pre-trained black-box model. While
876 more broadly applicable, such explanations are often considered less suitable for scientific research
877 (Rudin, 2019), as they may compromise stability and faithfulness to the model’s decision process.

878 **Performance–Interpretability Trade-off.** The limited intrinsic interpretability observed in high-
879 capacity models has long been recognized as a central challenge. This is commonly framed as
880 the *performance–interpretability trade-off* (Rudin, 2019; Arrieta et al., 2020), which posits a ten-
881 sion between predictive performance and intrinsic interpretability. High-performing models such
882 as deep neural networks often lack transparency, whereas intrinsically interpretable models strug-
883 gle to capture complex nonlinear patterns. Several efforts have sought to mitigate the perfor-
884 mance–interpretability trade-off, which can be broadly categorized into four groups. (i) Additive
885 models. Classical GAMs (Hastie, 2017), modern GA2Ms/EBMs (Caruana et al., 2015; Nori et al.,
886 2019), and neural variants such as NAM (Agarwal et al., 2021) and NODE-GAM (Chang et al.,
887 2021) preserve interpretability by decomposing predictions into main effects and low-order interac-
888 tions. (ii) Concept-based models. Concept Bottleneck Models (Koh et al., 2020), TCAV (Kim et al.,
889 2018), and SENN (Alvarez Melis & Jaakkola, 2018) map inputs into human-interpretable latent
890 concepts and use them as intermediate predictors. (iii) Rule- and score-based systems. SLIM (Us-
891 tun & Rudin, 2016) and CORELS (Angelino et al., 2018) generate transparent scoring functions or
892 rule lists with provable optimality guarantees. (iv) Shape-constrained networks. Deep Lattice Net-
893 works (You et al., 2017) and related monotonic architectures impose monotonicity and calibration
894 constraints to encode domain priors while retaining flexibility.

895 **Limitations in Scientifically Credible Modeling.** The above approaches demonstrate strengths,
896 yet two fundamental limitations restrict their applicability in scientific research. First, most methods
897 are tool-centric modifications of machine learning architectures rather than frameworks grounded
898 in scientific theory (e.g., optimization, dynamical systems, conservation laws). As recent surveys
899 emphasize (Roscher et al., 2020; Karniadakis et al., 2021; Allen et al., 2023; Bereska & Gavves,
900 2024; Longo et al., 2024; Mersha et al., 2024), genuine scientific insight requires models linked to
901 mechanistic principles, yet many interpretability techniques remain detached from such principles.
902 Second, these approaches are typically non-identifiable (Ran & Hu, 2017; Méloux et al., 2025),
903 meaning that multiple distinct parameterizations can explain the same data. This lack of unique-
904 ness undermines their reliability for recovering ground-truth mechanisms and, in statistical terms,
905 complicates consistency guarantees. As a result, the trained model may fail to converge to the true
906 data-generating process as sample size increases (Newey & McFadden, 1994; Van der Vaart, 2000).

907 **Relation to BL.** BL also mitigates the performance–interpretability trade-off. Unlike prior meth-
908 ods, it is principle-driven and scientifically grounded, learning interpretable latent optimization
909 structures directly from data. The framework applies broadly to domains where outcomes arise as
910 solutions to (explicit or latent) optimization problems. It is also identifiable: its smooth and mono-
911 tone variant, Identifiable Behavior Learning (IBL), guarantees identifiability under mild conditions,
912 ensuring the scientific credibility of its explanations and supporting recovery of the ground-truth
913 model under appropriate conditions.

914 A.2 DATA-DRIVEN INVERSE OPTIMIZATION
915

916 Inverse optimization (IO) (Ahuja & Orlin, 2001; Chan et al., 2025) is a core paradigm for learning
917 latent optimization problems from observed data. Traditional IO aims to construct objectives or

918 constraints that exactly rationalize a small set of deterministic decisions. In contrast, data-driven
 919 IO (Keshavarz et al., 2011; Aswani et al., 2018) focuses on statistically recovering the underlying
 920 problem from large-scale, noisy observational data. Inverse optimal control (IOC) (Kalman,
 921 1964; Freeman & Kokotovic, 1996) extends this paradigm to dynamic settings, seeking to infer
 922 sequential decision processes from expert trajectories. Within *machine learning*, inverse reinforcement
 923 learning (IRL) (Ng et al., 2000; Wulfmeier et al., 2015) and inverse constrained reinforcement
 924 learning (ICRL) (Malik et al., 2021; Liu et al., 2024a) are prominent instances of data-driven IOC:
 925 Typically, IRL assumes fixed constraints and learns a reward function, whereas ICRL reverses this
 926 role. Both require repeatedly solving for (near-)optimal policies and matching with expert demon-
 927 strations—incurred high computational cost. In the *behavioral sciences*, particularly economics,
 928 numerous studies can be viewed as instances of the data-driven IO paradigm. Foundational work
 929 (McFadden, 1972; Dubin & McFadden, 1984; Hanemann, 1984; Berry et al., 1993) and related studies
 930 typically posits theoretically grounded, parametric utility maximization problems (UMPs) and
 931 estimates their structural parameters from observed behavior.

932
 933 **Relation to BL.** The BL framework also falls under the paradigm of data-driven inverse optimiza-
 934 tion but differs notably from prior related work in both machine learning and behavioral science.
 935 Compared with IRL and ICRL, BL does not rely on matching expert-demonstrated policies with
 936 the aim of improving task-specific performance. Instead, it is proposed as a general-purpose, sci-
 937 entifically grounded, and intrinsically interpretable framework that operates via low-cost end-to-end
 938 training with a hybrid CE-DSM objective. It jointly learns a utility functions and constraints—a
 939 direction that has received little attention in IRL and ICRL (Park et al., 2020; Jang et al., 2023;
 940 Liu & Zhu, 2024). Meanwhile, in behavioral science, related work typically formulates distinct
 941 utility maximization models under varying assumptions for specific decision contexts, and estimate
 942 their parameters accordingly. However, to the best of our knowledge, no existing work proposes a
 943 structure-free framework for learning UMPs that generalizes across contexts. BL fills this gap with
 944 a structure-free, data-driven approach that does not rely on fixed UMP structures.

945 A.3 ENERGY-BASED MODELS (EBMs) 946

947 Energy-based models (EBMs) (LeCun et al., 2006) are a prominent data-driven IO scheme, rooted
 948 in the principle of energy minimization from statistical physics. They learn an energy function
 949 $E_\theta(x, y)$ that parameterizes the compatibility between inputs and outputs, inducing a Gibbs distri-
 950 bution $p_\theta(y \mid x) \propto \exp\{-E_\theta(x, y)\}$ that favors outcomes corresponding to low-energy solutions.
 951 In practice, this energy function is almost always instantiated by high-capacity neural networks, en-
 952 dowing the learned landscape with strong expressive power but also a black-box nature. Training
 953 EBMs typically relies on objectives that circumvent the intractable partition function, with classi-
 954 cal approaches including contrastive divergence (Hinton, 2002), persistent contrastive divergence
 955 (Tieleman, 2008), and noise-contrastive estimation (Gutmann & Hyvärinen, 2010). A particularly
 956 influential line of work is score matching (Hyvärinen & Dayan, 2005) and its denoising variant
 957 (DSM) (Vincent, 2011), which have underpinned breakthroughs in score-based generative modeling
 958 (Song & Ermon, 2019; 2020) and laid the foundation for modern diffusion methods (Song et al.,
 959 2020).

960
 961 **Relation to BL.** BL and EBMs exhibit a principled correspondence: BL is grounded in behav-
 962 ioral science and rooted in utility maximization, while EBMs are grounded in statistical physics and
 963 based on energy minimization. BL adopts several training techniques common to EBMs, such as
 964 Gibbs distribution modeling and denoising score matching (DSM). However, the two frameworks
 965 differ substantially in model structure. EBMs primarily focus on generative quality and typically
 966 employ black-box neural networks to learn an opaque energy function with little regard for inter-
 967 pretability. In contrast, BL is built on the utility maximization problem (UMP) and its equivalence to
 968 penalty formulations, yielding a principled and scientifically grounded framework. Its architecture
 969 is composed of intrinsically interpretable blocks, each of which can be explicitly expressed in sym-
 970 bolic form as a UMP—a foundational paradigm in behavioral science and a universal optimization
 971 framework. These properties enable BL to jointly achieve high predictive performance, intrinsic
 972 interpretability, and identifiability, thereby supporting scientifically credible modeling that extends
 973 beyond mere generative capability.

972 B SCIENTIFIC EXPLANATION OF BL(DEEP)
973974 BL(Deep) provides a form of interpretability that is consistent with hierarchical optimization sys-
975 tems. In BL, each layer performs a coarse-graining of the optimization structure implemented by
976 the layer below. An intuitive analogy is a corporate organizational hierarchy: lower-layer managers
977 solve their own local optimization problems, while higher-layer managers aggregate and coordi-
978 nate the outcomes of many such lower-layer problems to achieve broader organizational objectives.
979 BL(Deep) follows the same principle—higher layers summarize, reorganize, and coordinate the so-
980 lutions formed at lower layers.981 This perspective aligns with many scientific domains characterized by multi-level complexity, in-
982 cluding (i) the formation of representative behavioral agents in behavioral sciences, and (ii) renor-
983 malization in statistical physics, where fine-scale interactions are compressed into effective coarse-
984 scale potentials.985 We describe the explanation procedure below. To build intuition, let us first consider a generic
986 hierarchical optimization system—this may refer to a multi-layer organizational structure composed
987 of individual agents, or a multi-scale physical system composed of interacting particles.988 **Step 1: Bottom-layer interpretation.**989 Each bottom-layer block is an optimization problem that directly receives inputs from the environ-
990 ment. These blocks correspond to *micro-level behavioral mechanisms*, such as the decision rules
991 of individual agents performing environment-facing tasks in an organization, or the motion laws
992 governing a single particle in statistical physics. Examining these bottom-layer blocks reveals the
993 fundamental optimization principles followed by all units that directly interact with the environment.994 **Step 2: Layer-wise coarse-graining and micro-to-macro aggregation.**995 Blocks in the next layer aggregate the outputs of lower-layer optimization problems through a new
996 optimization step, producing a *coarse-grained behavioral summary*. Each higher-level block repre-
997 sents the effective optimization system that emerges from the interactions among many lower-level
998 units, thereby capturing macro-level regularities distilled from micro-level mechanisms.999 This micro-to-macro transition is consistent with many well-established scientific principles, includ-
1000 ing:1001

- (i) **Aggregation and coordination:** in hierarchical organizations, the outputs of lower-level
1002 agents are aggregated, reallocated, and coordinated by higher-level agents to achieve improved
1003 organizational objectives.
- (ii) **Coarse-grained observation:** in hierarchical behavioral systems, individual agents are
1004 grouped into categories that share characteristic optimization patterns; in statistical physics,
1005 many particles collectively form systems whose coarse-grained behavior is governed by effective
1006 potentials induced by microscopic interactions.

1007 **Step 3: Bottom-up reconstruction.**1008 A global explanation is obtained by tracing the hierarchy upward, following the model’s micro-
1009 to-macro abstraction path: raw input features → micro-level optimization blocks → macro-level
1010 aggregation and coordination or coarse-grained behavioral constructs → macro-level optimization
1011 system.1012 At each layer, we inspect the characteristics of each block and its associated optimization objective,
1013 as well as how these optimization problems evolve across layers. This reveals how each higher layer
1014 aggregates, coordinates, or coarse-grains the outputs of the layer below. Together, these observations
1015 yield a compact multi-scale interpretation in which BL is understood as a hierarchical optimization
1016 system.1017 C DISCUSSION
10181019 In this paper, we propose Behavior Learning (BL). Our key contributions are threefold. (i) We
1020 propose Behavior Learning, a novel general-purpose machine learning framework grounded in be-

1026
 1027
 1028
 1029
 1030
 1031
 1032
 havioral science, which unifies high predictive performance, intrinsic interpretability, identifiability, and scalability. (ii) For scientific research, BL offers a scientifically grounded and identifiable interpretable ML approach for modeling complex phenomena that defy precise formalization. BL applies broadly to scientific disciplines associated with optimization. (iii) At the paradigm level, BL learns from data the optimization structure of either a single optimization problem or a hierarchical composition of problems through distributional modeling, contributing a new methodology to data-driven inverse optimization.

1033
 1034
 In what follows, we discuss the **limitations and future directions** of Behavior Learning from the
 1035
 perspectives of theoretical foundations, architecture, and applications.

1036
 1037
 1038
 1039
 1040
 1041
Scalability of theoretical assumptions. The identifiability-related statistical theorems constitute
 1042
 the core theoretical pillars of IBL, ensuring uniqueness of the interpretability and supporting its
 1043
 scientific credibility. Although these results hold under mild conditions, their behavior in large-scale,
 1044
 1045
 1046
 1047
 1048
 highly over-parameterized architectures remains less well understood. This highlights the need for
 systematic investigations into the robustness, potential failure modes, and empirical boundaries of
 these guarantees when applied to modern large-scale learning systems.

1049
 1050
 1051
 1052
 1053
 1054
 1055
Choice of basis functions. Polynomial basis functions enhance expressivity while preserving
 1056
 symbolic interpretability in BL (Single). However, high-order polynomials may introduce optimiza-
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 tion instability, exacerbate sensitivity to initialization and normalization, and complicate training
 dynamics. Future work may explore alternative basis families—such as trigonometric, spline-based,
 1068
 or neural basis functions—and develop conditioning or normalization strategies that improve nu-
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 matical stability without sacrificing interpretability.

1076
 1077
Interpretable generative modeling. BL integrates several training techniques from energy-based
 1078
 models while retaining intrinsic interpretability, enabling interpretable generative modeling for vi-
 1079
 sion (e.g., image or video generation) and language (e.g., large language models). Extending BL
 to explicitly generative architectures in which outputs correspond directly to human-understandable
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 and scientifically meaningful blocks represents a compelling direction. Such extensions could yield
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 generative systems with greater transparency, controllability, and scientific credibility compared to
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361

1080 E ARCHITECTURE DETAILS
10811082 E.1 LEARNING SCHEME DETAILS
10831084 **Input and output of the BL function.** We formulate BL as a direct mapping from input–output
1085 pairs to compositional utility representations:
1086

1087
$$\text{BL} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{d_{\text{out}}}, \quad (x, y) \mapsto \text{BL}(x, y) \in \mathbb{R}^{d_{\text{out}}},$$

1088 where the output dimension d_{out} is chosen according to the modeling choice. This formulation
1089 intentionally allows BL to return either a scalar or a vector for each (x, y) ; the following cases are
1090 most common:
10911092 • Scalar per candidate (pointwise evaluation). Set $d_{\text{out}} = 1$. Here $\text{BL}(x, y) \in \mathbb{R}$ is a scalar
1093 compositional utility evaluated for the single candidate y . This view is natural for continuous y
1094 (regression or density estimation) or when one prefers to evaluate candidates individually.
1095 • Vectorized over a finite candidate set. If $\mathcal{Y} = \{y_1, \dots, y_m\}$ is finite, one can choose $d_{\text{out}} = m$
1096 and define the vector-valued output by stacking evaluations over the candidate set:
1097

1098
$$\text{BL}(x) := \begin{bmatrix} \text{BL}(x, y_1) \\ \vdots \\ \text{BL}(x, y_m) \end{bmatrix} \in \mathbb{R}^m.$$

1099
1100
1101

1102 This vectorized form is convenient for classification: it evaluates all class candidates at once and
1103 yields a single compositional utility vector per x .
11041105 • Flexibility and equivalence. The scalar and vector modes are compatible: the vectorized form is
1106 simply a batch of pointwise evaluations. Conversely, a scalar pointwise evaluator can be used to
1107 assemble a vector by repeated calls over a candidate set. The choice between pointwise (scalar)
1108 and vectorized outputs is therefore an engineering choice that trades off computational efficiency
1109 and convenience.
11101111 Given a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, training and inference may use either mode: vectorized computa-
1112 tion where feasible (e.g., small finite \mathcal{Y}), or pointwise evaluation when \mathcal{Y} is large or continuous.
11131114 **Conditional Gibbs model.** Let $(x, y) \sim \mathcal{D}$ with $x \in \mathbb{R}^d$ and $y = (y^{\text{disc}}, y^{\text{cont}}) \in \mathcal{Y}_{\text{disc}} \times \mathbb{R}^{m_c}$
1115 (discrete, continuous, or hybrid). BL induces a conditional Gibbs distribution with temperature
1116 $\tau > 0$:
1117

1118
$$p_\tau(y | x) = \frac{\exp\{\text{BL}(x, y)/\tau\}}{Z_\tau(x)}, \quad Z_\tau(x) = \int_{\mathcal{Y}} \exp\{\text{BL}(x, y')/\tau\} dy'.$$

1119

1120 For discrete $\mathcal{Y} = \{y_1, \dots, y_m\}$, if we choose the vector-output formulation, we define
1121

1122
$$\text{BL}(x) := [\text{BL}(x, y_1), \dots, \text{BL}(x, y_m)] \in \mathbb{R}^m,$$

1123

1124 so that the conditional distribution reduces to a softmax over this compositional utility vector:
1125

1126
$$p_\tau(y = k | x) = \text{softmax}_k\left(\frac{1}{\tau} \text{BL}(x)\right).$$

1127

1128 Behaviorally, τ encodes *noisy rationality*; as $\tau \rightarrow 0$, $p_\tau(\cdot | x)$ concentrates on $\arg \max_y \text{BL}(x, y)$,
1129 corresponding to the deterministic optimal choice implied by the learned model.
11301131 **Supervised, unsupervised, and generative uses.** BL accommodates multiple regimes. (i) Su-
1132 pervised: take x as input and y as label. For discrete y , one may either (a) adopt the vector-
1133 output formulation, where $\text{BL}(x) \in \mathbb{R}^m$ yields a compositional utility vector over all classes and
1134 the likelihood is given by a softmax, or (b) adopt the scalar-output formulation, where $\text{BL}(x, y)$
1135 is evaluated separately for each candidate and then normalized across classes. For continuous y ,
1136 BL naturally operates in the scalar-output mode, treating $\text{BL}(x, y) \in \mathbb{R}$ as a compositional utility
1137 field. (ii) Unsupervised / generative: model a marginal $p(y) \propto \exp\{\text{BL}(y)/\tau\}$ (empty x) or a joint
1138 $p(x, y) \propto \exp\{\text{BL}(x, y)/\tau\}$; sampling the Gibbs distribution yields a generator.
1139

1134 **Learning objective.** Since the response \mathbf{y} may contain both discrete and continuous components,
 1135 we estimate θ by minimizing a type-specific risk:
 1136

$$1137 \quad \mathcal{L}(\theta) = \gamma_d \mathbb{E}[-\log p_\tau(y^{\text{disc}} | x)] + \gamma_c \mathbb{E} \left\| \nabla_{\tilde{y}^{\text{cont}}} \log p_\tau(\tilde{y}^{\text{cont}} | x) + \sigma^{-2}(\tilde{y}^{\text{cont}} - y^{\text{cont}}) \right\|^2,$$

1138 where the first term is cross-entropy on the discrete component and the second is denoising score
 1139 matching (DSM) on the continuous component with $\tilde{y}^{\text{cont}} = y^{\text{cont}} + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. Set
 1140 $(\gamma_d, \gamma_c) = (1, 0)$ for purely discrete outputs, $(0, 1)$ for purely continuous outputs, and $(> 0, > 0)$
 1141 for hybrids.
 1142

1143 E.2 MODEL STRUCTURE DETAILS

1145 In the main text we adopted a compact notation for BL; here we present an equivalent, more explicit
 1146 matrix/vector formulation that makes dimensions, linear maps, and the per-head parameterizations
 1147 explicit, which is useful for formal proofs and for implementation details.
 1148

1149 **Fixed bases and head pre-activations.** For a block input z (specified below), let

$$1150 \quad m_u(z) \in \mathbb{R}^{d_u}, \quad m_c(z) \in \mathbb{R}^{d_c}, \quad m_t(z) \in \mathbb{R}^{d_t}$$

1151 denote fixed basis (e.g., monomial) vectors. Learnable linear maps produce head pre-activations:
 1152

$$1153 \quad u(z) := M_u m_u(z) + b_u \in \mathbb{R}^{r_u}, \quad c(z) := M_c m_c(z) + b_c \in \mathbb{R}^{r_c}, \quad t(z) := M_t m_t(z) + b_t \in \mathbb{R}^{r_t},$$

1154 with $M_u \in \mathbb{R}^{r_u \times d_u}$, $M_c \in \mathbb{R}^{r_c \times d_c}$, $M_t \in \mathbb{R}^{r_t \times d_t}$ and optional biases b_\bullet .
 1155

1156 **Single BL block.** A single modular block is

$$1157 \quad \mathcal{B}(z) = \lambda_0^\top \phi(u(z)) - \lambda_1^\top \rho(c(z)) - \lambda_2^\top \psi(t(z)), \quad (12)$$

1159 where $\lambda_0 \in \mathbb{R}^{r_u}$, $\lambda_1 \in \mathbb{R}^{r_c}$, $\lambda_2 \in \mathbb{R}^{r_t}$ are learnable weights, and ϕ, ρ, ψ act coordinatewise with the
 1160 roles specified in Theorem 2.1 (increasing ϕ for utility, penalty ρ for inequality violations, symmetric
 1161 ψ for equalities). Identifying

$$1162 \quad U_{\theta_U}(x, y) = u(z = (x, y)), \quad C_{\theta_C}(x, y) = c(z = (x, y)), \quad T_{\theta_T}(x, y) = t(z = (x, y)),$$

1163 substituting into equation 12 recovers the main-text parameterization in equation 4.
 1164

1165 **Layer of parallel blocks.** A layer \mathbb{B}_ℓ stacks d_ℓ parallel copies of equation 12 with (possibly)
 1166 distinct parameters $\theta_{\ell,i}$:

$$1167 \quad \mathbb{B}_\ell(z_\ell) := \begin{bmatrix} \mathcal{B}_{\theta_{\ell,1}}(z_\ell) \\ \vdots \\ \mathcal{B}_{\theta_{\ell,d_\ell}}(z_\ell) \end{bmatrix} \in \mathbb{R}^{d_\ell}.$$

1171 We adopt the standard layered (feedforward) form:

$$1172 \quad z_1 := (x, y), \quad z_{\ell+1} := \mathbb{B}_\ell(z_\ell) \quad (\ell = 1, \dots, L-1),$$

1173 so that each layer's input is simply the previous layer's output. This is the canonical feedforward
 1174 architecture.
 1175

1176 Optionally, one may allow each layer to explicitly access the original inputs:

$$1177 \quad z_1 := (x, y), \quad z_{\ell+1} := \mathbb{B}_\ell((x, y), z_\ell).$$

1179 To improve trainability one may also use residual connections:

$$1180 \quad z_{\ell+1} := z_\ell + \mathbb{B}_\ell(z_\ell).$$

1182 **Shallow/Deep composition and final affine readout.** For depth $L \geq 1$, the BL compositional
 1183 utility is produced by a final learnable affine transformation of the top layer:
 1184

$$1185 \quad \text{BL}(x, y) = W_L \mathbb{B}_L(z_L) + b_L, \quad (13)$$

1186 with $W_L \in \mathbb{R}^{1 \times d_L}$ for scalar output or $W_L \in \mathbb{R}^{m \times d_L}$ for vector output, and bias b_L of matching
 1187 dimension. The cases $L = 1$ (with $d_1 = 1$), $L \leq 2$, and $L > 2$ correspond to BL(Single),
 1188 BL(Shallow), and BL(Deep), respectively, exactly as described in the main text.

1188 E.3 IMPLEMENTATION DETAILS
11891190 E.3.1 FUNCTION INSTANTIATION
11911192 **Default instantiation.** In practice, we instantiate equation 4 with the specific choice $(\phi, \rho, \psi) =$
1193 $(\tanh, \text{ReLU}, |\cdot|)$:

1194
$$\mathcal{B}(x, y; \theta) = \lambda_0^\top \tanh(U_{\theta_U}(x, y)) - \lambda_1^\top \text{ReLU}(\mathcal{C}_{\theta_C}(x, y)) - \lambda_2^\top |\mathcal{T}_{\theta_T}(x, y)|. \quad (14)$$

1195

1196 Here $\lambda_0, \lambda_1, \lambda_2$ are learnable nonnegative weights. The bounded tanh captures saturation effects
1197 and diminishing returns in the utility head (Jevons, 2013), while ReLU and $|\cdot|$ impose asymmetric
1198 (one-sided) and symmetric (two-sided) penalties for inequality and equality violations.
11991200 **Variants and simplifications.** Several variants of equation 14 are often useful:
12011202 • Identity utility head. Set $\phi = \text{id}$ so the utility head uses raw polynomials:
1203

1204
$$\mathcal{B} = \lambda_0^\top U_{\theta_U} - \lambda_1^\top \text{ReLU}(\mathcal{C}_{\theta_C}) - \lambda_2^\top |\mathcal{T}_{\theta_T}|.$$

1205

1206 • Smooth penalty alternatives. Replace ReLU with softplus to yield smooth inequality penalties,
1207 or replace $|\cdot|$ with Huber or squared penalties to modulate sensitivity near zero for equality
1208 terms.
1209 • Dropping heads. The framework is modular, so one may omit heads depending on the task:
1210 – No T head: ignores symmetric deviations, yielding a constrained maximization with only
1211 inequality penalties.
1212 – No C head: if the T head is retained, the model reduces to a maximization problem with only
1213 equality constraints; if T is also removed, it becomes a fully unconstrained maximization.
1214 – No U head: produces a pure (soft-)constraint model focusing on feasibility.
1215 Strikingly, removing both U and T leaves only piecewise-linear ReLU penalties; when fol-
1216 lowed by a final affine readout, the resulting architecture becomes highly similar to a standard
1217 MLP—suggesting that MLPs may be viewed as a closely related special instance within the
1218 broader BL framework.
12191220 E.3.2 POLYNOMIAL FEATURE MAPS AND LINEAR REDUCTIONS
12211222 We adopt a pragmatic default: use low-degree polynomial maps for single-block models to maxi-
1223 mize interpretability, and use affine (degree-1) maps inside blocks for shallow/deep stacks to control
1224 parameter growth and compute. Below we state the instantiations and give the final block formulas
1225 used in experiments.
12261227 **BL(Single) — polynomial instantiation.** Let $m_D(x, y)$ denote a fixed basis of monomials up to
1228 total degree D (e.g. $D \leq 2$):
1229

1230
$$m_D(x, y) = [x, y, \text{vec}(xx^\top), \text{vec}(xy^\top), \text{vec}(yy^\top), \dots]^\top.$$

1231

1232 Parameterize each map as a linear map on this basis:
1233

1234
$$U_{\theta_U}(x, y) = M_U m_D(x, y) + b_U, \quad \mathcal{C}_{\theta_C}(x, y) = M_C m_D(x, y) + b_C, \quad \mathcal{T}_{\theta_T}(x, y) = M_T m_D(x, y) + b_T,$$

1235

1236 with learnable matrices M_\bullet and biases b_\bullet . The block becomes
1237

1238
$$\mathcal{B}(x, y; \theta) = \lambda_0^\top \phi(M_U m_D + b_U) - \lambda_1^\top \rho(M_C m_D + b_C) - \lambda_2^\top \psi(M_T m_D + b_T).$$

1239

1240 **BL (Shallow/Deep) — linear-by-layer instantiation.** For stacked architectures (Shallow/Deep)
1241 we use affine maps inside each block to keep per-layer complexity low:
1242

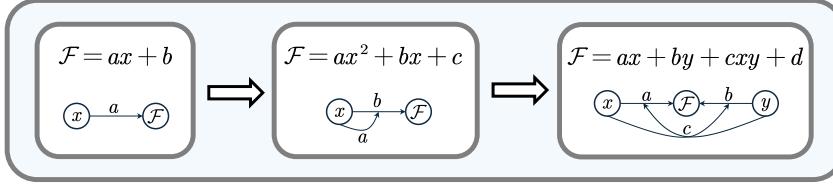
1243
$$U_{\theta_U}(x, y) = A_U [x; y] + b_U, \quad \mathcal{C}_{\theta_C}(x, y) = A_C [x; y] + b_C, \quad \mathcal{T}_{\theta_T}(x, y) = A_T [x; y] + b_T,$$

1244

1245 with learnable A_\bullet and b_\bullet . The corresponding block is
1246

1247
$$\mathcal{B}(x, y; \theta) = \lambda_0^\top \phi(A_U [x; y] + b_U) - \lambda_1^\top \rho(A_C [x; y] + b_C) - \lambda_2^\top \psi(A_T [x; y] + b_T).$$

1242 **On-demand higher-order terms.** If diagnostics or domain knowledge indicate underfitting, we
 1243 optionally augment the affine maps with selected higher-order terms or interactions. Concretely,
 1244 this is done by appending a small set of monomials (e.g. $x_i y_j$, x_i^2 , y_k^2) to the input vector $[x; y]$
 1245 and re-estimating the same affine maps A_\bullet . This targeted augmentation preserves the base affine
 1246 parameterization, increases expressivity only where required, and keeps both computational and
 1247 statistical costs modest while retaining interpretability.



1248
 1249
 1250 Figure 6: Visualization of polynomial feature maps as computation graphs, where nodes represent
 1251 variables or outputs and edges represent their effects. The left panel illustrates the linear form
 1252 $\mathcal{F} = ax + b$, in which the single edge $x \rightarrow \mathcal{F}$ directly encodes the marginal effect of x on \mathcal{F} . The
 1253 middle panel shows the quadratic form $\mathcal{F} = ax^2 + bx + c$, where x not only has a direct edge $x \rightarrow \mathcal{F}$ but
 1254 also acts on its own edge (“ $x \rightarrow x$ ”), thereby modifying the strength of its self-effect through
 1255 a higher-order contribution. The right panel depicts the interaction form $\mathcal{F} = ax + by + cxy + d$,
 1256 where y has an edge $y \rightarrow \mathcal{F}$ and, in addition, x acts on this edge (“ $x \rightarrow y$ ”), thereby modulating the
 1257 strength of y ’s contribution to \mathcal{F} . Symmetrically, y may act on the edge (“ $y \rightarrow x$ ”), so that each
 1258 variable can reshape the other’s effect through the interaction term.

1259 E.3.3 SKIP CONNECTIONS

1260 Skip connections are optional in our implementation. When beneficial, we often consider two pat-
 1261 terns tailored to BL: a DenseNet-style (concatenative) variant and a ResNet-style (additive) variant.

1262 **Dense skip connections (DenseNet-style, concatenation).** This variant feeds each layer with the
 1263 concatenation of all preceding representations, mirroring DenseNet (Huang et al., 2017). Let

$$1264 z_1 := [x; y], \quad s_1 := \mathbb{B}_1(z_1) \in \mathbb{R}^{d_1}.$$

1265 For $\ell \geq 2$,

$$1266 z_\ell := [x; y; s_1; \dots; s_{\ell-1}], \quad s_\ell := \mathbb{B}_\ell(z_\ell) \in \mathbb{R}^{d_\ell}.$$

1267 The final compositional utility is read out as

$$1268 \text{BL}(x, y) = W_L s_L + b_L.$$

1269 *Pros.* By exposing all earlier block outputs explicitly as inputs to later blocks, dense skips preserve
 1270 a transparent feature trail: one can trace which intermediate \mathcal{B} -block outputs enter downstream
 1271 computations and the final affine readout. This often improves feature reuse and yields favorable
 1272 interpretability at the block level.

1273 **Residual skip connections (ResNet-style, addition).** This variant adds an identity (or projected)
 1274 shortcut to each layer, as in ResNet (He et al., 2016). Define

$$1275 z_1 := [x; y], \quad s_1 := \mathbb{B}_1(z_1) \in \mathbb{R}^{d_1},$$

1276 and for $\ell \geq 2$,

$$1277 s_\ell := \mathbb{B}_\ell(s_{\ell-1}) + \Pi_\ell s_{\ell-1}, \quad \Pi_\ell \in \mathbb{R}^{d_\ell \times d_{\ell-1}},$$

1278 where Π_ℓ is the identity if $d_\ell = d_{\ell-1}$, or a bias-free learnable projection otherwise. The readout is
 1279 again

$$1280 \text{BL}(x, y) = W_L s_L + b_L.$$

1296 **Skip Connections and Interpretability.** Skip connections introduce explicit cross-layer dependency
 1297 structures, a form widely studied in statistical physics and other scientific domains. Such
 1298 structures enhance scientific interpretability by making long-range influences transparent. In behav-
 1299 ior and organizational sciences, they capture situations in which lower-level agents directly affect
 1300 higher-level decision makers without routing through intermediate layers. In physics, microscopic
 1301 parameters can exert direct effects on macroscopic behaviors across multiple scales. Architecturally,
 1302 ResNet-style skip connections model linear cross-layer dependencies, whereas DenseNet-style con-
 1303 nections realize concatenative (information-replicating) dependencies. These mechanisms provide
 1304 flexible yet interpretable pathways for representing hierarchical interactions.

1305 F PROOFS OF THEOREMS

1308 F.1 UTILITY MAXIMIZATION PROBLEM (UMP)

1310 **Theorem 2.1** (Penalty Function Equivalence for UMP).

1311 Let $\mathcal{X} \subset \mathbb{R}^{d_x}$ and $\mathcal{Y} \subset \mathbb{R}^{d_y}$ be nonempty compact sets, and let $U : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, $\mathcal{C} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^m$,
 1312 and $\mathcal{T} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^p$ be Lipschitz continuous. Assume Slater's condition holds for the Utility
 1313 Maximization Problem (UMP). Then there exist $\lambda_0 > 0$, $\lambda_1 \in \mathbb{R}_{++}^m$, $\lambda_2 \in \mathbb{R}_{++}^p$ such that the
 1314 unconstrained objective

$$1316 \max_{\mathbf{y} \in \mathcal{Y}} \lambda_0 \phi(U(\mathbf{x}, \mathbf{y})) - \lambda_1^\top \rho(\mathcal{C}(\mathbf{x}, \mathbf{y})) - \lambda_2^\top \psi(\mathcal{T}(\mathbf{x}, \mathbf{y})) \quad (15)$$

1318 have the same global maximizers. Here, $\phi : \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing C^1 map, and $\rho, \psi : \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ are convex “penalty” functions satisfying $\rho(z) = 0$ for $z \leq 0$, $\rho(z) > 0$ for $z > 0$; and
 1319 $\psi(-z) = \psi(z)$, $\psi(0) = 0$, $\psi(z) > 0$ for $z \neq 0$.

1321 *Proof.* Let $f(\mathbf{y}) = \phi(U(\mathbf{x}, \mathbf{y}))$, $g(\mathbf{y}) = \mathcal{C}(\mathbf{x}, \mathbf{y})$, and $h(\mathbf{y}) = \mathcal{T}(\mathbf{x}, \mathbf{y})$. By assumption, all func-
 1322 tions f, g, h are Lipschitz continuous (since ϕ is C^1 and strictly increasing, its composition with a
 1323 Lipschitz function remains Lipschitz). Define the feasible set

$$1325 F = \{\mathbf{y} \in \mathcal{Y} \mid g(\mathbf{y}) \leq 0, h(\mathbf{y}) = 0\}.$$

1326 By Slater's condition, F is non-empty and has a non-empty interior. The constrained problem (a) is
 1327 equivalent to:

$$1328 \max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{y}) \quad \text{s.t.} \quad g(\mathbf{y}) \leq 0, h(\mathbf{y}) = 0.$$

1330 Since ϕ is strictly increasing, we have $\arg \max U = \arg \max \phi(U)$. Let $S \subseteq F$ denote the set of
 1331 global optima of this problem, which is non-empty due to compactness of \mathcal{Y} and continuity of f .
 1332 Take any $\mathbf{y}^* \in S$, and denote the optimal value by $f^* = f(\mathbf{y}^*)$.

1333 Define the standard penalty function:

$$1335 P_0(\mathbf{y}) = \sum_{i=1}^m \rho(g_i(\mathbf{y})) + \sum_{j=1}^p \psi(h_j(\mathbf{y})).$$

1338 By properties of ρ and ψ : $-P_0(\mathbf{y}) = 0$ if and only if $\mathbf{y} \in F$, $-P_0(\mathbf{y}) > 0$ if $\mathbf{y} \notin F$.

1339 Under Slater's condition and the Lipschitz continuity of g and h (see Clarke, 1990), there exists a
 1340 constant $c > 0$ such that:

$$1342 P_0(\mathbf{y}) \geq c \cdot \text{dist}(\mathbf{y}, F), \quad \forall \mathbf{y} \in \mathcal{Y},$$

1343 where $\text{dist}(\mathbf{y}, F) := \inf_{\mathbf{z} \in F} \|\mathbf{y} - \mathbf{z}\|$ denotes the Euclidean distance. This inequality follows from
 1344 the Mangasarian-Fromovitz constraint qualification (MFCQ), which is implied by Slater's condition.

1345 Let L_f denote the Lipschitz constant of f over \mathcal{Y} . For any $\mathbf{y} \in \mathcal{Y}$ and $\mathbf{z} \in F$, we have:

$$1347 f(\mathbf{y}) - f(\mathbf{z}) \leq L_f \|\mathbf{y} - \mathbf{z}\|.$$

1348 Choosing $\mathbf{z} = \mathbf{y}^* \in S$ gives $f(\mathbf{z}) \leq f^*$, so:

$$1349 f(\mathbf{y}) - f^* \leq L_f \|\mathbf{y} - \mathbf{z}\|.$$

1350 Taking infimum over $\mathbf{z} \in F$, we obtain:
 1351

$$1352 \quad f(\mathbf{y}) - f^* \leq L_f \cdot \text{dist}(\mathbf{y}, F), \quad \forall \mathbf{y} \in \mathcal{Y}.$$

1353 Combining the inequalities, we get:
 1354

$$1355 \quad f(\mathbf{y}) - f^* \leq L_f \cdot \text{dist}(\mathbf{y}, F) \leq \frac{L_f}{c} P_0(\mathbf{y}), \quad \forall \mathbf{y} \in \mathcal{Y}.$$

1357 Let $\mu > \frac{L_f}{c}$. Then for any $\mathbf{y} \notin F$, since $P_0(\mathbf{y}) > 0$, we have:
 1358

$$1359 \quad f(\mathbf{y}) - f^* < \mu P_0(\mathbf{y}) \Rightarrow f(\mathbf{y}) - \mu P_0(\mathbf{y}) < f^*.$$

1360 For $\mathbf{y} \in F$, we have $P_0(\mathbf{y}) = 0$ and $f(\mathbf{y}) \leq f^*$, so:
 1361

$$1362 \quad f(\mathbf{y}) - \mu P_0(\mathbf{y}) = f(\mathbf{y}) \leq f^*.$$

1363 Hence, the penalized objective $f(\mathbf{y}) - \mu P_0(\mathbf{y})$ satisfies: - $f(\mathbf{y}) - \mu P_0(\mathbf{y}) \leq f^*$ for all $\mathbf{y} \in \mathcal{Y}$, -
 1364 Equality holds if and only if $\mathbf{y} \in F$ and $f(\mathbf{y}) = f^*$, i.e., $\mathbf{y} \in S$.
 1365

1366 Therefore, the unconstrained penalized problem $\max_{\mathbf{y} \in \mathcal{Y}} [f(\mathbf{y}) - \mu P_0(\mathbf{y})]$ shares the same global
 1367 solution set as the original constrained problem.

1368 Now define the penalty-based score with weights $\lambda_0 = 1$, $\lambda_1 = \mu \mathbf{1}_m$, $\lambda_2 = \mu \mathbf{1}_p$, where $\mathbf{1}_m$ and $\mathbf{1}_p$
 1369 denote all-ones vectors of appropriate dimensions. Then:

$$1370 \quad \mathcal{B}(\mathbf{x}, \mathbf{y}) = \lambda_0 \phi(U(\mathbf{x}, \mathbf{y})) - \lambda_1^\top \rho(\mathcal{C}(\mathbf{x}, \mathbf{y})) - \lambda_2^\top \psi(\mathcal{T}(\mathbf{x}, \mathbf{y})) = f(\mathbf{y}) - \mu P_0(\mathbf{y}).$$

1372 Maximizing $\mathcal{B}(\mathbf{x}, \mathbf{y})$ is thus equivalent to maximizing the penalized objective $f(\mathbf{y}) - \mu P_0(\mathbf{y})$, and
 1373 hence the set of global optima coincides. All weights are positive, as required. \square
 1374

1375 **Theorem 2.2** (Universality of UMP). *Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets. Let $f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$
 1376 be an objective and let*

$$1377 \quad \{g_i\}_{i \in I_{\leq}}, \quad \{\tilde{g}_k\}_{k \in I_{\geq}}, \quad \{h_j\}_{j \in J}$$

1378 *be (possibly empty, countable, or uncountable) families of real-valued constraint functions on $\mathcal{X} \times$
 1379 \mathcal{Y} . For each fixed $\mathbf{x} \in \mathcal{X}$, consider the optimization problem*

$$1380 \quad \sup_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y}) \quad \text{s.t.} \quad g_i(\mathbf{x}, \mathbf{y}) \leq 0 \quad (i \in I_{\leq}), \quad \tilde{g}_k(\mathbf{x}, \mathbf{y}) \geq 0 \quad (k \in I_{\geq}), \quad h_j(\mathbf{x}, \mathbf{y}) = 0 \quad (j \in J). \quad (16)$$

1382 Define (with the convention $\sup \emptyset := -\infty$ and maxima taken in the extended reals)

$$1384 \quad U(\mathbf{x}, \mathbf{y}) := f(\mathbf{x}, \mathbf{y}), \quad \mathcal{C}(\mathbf{x}, \mathbf{y}) := \max \left\{ 0, \sup_{i \in I_{\leq}} g_i(\mathbf{x}, \mathbf{y}), \sup_{k \in I_{\geq}} (-\tilde{g}_k(\mathbf{x}, \mathbf{y})) \right\},$$

$$1387 \quad \mathcal{T}(\mathbf{x}, \mathbf{y}) := \max \left\{ 0, \sup_{j \in J} |h_j(\mathbf{x}, \mathbf{y})| \right\}.$$

1389 Then for every $\mathbf{x} \in \mathcal{X}$, problem equation 16 is equivalent to the utility-maximization problem

$$1390 \quad \sup_{\mathbf{y} \in \mathcal{Y}} U(\mathbf{x}, \mathbf{y}) \quad \text{s.t.} \quad \mathcal{C}(\mathbf{x}, \mathbf{y}) \leq 0, \quad \mathcal{T}(\mathbf{x}, \mathbf{y}) = 0, \quad (17)$$

1392 in the sense that the feasible sets of equation 16 and equation 17 coincide; hence the optimal values
 1393 coincide, and whenever maximizers exist, the argmax sets coincide. For minimization problems,
 1394 replace U by $-f$.
 1395

1396 *Proof.* Fix $\mathbf{x} \in \mathcal{X}$ and write

$$1398 \quad F(\mathbf{x}) := \left\{ \mathbf{y} \in \mathcal{Y} : g_i(\mathbf{x}, \mathbf{y}) \leq 0 \quad \forall i, \tilde{g}_k(\mathbf{x}, \mathbf{y}) \geq 0 \quad \forall k, h_j(\mathbf{x}, \mathbf{y}) = 0 \quad \forall j \right\}$$

1400 for the feasible set of equation 16, and

$$1401 \quad \hat{F}(\mathbf{x}) := \left\{ \mathbf{y} \in \mathcal{Y} : \mathcal{C}(\mathbf{x}, \mathbf{y}) \leq 0, \mathcal{T}(\mathbf{x}, \mathbf{y}) = 0 \right\}$$

1403 for the feasible set of equation 17. We show $F(\mathbf{x}) = \hat{F}(\mathbf{x})$.

(i) $F(\mathbf{x}) \subseteq \hat{F}(\mathbf{x})$. Take $\mathbf{y} \in F(\mathbf{x})$. Then $g_i(\mathbf{x}, \mathbf{y}) \leq 0$ for all $i \in I_{\leq}$, so $\sup_{i \in I_{\leq}} g_i(\mathbf{x}, \mathbf{y}) \leq 0$. Likewise, $\tilde{g}_k(\mathbf{x}, \mathbf{y}) \geq 0$ for all $k \in I_{\geq}$ implies $\sup_{k \in I_{\geq}} (-\tilde{g}_k(\mathbf{x}, \mathbf{y})) \leq 0$, and $h_j(\mathbf{x}, \mathbf{y}) = 0$ for all $j \in J$ implies $\sup_{j \in J} |h_j(\mathbf{x}, \mathbf{y})| = 0$. By the definitions of \mathcal{C} and \mathcal{T} ,

$$\mathcal{C}(\mathbf{x}, \mathbf{y}) = \max\{0, \leq 0, \leq 0\} \leq 0, \quad \mathcal{T}(\mathbf{x}, \mathbf{y}) = \max\{0, 0\} = 0,$$

hence $\mathbf{y} \in \hat{F}(\mathbf{x})$.

(ii) $\hat{F}(\mathbf{x}) \subseteq F(\mathbf{x})$. Take $\mathbf{y} \in \hat{F}(\mathbf{x})$. From $\mathcal{C}(\mathbf{x}, \mathbf{y}) \leq 0$ we obtain

$$\sup_{i \in I_{\leq}} g_i(\mathbf{x}, \mathbf{y}) \leq 0 \quad \text{and} \quad \sup_{k \in I_{\geq}} (-\tilde{g}_k(\mathbf{x}, \mathbf{y})) \leq 0.$$

By the defining property of the supremum, the first inequality yields $g_i(\mathbf{x}, \mathbf{y}) \leq 0$ for all $i \in I_{\leq}$; the second yields $\tilde{g}_k(\mathbf{x}, \mathbf{y}) \geq 0$ for all $k \in I_{\geq}$. From $\mathcal{T}(\mathbf{x}, \mathbf{y}) = 0$ and $\mathcal{T} \geq 0$ we have $\sup_{j \in J} |h_j(\mathbf{x}, \mathbf{y})| \leq 0$, hence $|h_j(\mathbf{x}, \mathbf{y})| = 0$ for all $j \in J$, i.e., $h_j(\mathbf{x}, \mathbf{y}) = 0$ for all j . Therefore $\mathbf{y} \in F(\mathbf{x})$.

From (i) and (ii) it follows that $F(\mathbf{x}) = \hat{F}(\mathbf{x})$. Since $U = f$ (or $U = -f$ for minimization), the two problems optimize the same objective over the same feasible set; consequently the optimal values agree, and whenever maximizers exist, the argmax sets coincide. \square

F.2 BL ARCHITECTURE

Theorem 2.3 (Universal Approximation of BL). *Let $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} \subset \mathbb{R}^m$ be compact sets, and let $p^*(\mathbf{y} \mid \mathbf{x})$ be any continuous conditional density such that $p^*(\mathbf{y} \mid \mathbf{x}) > 0$ for all $(\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y}$. Then for any $\tau > 0$ and $\varepsilon > 0$, there exists a finite BL architecture (with some depth and width depending on ε) and a parameter θ^* such that the Gibbs distribution*

$$p_\tau(\mathbf{y} \mid \mathbf{x}; \theta^*) = \frac{\exp(BL_{\theta^*}(\mathbf{x}, \mathbf{y})/\tau)}{\int_{\mathcal{Y}} \exp(BL_{\theta^*}(\mathbf{x}, \mathbf{y}')/\tau) d\mathbf{y}'} \quad (18)$$

satisfies

$$\sup_{\mathbf{x} \in \mathcal{X}} \text{KL}(p^*(\cdot \mid \mathbf{x}) \parallel p_\tau(\cdot \mid \mathbf{x}; \theta^*)) < \varepsilon. \quad (19)$$

Proof. Let $f(\mathbf{x}, \mathbf{y}) = \log p^*(\mathbf{y} \mid \mathbf{x})$. Since p^* is continuous and strictly positive on the compact domain $\mathcal{X} \times \mathcal{Y}$, the function f is continuous and bounded.

Consider the elementary block \mathcal{B}_θ in equation 4. Setting $\lambda_1 = \lambda_2 = \mathbf{0}$ and letting U_{θ_U} produce affine features in (\mathbf{x}, \mathbf{y}) , the block reduces to a one-hidden-layer network

$$\mathcal{B}_\theta(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^k \lambda_{0,j} \phi(a_j^\top [\mathbf{x}; \mathbf{y}] + b_j),$$

which is a universal approximator on $C(\mathcal{X} \times \mathcal{Y})$ for nonpolynomial bounded ϕ (Hornik, 1991). Hence, for any $\delta > 0$ there exist θ and a continuous $k(\mathbf{x})$ such that

$$\sup_{(\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y}} |\mathcal{B}_\theta(\mathbf{x}, \mathbf{y}) - \tau f(\mathbf{x}, \mathbf{y}) - k(\mathbf{x})| < \delta. \quad (20)$$

Writing $\mathcal{B}_\theta = \tau f + k + \epsilon$ with $|\epsilon| < \delta$, we have

$$\exp\left(\frac{\mathcal{B}_\theta}{\tau}\right) = \exp(f) \exp(k/\tau) \exp(\epsilon/\tau).$$

Let $r = \exp(\epsilon/\tau) - 1$, so $|r| \leq e^{\delta/\tau} - 1 =: B(\delta)$. The normalizer satisfies

$$Z(\mathbf{x}) = \exp(k(\mathbf{x})/\tau) \mathbb{E}_{p^*} [\exp(\epsilon/\tau) \mid \mathbf{x}].$$

With $A(\mathbf{x}) = \mathbb{E}_{p^*}[r(\mathbf{x}, \cdot) \mid \mathbf{x}]$ so that $|A(\mathbf{x})| \leq B(\delta)$, we obtain

$$p_\tau(\mathbf{y} \mid \mathbf{x}; \theta) = p^*(\mathbf{y} \mid \mathbf{x}) \cdot \frac{1 + r(\mathbf{x}, \mathbf{y})}{1 + A(\mathbf{x})}.$$

1458 Define $s(\mathbf{x}, \mathbf{y}) = \frac{1+r}{1+A} - 1$. Then $|s| \leq \frac{|r|+|A|}{1-|A|} \leq \frac{2B(\delta)}{1-B(\delta)} =: C(\delta)$. If $C(\delta) < \frac{1}{2}$, the inequality
 1459 $|\log(1+s)| \leq 2|s|$ yields
 1460

$$1461 \text{KL}(p^* \parallel p_\tau) = - \int p^* \log(1+s) \leq 2C(\delta),$$

1463 and the bound is uniform in \mathbf{x} . Given $\varepsilon > 0$, pick $\delta > 0$ so that $2C(\delta) < \varepsilon$, proving the claim for
 1464 Gibbs models with energies from the elementary class.

1465 For the layered architectures, let

$$1466 \mathcal{F}_B := \{\mathcal{B}_\theta : \theta\} \quad \text{and} \quad \mathcal{F}_{BL} := \{BL_\theta : \theta\},$$

1468 where BL_θ denotes any finite-depth BL (Shallow $L \leq 2$ or Deep $L > 2$) obtained by stacking
 1469 finitely many parallel \mathcal{B}_θ 's into vectors across layers and applying a final affine map. By construc-
 1470 tion,

$$1471 \mathcal{F}_B \subseteq \mathcal{F}_{BL} \quad (\text{take } L = 1 \text{ and the final affine as identity}),$$

1472 hence, under the uniform norm,

$$1473 \overline{\mathcal{F}_{BL}} \supseteq \overline{\mathcal{F}_B} = C(\mathcal{X} \times \mathcal{Y}),$$

1474 and therefore $\overline{\mathcal{F}_{BL}} = C(\mathcal{X} \times \mathcal{Y})$. The uniform energy approximation argument above then applies
 1475 verbatim with $g = BL_{\theta^*}$, yielding

$$1476 \sup_{\mathbf{x} \in \mathcal{X}} \text{KL}(p^*(\cdot \mid \mathbf{x}) \parallel p_\tau(\cdot \mid \mathbf{x}; \theta^*)) < \varepsilon.$$

1478 Compactness of \mathcal{Y} and continuity of BL_{θ^*} ensure finiteness of the normalizing constant, so the
 1479 Gibbs distribution is well defined. This completes the proof. \square

1480 F.3 IDENTIFIABLE BEHAVIOR LEARNING (IBL)

1482 F.3.1 SETUP AND ASSUMPTION

1484 **Input-output space and data.** Let $\mathcal{X} \subset \mathbb{R}^{d_x}$ and $\mathcal{Y} \subset \mathbb{R}^{d_y}$ be compact sets. Assume the data
 1485 distribution $P_{X,Y}$ is supported on $\mathcal{X} \times \mathcal{Y}$, and that there exists a point $z_0 = (x_0, y_0)$ in the interior
 1486 of its support; that is, some open neighborhood of z_0 has positive $P_{X,Y}$ -measure. All expectations
 1487 are taken with respect to $P_{X,Y}$ unless otherwise specified.

1488 **Parameter space and polynomial feature maps.** The parameter space factorizes as

$$1489 \Theta := \Theta_U \times \Theta_C \times \Theta_T \times \mathcal{W}_o.$$

1491 For $\theta_U \in \Theta_U$, $\theta_C \in \Theta_C$, and $\theta_T \in \Theta_T$, we define polynomial feature maps

$$1493 p_u : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{d_u}, \quad p_c : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{d_c}, \quad p_t : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{d_t},$$

1494 each of fixed degree and injective in their coefficients (i.e., distinct coefficients yield distinct func-
 1495 tions). For a single block, $\theta_U, \theta_C, \theta_T$ correspond to the parameters of the U , C , and T terms together
 1496 with their respective external multipliers (e.g., penalty weights λ). For a deep network composed
 1497 of multiple blocks, $\theta = (\theta_U, \theta_C, \theta_T)$ denotes the collection of all block-level parameters across the
 1498 hierarchy, where θ_U aggregates the parameters of all U -terms, θ_C those of all C -terms, and θ_T those
 1499 of all T -terms (each including their associated multipliers).

1500 The output component \mathcal{W}_o corresponds to the affine transformation in the final layer: $\mathcal{W}_o = \mathbb{R}^{d'}$
 1501 for single-output prediction, and $\mathcal{W}_o = \mathbb{R}^{d' \times m}$ for m -way classification, where d' is the output
 1502 dimension induced by the preceding network, whether shallow or deep.

1503

1504 **Identifiable base block.** Let $\lambda_0 \in \mathbb{R}^{d_u}$, $\lambda_1 \in \mathbb{R}^{d_c}$, and $\lambda_2 \in \mathbb{R}^{d_t}$ denote nonnegative weight
 1505 vectors, treated as learnable parameters. We instantiate the identifiable modular block

$$1506 \mathcal{B}^{\text{id}}(x, y; \theta) = \lambda_0^\top \tanh(p_u(x, y)) - \lambda_1^\top \text{softplus}(p_c(x, y)) - \lambda_2^\top (p_t(x, y))^{\odot 2}, \quad (21)$$

1507 where $(\cdot)^{\odot 2}$ denotes elementwise squaring. By construction, the \tanh and softplus heads are strictly
 1508 monotone in their arguments, while the quadratic head is even.

1509 We assume that each polynomial feature map $\mathbf{p}_\bullet(x, y)$ contains no nonzero monomial independent
 1510 of y ; that is, no feature is a pure function of x or a constant. This ensures that $\mathcal{B}^{\text{id}}(x, y)$ is noncon-
 1511 stant in y unless all weights vanish.

1512 **Architectures.** We implement IBL in three architectural forms, each producing a compositional
 1513 utility function over (x, y) .
 1514

- 1515 • IBL(Single): A single block is used as the compositional utility,

$$1516 \quad \text{IBL}(x, y) := \mathcal{B}^{\text{id}}(x, y). \\ 1517$$

- 1518 • IBL(Shallow): Shallow IBL uses one or two stacked layers of parallel blocks. For instance, a
 1519 first layer

$$1520 \quad \mathbb{B}_1^{\text{id}}(x, y) := [\mathcal{B}_{1,1}^{\text{id}}(x, y), \dots, \mathcal{B}_{1,d_1}^{\text{id}}(x, y)]^\top \in \mathbb{R}^{d_1} \\ 1521$$

1522 feeds into a bias-free affine map

$$1523 \quad \text{IBL}_{\text{Shallow}}(x, y) := \mathbf{W}_1^{\circ} \mathbb{B}_1^{\text{id}}(x, y), \\ 1524$$

1525 where $\mathbf{W}_1^{\circ} \in \mathbb{R}^{m \times d_1}$ for classification and $\mathbf{W}_1^{\circ} \in \mathbb{R}^{1 \times d_1}$ for scalar output.

- 1526 • IBL(Deep): Deep IBL extends the construction to depth $L > 2$, recursively defined as
 1527

$$1528 \quad \text{IBL}(x, y) := \mathbf{W}_L^{\circ} \cdot \mathbb{B}_L^{\text{id}}(\dots \mathbb{B}_2^{\text{id}}(\mathbb{B}_1^{\text{id}}(x, y)) \dots), \\ 1529$$

1530 where each $\mathbb{B}_\ell^{\text{id}}$ stacks parallel blocks $\mathcal{B}_{\ell,i}^{\text{id}}(x, y)$, and \mathbf{W}_L° is a bias-free affine transformation.

1531 The cases $L = 1$ and $L = 2$ recover the Single and Shallow architectures, respectively.

1532 **Induced conditional model.** Let $\text{IBL}(x, y)$ denote the compositional utility function produced by
 1533 the chosen architecture (Single, Shallow, or Deep). It induces the conditional Gibbs distribution

$$1535 \quad (\text{Discrete } y \in [m]) \quad p(y | x) = \text{softmax}_y\{\text{IBL}(x, y)\}, \quad (22)$$

$$1537 \quad (\text{Continuous } y) \quad p(y | x) = \frac{\exp\{\text{IBL}(x, y)/\tau\}}{\int_{\mathcal{Y}} \exp\{\text{IBL}(x, \tilde{y})/\tau\} d\tilde{y}}, \quad \tau > 0 \text{ fixed.} \quad (23)$$

1539 Here τ is a fixed temperature parameter. Thus, IBL predicts by defining a compositional utility
 1540 landscape whose Gibbs distribution governs y given x .
 1541

1542 Quotient parameter space.

1544 **Definition F.1** (Symmetry Quotient Space). Define the equivalence relation \sim on Θ as the smallest
 1545 relation satisfying

$$1546 \quad \theta_t \sim \theta'_t \iff p_t^{(i)}(x, y; \theta_t^{(i)})^{\odot 2} = p_t^{(i)}(x, y; \theta_t'^{(i)})^{\odot 2} \quad \text{for all } i \text{ and } (x, y).$$

1548 The corresponding quotient space is

$$1549 \quad \bar{\Theta} := \Theta / \sim.$$

1551 **Explanation.** The T -component is designed to encode equality constraints, which are symbolically
 1552 equations. Flipping the overall sign of such a constraint leaves the equation unchanged, so different
 1553 parameterizations that differ only by sign should be regarded as equivalent.

1554 **Definition E.2** (Scale-Invariant Quotient Space). Define the equivalence relation \approx on $\bar{\Theta}$ by

$$1556 \quad \bar{\theta} \approx \bar{\theta}' \iff \exists c > 0 \text{ such that } s(x, y; \bar{\theta}) = c s(x, y; \bar{\theta}').$$

1557 The scale-invariant quotient space is then given by

$$1559 \quad \tilde{\Theta} := \bar{\Theta} / \approx.$$

1561 **Explanation.** In classification, predictions depend only on relative compositional utility differences
 1562 between candidate labels. From a technical perspective, quotienting out global shifts or uniform
 1563 scalings is necessary: without this identification, the cross-entropy loss admits redundant parameterizations
 1564 that differ only by such transformations. At the same time, this quotient is natural and
 1565 harmless, since it does not eliminate informative ratios between classes but merely discards absolute
 1566 levels or scales that play no role in the softmax decision rule.

1566 **Loss Functions.** We adopt a hybrid loss to simultaneously accommodate discrete and continuous
 1567 outputs. Specifically, cross-entropy (CE) is applied to discrete targets, while denoising score match-
 1568 ing (DSM) is applied to continuous targets. Let $\gamma_c, \gamma_d \geq 0$ with $\gamma_c + \gamma_d > 0$. The population risk,
 1569 defined on the quotient parameter space, is given by
 1570

$$1571 \quad \mathcal{M}(\bar{\theta}) = \gamma_d \mathbb{E}[-\log p_{\theta}(Y | X)] + \gamma_c \mathbb{E}[\mathcal{S}_{\text{DSM}}(\theta; X)], \quad \theta \in \pi^{-1}(\bar{\theta}), \quad (24)$$

1572 where π denotes the canonical projection from the original parameter space onto its quotient.
 1573

1574 For continuous outputs $Y \in \mathcal{Y} \subseteq \mathbb{R}^{d_y}$, DSM is implemented by perturbing the target with additive
 1575 Gaussian noise $\tilde{Y} = Y + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$, and penalizing the squared discrepancy between the
 1576 model score and the corresponding denoising score:
 1577

$$1578 \quad \mathcal{S}_{\text{DSM}}(\theta; X) = \frac{1}{2\sigma^2} \mathbb{E}_{\varepsilon} \left[\left\| \nabla_{\tilde{Y}} \log p_{\theta}(\tilde{Y} | X) + \frac{1}{\sigma^2} (Y - \tilde{Y}) \right\|^2 \middle| X, Y \right]. \quad (25)$$

1581 In classification-only settings we set $\gamma_c = 0$ (pure CE), while in regression-only settings we set
 1582 $\gamma_d = 0$ (pure DSM).
 1583

1584 For a single observation $Z = (X, Y)$, we define the *per-sample loss* as
 1585

$$1586 \quad \ell(\theta; Z) := \gamma_d [-\log p_{\theta}(Y | X)] + \gamma_c \mathcal{S}_{\text{DSM}}(\theta; X). \quad (26)$$

1587 The empirical criterion then takes the standard M -estimation form
 1588

$$1589 \quad \hat{Q}_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta; Z_i), \quad Z_i = (X_i, Y_i). \quad (27)$$

1592 Key Assumptions.

1593 **Assumption F.1** (Global Atomic Independence and Injectivity). *Let $\bar{\Psi}$ be the atomic parameter
 1594 quotient.*

- 1596 1. *Injectivity on the quotient. The map $\bar{\Psi} \rightarrow \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}, \bar{\psi} \mapsto g_{\bar{\psi}}$, is injective.*
- 1597
- 1598 2. *Linear Independence. Atomic linear independence. Any finite collection of pairwise distinct
 1599 atoms $\{g_{\bar{\psi}_i}\}_{i=1}^r$ with $\bar{\psi}_i \in \bar{\Psi}$ is linearly independent in $\mathbb{R}^{\mathcal{X} \times \mathcal{Y}}$.*
- 1600
- 1601 3. *Minimality. In all model instances we only consider minimal representations: no duplicate
 1602 atoms and its corresponding linear coefficient in the mixture is nonzero.*
- 1603
- 1604 4. *Canonical ordering. For each model instance, a fixed canonical ordering is imposed on the atom
 1605 list.*
- 1606

1607 *Explanation.* Assumption F.1 treats each identifiable block \mathcal{B}^{id} as an *atomic* building unit and im-
 1608 poses four structural requirements on representations built from these atoms. Together, these four
 1609 conditions define a non-ambiguous, non-redundant, and canonical algebra of atoms: after quotient-
 1610 ing by the natural symmetries, every model constructed from \mathcal{B} -blocks admits a unique minimal
 1611 representation (up to the prescribed equivalences). This structural regularity is the foundation on
 1612 which identifiability statements are built: it guarantees that observing the model output (or the ob-
 1613 jective it optimizes) allows one, in principle, to recover the underlying atomic components and their
 1614 coefficients in the appropriate quotient sense.

1615 *Practical remark.* In practice, these conditions can be encouraged or approximately enforced in two
 1616 complementary ways. First, the design of atomic classes (choice of polynomial bases, interaction
 1617 terms, and activation heads) can be chosen so that injectivity and linear independence are more
 1618 plausible by construction. Second, model selection and post-processing (e.g., pruning atoms with
 1619 near-zero coefficients, enforcing a deterministic tie-breaking rule for ordering) can be applied after
 training to realize minimality and canonical ordering. These practical measures make the theoretical
 assumptions operationally meaningful in empirical applications.

1620 F.3.2 PROOF OF THEOREMS
16211622 **Lemma F.1** (Identifiability of Linear Combinations). *Let Z be a set. For each $j = 1, \dots, m$, let Φ_j
1623 be a parameter space and define atomic functions*

1624
$$g_\psi := f(\cdot; \phi_j), \quad \psi = (j, \phi_j) \in \Psi,$$

1625

1626 where $\Psi := \bigsqcup_{j=1}^m \Phi_j$ is the disjoint union. Let $\bar{\Psi}$ be the quotient atomic parameter space, and
1627 denote its elements by $\bar{\psi} \in \bar{\Psi}$.1628 Define the quotient parameter space of the model as
1629

1630
$$\bar{\Xi} := \prod_{j=1}^m ((\mathbb{R} \setminus \{0\}) \times \bar{\Psi}), \quad \bar{\xi} = ((a_1, \bar{\psi}_1), \dots, (a_m, \bar{\psi}_m)).$$

1631

1632 The associated linear combination model is
1633

1634
$$S_{\bar{\xi}} := \sum_{j=1}^m a_j g_{\bar{\psi}_j}.$$

1635
1636

1637 By virtue of Assumption F.1, the model is identifiable in the quotient parameter space $\bar{\Xi}$: if $S_{\bar{\xi}} \equiv S_{\bar{\xi}'}$
1638 on Z , then $\bar{\xi} = \bar{\xi}'$.
16391640 *Proof.* Suppose $S_{\bar{\xi}} \equiv S_{\bar{\xi}'}$ on Z , i.e.,
1641

1642
$$\sum_{j=1}^m a_j g_{(j, \phi_j)} - \sum_{j=1}^m a'_j g_{(j, \phi'_j)} \equiv 0.$$

1643
1644

1645 Let \mathcal{U} be the set of distinct atoms in the quotient $\bar{\Psi}$ that appear on either side, and for each $\bar{\psi} \in \mathcal{U}$
1646 let

1647
$$\beta(\bar{\psi}) := \sum_{j: [j, \phi_j] = \bar{\psi}} a_j - \sum_{j': [j', \phi'_{j'}] = \bar{\psi}} a'_{j'}$$

1648

1649 be the net coefficient of $g_{\bar{\psi}}$. Then

1650
$$\sum_{\bar{\psi} \in \mathcal{U}} \beta(\bar{\psi}) g_{\bar{\psi}} \equiv 0.$$

1651

1652 By the *linear independence* condition (Assumption F.1:2) of pairwise distinct atoms in $\bar{\Psi}$, we must
1653 have $\beta(\bar{\psi}) = 0$ for all $\bar{\psi} \in \mathcal{U}$.
16541655 Furthermore, by the *Minimality* requirement (Assumption F.1:3), each $\bar{\psi}$ appears exactly once on
1656 each side and with nonzero coefficient. Thus the two sides must contain the exact same list of
1657 coefficient-atom pairs $\{(a_j, \bar{\psi}_j)\}_{j=1}^m$, and since a canonical ordering is imposed (Assumption F.1:4),
1658 it follows that

1659
$$\bar{\xi} = \bar{\xi}'.$$

1660

□

1661 **Theorem F.1** (Identifiability of IBL(Single)). *The IBL(Single) architecture uses the atom set*

1662
$$\{ \tanh(p_{u,i}), \text{softplus}(p_{c,i}), (p_{t,i})^2 : i = 1, \dots, d_u; i = 1, \dots, d_c; i = 1, \dots, d_t \}.$$

1663

1664 *Under Assumption F.1, the model is identifiable in the quotient space $\bar{\Theta}$: if $\mathcal{B}_\theta^{\text{id}} \equiv \mathcal{B}_{\theta'}^{\text{id}}$ on $\mathcal{X} \times \mathcal{Y}$,
1665 then $\theta = \theta'$ in $\bar{\Theta}$.*1666 *Proof.* Write
1667

1668
$$\mathcal{B}_\theta^{\text{id}} = \sum_{j=1}^m a_j f(\cdot; \phi_j), \quad m := d_u + d_c + d_t,$$

1669

1670 where each $f(\cdot; \phi_j)$ is one of the atoms $\tanh(p_{u,i})$, $\text{softplus}(p_{c,i})$, or $(p_{t,i})^2$, and a_j is the corre-
1671 sponding entry in $(\lambda_0, \lambda_1, \lambda_2)$, with a fixed ordering over all indices.
16721673 If $\mathcal{B}_\theta^{\text{id}} \equiv \mathcal{B}_{\theta'}^{\text{id}}$ on $\mathcal{X} \times \mathcal{Y}$, then Lemma F.1 and Assumption F.1 imply that all atoms and coefficients
1674 must agree in the quotient atomic space $\bar{\Psi}$. Since the ordering is fixed, this implies $\theta = \theta'$ in $\bar{\Theta}$. □

1674 **Theorem F.2** (Identifiability of IBL(Shallow)). *The IBL(Shallow) architecture uses the atom set*

$$\{ \mathcal{B}_{\theta_{1,j}}^{\text{id}}(x, y) \}_{j=1}^{d_1},$$

1675 *where each $\mathcal{B}_{\theta_{1,j}}^{\text{id}} : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ is a single-block IBL module parametrized by $\theta_{1,j} \in \Theta_1$. The full*

1676 *parameter is denoted*

$$1677 \theta := ((\theta_{1,1}, \dots, \theta_{1,d_1}), \mathbf{W}_1^{\circ}) \in \Theta := (\Theta_1)^{d_1} \times \mathbb{R}^{m \times d_1}.$$

1678 *Under Assumption F.1, the mapping $\theta \mapsto \text{IBL}_{\text{Shallow}}(x, y; \theta)$ is identifiable in the quotient space $\bar{\Theta}$: if*

$$1679 \text{IBL}_{\text{Shallow}}(x, y; \theta) \equiv \text{IBL}_{\text{Shallow}}(x, y; \theta') \quad \text{on } \mathcal{X} \times \mathcal{Y},$$

1680 *then*

$$1681 \theta = \theta' \quad \text{in } \bar{\Theta}.$$

1682 *Proof.* Write the k -th output component as a linear combination of atoms:

$$1683 s_{\theta}^{(k)}(x, y) = \sum_{j=1}^{d_1} w_j^{(k)} \mathcal{B}_{\theta_{1,j}}^{\text{id}}(x, y), \quad k = 1, \dots, m,$$

1684 where $w_j^{(k)}$ denotes the (k, j) -th entry of \mathbf{W}_1° .

1685 Suppose two parameter tuples $(\mathbf{W}_1^{\circ}, \{\theta_{1,j}\}_{j=1}^{d_1})$ and $(\mathbf{W}_1^{\circ'}, \{\theta'_{1,j}\}_{j=1}^{d_1})$ yield identical vector scores

1686 on $\mathcal{X} \times \mathcal{Y}$. Then for each k , we have $s_{\theta}^{(k)} \equiv s_{\theta'}^{(k)}$ on $\mathcal{X} \times \mathcal{Y}$.

1687 Fix any k . Under Assumption F.1, Lemma F.1 ensures that the coefficient–atom pairs

1688 $\{(w_j^{(k)}, \mathcal{B}_{\theta_{1,j}}^{\text{id}})\}_{j=1}^{d_1}$ are uniquely determined (up to equivalence in the quotient $\bar{\Theta}$). In particular,

1689 for each $j = 1, \dots, d_1$, we must have

$$1690 w_j^{(k)} = w_j'^{(k)}, \quad \mathcal{B}_{\theta_{1,j}}^{\text{id}} \equiv \mathcal{B}_{\theta'_{1,j}}^{\text{id}}.$$

1691 Because this holds for all $k = 1, \dots, m$, it follows that $\mathbf{W}_1^{\circ} = \mathbf{W}_1^{\circ'}$ and $\theta_{1,j} = \theta'_{1,j}$ in the quotient

1692 parameter space for all j .

1693 Thus $\theta = \theta'$ in $\bar{\Theta}$, establishing full identifiability under fixed ordering. \square

1694 **Theorem F.3** (Identifiability of IBL(Deep)). *Fix integers $L > 2$ and widths d_1, \dots, d_{L-1} . The*

1695 *IBL(Deep) architecture uses the final-layer atom set*

$$1696 \{ \mathcal{B}_{\vartheta_{L,j}}^{\text{id}}(x, y) \}_{j=1}^{d_L} \subset \mathbb{R}^{\mathcal{X} \times \mathcal{Y}},$$

1697 *where each $\mathcal{B}_{\vartheta_{L,j}}^{\text{id}} : \mathbb{R}^{d_{L-1}} \rightarrow \mathbb{R}$ is a scalar-valued block applied to the output of layer $L-1$. Only*

1698 *the first-layer blocks ($\ell = 1$) are IBL(Single) modules as in Theorem F.1. For architectures with skip*

1699 *connections, the final-layer atoms can be extended to include skipped features (e.g., from earlier*

1700 *layers), which are treated as elements of $\{ \mathcal{B}_{\vartheta_{L,j}}^{\text{id}}(x, y) \}_{j=1}^{d_L}$.*

1701 *The full parameter is*

$$1702 \theta := (\{\vartheta_{\ell,j}\}_{\ell=1, j=1}^{L, d_{\ell}}, \mathbf{W}_{\text{out}}) \in \Theta := \prod_{\ell=1}^L (\Theta_1)^{d_{\ell}} \times \mathbb{R}^{m \times d_L}.$$

1703 *Under Assumption F.1, the mapping $\theta \mapsto \text{IBL}_{\text{Deep}}(x, y; \theta)$ is identifiable in the quotient space $\bar{\Theta}$.*

1704 *Proof.* Under the given architecture, the IBL(Deep) model ultimately takes the form

$$1705 s^{(k)}(x, y) = \sum_{j=1}^{d_L} w_j^{(k)} \mathcal{B}_{\vartheta_{L,j}}^{\text{id}}(x, y), \quad k = 1, \dots, m,$$

1728 where each $\mathcal{B}_{\vartheta_{L,j}}^{\text{id}}$ is a scalar-valued function applied to the output of preceding layers. By treating
 1729 the set $\{\mathcal{B}_{\vartheta_{L,j}}^{\text{id}}(x, y)\}_{j=1}^{d_L}$ as the atom set, we reduce the model to an IBL(Shallow) form:
 1730

$$1731 \quad \mathbf{s}(x, y) = \mathbf{W}_{\text{out}} \mathbf{B}_L(x, y). \\ 1732$$

1733 Under Assumption F.1, Theorem F.2 applies, implying that the full parameter $\theta = (\{\vartheta_{\ell,j}\}_{\ell,j}, \mathbf{W}_{\text{out}})$
 1734 is identifiable in the quotient space $\bar{\Theta}$. \square
 1735

1736 **Theorem 2.4 (Identifiability of IBL).** *Under Assumption F.1, the architectures IBL(Single), IBL
 1737 (Shallow), and IBL(Deep) are all identifiable in the quotient space $\bar{\Theta}$.*

1738 *Proof.* Immediate from Theorems F.1, F.2, and F.3. \square
 1739

1740 **Theorem 2.5 (Loss Identifiability of IBL).** *Let $\text{IBL}_\theta(x, y)$ denote an IBL model, and consider the
 1741 conditional Gibbs distribution*

$$1743 \quad p_\theta(y \mid x) = \frac{\exp(\text{IBL}_\theta(x, y))}{\int_Y \exp(\text{IBL}_\theta(x, y')) dy'}. \\ 1744 \\ 1745$$

1746 Define the population risk on the symmetry quotient $\bar{\Theta}$ as in equation 24. Assume that the parameter
 1747 space Θ is compact. Then, under Assumption F.1, the following holds:

1748 (i) If $\gamma_c > 0$, the risk functional \mathcal{M} admits a unique minimizer in $\bar{\Theta}$. Moreover,

$$1749 \quad \mathcal{M}(\bar{\theta}_1) = \mathcal{M}(\bar{\theta}_2) \implies \bar{\theta}_1 = \bar{\theta}_2. \\ 1750$$

1751 (ii) If $\gamma_c = 0$, the risk functional \mathcal{M} admits a unique minimizer in the scale-invariant quotient $\tilde{\Theta}$.
 1752 Moreover,

$$1753 \quad \mathcal{M}(\tilde{\theta}_1) = \mathcal{M}(\tilde{\theta}_2) \implies \tilde{\theta}_1 = \tilde{\theta}_2. \\ 1754$$

1755 *Proof.* Under Assumption F.1, the IBL architecture is identifiable modulo the symmetry group de-
 1756 fined by $\bar{\Theta}$, as established in Theorem 2.4. Let $\theta^* \in \arg \min_{\theta \in \Theta} \mathcal{M}(\theta)$ and set $p^*(\cdot \mid x) := p_{\theta^*}(\cdot \mid x)$. Since Θ is compact and the loss \mathcal{M} is continuous, a global minimizer exists. We show that it is
 1757 unique in the stated quotient.
 1758

1759 Case $\gamma_c > 0$. At any minimizer we have both $p_\theta(\cdot \mid x) = p^*(\cdot \mid x)$ and $\nabla_y \log p_\theta(\cdot \mid x) =$
 1760 $\nabla_y \log p^*(\cdot \mid x)$ a.e. Since

$$1761 \quad \nabla_y \log p_\theta(y \mid x) = \nabla_y \text{IBL}_\theta(x, y) - \nabla_y \log Z_\theta(x) = \nabla_y \text{IBL}_\theta(x, y), \\ 1762$$

1763 (the partition function $Z_\theta(x)$ is y -independent), score equality yields $\nabla_y (\text{IBL}_\theta - \text{IBL}_{\theta^*})(y; x) = 0$
 1764 a.e. IBL contains no y -independent terms. Therefore,

$$1765 \quad \text{IBL}_\theta(x, y) = \text{IBL}_{\theta^*}(x, y) \quad \text{a.e.} \\ 1766$$

1767 By Theorem 2.4 (identifiability in $\bar{\Theta}$), the minimizer is unique in $\bar{\Theta}$; in particular,

$$1768 \quad \mathcal{M}(\bar{\theta}_1) = \mathcal{M}(\bar{\theta}_2) \implies \bar{\theta}_1 = \bar{\theta}_2. \\ 1769$$

1770 Case $\gamma_c = 0$. Here, \mathcal{M} reduces to the cross-entropy risk, which is minimized if and only if
 1771 $p_\theta(\cdot \mid x) = p^*(\cdot \mid x)$ almost everywhere. The cross-entropy loss depends on $\text{IBL}_\theta(x, y)$ only
 1772 through its relative values across y , and is invariant under additive shifts and positive rescalings
 1773 of the compositional utility. Hence, the loss depends only on the equivalence class $\tilde{\theta} \in \tilde{\Theta}$. As a
 1774 result,

$$1775 \quad \mathcal{M}(\tilde{\theta}_1) = \mathcal{M}(\tilde{\theta}_2) \implies \tilde{\theta}_1 = \tilde{\theta}_2. \\ 1776$$

1777 i.e., the minimizer is unique in $\tilde{\Theta}$.

1778 Hence, the minimizer is unique in the stated quotient space. This completes the proof. \square
 1779

1780 **Theorem F.4 (Uniform M-estimation consistency (Newey & McFadden, 1994, Theorem 2.1)).** *Let
 1781 (\mathcal{A}, d) be a compact metric space, and let $\hat{L}_n : \mathcal{A} \rightarrow \mathbb{R}$ be a sequence of random objective functions,
 1782 with population objective $L : \mathcal{A} \rightarrow \mathbb{R}$ such that:*

1782 1. $L(\alpha)$ is uniquely minimized at $\alpha^* \in \mathcal{A}$;
 1783
 1784 2. \mathcal{A} is compact;
 1785
 1786 3. $L(\alpha)$ is continuous;
 1787
 1788 4. $\widehat{L}_n(\alpha) \xrightarrow{p} L(\alpha)$ uniformly in $\alpha \in \mathcal{A}$.

1789 Then any sequence $\hat{\alpha}_n \in \arg \min_{\alpha \in \mathcal{A}} \widehat{L}_n(\alpha)$ satisfies $\hat{\alpha}_n \xrightarrow{p} \alpha^*$.

1790 **Theorem F.5 (Consistency of IBL).** Let \mathcal{M} be the population risk defined in equation 24, and let
 1791 \mathcal{M}_n denote its empirical analogue. Suppose:

1792 1. $\{(X_i, Y_i)\}_{i=1}^n$ are i.i.d. samples;
 1793
 1794 2. Θ is compact;
 1795
 1796 3. $\theta \mapsto \mathcal{M}(\theta)$ is continuous, and the loss class admits an integrable envelope such that

$$1797 \sup_{\theta \in \Theta} |\mathcal{M}_n(\theta) - \mathcal{M}(\theta)| \xrightarrow{p} 0;$$

1800 Let Ξ denote the relevant quotient space ($\bar{\Theta}$ if $\gamma_c > 0$, $\tilde{\Theta}$ if $\gamma_c = 0$), and let $\hat{\theta}_n \in \arg \min_{\theta \in \Theta} \mathcal{M}_n(\theta)$
 1801 and $\theta^* \in \arg \min_{\theta \in \Theta} \mathcal{M}(\theta)$. Then

$$1802 \hat{\theta}_n \xrightarrow{p} \theta^* \quad \text{in } \Xi, \quad \mathcal{M}(\hat{\theta}_n) \xrightarrow{p} \mathcal{M}(\theta^*).$$

1803 If the model is correctly specified (the data law is realized by some $\theta^* \in \Theta$), then $\theta^* = \theta^*$ in Ξ , so
 1804 $\hat{\theta}_n \xrightarrow{p} \theta^*$.

1805 *Proof.* Let Ξ denote the relevant quotient space: $\Xi = \bar{\Theta}$ if $\gamma_c > 0$ and $\Xi = \tilde{\Theta}$ if $\gamma_c = 0$. Let
 1806 $\pi : \Theta \rightarrow \Xi$ be the canonical quotient map. Since Θ is compact and π is continuous and onto, Ξ is
 1807 compact. By assumption, \mathcal{M} and \mathcal{M}_n are invariant under the corresponding symmetry, hence they
 1808 factor through π :

$$1809 \widetilde{\mathcal{M}}(\xi) := \mathcal{M}(\theta), \quad \widetilde{\mathcal{M}}_n(\xi) := \mathcal{M}_n(\theta) \quad (\text{any } \theta \in \pi^{-1}(\xi)).$$

1810 These are well-defined and continuous on Ξ because \mathcal{M} is continuous on Θ . Moreover,

$$1811 \sup_{\xi \in \Xi} |\widetilde{\mathcal{M}}_n(\xi) - \widetilde{\mathcal{M}}(\xi)| \leq \sup_{\theta \in \Theta} |\mathcal{M}_n(\theta) - \mathcal{M}(\theta)| \xrightarrow{p} 0,$$

1812 so uniform convergence in probability holds on Ξ .

1813 By Loss Identifiability of IBL (Theorem 2.5), $\widetilde{\mathcal{M}}$ has a unique minimizer $\xi^* \in \Xi$. Let $\hat{\xi}_n \in$
 1814 $\arg \min_{\xi \in \Xi} \widetilde{\mathcal{M}}_n(\xi)$ (equivalently, choose $\hat{\theta}_n \in \arg \min_{\theta \in \Theta} \mathcal{M}_n(\theta)$ and set $\hat{\xi}_n = \pi(\hat{\theta}_n)$). Then
 1815 the conditions of Theorem F.4 hold on the compact metric space (Ξ, d) , whence

$$1816 \hat{\xi}_n \xrightarrow{p} \xi^*.$$

1817 Since $\widetilde{\mathcal{M}}$ is continuous on Ξ and $\widetilde{\mathcal{M}}(\hat{\xi}_n) = \mathcal{M}(\hat{\theta}_n)$, $\widetilde{\mathcal{M}}(\xi^*) = \mathcal{M}(\theta^*)$ for any representative
 1818 $\theta^* \in \pi^{-1}(\xi^*)$, we also obtain

$$1819 \mathcal{M}(\hat{\theta}_n) = \widetilde{\mathcal{M}}(\hat{\xi}_n) \xrightarrow{p} \widetilde{\mathcal{M}}(\xi^*) = \mathcal{M}(\theta^*).$$

1820 If the model is correctly specified (there exists $\theta^* \in \Theta$ inducing the data law), the strict propriety
 1821 of the CE/DSM terms implies that the unique minimizer in the quotient is the class of θ^* ; hence $\hat{\theta}_n$
 1822 converges in probability to θ^* in the corresponding quotient space. \square

1823 **Theorem F.6 (Universal Approximation of IBL).** Let $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} \subset \mathbb{R}^m$ be compact sets, and
 1824 let $p^*(y | x)$ be any continuous conditional density such that $p^*(y | x) > 0$ for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$.
 1825 Then for any $\tau > 0$ and $\varepsilon > 0$, there exists a finite IBL architecture (with some depth and width
 1826 depending on ε) and a parameter θ^* such that the Gibbs distribution

$$1827 p_\tau(y | x; \theta^*) = \frac{\exp(IBM_{\theta^*}(x, y) / \tau)}{\int_{\mathcal{Y}} \exp(IBM_{\theta^*}(x, y') / \tau) dy'} \quad (28)$$

1836 satisfies

$$1837 \quad 1838 \quad 1839 \quad \sup_{x \in \mathcal{X}} \text{KL}(p^*(\cdot | x) \| p_\tau(\cdot | x; \theta^*)) < \varepsilon. \quad (29)$$

1840 *Proof.* The argument follows the same construction as in the proof of Theorem 2.3, with only nota-
1841 tional modifications due to the IBL parameterization. For brevity, the details are omitted. \square

1842 **Lemma F.2 (Sieve Approximation Lemma).** *Let $\mathcal{C} : \Theta \rightarrow [0, \infty)$ be a complexity measure on the
1843 parameter space, and let $(c_n)_{n \geq 1}$ be a nondecreasing sequence with $c_n \uparrow \infty$. Define the sieve*

$$1844 \quad \Theta_n := \{\theta \in \Theta : \mathcal{C}(\theta) \leq c_n\},$$

1846 *and for a fixed data-generating distribution p^\dagger , set*

$$1847 \quad 1848 \quad \delta_n(p^\dagger) := \inf_{\theta \in \Theta_n} \sup_{x \in \mathcal{X}} \text{KL}(p^\dagger(\cdot | x) \| p_\theta(\cdot | x)).$$

1850 *Then the following are equivalent:*

1851 *1. Sieve universal approximation: For every $\varepsilon > 0$ there exists a constant $C_\varepsilon < \infty$ such that*

$$1853 \quad 1854 \quad \inf_{\theta: \mathcal{C}(\theta) \leq C_\varepsilon} \sup_{x \in \mathcal{X}} \text{KL}(p^\dagger(\cdot | x) \| p_\theta(\cdot | x)) < \varepsilon.$$

1855 *2. Vanishing approximation error: $\delta_n(p^\dagger) \downarrow 0$ as $n \rightarrow \infty$.*

1856 *Moreover, if each Θ_n is compact and $\theta \mapsto \sup_x \text{KL}(p^\dagger \| p_\theta)$ is continuous on Θ_n , then the infimum
1857 in $\delta_n(p^\dagger)$ is attained for every n .*

1859 *Proof.* (1) \Rightarrow (2). Fix $\varepsilon > 0$ and let $C_\varepsilon(p^\dagger)$ be as in (i). Since $c_n \uparrow \infty$, there exists N such that
1860 $c_n \geq C_\varepsilon(p^\dagger)$ for all $n \geq N$. Hence $\Theta_n \supseteq \{\theta : \mathcal{C}(\theta) \leq C_\varepsilon(p^\dagger)\}$ for all $n \geq N$, and therefore

$$1862 \quad 1863 \quad \delta_n(p^\dagger) = \inf_{\theta \in \Theta_n} \sup_x \text{KL}(p^\dagger \| p_\theta) \leq \inf_{\theta: \mathcal{C}(\theta) \leq C_\varepsilon(p^\dagger)} \sup_x \text{KL}(p^\dagger \| p_\theta) < \varepsilon,$$

1864 for all $n \geq N$. Since (δ_n) is nonincreasing in n (because $\Theta_n \uparrow$), it follows that $\delta_n(p^\dagger) \downarrow 0$.

1865 (2) \Rightarrow (1). Fix $\varepsilon > 0$. By (ii) choose N such that $\delta_N(p^\dagger) < \varepsilon$. Set $C_\varepsilon(p^\dagger) := c_N$. Then

$$1866 \quad 1867 \quad \inf_{\theta: \mathcal{C}(\theta) \leq C_\varepsilon(p^\dagger)} \sup_x \text{KL}(p^\dagger \| p_\theta) \leq \inf_{\theta \in \Theta_N} \sup_x \text{KL}(p^\dagger \| p_\theta) = \delta_N(p^\dagger) < \varepsilon,$$

1868 which is (i).

1869 The attainment statement follows immediately from compactness of Θ_n and continuity of $\theta \mapsto$
1870 $\sup_x \text{KL}(p^\dagger \| p_\theta)$ on Θ_n . \square

1873 **Theorem F.7 (Universal Consistency of IBL).** *Consider a parameter space Θ for a class of IBL
1874 models, and let $\mathcal{C} : \Theta \rightarrow [0, \infty)$ be a lower semi-continuous complexity measure (e.g., network
1875 depth, width, or parameter norm). Let $(c_n)_{n \geq 1}$ be a nondecreasing sequence with $c_n \uparrow \infty$, and
1876 define the sieve*

$$1877 \quad 1878 \quad \Theta_n := \{\theta \in \Theta : \mathcal{C}(\theta) \leq c_n\}.$$

1879 *Assume:*

1880 *1. The map $\theta \mapsto \sup_x \text{KL}(p^\dagger \| p_\theta)$ is continuous on each compact Θ_n .*

1882 *2. The sequence of empirical minimizers $\{\hat{\theta}_n\}$ is relatively compact in $\bigcup_n \Theta_n$, as ensured by the
1883 uniform LLN together with compactness and continuity.*

1885 *Then for any admissible data-generating distribution p^\dagger satisfying the regularity assumptions of
1886 Theorem F.6, the IBL posterior sequence $\{p_{\hat{\theta}_n}\}$ satisfies*

$$1887 \quad 1888 \quad \sup_{x \in \mathcal{X}} \text{KL}(p^\dagger(\cdot | x) \| p_{\hat{\theta}_n}(\cdot | x)) \xrightarrow{p} 0,$$

1889 *i.e. $\{p_{\hat{\theta}_n}\}$ converges to p^\dagger uniformly in x (in KL).*

1890 *Proof.* Fix an admissible data law p^\dagger (satisfying the regularity of Theorem F.6). For $\theta \in \bigcup_n \Theta_n$
 1891 define

$$1892 \quad F(\theta) := \sup_{x \in \mathcal{X}} \text{KL}(p^\dagger(\cdot | x) \| p_\theta(\cdot | x)), \quad \delta_n := \inf_{\theta \in \Theta_n} F(\theta).$$

1893 Then Theorem F.6 and Lemma F.2 together imply that $\delta_n \downarrow 0$. By assumption 1, F is continuous on
 1894 each compact Θ_n .

1895 Let $\hat{\theta}_n \in \arg \min_{\theta \in \Theta_n} \mathcal{M}_n(\theta)$ be any sequence of ERM solutions. We show $F(\hat{\theta}_n) \xrightarrow{p} 0$.
 1896

1897 *Step 1 (subsequence reduction and precompactness).* Take an arbitrary subsequence $(\hat{\theta}_{n_k})_k$. By
 1898 assumption 2 there exists a further subsequence, still denoted $(\hat{\theta}_{n_k})_k$, and a (possibly k -dependent)
 1899 index set $N_k \leq n_k$ with a parameter limit $\theta_\infty \in \Theta_N$ (for some finite N) such that $\hat{\theta}_{n_k} \rightarrow \theta_\infty$ in
 1900 probability. Passing to a further subsequence if needed, we may assume $N_k \equiv N$.
 1901

1902 *Step 2 (risk domination against Θ_N -approximants).* For each k pick $\theta_k \in \Theta_N$ with $F(\theta_k) \leq$
 1903 $\delta_N + 1/k$ (attainment follows from compactness and continuity of F on Θ_N). By the ERM property
 1904 and uniform LLN on Θ_N ,

$$1905 \quad \mathcal{M}(\hat{\theta}_{n_k}) \leq \mathcal{M}(\theta_k) + o_p(1) \quad (k \rightarrow \infty).$$

1906 Assume (w.l.o.g.) the CE component is present with a positive weight, so that the population risk
 1907 decomposes as

$$1908 \quad \mathcal{M}(\theta) = \text{const} + \gamma_d \mathbb{E}_X [\text{KL}(p^\dagger(\cdot | X) \| p_\theta(\cdot | X))] + \gamma_c \mathcal{L}^{\text{DSM}}(\theta),$$

1909 with $\gamma_d > 0$ (the DSM-only case is handled analogously by replacing KL with Fisher divergence).
 1910 Using $\mathbb{E}_X [\text{KL}(\cdot \| \cdot)] \leq F(\cdot)$, we obtain

$$1911 \quad \limsup_{k \rightarrow \infty} \mathbb{E}_X [\text{KL}(p^\dagger(\cdot | X) \| p_{\hat{\theta}_{n_k}}(\cdot | X))] \leq \limsup_{k \rightarrow \infty} F(\theta_k) \leq \delta_N.$$

1912 Hence, along the subsequence,

$$1913 \quad \mathbb{E}_X [\text{KL}(p^\dagger(\cdot | X) \| p_{\hat{\theta}_{n_k}}(\cdot | X))] \xrightarrow{p} 0.$$

1914 *Step 3 (identification of the subsequential limit).* By continuity of the model map $\theta \mapsto p_\theta(\cdot | x)$
 1915 (from Theorem F.6 regularity) and bounded convergence,

$$1916 \quad \mathbb{E}_X [\text{KL}(p^\dagger(\cdot | X) \| p_{\theta_\infty}(\cdot | X))] = 0.$$

1917 Thus $f(x) := \text{KL}(p^\dagger(\cdot | x) \| p_{\theta_\infty}(\cdot | x))$ equals 0 for P_X -a.e. x . Since f is continuous on compact
 1918 \mathcal{X} (by the same regularity) and P_X has full support (admissible law), we conclude $f(x) \equiv 0$ on \mathcal{X} ,
 1919 i.e.

$$1920 \quad F(\theta_\infty) = \sup_{x \in \mathcal{X}} f(x) = 0.$$

1921 *Step 4 (conclude $F(\hat{\theta}_{n_k}) \rightarrow 0$ in probability, hence $F(\hat{\theta}_n) \rightarrow 0$ in probability).* By assumption
 1922 1 continuity of F on Θ_N and $\hat{\theta}_{n_k} \rightarrow \theta_\infty$ in probability, we have $F(\hat{\theta}_{n_k}) \xrightarrow{p} F(\theta_\infty) = 0$. Since
 1923 the original subsequence was arbitrary and every subsequence admits a further subsequence with
 1924 $F(\hat{\theta}_{n_k}) \xrightarrow{p} 0$, the full sequence satisfies $F(\hat{\theta}_n) \xrightarrow{p} 0$.
 1925

1926 Therefore,

$$1927 \quad \sup_{x \in \mathcal{X}} \text{KL}(p^\dagger(\cdot | x) \| p_{\hat{\theta}_n}(\cdot | x)) \xrightarrow{p} 0,$$

1928 i.e. $p_{\hat{\theta}_n}(\cdot | x) \rightarrow p^\dagger(\cdot | x)$ uniformly in x in KL . \square

1929 **Theorem F.8** (Asymptotic normality of extremum estimators (Newey & McFadden, 1994, Theorem
 1930 3.1)). Suppose that the estimator $\hat{\theta}_n$ satisfies $\hat{\theta}_n \xrightarrow{p} \theta_0$, and:

- 1931 1. θ_0 lies in the interior of the parameter space Θ ;
- 1932 2. the criterion function $\hat{Q}_n(\theta)$ is twice continuously differentiable in a neighborhood \mathcal{N} of θ_0 ;

1944 3. the score satisfies

1945 $\sqrt{n} \nabla_{\theta} \hat{Q}_n(\theta_0) \xrightarrow{d} \mathcal{N}(0, \Sigma);$

1946 4. there exists a function $H(\theta)$, continuous at θ_0 , such that

1947 $\sup_{\theta \in \mathcal{N}} \|\nabla_{\theta}^2 \hat{Q}_n(\theta) - H(\theta)\| \xrightarrow{p} 0;$

1948 5. the limiting Hessian $H := H(\theta_0)$ is nonsingular.

1949 Then the estimator is asymptotically normal:

1950 $\sqrt{n} (\hat{\theta}_n - \theta_0) \xrightarrow{d} \mathcal{N}(0, H^{-1} \Sigma H^{-1}).$

1951 **Theorem F.9** (Asymptotic Normality of IBL). Consider the IBL family $p_{\theta}(y \mid x) \propto \exp(\text{IBL}_{\theta}(x, y))$ with empirical criterion as in equation 27. Assume $(X_i, Y_i)_{i=1}^n$ are i.i.d. from an 1952 admissible data law, and that the true parameter θ_0 is an interior point of a locally identifiable chart. 1953 For each observation $Z = (X, Y)$, let $\ell(\theta; Z)$ denote the per-sample loss defined in equation 26, so 1954 that $\hat{Q}_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta; Z_i)$ and $Q(\theta) := \mathbb{E}[\ell(\theta; Z)]$.

1955 Suppose, in addition:

1956 1. **Score moments.** $s(Z) := \nabla_{\theta} \ell(\theta_0; Z)$ satisfies $\mathbb{E}[s(Z)] = 0$, $\Sigma := \text{Var}(s(Z)) < \infty$, and 1957 $\frac{1}{\sqrt{n}} \sum_{i=1}^n s(Z_i) \Rightarrow \mathcal{N}(0, \Sigma)$.

1958 2. **Derivative envelopes.** There exists a neighborhood \mathcal{N} of θ_0 and envelopes G_1, G_2 with 1959 $\sup_{\theta \in \mathcal{N}} \|\nabla_{\theta} \ell(\theta; Z)\| \leq G_1(Z)$, $\sup_{\theta \in \mathcal{N}} \|\nabla_{\theta}^2 \ell(\theta; Z)\| \leq G_2(Z)$, $\mathbb{E}[G_1^2] + \mathbb{E}[G_2] < \infty$.

1960 3. **Nondegenerate curvature.** $H := \nabla_{\theta}^2 Q(\theta_0)$ exists, is continuous at θ_0 , and is positive definite, 1961 where $Q(\theta) := \mathbb{E}[\hat{Q}_n(\theta)]$.

1962 Then, under conditions of Theorem 2.7,

1963 $\sqrt{n} (\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}(0, H^{-1} \Sigma H^{-1}).$

1964 *Proof.* We verify the hypotheses of Theorem F.8 with \hat{Q}_n as above.

1965 (i) **Interior & consistency.** By quotient identifiability, fix a local chart in which the population 1966 minimizer admits a unique interior representative θ_0 . Consistency $\hat{\theta}_n \xrightarrow{p} \theta_0$ follows from uniform 1967 M-estimation consistency for IBL (Theorem F.5).

1968 (ii) **C^2 criterion.** Since IBL_{θ} is C^2 in θ , the loss $\ell(\theta; Z)$ is twice continuously differentiable in a 1969 neighborhood \mathcal{N} of θ_0 , and so is \hat{Q}_n .

1970 (iii) **Score CLT.** By **Score moments**,

1971 $\sqrt{n} \nabla_{\theta} \hat{Q}_n(\theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n s(Z_i) \Rightarrow \mathcal{N}(0, \Sigma).$

1972 (iv) **Hessian limit.** By **Derivative envelopes** and dominated convergence,

1973 $\sup_{\theta \in \mathcal{N}} \|\nabla_{\theta}^2 \hat{Q}_n(\theta) - \nabla_{\theta}^2 Q(\theta)\| \xrightarrow{p} 0,$

1974 so Assumption 4 of Theorem F.8 holds with $H(\theta) := \nabla_{\theta}^2 Q(\theta)$, continuous at θ_0 .

1975 (v) **Nonsingularity.** By **Nondegenerate curvature**, $H := H(\theta_0)$ is positive definite.

1976 All assumptions of Theorem F.8 are thus verified; consequently, $\sqrt{n} (\hat{\theta}_n - \theta_0) \Rightarrow \mathcal{N}(0, H^{-1} \Sigma H^{-1})$. 1977 \square

1978 **Theorem F.10** (Efficiency of IBL Estimators). Under the regularity conditions of Theorem F.9, consider the estimating function associated with the per-sample loss equation 26:

1979 $\psi_{\theta}(Z) := \nabla_{\theta} \ell(\theta; Z), \quad Z = (X, Y).$

1998 At any population minimizer θ^* , the moment condition $\mathbb{E}[\psi_{\theta^*}(Z)] = 0$ holds. Define the sensitivity
 1999 and variability matrices
 2000

2001
$$J := \mathbb{E}[\nabla_{\theta}\psi_{\theta}(Z)] \Big|_{\theta=\theta^*}, \quad K := \text{Var}(\psi_{\theta^*}(Z)).$$

 2002

2003 Then the asymptotic covariance of $\hat{\theta}_n$ is given by the Godambe information matrix (sandwich form):
 2004

2005
$$\sqrt{n}(\hat{\theta}_n - \theta^*) \Rightarrow \mathcal{N}(0, J^{-1}KJ^{-1}).$$

2006 In particular:
 2007

2008 1. **CE-only.** If $\gamma_c = 0$ (pure cross-entropy) and the model is correctly specified and regular, then
 2009 $\psi_{\theta}(Z)$ coincides (up to sign) with the log-likelihood score $s_{\theta}(Z)$. Hence $J = -I(\theta^*)$ and
 2010 $K = I(\theta^*)$, where $I(\theta^*)$ denotes the Fisher information matrix. It follows that

2011
$$\sqrt{n}(\hat{\theta}_n - \theta^*) \Rightarrow \mathcal{N}(0, I(\theta^*)^{-1}),$$

 2012

2013 so the estimator is asymptotically efficient, attaining the Cramér–Rao lower bound.
 2014

2015 2. **CE+DSM or DSM-only.** Suppose there exists a nonsingular matrix R (constant in a neighbor-
 2016 hood of θ^*) such that

2017
$$\psi_{\theta^*}(Z) = R s_{\theta^*}(Z) \quad \text{a.s.},$$

2018 where $s_{\theta}(Z) = \nabla_{\theta} \log p_{\theta}(Z)$ denotes the parametric score in a local chart. Then $J =$
 2019 $RI(\theta^*)R^{\top}$ and $K = RI(\theta^*)R^{\top}$, so the sandwich covariance again reduces to $I(\theta^*)^{-1}$. Hence
 2020 the estimator remains asymptotically efficient.

2021 *Proof.* The empirical first-order condition is
 2022

2023
$$0 = \frac{1}{n} \sum_{i=1}^n \psi_{\hat{\theta}_n}(Z_i), \quad \psi_{\theta}(Z) := \nabla_{\theta}\ell(\theta; Z).$$

 2024

2025 A mean–value expansion around the population minimizer θ^* yields
 2026

2027
$$0 = S_n + G_n(\hat{\theta}_n - \theta^*),$$

2028 where
 2029

2030
$$S_n := \frac{1}{n} \sum_{i=1}^n \psi_{\theta^*}(Z_i), \quad G_n := \frac{1}{n} \sum_{i=1}^n \nabla_{\theta}\psi_{\tilde{\theta}}(Z_i),$$

 2031

2032 for some intermediate point $\tilde{\theta}$ lying on the line segment between $\hat{\theta}_n$ and θ^* .
 2033

2034 Under the regularity conditions of Theorem F.9, we have
 2035

2036
$$G_n \xrightarrow{p} J := \mathbb{E}[\nabla_{\theta}\psi_{\theta^*}(Z)], \quad \sqrt{n}S_n \Rightarrow \mathcal{N}(0, K), \quad K := \text{Var}(\psi_{\theta^*}(Z)).$$

 2037

2038 Since J is nonsingular, G_n is invertible with probability tending to one, and hence
 2039

2040
$$\sqrt{n}(\hat{\theta}_n - \theta^*) = -G_n^{-1} \sqrt{n}S_n \Rightarrow \mathcal{N}(0, J^{-1}K(J^{-1})^{\top}).$$

2041 Because here $\psi_{\theta} = \nabla_{\theta}\ell(\theta; \cdot)$, the matrix J coincides with the expected Hessian of the loss, which
 2042 is symmetric. Thus the asymptotic covariance may equivalently be written as $J^{-1}KJ^{-1}$.
 2043

2044 (i) **CE-only.** When $\gamma_c = 0$, the per-sample loss reduces to $\ell(\theta; Z) = -\log p_{\theta}(Z)$, so that $\psi_{\theta}(Z) =$
 2045 $-s_{\theta}(Z)$, with $s_{\theta}(Z) = \nabla_{\theta} \log p_{\theta}(Z)$ denoting the likelihood score. Under correct specification and
 2046 standard likelihood regularity conditions, the information identities hold:
 2047

2048
$$\mathbb{E}[s_{\theta^*}(Z)] = 0, \quad \text{Var}(s_{\theta^*}(Z)) = I(\theta^*), \quad -\mathbb{E}[\nabla_{\theta}s_{\theta^*}(Z)] = I(\theta^*).$$

2049 Therefore,
 2050

2051
$$K = \text{Var}(\psi_{\theta^*}(Z)) = I(\theta^*), \quad J = \mathbb{E}[\nabla_{\theta}\psi_{\theta^*}(Z)] = I(\theta^*),$$

2052 and the asymptotic covariance simplifies to $I(\theta^*)^{-1}$. Thus the estimator is asymptotically efficient,
 2053 attaining the Cramér–Rao lower bound (see also [Van der Vaart, 2000](#), Theorem 5.39).

(ii) *CE+DSM or DSM-only under score-span*. Suppose there exists a nonsingular matrix R (constant in a neighborhood of θ^*) such that

$$\psi_{\theta^*}(Z) = R s_{\theta^*}(Z) \quad \text{a.s.},$$

where $s_{\theta}(Z)$ is again the parametric score. In this case,

$$K = \text{Var}(\psi_{\theta^*}(Z)) = R I(\theta^*) R^\top, \quad J = \mathbb{E}[\nabla_{\theta} \psi_{\theta^*}(Z)] = -R I(\theta^*).$$

Consequently,

$$J^{-1} K (J^{-1})^\top = (-R I(\theta^*))^{-1} (R I(\theta^*) R^\top) (-R I(\theta^*))^{-\top} = I(\theta^*)^{-1}.$$

Hence the sandwich covariance reduces to the Fisher information bound, and the estimator is asymptotically efficient. This corresponds to the general efficiency condition for minimum-distance or GMM estimators (see [Newey & McFadden, 1994](#), Section 5): the condition $\psi_{\theta^*} = R s_{\theta^*}$ is equivalent to their moment–span condition $G'W = C G' \Omega^{-1}$ ([Newey & McFadden, 1994](#), Equation 5.4), under which the Godambe information collapses to the Fisher bound.

The two claims are thereby established. \square

G IBL-BASED MODEL: CAUSAL BEHAVIOR LEARNING (CAUSALBL)

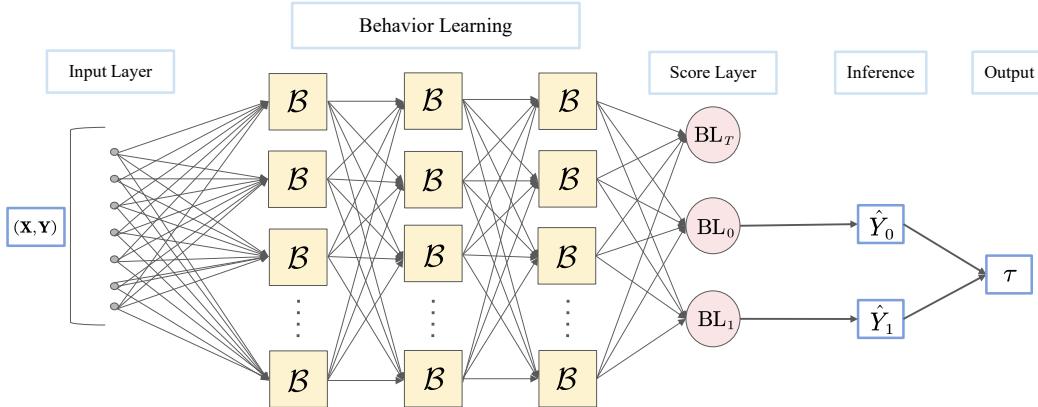


Figure 7: Network architecture of CausalBL. The input layer (x, y) is processed through stacked interpretable blocks \mathcal{B} , whose outputs are aggregated in the score layer to form three heads: the treatment head BL_T and the outcome heads BL_0, BL_1 . These heads feed into the inference module to produce the predicted outcomes \hat{y}_0, \hat{y}_1 and the treatment effect τ .

Problem setup. Let $x \in \mathcal{X}$ denote covariates, $t \in \{0, 1\}$ a binary treatment (extensions to multi-valued t are straightforward), and y the outcome, which can be discrete with K classes or continuous. For notational simplicity, we write all model-induced distributions as $p(\cdot)$, omitting the dependence on learnable parameters.

CausalBL adopts a *generative* formulation and parameterizes the joint conditional distribution $p(t, y | x)$. Within this framework, the quantity $p(t | x, y)$ induced by the model is the *posterior factor* of this joint distribution. This posterior factor is used only for parameterizing the joint model and plays no role in causal identification. Following the potential-outcome framework, our causal estimands are the potential outcomes $y_0(x), y_1(x)$ and the resulting *individual treatment effect (ITE)*

$$\tau(x) = y_1(x) - y_0(x).$$

Average treatment effects (ATE) are obtained only by averaging ITE over the test distribution.

Remark G.1. We emphasize that the posterior factor $p(t | x, y)$ is not used for causal identification and never replaces the propensity score; it arises solely from the factorization of the generative model $p(t, y | x)$. For continuous outcomes, the dependence of treatment compositional utilities on y stems only from the generative parameterization of the conditional density $p(y | x, t)$, not from any causal assumption.

2106 **Design principle.** Rather than predicting potential outcomes and treatment assignments with sep-
 2107 arate discriminative heads, CausalBL parameterizes the factors of the joint conditional distribution
 2108 $p(t, y | x)$ using a collection of *compositional utility heads*. Each head produces a scalar com-
 2109 positional utility, and relative magnitudes are converted into probabilities through a Gibbs/softmax
 2110 link. Compositional utilities are constructed by stacking interpretable blocks \mathcal{B} (Figure 7), and are
 2111 grouped into three families:

2112 • Treatment compositional utilities. Two heads $BL_0^T(\cdot), BL_1^T(\cdot)$ encode the relative desirability of
 2113 control vs. treatment. For discrete outcomes, the inputs are only covariates x , i.e. $BL_j^T(x)$. For
 2114 continuous outcomes, the treatment utilities also depend on the outcome variable, i.e. $BL_j^T(x, y)$.
 2115 **The resulting treatment probability is the *posterior factor***

2116

$$p(t | x, y) = \text{softmax}\left(\frac{1}{\tau} [BL_0^T(x, y), BL_1^T(x, y)]\right)_t,$$

2117 which is induced by the generative model $p(t, y | x)$ and is not a classical propensity score. The
 2118 predicted treatment is

2119

$$\hat{t}(x, y) = \arg \max_{j \in \{0, 1\}} BL_j^T(x, y).$$

2120 • Outcome compositional utilities under $t = 0$. For discrete outcomes, we define K heads
 2121 $\{BL_k^{(0)}(x)\}_{k=1}^K$, yielding

2122

$$p(y = k | x, t = 0) = \text{softmax}\left(\frac{1}{\tau} [BL_1^{(0)}(x), \dots, BL_K^{(0)}(x)]\right)_k, \quad \hat{y}_0(x) = \arg \max_k BL_k^{(0)}(x)$$

2123 For continuous outcomes, we instead use a scalar head $BL^{(0)}(x, y)$ that directly scores candidate
 2124 outcomes y given x .

2125 • Outcome compositional utilities under $t = 1$. For discrete outcomes, we symmetrically define
 2126 $\{BL_k^{(1)}(x)\}_{k=1}^K$. For continuous outcomes, we instead define $BL^{(1)}(x, y)$, which induces the
 2127 conditional distribution $p(y | x, t = 1)$ and, analogously, the predicted outcome $\hat{y}_1(x)$.

2128 Here $\tau > 0$ is a temperature (fixed or learnable) controlling the sharpness of the softmax/Gibbs link.
 2129 Grouping compositional utilities by (T, 0, 1) yields, in the binary case, six heads when $K = 2$ for
 2130 discrete outcomes (two for t , two for $y | t = 0$, two for $y | t = 1$); for multi-class y the number of
 2131 outcome heads scales linearly with K .

2132 **Training objectives.** Since CausalBL models the joint conditional distribution $p(t, y | x)$, the
 2133 training loss depends on whether the outcome y is discrete or continuous.

2134 Discrete outcomes. When y is discrete, only covariates x are fed into the treatment heads. The pos-
 2135 terior factor reduces to $p(t | x)$, because BL_j^T does not depend on y . Training employs a weighted
 2136 objective based on cross-entropy terms, where probabilities are induced via softmax over composi-
 2137 tional utilities.

2138

$$\mathcal{L}_{\text{disc}} = \lambda_T \underbrace{\text{CE}\left(t, \text{softmax}\left(\frac{1}{\tau} [BL_0^T(x), BL_1^T(x)]\right)\right)}_{\text{posterior factor of the generative model}}$$

2139

$$+ \lambda_Y \left[\mathbb{1}\{t = 0\} \text{CE}\left(y, \text{softmax}\left(\frac{1}{\tau} \{BL_k^{(0)}(x)\}_{k=1}^K\right)\right) + \mathbb{1}\{t = 1\} \text{CE}\left(y, \text{softmax}\left(\frac{1}{\tau} \{BL_k^{(1)}(x)\}_{k=1}^K\right)\right) \right]$$

2140 with nonnegative weights λ_T, λ_Y .

2141 Continuous outcomes. When y is continuous, both x and y are fed into the heads, as the model
 2142 must parameterize the conditional density $p(y | x, t)$. Each branch $t \in \{0, 1\}$ defines a Gibbs-form
 2143 conditional density

2144

$$p_\tau(y | x, t) \propto \exp\left(\frac{1}{\tau} BL^{(t)}(x, y)\right)$$

2145 The score $\nabla_y \log p_\tau(y | x, t)$ is learned by denoising score matching (DSM). Using Gaussian cor-
 2146 ruption $\tilde{y} \sim \mathcal{N}(y, \sigma^2 I)$, the DSM loss is

2147

$$\mathcal{L}_{\text{DSM}} = \mathbb{E}\left[\left\|\nabla_{\tilde{y}} \log p_\tau(\tilde{y} | x, t) + \frac{1}{\sigma^2} (\tilde{y} - y)\right\|^2\right]$$

2160 In addition, treatment posterior factor is trained with cross-entropy:
 2161

$$\mathcal{L}_{\text{prop}} = \lambda_T \text{CE}(t, \text{softmax}(\frac{1}{\tau}[\text{BL}_0^T(x, y), \text{BL}_1^T(x, y)]))$$

2163 The total loss for continuous outcomes is
 2164

$$\mathcal{L}_{\text{cont}} = \mathcal{L}_{\text{prop}} + \lambda_{\text{DSM}} \mathcal{L}_{\text{DSM}}$$

2166 **Remark G.2.** *This difference from the discrete-outcome case arises purely because, for continuous
 2167 y, the model must parameterize a density over possible outcomes. Consequently, the treatment
 2168 utilities $\text{BL}_j^T(x, y)$ depend on y only through this generative parameterization of $p(t, y | x)$. This
 2169 dependence does not impose any assumption on the causal structure.*

2170 Mixed outcomes. When y contains both discrete and continuous components, we combine the two
 2171 objectives by a positive weighted sum:
 2172

$$\mathcal{L}_{\text{mixed}} = \gamma_{\text{disc}} \mathcal{L}_{\text{disc}} + \gamma_{\text{cont}} \mathcal{L}_{\text{cont}}, \quad \gamma_{\text{disc}}, \gamma_{\text{cont}} > 0$$

2174 **Amortized inference for fast prediction.** For continuous outcomes, or for high-cardinality dis-
 2175 crete outcomes, we adopt amortized inference to avoid expensive test-time optimization over y.
 2176 Importantly, the amortized predictor is trained after CausalBL has been fitted, so that it learns to
 2177 approximate the optimal solution of the fixed underlying model. Specifically, given covariates x, we
 2178 learn a branch-specific predictor $g_{\psi}^{(t)}(x)$ for each treatment t.
 2179

2180 The predictor is trained with the following objective:

$$\mathcal{L}_{\text{amort}} = \alpha [-\text{BL}^{(t)}(x, g_{\psi}^{(t)}(x))] + \beta \|y - g_{\psi}^{(t)}(x)\|_2^2, \quad \alpha, \beta \geq 0$$

2183 where the first term encourages the predicted outcome to achieve high compositional utility under
 2184 the appropriate branch, and the second term ensures numerical accuracy on factual pairs.
 2185

2186 Prediction and causal queries.

- 2187 • Model-induced posterior factor: For discrete outcomes, $\hat{\pi}(x) = \text{softmax}(\frac{1}{\tau}[\text{BL}_0^T(x), \text{BL}_1^T(x)])_2$. For continuous outcomes, $\hat{\pi}(x, y) = \text{softmax}(\frac{1}{\tau}[\text{BL}_0^T(x, y), \text{BL}_1^T(x, y)])_2$.
- 2191 • Potential outcomes: For discrete outcomes, $\hat{y}_t(x) = \arg \max_k \text{BL}_k^{(t)}(x)$, with calibrated class
 2192 posteriors given by softmax. For continuous outcomes, $\hat{y}_t(x) = g_{\psi}^{(t)}(x)$, where the amortized
 2193 predictor is trained after fitting CausalBL.
- 2194 • Effects: For binary discrete outcomes, report the difference in success probabilities, $\Pr(y = 1 | x, t = 1) - \Pr(y = 1 | x, t = 0)$. For continuous outcomes, report the individual treatment
 2195 effect (ITE), $\hat{\tau}(x) = \hat{y}_1(x) - \hat{y}_0(x)$.

2198 **Interpretability.** Each head is a compositional utility assembled from \mathcal{B} -blocks; the value of a
 2199 head admits a behavioral meaning (“how favorable is class k under branch t”), and the contributions
 2200 of individual \mathcal{B} -blocks can be traced layer-wise. This preserves BL’s intrinsic interpretability while
 2201 enabling causal tasks.
 2202

2203 H EXPERIMENTAL DETAILS

2205 H.1 HARDWARE

2207 Most experiments are conducted on a single NVIDIA L40S GPU. A small number of runs are
 2208 performed on a laptop equipped with an NVIDIA GeForce RTX 2050 GPU and an Intel Core i7–
 2209 12700H CPU.
 2210

2211 H.2 STANDARD PREDICTION TASKS

2213 **Datasets.** In the Standard Prediction Task, we use 10 OpenML datasets across diverse application
 domains. Details are given in Table 3.

2214 Table 3: Standard OpenML datasets used in our task. #Features denotes the number of input vari-
 2215 ables (excluding the target and ID).

Name	Size	#Features	Task type	Field
German Credit	1,000	20	Binary cls.	Finance
Adult Income	48,842	14	Binary cls.	Economics
COMPAS (two-years)	5,278	13	Binary cls.	Law & Society
Bank Marketing	45,211	16	Binary cls.	Marketing
Planning Relax	182	12	Binary cls.	Psychology
EEG Eye State	14,980	14	Binary cls.	Neuroscience
MAGIC Gamma Telescope	19,020	10	Binary cls.	Physics
Electricity	45,312	8	Binary cls.	Electrical Engineering
Wine Quality (Red)	1,599	11	Multiclass	Chemistry
Steel Plates Faults	1,941	27	Multiclass	Industrial Engineering

2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230 **Baseline Models.** For comparison, we include the following baselines: MLP, Neural Additive
 2231 Model (NAM) (Agarwal et al., 2020; Kayid et al., 2020), ElasticNet, Random Forest, Stochastic
 2232 Variational Gaussian Process (SVGP) (Gardner et al., 2018), Logistic Regression, Decision Tree,
 2233 TabNet (Arik & Pfister, 2021), Polynomial Logistic Regression, and LightGBM (Ke et al., 2017).

2234 Table 4: Overview of baseline models in the standard prediction task

Methodological Family	Model Name
Neural networks	Standard MLP
	Neural Additive Model (NAM)
	TabNet
Linear regressors	ElasticNet
	Logistic Regression
	Polynomial Logistic Regression
Tree-based models	Random Forest
	Decision Tree
Gradient boosting methods	LightGBM
Bayesian methods	Stochastic Variational Gaussian Process (SVGP)

2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250 **Data preprocessing.** For all ten datasets, we apply a consistent preprocessing strategy. Ordinal
 2251 categorical variables are mapped to integer levels to preserve their inherent order. Nominal cat-
 2252 egorical variables without natural ordering are transformed using one-hot encoding. Continuous
 2253 variables are standardized to zero mean and unit variance. Each dataset is randomly partitioned into
 2254 train/validation/test splits with a 7:1:2 ratio.

2255
 2256 **Hyperparameter Tuning Protocol.** We perform hyperparameter optimization for most models
 2257 using the TPE sampler from the Optuna package (Akiba et al., 2019), with 50 trials per dataset. For
 2258 each model and dataset, the tuned configuration is evaluated under 8 random seeds.

2259
 2260 **BL Model Hyperparameter Space.** For BL(Single) and BL(Shallow), we optimize cross-entropy
 2261 loss for classification. Both Adam (Kingma, 2014) and AdamW (Loshchilov & Hutter, 2017) op-
 2262 timizers are considered, and the better-performing variant is reported for each dataset. No data
 2263 augmentation is applied. Batch sizes are chosen in a dataset-specific manner.

2264 • BL(Single): A unified setting is reported across all experiments:

$$\text{degree}_U = [2], \quad \text{degree}_C = [2, 2, 2], \quad \text{degree}_T = [2, 2],$$

$$\sigma_{\text{params}} = 0.01, \quad \sigma_{\lambda_0} = 0.01, \quad \sigma_{\lambda_1} = 0.01, \quad \sigma_{\lambda_2} = 0.01.$$

2268 Here, degree_U , degree_C , and degree_T denote the polynomial degrees of the blocks that param-
 2269 eterize $U(x, y)$, $C(x, y)$, and $T(x, y)$, respectively. Lists indicate both the number of blocks and
 2270 each block's degree: $\text{degree}_U = [2]$ means a single quadratic block for U , $\text{degree}_C = [2, 2, 2]$
 2271 means three quadratic constraint blocks, and $\text{degree}_T = [2, 2]$ means two quadratic belief
 2272 blocks. σ_{params} initializes coefficients of all polynomial blocks, while σ_{λ_0} , σ_{λ_1} , and σ_{λ_2} ini-
 2273 tialize the UMP weights ($\lambda_0, \lambda_1, \lambda_2$). The search grid is reported in Table 5.

2274 • BL(Shallow): We use global gradient clipping of 1.0 and an early stopping patience of 20 epochs
 2275 without validation improvement. Shallow architectures with depth $L \leq 3$ are considered. The
 2276 search grid is reported in Table 6.

2278 **Baseline Model Hyperparameter Spaces.** For baseline models, we also consider both Adam
 2279 and AdamW for the neural network-based variants, and report results with the better-performing
 2280 optimizer on each dataset. Batch sizes are tuned separately for each dataset. The detailed hyperpa-
 2281 rameter search spaces are summarized in Table 7.

Table 5: Hyperparameter tuning space for BL(Single)

Model	Parameter	Search space
BL(Single)	learning_rate	{1e-3, 1e-1}
	batch_size	{64, 128, 256, 512}
	max_grad_norm	{1.0, 2.0, 5.0}

Table 6: Hyperparameter tuning space for BL(Shallow)

Model	Parameter	Search space
BL(Shallow)	learning_rate	LogUniform{5e-5, 5e-3}
	batch_size	{64, 128, 256, 512}
	n_layers	UniformInt{1, 3}
	n_first_layer	{24, 30, 36, 40}
	n_middle_layer	{8, 6, 4}
	n_last_layer	{2, 4, 6}
	weight_decay	LogUniform{1e-4, 1e-1}

Table 7: The hyperparameter tuning space for baseline models used in the standard prediction tasks

Model	Parameter	Search space
MLP	learning_rate	LogUniform{1e-5, 1e-1}
	batch_size	{32, 64, 128, 256}
	n_layers	UniformInt{2, 4}
	hidden_size	UniformInt{32, 256}
	weight_decay	LogUniform{1e-6, 1e-2}
NAM	learning_rate	LogUniform{1e-3, 1e-1}
	batch_size	{128, 256, 512, 1024}
	patience	UniformInt{10, 30}
ElasticNet (SGD)	alpha	LogUniform{1e-4, 1e+2}
	l1_ratio	Uniform{0.0, 1.0}
	max_iter	UniformInt{100, 2000}
	tol	LogUniform{1e-6, 1e-2}
	fit_intercept	{true, false}
	learning_rate	{optimal, constant, invscaling, adaptive}
	eta0	LogUniform{1e-4, 1e-1}
	validation_fraction	Uniform{0.05, 0.30}
	n_iter_no_change	UniformInt{3, 20}

2322	Model	Parameter	Search space
2323	PolyLogistic	degree	{2, 3}
2324		penalty	{ ℓ_2 , ℓ_1 , "elasticnet"}
2325		C	LogUniform{1e-3, 1e+2}
2326		l1_ratio	Uniform{0.1, 0.9}
2327		solver	{"liblinear", "lbfgs", "newton-cg", "saga"}
2328		max_iter	UniformInt{500, 2000}
2329		tol	LogUniform{1e-5, 1e-3}
2330	Logistic (ElasticNet)	C	LogUniform{1e-3, 1e+2}
2331		l1_ratio	Uniform{0.0, 1.0}
2332		max_iter	UniformInt{100, 2000}
2333		tol	LogUniform{1e-6, 1e-2}
2334		fit_intercept	{true, false}
2335	LogisticRegression	solver	{"liblinear", "lbfgs", "sag"}
2336		C	LogUniform{1e-4, 1e+2}
2337		max_iter	UniformInt{100, 2000}
2338		tol	LogUniform{1e-6, 1e-2}
2339		fit_intercept	{True, False}
2340		intercept_scaling	Uniform{0.1, 10.0}
2341	TabNet	learning_rate	LogUniform{1e-4, 3e-2}
2342		batch_size	{128, 256, 512, 1024}
2343		virtual_batch_size	{64, 128}
2344		n_d=n_a	UniformInt{16, 64}
2345		n_steps	UniformInt{3, 7}
2346		gamma	Uniform{1.2, 1.7}
2347		lambda_sparse	LogUniform{1e-6, 1e-3}
2348	DecisionTree	criterion	{"gini", "entropy", "log_loss"}
2349		max_depth	UniformInt{3, 20}
2350		min_samples_split	UniformInt{2, 20}
2351		min_samples_leaf	UniformInt{1, 10}
2352		min_weight_fraction_leaf	Uniform{0.0, 0.5}
2353		max_features	{"sqrt", "log2"}
2354		max_leaf_nodes	UniformInt{10, 1000}
2355		min_impurity_decrease	Uniform{0.0, 0.1}
2356		ccp_alpha	Uniform{0.0, 0.1}
2357		kernel	{rbf, matern, rational_quadratic}
2358	GP (SVGP)	lengthscale	LogUniform{0.1, 10.0}
2359		rq_alpha	LogUniform{0.1, 5.0}
2360		num_inducing	UniformInt{100, 500}
2361		learning_rate	LogUniform{1e-2, 5e-1}
2362		training_iters	UniformInt{50, 200}
2363		n_estimators	UniformInt{100, 500}
2364	RandomForest	max_depth	UniformInt{3, 30}
2365		max_features	{"sqrt", "log2"}
2366		min_samples_leaf	UniformInt{1, 10}
2367		min_samples_split	UniformInt{2, 20}

2370 H.3 COUNTERFACTUAL PREDICTION

2371 H.3.1 DATASETS AND SYNTHETIC DATA GENERATION.

2372 For the IHDP dataset, we use the benchmark version provided by [Shalit et al. \(2017\)](#), which includes
 2373 100 realizations with covariates, treatment assignments, factual and counterfactual outcomes, as well
 2374 as noiseless potential outcomes that facilitate unbiased evaluation. For the Jobs dataset, we follow
 2375

2376 the same benchmark format introduced in [Shalit et al. \(2017\)](#), where the variables include covariates,
 2377 treatment, factual outcomes, and an indicator of randomized assignment.
 2378

2379 For the synthetic dataset, we build on the M_3 design in [de Vassimon Manela et al. \(2024\)](#): 10
 2380 pretreatment covariates (five gamma, five binary) are generated via a Gaussian-copula dependence
 2381 with a fixed 10×10 correlation matrix; treatment is binary and the outcome is continuous. On
 2382 top of this process, we introduce additional nonlinear interactions, heterogeneous treatment effects,
 2383 and heteroskedastic noise, yielding more complex data-generating processes that better mimic real-
 2384 world observational studies.

- 2385 • Nonlinear treatment posterior factor with tunable overlap. We specify

$$2386 \logit P(T=1 | Z) = -0.3 + 0.1Z_{c1} + 0.2Z_{c2} + 0.5Z_{c3} - 0.2Z_{c4} + Z_{c5} + 0.3Z_{d1} - 0.4Z_{d2} \\ 2387 + 0.7Z_{d3} - 0.1Z_{d4} + 0.9Z_{d5} + Z_{c2}^2 + 0.5 \sin(Z_{c3}) + 0.6Z_{c4}Z_{c5}. \\ 2388$$

2389 A temperature parameter multiplies the logit before the sigmoid to control overlap.
 2390

- 2391 • Outcome model with nonlinear functions and heterogeneous treatment effects. Let

$$2392 g_0(Z) = 0.30Z_{c1} + 0.20Z_{c2}^2 + 0.20 \sin(Z_{c3}) - 0.10Z_{c4}Z_{c5}, \\ 2393$$

$$2394 h(Z) = 0.50Z_{c1} - 0.30Z_{c2} + 0.20Z_{c2}^2 + 0.30 \sin(Z_{c4}) + 0.20Z_{c1}Z_{c5}. \\ 2395$$

2396 We set $\mu_0(Z) = 1 + g_0(Z)$ and $\tau(Z) = 2 + h(Z)$, so that $\mathbb{E}[Y | T, Z] = \mu_0(Z) + T\tau(Z)$.
 2397 Heteroskedastic noise is used: $\sigma(Z) = 0.5 + 0.3 \max\{(Z_{c1} + Z_{c2})/2, 0\}$ and $Y \sim \mathcal{N}(\mu_0(Z) + T\tau(Z), \sigma^2(Z))$.
 2398

2399 H.3.2 BASELINE MODELS

2400 For comparison, we evaluate the CausalBL model against several established baselines: Causal
 2401 Forest ([Athey et al., 2019](#)), DragonNet ([Shi et al., 2019](#)), TARNet ([Shalit et al., 2017](#)), T-Learner,
 2402 S-Learner, and X-Learner ([Künzel et al., 2019](#)), as well as the DR-Learner ([Kennedy, 2023](#)).

2403 Table 8: Overview of counterfactual prediction baseline models.

2404 Methodological Family	2405 Model
2406 Meta-learners	T-Learner S-Learner X-Learner
2407 Representation-learning networks	DragonNet TARNet
2408 Tree-based models	Causal Forest
2409 Doubly robust estimators	DR-Learner

2410 H.3.3 METRICS

2411 For datasets with known ground-truth treatment effects, we adopt two evaluation metrics: the Rooted
 2412 Precision in Estimation of Heterogeneous Effect and the Relative ATE error. They are defined as:
 2413

$$2414 \sqrt{\epsilon_{\text{PEHE}}} = \sqrt{\frac{1}{N} \sum_{i=1}^N (\hat{\tau}(x_i) - \tau(x_i))^2}, \quad (30) \\ 2415$$

$$2416 \epsilon_{\text{relATE}} = \left| \frac{\hat{\tau}_{\text{ATE}} - \tau_{\text{ATE}}}{\tau_{\text{ATE}}} \right|, \quad (31) \\ 2417$$

2418 where $\hat{\tau}(x_i)$ and $\tau(x_i)$ denote the estimated and true individual treatment effects; $\hat{\tau}_{\text{ATE}}$ and τ_{ATE}
 2419 denote the estimated and true average treatment effects.

For the Jobs dataset, since the ground-truth counterfactual outcomes are unavailable, we employ the Policy Risk $R_{\text{pol}}(\pi)$ (Künzel et al., 2019; Shalit et al., 2017) and the Absolute Treatment Effect on the Treated error (ATT error) (Shalit et al., 2017). Specifically,

$$R_{\text{pol}}(\pi_{\hat{\tau}}) = 1 - \left\{ p(\pi_{\hat{\tau}}(x) = 1) \cdot \mathbb{E}[Y^1 \mid \pi_{\hat{\tau}}(x) = 1] + p(\pi_{\hat{\tau}}(x) = 0) \cdot \mathbb{E}[Y^0 \mid \pi_{\hat{\tau}}(x) = 0] \right\}, \quad (32)$$

$$\epsilon_{\text{ATT}} = \left| \tau_{\text{ATT}} - \frac{1}{|T|} \sum_{i \in T} (f(x_i, 1) - f(x_i, 0)) \right|, \quad (33)$$

where τ_{ATT} is the true ATT from the RCT subset, and the second term is the average estimated ITE on the treated units.

H.3.4 MODEL HYPERPARAMETER CONFIGURATIONS

We summarize the hyperparameter configurations for both CausalBL and the baseline models used in the counterfactual prediction experiments. In general, we adopt the default hyperparameters provided by the respective implementations, with minimal tuning as detailed below.

- CausalBL. Unless otherwise specified, we use a single hidden layer with $h = 12$ units, weight decay $\lambda = 10^{-4}$, and batch size $B = 64$. We apply $n_{\text{noise}} = 1$ denoising score matching (DSM) perturbation per sample with variance σ_{DSM} . Training proceeds in two phases. Phase 1 runs for $E_1 = 100$ epochs with early stopping (patience $p_1 = 10$, improvement threshold $\delta_{\min} = 10^{-4}$). The loss is weighted by λ_T (treatment posterior factor loss term) and λ_Y (outcome loss term). Phase 2 uses $E_2 = 50$ epochs with early stopping (patience $p_2 = 6$, improvement threshold $\delta_{\min} = 10^{-5}$). The learning rate is fixed at $\eta = 10^{-3}$ for both phases. For model selection, we perform a discrete grid search over

$$\sigma_{\text{DSM}} \in \{1.0, 1.2, 1.5\}, \quad \lambda_T \in \{0.1, 0.2\}, \quad E_1 \in \{50, 100\}, \quad \lambda_Y \in \{0.8, 0.9\}$$

- EconML implementations. For DR-Learner, T-Learner, X-Learner and Causal Forest, we use the implementations provided by the `EconML` package (Battocchi et al., 2019), with the recommended default hyperparameters from the official documentation.
- CausalML implementations. For DragonNet and S-Learner, we adopt the implementations from the `CausalML` package (Chen et al., 2020), using the recommended hyperparameters as in the official Jupyter notebook examples.
- TARNet. We start from the default configuration of Shalit et al. (2017), but apply minor tuning for consistency with DragonNet. Concretely, we use three hidden layers with 200 units in the shared representation and two hidden layers with 100 units in each outcome head, with ELU activations. We also set the batch size to 64, in line with the DragonNet implementation.

H.3.5 RESULTS

IHDP results. Figure 8 reports the forest plots of $\sqrt{\text{PEHE}}$ on the IHDP dataset, with the left and right panels showing within-sample and out-of-sample performance, respectively. Each marker indicates the mean over runs, and the horizontal bar denotes its uncertainty interval. Across both splits, CausalBL consistently ranks among the top methods, outperforming most baselines and achieving performance comparable to the best-performing baseline, T-Learner. In general, CausalBL attains consistently low $\sqrt{\text{PEHE}}$ with narrow intervals, indicating a stable estimation in both settings.

Jobs results. Figure 9 presents box plots of the absolute ATT error on the Jobs dataset, with the left and right panels showing within-sample and out-of-sample performance, respectively. CausalBL is among the top performers, with low median error and small variance, and remains competitive with the strongest baselines across both settings.

2484

2485

2486 Table 9: Within- and out-of-sample performance on the IHDP and Jobs datasets. Reported are the
2487 mean \pm standard error of $\sqrt{\text{PEHE}}$, ATE relative error, policy risk, and $|\text{ATT}|$ error. Top two results
2488 per column are highlighted in blue and red.

2489

Model	Within-sample				Out-of-sample				
	IHDP		Jobs		IHDP		Jobs		
	$\sqrt{\epsilon_{\text{PEHE}}}$	ϵ_{ATE}	R_{POL}	ϵ_{ATT}		$\sqrt{\epsilon_{\text{PEHE}}}$	ϵ_{ATE}	R_{POL}	ϵ_{ATT}
IBL-based Model	1.07 \pm 0.62	0.03 \pm 0.02	0.23 \pm 0.01	0.01 \pm 0.01	1.19 \pm 0.67	0.05 \pm 0.04	0.26 \pm 0.03	0.07 \pm 0.07	
DR-Learner	2.87 \pm 1.57	0.10 \pm 0.09	0.14 \pm 0.02	0.05 \pm 0.02	2.65 \pm 1.53	0.11 \pm 0.10	0.23 \pm 0.04	0.08 \pm 0.07	
DragonNet	1.20 \pm 0.62	0.07 \pm 0.06	0.23 \pm 0.01	0.24 \pm 0.14	1.25 \pm 0.67	0.07 \pm 0.06	0.24 \pm 0.04	0.24 \pm 0.16	
GRF	1.47 \pm 1.04	0.05 \pm 0.05	0.14 \pm 0.01	0.01 \pm 0.01	1.50 \pm 1.05	0.07 \pm 0.08	0.22 \pm 0.04	0.08 \pm 0.07	
S-Learner	1.16 \pm 0.87	0.03 \pm 0.02	0.17 \pm 0.01	0.02 \pm 0.01	1.19 \pm 0.90	0.05 \pm 0.07	0.22 \pm 0.04	0.08 \pm 0.07	
TARNet	1.37 \pm 0.28	0.10 \pm 0.07	0.20 \pm 0.01	0.03 \pm 0.02	1.42 \pm 0.37	0.11 \pm 0.09	0.24 \pm 0.04	0.08 \pm 0.08	
T-Learner	0.88 \pm 0.24	0.02 \pm 0.02	0.11 \pm 0.01	0.01 \pm 0.01	0.99 \pm 0.39	0.03 \pm 0.03	0.22 \pm 0.05	0.08 \pm 0.06	
X-Learner	1.32 \pm 0.80	0.03 \pm 0.03	0.12 \pm 0.01	0.01 \pm 0.01	1.36 \pm 0.85	0.05 \pm 0.05	0.21 \pm 0.05	0.08 \pm 0.06	

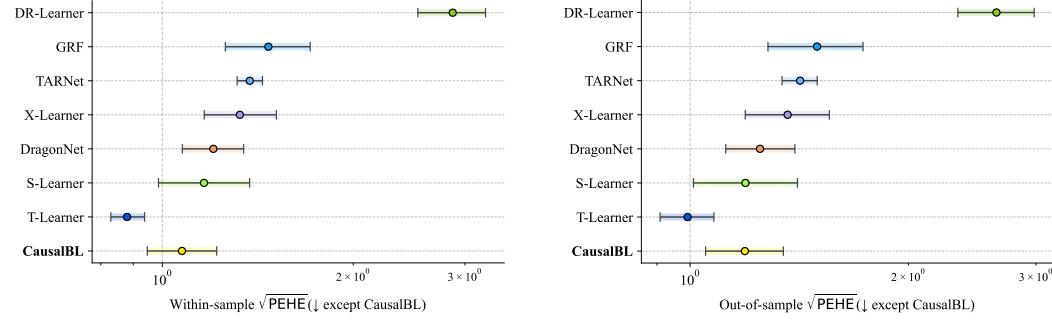
2499

2500

2501

2502

2503



2513

2514

2515 Figure 8: Forest plots of $\sqrt{\text{PEHE}}$ for within-sample (left) and out-of-sample (right) evaluation on
2516 the IHDP dataset. Methods are ordered by mean error, with CausalBL fixed at the bottom for clarity.

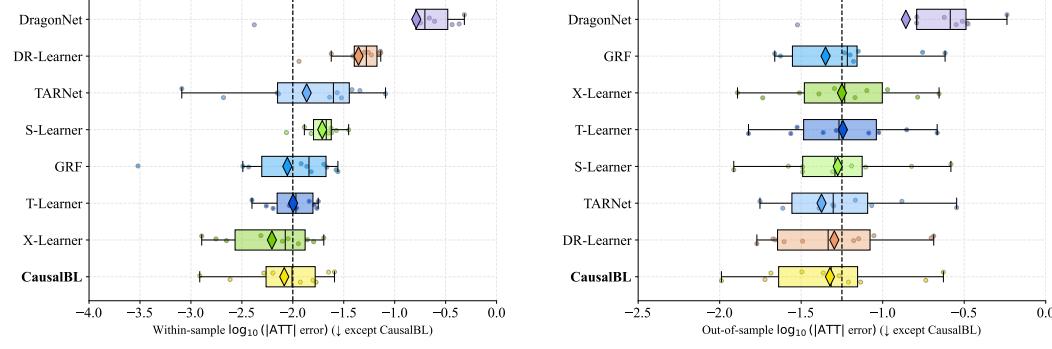
2517

2518

2519

2520

2521



2532

2533

2534

2535

2536

2537 Figure 9: Box plots of absolute ATT error for within-sample (left) and out-of-sample (right) evaluation
2538 on the Jobs dataset. Metrics are log-transformed before plotting and methods are ordered by
2539 the median error, with CausalBL fixed at the bottom for clarity.

2538
2539

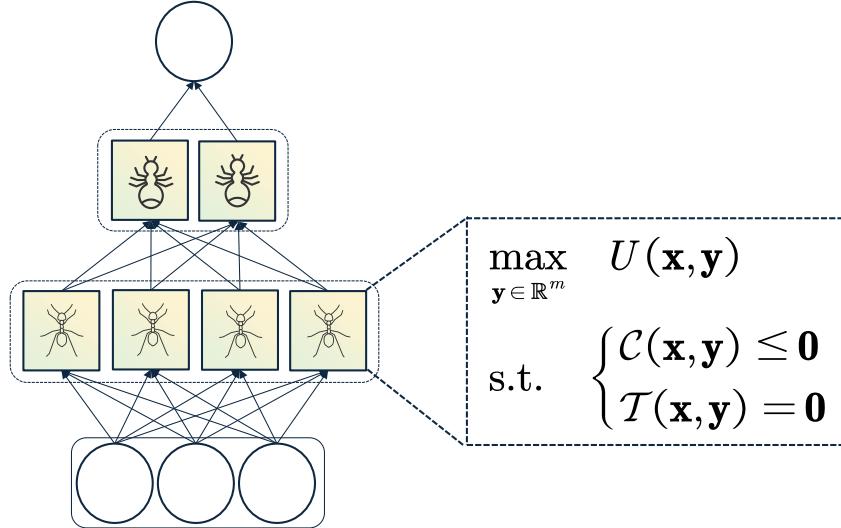
H.4 INTERPRETING BL: A CASE STUDY

2540
2541

H.4.1 INTERPRETING BL(DEEP): HIGH-LEVEL OVERVIEW

2542
2543

Deeper variants of BL are constructed by stacking multiple BL(Single) modules into hierarchical layers, followed by a final affine transformation. This forms a system of interacting UMPs (each of which can be viewed as an agent), where each internal block \mathcal{B} represents a single interpretable UMP. As shown in Figure 10, first-layer modules correspond to individual UMPs, while the second-layer module performs optimal coordination by aggregating or allocating their outputs. This layered structure offers a compositional interpretation of deeper BL models as systems of interacting, interpretable UMPs.

2544
25452546
2547

2548

2549
2550

2551
2552
2553
2554
2555

2556
2557
2558
2559
2560

2561
2562
2563
2564
2565

2566
2567
2568
2569
2570

2571
2572
2573
2574
2575

2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Figure 10: Interpreting deeper BL architectures as hierarchical systems of interacting agents. Each block \mathcal{B} represents an interpretable agent solving its own UMP, while a layer corresponds to a set of heterogeneous agents operating in parallel. The next layer then aggregates and reallocates the negative energies from the previous layer, thereby performing higher-level coordination across agents. This layered organization provides a natural compositional interpretation of deep BL: bottom-layer modules encode local objectives, while upper layers synthesize these into collective outcomes. Analogous structures arise in biological and social systems—for example, in ant colonies, individual ants (first-layer agents) follow simple local rules, yet their collective behavior is coordinated through higher-level interactions (second-layer aggregation), yielding globally efficient resource allocation and task division.

H.4.2 CASE STUDY: ADDITIONAL DETAILS

2592

2593

2594

Table 10: Boston Housing dataset variables and descriptions.

Variable	Description
CRIM	Per-capita crime rate by town
ZN	Proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS	Proportion of non-retail business acres per town
CHAS	Charles River dummy variable (=1 if tract bounds river)
NOX	Nitric oxide concentration (parts per 10 million)
RM	Average number of rooms per dwelling
AGE	Proportion of owner-occupied units built prior to 1940
DIS	Weighted distances to five Boston employment centers
RAD	Index of accessibility to radial highways
TAX	Full-value property-tax rate per \$10,000
PTRATIO	Pupil-teacher ratio by town
B	$1000(B_k - 0.63)^2$ where B_k is the proportion of Black residents by town
LSTAT	Percentage of lower-status population
MEDV	Median value of owner-occupied homes in \$1000s

2608

2609

2610

Table 11: Semantic roles of blocks in the deep BL architecture.

Layer	Block	Representative preference
Layer 1	Location-Sensitive Buyer	Values river access, transport accessibility, and neighborhood amenities.
	Risk-Sensitive Buyer	Averse to local disamenities such as pollution and environmental risk.
	Economic-Sensitive Buyer	Sensitive to school quality and neighborhood socio-economic composition.
	Zoning-Contrast Buyer	Responds to zoning and land-use patterns that shape local housing supply.
	Affordability-Preferring Buyer	Strongly prefers more affordable housing and dislikes high prices.
Layer 2	Integrated Location–Economic Buyer	Jointly evaluates location and socio-economic attributes in an integrated way.
	Budget-Conflict Buyer	Exhibits strong preferences for desirable locations but faces binding budget constraints.
	Balanced Trade-off Buyer	Jointly considers multiple housing attributes in a balanced manner.
Layer 3	Representative Composite Buyer	Aggregates all lower-level preference components into a representative household.

2631

2632

2633

Table 12: Each block in the deep BL architecture is aligned with a classic preference mechanism documented in the economics literature.

2635

2636

2637

Layer / Block	Representative reference
Layer 1: Location-Sensitive Buyer	Gibbons & Machin (2005)
Layer 1: Risk-Sensitive Buyer	Chay & Greenstone (2005)
Layer 1: Economic-Sensitive Buyer	Black (1999)
Layer 1: Zoning-Contrast Buyer	Glaeser & Gyourko (2002)
Layer 1: Affordability-Preferring Buyer	McFadden (1977)
Layer 2: Integrated Location–Economic Buyer	Bayer et al. (2007)
Layer 2: Budget-Conflict Buyer	Balseiro et al. (2019)
Layer 2: Balanced Trade-off Buyer	Rosen (1974)

2642

2643

2644

2645

2646 **H.5 PREDICTION ON HIGH-DIMENSIONAL INPUTS**
26472648 **Datasets Description and Preprocessing.** For image datasets, we use the official train/test splits
2649 of MNIST and Fashion-MNIST: Inputs are converted to single-channel images scaled to $[0, 1]$ and
2650 standardized with dataset-specific statistics. No resizing or data augmentation is applied. Training
2651 uses shuffled mini-batches of size 64. For text datasets, we apply the following procedures:2652 1 Data sources and official splits. We use the official training and test splits for AG News and Yelp
2653 Review Polarity without any custom re-partitioning. Both datasets are class-balanced across
2654 labels, and we do not perform any resampling.
2655 2 Dataset sizes. AG News: 120,000 training / 7,600 test samples with four balanced classes. Yelp
2656 Review Polarity: 560,000 training / 38,000 test samples with two balanced classes.
2657 3 Label mapping. AG News: labels 1–4 are mapped to 0–3. Yelp Review Polarity: labels 1–2 are
2658 mapped to 0–1.
2659 4 Text preprocessing and feature representation. All texts are lowercased and tokenized at the word
2660 level. The vocabulary is built with unigrams and bigrams, discarding words that appear fewer
2661 than two times in the training corpus. The vocabulary size is capped (AG News: 200,000; Yelp:
2662 100,000). We compute TF-IDF weights on the training split and apply the learned weights to
2663 the test split. Dimensionality is reduced to 128 latent components using truncated singular value
2664 decomposition (SVD). Features are standardized to zero mean and unit variance and finally ℓ_2 -
2665 normalized. We fix the random seed for reproducibility and reuse the learned preprocessing
2666 components across runs.
26672668 **Additional OOD Detection Results.** In addition to accuracy and AUROC, we also report AUPR
2669 and FPR@95 for both image and text datasets; the results are shown in Table 13. On image datasets,
2670 BL (depth=1) achieves the best overall balance: it ranks first on Fashion-MNIST AUPR and second
2671 on Fashion-MNIST FPR@95. On MNIST, it is second in AUPR but underperforms in FPR@95
2672 compared with E-MLP (depth=2). These results suggest that BL yields separable score distributions,
2673 particularly on Fashion-MNIST, although its 95% FPR threshold admits more OOD samples than
2674 E-MLP at the same recall. On text tasks, BL remains competitive: BL (depth=3) achieves the lowest
2675 FPR@95 on AG News, and BL (depth=2) leads AUPR on Yelp.
26762677 Table 13: OOD AUPR and FPR@95 (%) on image and text datasets. BL and E-MLP are evaluated
2678 at depths 1–3 with matched parameter counts, both without skip connections. Top-two per column
2679 are blue and red.

2681 Model	2682 MNIST		2683 Fashion-MNIST	
	2684 AUPR	2685 FPR@95	2686 AUPR	2687 FPR@95
E-MLP (depth=1)	89.37 \pm 1.52	35.57 \pm 5.87	91.35 \pm 1.25	28.24 \pm 4.37
BL (depth=1)	91.57 \pm 2.39	47.81 \pm 11.29	91.79 \pm 0.90	38.86 \pm 2.57
E-MLP (depth=2)	91.52 \pm 1.27	28.89 \pm 2.85	86.19 \pm 2.27	47.72 \pm 4.79
BL (depth=2)	91.20 \pm 1.22	52.71 \pm 18.66	89.30 \pm 2.47	42.65 \pm 9.53
E-MLP (depth=3)	90.04 \pm 1.89	31.92 \pm 5.76	84.30 \pm 1.50	54.49 \pm 2.74
BL (depth=3)	92.36 \pm 2.03	32.32 \pm 5.76	88.41 \pm 4.04	41.19 \pm 13.36

2690 Model	2691 AG News		2692 Yelp	
	2693 AUPR	2694 FPR@95	2695 AUPR	2696 FPR@95
E-MLP (depth=1)	87.06 \pm 0.08	91.75 \pm 0.15	20.76 \pm 0.28	92.27 \pm 0.52
BL (depth=1)	89.53 \pm 0.05	86.68 \pm 0.51	20.49 \pm 0.14	97.06 \pm 0.05
E-MLP (depth=2)	88.59 \pm 0.18	89.26 \pm 0.29	20.65 \pm 0.54	92.37 \pm 1.06
BL (depth=2)	88.06 \pm 0.17	86.86 \pm 0.79	20.80 \pm 0.28	96.95 \pm 0.07
E-MLP (depth=3)	89.82 \pm 0.35	87.53 \pm 0.38	20.74 \pm 0.53	92.41 \pm 1.00
BL (depth=3)	88.38 \pm 0.26	86.04 \pm 0.49	20.44 \pm 0.19	96.77 \pm 0.43

2700 **Number of Parameters.** To ensure a fair comparison between E-MLP and BL, we match the
 2701 number of trainable parameters as closely as possible for models with the same depth (see Table 14).
 2702
 2703
 2704

2705 **Running Time.** In order to further evaluate the computational efficiency of BL, we report the run-
 2706 ning time comparisons between Energy-based MLP and BL across image and text datasets. Under
 2707 comparable parameter budgets, we observe that on image datasets BL requires slightly more run-
 2708 ning time, whereas on text datasets it is considerably more efficient, with running time reduced to
 2709 roughly one third to one half of that of E-MLP (see Table 15, 16, 17, 18). Importantly, BL achieves
 2710 better predictive performance while maintaining running time that is similar to standard MLPs, and
 2711 in some cases even shorter.
 2712
 2713

2714 **Calibration** We report ECE and NLL metrics to assess calibration quality, and the results are
 2715 presented in Table 19. On image datasets, BL provides substantially better calibration, with BL
 2716 models occupying the top two positions in each column. On text datasets, BL and E-MLP exhibit
 2717 comparable calibration performance, with no systematic advantage for either model. Overall, these
 2718 results indicate that BL delivers strong predictive performance together with reliable probability
 2719 estimates.
 2720

2721 Table 14: Number of trainable parameters for E-MLP and BL models across high-dimension
 2722 datasets.

Dataset	Model	# Parameters
MNIST & FashionMNIST	E-MLP (depth=1)	203,530
	BL (depth=1)	208,384
	E-MLP (depth=2)	235,146
	BL (depth=2)	219,264
	E-MLP (depth=3)	238,314
	BL (depth=3)	221,684
AGNews	E-MLP (depth=1)	136,196
	BL (depth=1)	149,720
	E-MLP (depth=2)	386,284
	BL (depth=2)	397,568
	E-MLP (depth=3)	230,788
	BL (depth=3)	224,128
Yelp	E-MLP (depth=1)	134,146
	BL (depth=1)	148,960
	E-MLP (depth=2)	385,770
	BL (depth=2)	397,312
	E-MLP (depth=3)	230,530
	BL (depth=3)	224,000

2743 Table 15: Comparison of running time between BL and E-MLP on the MNIST dataset

Model	Train Time (s)	Eval Time (s)	Total Time (s)
E-MLP (depth=1)	100.59 ± 0.29	0.33 ± 0.03	100.92 ± 0.30
BL (depth=1)	110.63 ± 3.34	0.23 ± 0.51	110.86 ± 3.85
E-MLP (depth=2)	102.64 ± 0.26	0.35 ± 0.03	102.98 ± 0.26
BL (depth=2)	122.85 ± 3.95	0.28 ± 0.63	123.14 ± 4.58
E-MLP (depth=3)	104.52 ± 0.30	0.32 ± 0.00	104.84 ± 0.30
BL (depth=3)	140.17 ± 4.42	0.00 ± 0.00	140.18 ± 4.43

2754
2755

Table 16: Comparison of running time between BL and E-MLP on the FashionMNIST dataset

2756

2757
2758
2759
2760
2761
2762
2763

Model	Train Time (s)	Eval Time (s)	Total Time (s)
E-MLP (depth=1)	73.57 \pm 1.20	0.23 \pm 0.01	73.80 \pm 1.19
BL (depth=1)	96.52 \pm 2.90	0.23 \pm 0.51	96.75 \pm 3.41
E-MLP (depth=2)	78.25 \pm 0.28	0.22 \pm 0.01	78.47 \pm 0.27
BL (depth=2)	114.43 \pm 3.72	0.28 \pm 0.63	114.72 \pm 4.35
E-MLP (depth=3)	85.57 \pm 1.19	0.22 \pm 0.01	85.79 \pm 1.19
BL (depth=3)	130.03 \pm 4.96	0.00 \pm 0.00	130.03 \pm 4.96

2764

2765

2766

Table 17: Comparison of running time between BL and E-MLP on the AGNews dataset

2767

2768
2769
2770
2771
2772
2773
2774

Model	Train Time (s)	Eval Time (s)	Total Time (s)
E-MLP (depth=1)	60.15 \pm 0.47	0.04 \pm 0.04	60.19 \pm 0.46
BL (depth=1)	22.96 \pm 0.79	0.06 \pm 0.14	23.02 \pm 0.93
E-MLP (depth=2)	65.28 \pm 0.32	0.03 \pm 0.00	65.31 \pm 0.32
BL (depth=2)	28.09 \pm 0.79	0.09 \pm 0.20	28.18 \pm 0.99
E-MLP (depth=3)	68.81 \pm 0.28	0.03 \pm 0.00	68.84 \pm 0.28
BL (depth=3)	34.08 \pm 3.55	0.00 \pm 0.00	34.08 \pm 3.56

2775

2776

2777

Table 18: Comparison of running time between BL and E-MLP on the Yelp dataset

2778

2779
2780
2781
2782
2783
2784
2785

Model	Train Time (s)	Eval Time (s)	Total Time (s)
E-MLP (depth=1)	606.93 \pm 3.14	0.23 \pm 0.01	607.16 \pm 3.14
BL (depth=1)	186.53 \pm 1.49	0.02 \pm 0.04	186.55 \pm 1.51
E-MLP (depth=2)	612.15 \pm 6.33	0.34 \pm 0.08	612.49 \pm 6.32
BL (depth=2)	184.03 \pm 1.30	0.00 \pm 0.00	184.03 \pm 1.30
E-MLP (depth=3)	614.99 \pm 6.08	0.27 \pm 0.05	615.26 \pm 6.06
BL (depth=3)	183.51 \pm 1.38	0.00 \pm 0.00	183.51 \pm 1.38

2786

2787

2788

Table 19: ECE and NLL on image and text datasets. BL and E-MLP are evaluated at depths 1–3 with matched parameter counts. Top-two per column are blue and red.

2789

2790

2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Model	MNIST		Fashion-MNIST	
	ECE	NLL	ECE	NLL
E-MLP (depth=1)	0.02 \pm 0.00	0.20 \pm 0.02	0.08 \pm 0.00	0.74 \pm 0.01
BL (depth=1)	0.02 \pm 0.00	0.26 \pm 0.01	0.05 \pm 0.00	0.36 \pm 0.01
E-MLP (depth=2)	0.02 \pm 0.00	0.23 \pm 0.02	0.09 \pm 0.00	0.89 \pm 0.03
BL (depth=2)	0.02 \pm 0.00	0.16 \pm 0.01	0.07 \pm 0.00	0.44 \pm 0.01
E-MLP (depth=3)	0.02 \pm 0.00	0.16 \pm 0.02	0.09 \pm 0.00	0.85 \pm 0.04
BL (depth=3)	0.02 \pm 0.00	0.13 \pm 0.02	0.07 \pm 0.00	0.49 \pm 0.02

Model	AG News		Yelp	
	ECE	NLL	ECE	NLL
E-MLP (depth=1)	0.01 \pm 0.00	0.31 \pm 0.00	0.00 \pm 0.00	0.22 \pm 0.00
BL (depth=1)	0.02 \pm 0.00	0.30 \pm 0.01	0.01 \pm 0.00	0.21 \pm 0.00
E-MLP (depth=2)	0.02 \pm 0.00	0.30 \pm 0.01	0.00 \pm 0.00	0.21 \pm 0.00
BL (depth=2)	0.02 \pm 0.00	0.30 \pm 0.00	0.00 \pm 0.00	0.21 \pm 0.00
E-MLP (depth=3)	0.02 \pm 0.00	0.30 \pm 0.01	0.01 \pm 0.00	0.21 \pm 0.00
BL (depth=3)	0.02 \pm 0.01	0.32 \pm 0.01	0.01 \pm 0.00	0.22 \pm 0.00

2808 **H.6 EVALUATING PENALTY-BASED CONSTRAINT ENFORCEMENT UNDER FINITE**
 2809 **TEMPERATURE**
 2810

2811 To evaluate whether the learnable penalty blocks in BL are capable of enforcing near-hard con-
 2812 straints under finite temperature, we isolate the penalty mechanism and test it on a high-dimensional
 2813 energy-conservation constraint. This diagnostic experiment removes the utility term and focuses
 2814 solely on the penalty structure, providing a clean characterization of how the penalty block controls
 2815 constraint violations as a function of temperature τ and penalty scale λ .

2816 **Experiment setup.** We sample $x \in R^{64}$ i.i.d. from a standard Gaussian $x \sim \mathcal{N}(0, I_{64})$ and define
 2817 a pure penalty compositional utility
 2818

$$2819 T(x, y) = \|y\|^2 - \|x\|^2, \quad BL(x, y) = -\lambda T(x, y)^2,$$

2820 which plays the role of an energy-conservation residual and its quadratic penalty.
 2821

2822 We target the Gibbs distribution
 2823

$$2824 p(y | x) \propto \exp(BL(x, y)/\tau)$$

2825 using overdamped Langevin dynamics with step size $\eta = 10^{-4}$:
 2826

$$2827 y_{k+1} = y_k + \eta \nabla_y BL(x, y_k)/\tau + \sqrt{2\eta\tau} \xi_k, \quad \xi_k \sim \mathcal{N}(0, I_{64}).$$

2828 For each pair (λ, τ) we run 512 parallel chains, each for 1500 Langevin steps (500 burn-in). We
 2829 sweep over temperatures $\tau \in \{2.0, 1.0, 0.5, 0.25, 0.1, 0.05, 0.02, 0.01, 0.005\}$ at a fixed penalty $\lambda =$
 2830 25, and over penalty weights $\lambda \in \{0, 1, 3, 10, 30, 100, 200, 500\}$ at a fixed temperature $\tau = 0.05$.
 2831

2832 For each configuration we record the residual magnitude $|T(x, y)|$ from the final state of every chain.
 2833 We then report three summary statistics: (i) the mean violation $E[|T(x, y)|]$, (ii) the 95th percentile
 2834 of $|T(x, y)|$, and (iii) the empirical probability of near-feasible samples. We declare a sample to
 2835 satisfy the constraint approximately if

$$2836 |T(x, y)| \leq \varepsilon_{\text{tol}} \quad \text{with} \quad \varepsilon_{\text{tol}} = 10^{-1},$$

2837 and estimate $P(|T(x, y)| \leq \varepsilon_{\text{tol}})$ across chains. This tolerance scale is chosen to be small relative
 2838 to the typical unconstrained residuals, so that the near-feasible regime corresponds to a practically
 2839 tight energy-conservation constraint.
 2840

2841 **Results.** The results (Fig. 11) exhibit the classical behavior of Gibbs-type penalty methods. Both
 2842 decreasing the temperature τ and increasing the penalty weight λ substantially reduce constraint
 2843 violation. When τ becomes sufficiently small ($\tau \leq 0.01$), nearly all samples satisfy the constraint
 2844 threshold. Similarly, increasing λ sharpens the energy well around $T(x, y) = 0$, leading to rapidly
 2845 diminishing violations. All curves are smooth and monotone in the 64-dimensional setting, indi-
 2846 cating excellent numerical stability of the Langevin sampler and demonstrating that the BL penalty
 2847 structure functions as a genuine, controllable penalty mechanism inside a stochastic energy-based
 2848 model.
 2849

2850 **H.7 PARAMETER RECOVERY ANALYSIS**
 2851

2852 We conduct a simulation-based parameter recovery study in a teacher–student setup to examine
 2853 whether BL can recover the underlying utility and constraint functions. We generate covariates
 2854 $X \in R^3$ with independent components $x_i \stackrel{i.i.d.}{\sim} U(-2, 2)$, and define the teacher function
 2855

$$2856 Y^* = x_1 x_2 + 0.5 x_3 + 0.2 x_1 x_3.$$

2857 The observed target variable is generated as
 2858

$$2859 Y = Y^* + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2),$$

2860 so that Y represents a noisy observation of the teacher function. A BL student model is then trained
 2861 on the synthetic pairs (X, Y) , and its recovered parameters are compared against the ground-truth
 teacher parameters to assess recovery performance.
 2862

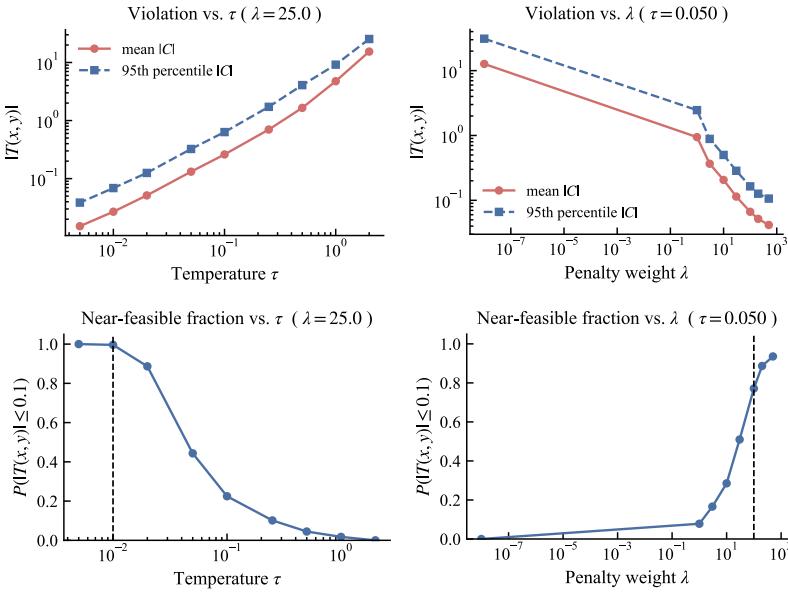


Figure 11: Constraint enforcement test of the BL penalty block on an energy-conservation constraint. The figure reports violation statistics $|T(x, y)|$ when varying the temperature τ (left side of panel) and the penalty weight λ (right side of panel).

- **Depth-1 parameter recovery.** We directly compare the learned parameters with the ground-truth coefficients of the teacher model. As shown in Table 20, the recovered coefficients in the utility block, as well as in both the inequality and equality constraint blocks, are extremely close to the true values, with very small absolute and relative estimation errors.
- **Higher-depth recovery (depth 3 and 5).** At larger depths, individual parameter alignment is less informative because the block compositions become more complex. We therefore assess recovery by comparing the learned and ground-truth block outputs through Q–Q plots. As shown in Figure 12, the points lie almost perfectly on the identity line, indicating that the learned functions accurately reproduce the teacher functions even in deeper architectures.

Table 20: Parameter recovery results for the depth-1 BL model.

Category	Feature	Feature	Teacher	Student	Diff	Rel. Error
Utility	x_1		0.38	0.38	0.0030	0.0080
Utility	x_2		0.41	0.41	0.0008	0.0019
Utility	x_3		-0.12	-0.11	0.0025	0.0213
Utility	C		0.45	0.45	0.0069	0.0152
Inequality Constraints	x_1		-0.11	-0.11	0.0025	0.0229
Inequality Constraints	x_2		0.10	0.11	0.0057	0.0553
Inequality Constraints	x_3		-0.25	-0.25	0.0034	0.0140
Inequality Constraints	C		0.29	0.28	0.0069	0.0239
Equality Constraints	x_1		0.44	0.44	0.0022	0.0051
Equality Constraints	x_2		-0.37	-0.36	0.0012	0.0034
Equality Constraints	x_3		0.43	0.44	0.0009	0.0021
Equality Constraints	C		0.09	0.08	0.0064	0.0711

H.8 EMPIRICAL VERIFICATION OF STRUCTURAL IDENTIFIABILITY

To empirically validate the theoretical identifiability property of the proposed IBL model, we conducted an experiment based on the Jacobian rank criterion. Structural identifiability is ensured when the parameterization yields a full-rank Jacobian almost everywhere (Ljung & Glad, 1994). Follow-

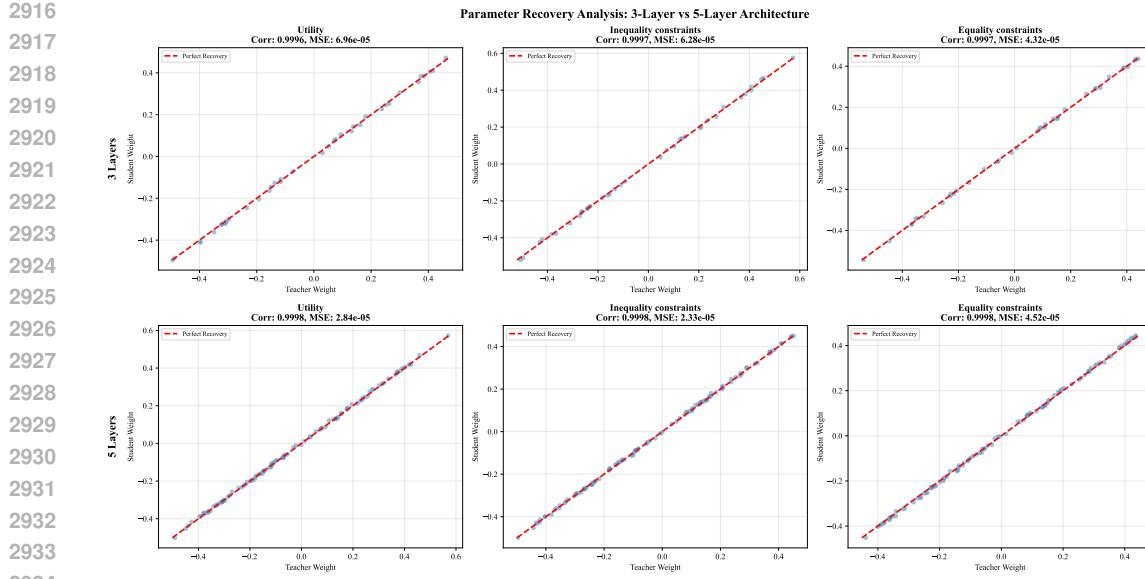


Figure 12: Q-Q recovery plots for 3-layer and 5-layer BL models.

ing this classical criterion, we evaluate whether each model instance maintains a non-degenerate Jacobian under random initialization.

Experimental Setup We evaluate identifiability across three model families: ReLU MLP, Softplus MLP, and IBL. For each architecture depth $L \in \{2, 3, 4, 5, 6, 7\}$, we construct networks with matched parameter budgets and generate 20 random initializations. Each initialized model is assessed by computing the numerical rank of its Jacobian through automatic differentiation. A model is considered identifiable if the Jacobian is full-rank under the singular-value criterion described above. The identifiability ratio for each depth is defined as the proportion of identifiable instances among the total trials.

Results Figure 13 shows that IBL achieves a 100% identifiability ratio across all depths. Softplus MLPs rapidly lose identifiability as depth increases (from 95% at $L = 2$ to 10% at $L = 7$), while ReLU MLPs remain non-identifiable due to degenerate Jacobians. These findings empirically corroborate our theoretical analysis: IBL maintains an identifiable parameterization whereas standard MLPs do not.

H.9 CASE STUDY: ESTIMATION RESULTS OF BL ON THE BOSTON HOUSING DATASET

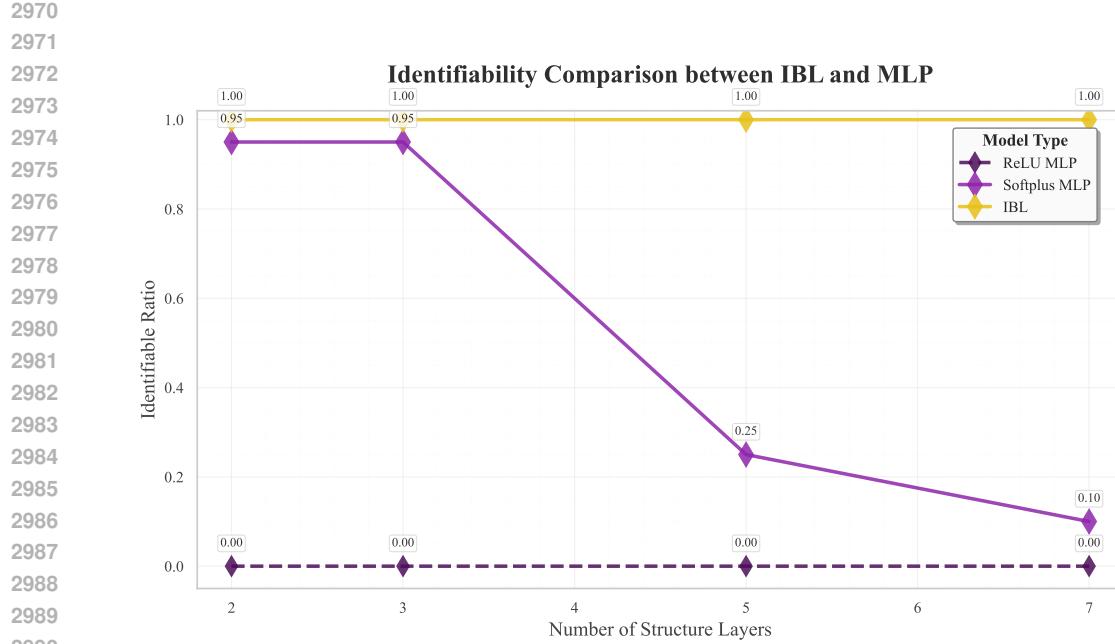


Figure 13: **Identifiability Comparison between IBL and MLP.** The IBL model maintains 100% identifiability across depths, whereas Softplus MLPs suffer from rank degeneracy as layers increase.

Table 21: **Estimated UMP block parameters learned by the BL model (layer = [2, 1]) on the Boston Housing dataset.** For each block, U denotes the Utility component, C the Inequality-Constraint component, and T the Equality-Constraint component.

Variable	Block 11			Block 12		
	U_{11}	C_{11}	T_{11}	U_{12}	C_{12}	T_{12}
λ	1.003	0.997	0.999	0.997	1.003	1.000
per capita crime rate (CRIM)	0.21	0.14	0.03	0.12	0.09	0.25
residential land proportion (ZN)	0.23	-0.04	-0.27	0.25	0.00	0.09
non-retail business acreage (INDUS)	-0.06	0.21	0.25	0.16	0.22	0.27
Charles River dummy (CHAS)	0.25	0.04	-0.24	-0.12	-0.20	-0.23
nitric oxide concentration (NOX)	-0.06	-0.13	0.21	0.16	0.02	-0.28
average rooms per dwelling (RM)	0.06	0.07	0.05	0.05	-0.19	-0.22
proportion of older units (AGE)	-0.13	-0.12	-0.09	0.14	0.08	-0.18
distance to employment centres (DIS)	0.16	-0.03	0.17	-0.17	-0.09	0.11
radial highway accessibility (RAD)	0.24	-0.11	0.04	-0.28	0.09	0.10
property tax rate (TAX)	-0.20	0.18	0.22	-0.11	-0.06	0.23
low-income population (LSTAT)	0.05	-0.12	-0.09	0.23	-0.16	-0.19
median home value (MEDV)	0.21	-0.08	0.07	0.08	-0.17	0.15
Constant term (C)	0.03	-0.17	-0.07	0.11	-0.16	-0.12

Variable	Block 21		
	U_{21}	C_{21}	T_{21}
λ	1.000	1.003	0.999
Block 11 output ($b_{1,1}$)	0.428	-0.551	0.147
Block 12 output ($b_{1,2}$)	-0.168	-0.356	-0.178
Constant term (C)	0.406	0.219	0.421

3024
 3025
 3026
 3027
 3028
 3029 Table 22: Estimated UMP parameters for the Layer 1 blocks of the BL model (layer = [5, 3, 1])
 3030 trained on the Boston Housing dataset. Here, U denotes the Utility component, C the Inequality-
 3031 Constraint component, and T the Equality-Constraint component.

Variable	U_{11}	U_{12}	U_{13}	U_{14}	U_{15}
λ	1.000	0.998	1.003	1.002	1.000
per capita crime rate (CRIM)	0.21	0.12	0.17	-0.09	0.06
residential land proportion (ZN)	0.23	0.25	-0.07	-0.22	-0.16
non-retail business acreage (INDUS)	-0.06	0.16	0.16	0.23	-0.14
Charles River dummy (CHAS)	0.25	-0.12	-0.22	-0.05	-0.01
nitric oxide concentration (NOX)	-0.06	0.16	-0.14	0.24	0.16
average rooms per dwelling (RM)	0.05	0.05	0.08	0.09	-0.07
proportion of older units (AGE)	-0.13	0.14	0.06	-0.23	-0.15
distance to employment centres (DIS)	0.16	-0.17	-0.07	0.19	-0.10
radial highway accessibility (RAD)	0.24	-0.27	0.17	-0.08	-0.20
property tax rate (TAX)	-0.20	-0.11	0.19	-0.11	0.10
low-income population (LSTAT)	0.05	0.23	-0.15	-0.28	-0.26
median home value (MEDV)	0.21	0.08	0.25	0.08	0.06
Constant term (C)	0.03	0.12	-0.09	-0.06	0.15
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}
λ	0.999	1.001	1.000	0.997	1.002
per capita crime rate (CRIM)	0.13	0.09	-0.10	0.11	0.05
residential land proportion (ZN)	-0.04	-0.01	-0.27	-0.23	-0.10
non-retail business acreage (INDUS)	0.21	0.22	-0.16	0.20	0.15
Charles River dummy (CHAS)	0.04	-0.19	0.07	-0.20	0.15
nitric oxide concentration (NOX)	-0.13	0.02	-0.04	-0.05	0.11
average rooms per dwelling (RM)	0.07	-0.19	-0.20	0.06	-0.05
proportion of older units (AGE)	-0.13	0.08	0.01	0.14	-0.07
distance to employment centres (DIS)	-0.03	-0.09	-0.19	0.22	0.03
radial highway accessibility (RAD)	-0.11	0.08	-0.23	0.25	-0.05
property tax rate (TAX)	0.18	-0.06	-0.15	-0.22	-0.08
low-income population (LSTAT)	-0.13	-0.17	-0.18	-0.12	0.24
median home value (MEDV)	-0.08	-0.17	0.28	-0.03	-0.03
Constant term (C)	-0.17	-0.16	0.05	-0.21	-0.06
	T_{11}	T_{12}	T_{13}	T_{14}	T_{15}
λ	0.999	1.002	0.999	1.004	1.001
per capita crime rate (CRIM)	0.03	0.25	0.08	0.25	0.00
residential land proportion (ZN)	-0.27	0.10	-0.26	-0.20	-0.02
non-retail business acreage (INDUS)	0.25	0.26	-0.18	0.15	0.07
Charles River dummy (CHAS)	-0.23	-0.23	-0.09	0.10	0.08
nitric oxide concentration (NOX)	0.21	-0.28	0.04	0.09	-0.25
average rooms per dwelling (RM)	0.05	-0.21	-0.24	-0.15	-0.10
proportion of older units (AGE)	-0.09	-0.19	-0.12	0.26	0.24
distance to employment centres (DIS)	0.17	0.12	-0.17	0.06	0.10
radial highway accessibility (RAD)	0.04	0.10	0.00	0.04	-0.01
property tax rate (TAX)	0.22	0.23	-0.10	-0.24	-0.17
low-income population (LSTAT)	-0.09	-0.19	-0.19	-0.04	-0.25
median home value (MEDV)	0.08	0.15	-0.19	-0.13	-0.09
Constant term (C)	-0.07	-0.11	-0.16	0.24	0.10

3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077

3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098

Table 23: Layer 2 and Layer 3 UMP parameters (U , C , T) for Blocks in the BL model (layer = [5, 3, 1]).

Variable	Block 21			Block 22			Block 23		
	U_{21}	C_{21}	T_{21}	U_{22}	C_{22}	T_{22}	U_{23}	C_{23}	T_{23}
λ	1.000	1.000	1.000	0.999	1.003	1.002	1.001	1.002	0.999
Block 11 output ($b_{1,1}$)	0.28	0.06	-0.20	-0.31	0.24	0.18	-0.29	-0.08	0.22
Block 12 output ($b_{1,2}$)	0.21	-0.11	-0.09	-0.44	0.12	-0.22	0.15	-0.22	0.20
Block 13 output ($b_{1,3}$)	-0.40	0.18	-0.44	-0.36	-0.01	-0.09	-0.13	-0.14	0.32
Block 14 output ($b_{1,4}$)	-0.27	-0.17	0.30	0.33	-0.34	-0.26	0.28	-0.42	-0.34
Block 15 output ($b_{1,5}$)	-0.07	-0.29	0.34	0.22	-0.38	-0.08	-0.14	0.25	0.32
Constant term (C)	0.43	0.33	0.16	0.38	-0.42	-0.32	-0.33	-0.31	-0.21

Variable	U_{31}	C_{31}	T_{31}
λ	1.002	0.998	1.000
Block 21 output ($b_{2,1}$)	0.21	-0.13	0.36
Block 22 output ($b_{2,2}$)	0.54	-0.48	0.43
Block 23 output ($b_{2,3}$)	-0.08	0.28	0.55
Constant term (C)	-0.01	-0.58	-0.14

3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131