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ABSTRACT

Interpretable machine learning is increasingly vital for scientific research, yet the
performance—interpretability trade-off, insufficient alignment with scientific the-
ory, and non-identifiability limit its scientific credibility. Grounded in behavioral
science, we propose Behavior Learning (BL), a novel general-purpose ML frame-
work that unifies predictive performance, intrinsic interpretability, and identifia-
bility for scientifically credible modeling. BL discovers interpretable and identi-
fiable optimization structures from data. It does so by parameterizing a composi-
tional utility function built from intrinsically interpretable modular blocks, which
induces a data distribution for prediction and generation. Each block represents
and can be written in symbolic form as a utility maximization problem (UMP),
a foundational paradigm in behavioral science and a universal framework of op-
timization. BL supports architectures ranging from a single UMP to hierarchi-
cal compositions, the latter modeling hierarchical optimization systems that offer
both expressiveness and structural transparency. Its smooth and monotone variant
(IBL) guarantees identifiability under mild conditions. Theoretically, we estab-
lish the universal approximation property of both BL and IBL, and analyze the
M-estimation properties of IBL. Empirically, BL demonstrates strong predictive
performance, intrinsic interpretability and scalability to high-dimensional data.
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Figure 1: Behavior Learning (BL). (a) Human behavior modeled as a UMP. (b) Learning scheme of
BL, where CompU denotes the compositional utility function. (c) BL offers intrinsic interpretability
(via symbolic form as an optimization problem), identifiability (via unique parameterization), and
inference capability. (d) Three architectural variants of BL, from single UMP to deep compositions.
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1 INTRODUCTION

Scientific research often grapples with phenomena that resist precise formalization (Anderson, 1972;
Mitchell, 2009), including human and social domains (Simon, 1955; Arthur, 2009). Such phenom-
ena are difficult to predict and even harder to falsify through theory alone. Interpretable machine
learning (Interpretable ML) (Molnar, 2020), with its powerful approximation capabilities and built-
in transparency, offers a promising alternative for modeling such phenomena. Yet a long-standing
tension remains unresolved: model predictive performance and intrinsic interpretability often trade
off—a challenge commonly known as the performance—interpretability trade-off (Arrieta et al.,
2020). High-performing models such as deep neural networks (LeCun et al., 2015) typically lack
transparency, while intrinsically interpretable models struggle to capture complex nonlinear patterns.

Some efforts have been made to mitigate the performance—interpretability trade-off, and the main
existing approaches can be broadly grouped into four categories. (i) Additive models (Caruana
et al., 2015; Hastie, 2017; Nori et al., 2019; Agarwal et al., 2021; Chang et al., 2021). (ii) Concept-
based models (Alvarez Melis & Jaakkola, 2018; Kim et al., 2018; Koh et al., 2020). (iii) Rule-
and score-based systems (Ustun & Rudin, 2016; Angelino et al., 2018) . (iv) Shape-constrained
neural networks (You et al., 2017) . Recent additional interpretable modeling frameworks include
Kraus et al. (2024); Liu et al. (2024b); Plonsky et al. (2025). These approaches demonstrate varied
strengths.

However, two fundamental limitations remain, restricting their scientific applicability. (i) Insufficient
alignment with scientific theories. Most approaches focus on extending existing machine learning
methods to achieve interpretability, rather than developing a scientifically grounded framework (e.g.,
based on optimization problems or differential equations). This often hinders alignment with sci-
entific theories and limits the ability to extract scientific knowledge from learned models (Roscher
et al., 2020; Bereska & Gavves, 2024; Longo et al., 2024). (ii) Non-uniqueness of interpretations.
Most models are non-identifiable—their interpretations are not uniquely determined by observable
predictions in a mathematical sense (Ran & Hu, 2017; Méloux et al., 2025). As a result, such models
cannot support reliable estimation of ground-truth parameters (Newey & McFadden, 1994; Van der
Vaart, 2000), and may even lack Popperian falsifiability (Popper, 2005), ultimately limiting their
scientific credibility. These limitations naturally raise a key question: can we design an interpretable
ML framework that mitigates the performance—interpretability trade-off while being scientifically
grounded and identifiable?

Grounded in behavioral science, we propose Behavior Learning (BL): a novel, general-purpose
interpretable ML framework for scientifically credible modeling. 1t unifies high predictive perfor-
mance, intrinsic interpretability, and identifiability. As illustrated in Figure 1, BL builds on one of
the most fundamental paradigms in behavioral science—utility maximization—which posits that hu-
man behavior arises from solving a utility maximization problem (UMP) (Samuelson, 1948; Debreu,
1959; Mas-Colell et al., 1995). Motivated by this paradigm, BL learns interpretable latent optimiza-
tion structures from data. It models responses (y) as drawn from a probability distribution induced
by a UMP or a composition of multiple interacting UMPs. This distribution is parameterized by a
compositional utility function BL(x,y), constructed from intrinsically interpretable modular blocks
B(x,y). Each block is a learnable penalty-based formulation that represents a optimization prob-
lem (UMP), which can be written in symbolic form and offers transparency comparable to linear
regression.

BL admits three architectural variants: BL(Single), defined by a single block; BL(Shallow), a mod-
erately layered composition of blocks; and BL(Deep), a deep hierarchical composition of multiple
blocks. The latter two model, and can be symbolically interpreted as, hierarchical optimization
systems. All variants are trained end-to-end to induce a conditional Gibbs distribution for prediction
and generation. By refining the penalty functions in each block into smooth and monotone forms, we
develop Identifiable BL (IBL), the identifiable variant of BL. Under mild conditions, IBL guarantees
unique intrinsic interpretability. This property ensures the scientific credibility of its explanations
and further supports recovery of the ground-truth model under appropriate conditions.

While motivated by behavioral science, BL is not domain-specific. It applies broadly to any scien-
tific domain where observed outcomes arise as solutions to (explicit or latent) optimization prob-
lems—such as macroeconomics (Ramsey, 1928; Ljungqvist & Sargent, 2018), statistical physics
(Gibbs, 1902; Landau & Lifshitz, 2013), or evolutionary biology (Wright et al., 1932; Fisher, 1999).
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This generality is supported by a key theoretical insight (Theorem 2.2): any optimization problem
can be equivalently written as a UMP. This makes BL a general-purpose modeling framework for
data-driven inverse optimization (Ahuja & Orlin, 2001) across diverse scientific disciplines.

BL connects to three major research areas. (i) Interpretable machine learning. BL introduces a
novel framework of interpretable ML that are optimization-grounded, symbolically expressible, and
identifiable, thereby supporting scientifically credible modeling. (ii) Inverse optimization. BL re-
lates to data-driven inverse optimization (Ahuja & Orlin, 2001; Keshavarz et al., 2011) and inverse
reinforcement learning (Ng et al., 2000; Wulfmeier et al., 2015), but differs by learning the full con-
strained optimization structure, its associated training scheme, and the hierarchical compositions
built upon it. (iii) Energy-based models. BL shares training techniques with energy-based mod-
els(LeCun et al., 2006), such as Gibbs-style modeling and denoising score matching (Hyvirinen
& Dayan, 2005; Vincent, 2011). Instead of learning an opaque neural energy function, BL learns
compositions of interpretable optimization problems.

We study BL both theoretically and empirically. Theoretically, we show that both BL and IBL ad-
mit universal approximation under mild assumptions (Section 2.2). For IBL, we further establish its
M-estimation properties (Section 2.3), including identifiability, consistency, universal consistency,
asymptotic normality, and asymptotic efficiency. Empirically, we evaluate BL across four tasks.
Standard prediction tasks (Section 3.1) demonstrate its strong predictive performance. Counter-
factual prediction (Section 3.2) highlights its potential applications in causal inference. A quali-
tative case study (Section 3.3) illustrates its intrinsic interpretability. Finally, prediction on high-
dimensional inputs (Section 3.4) demonstrates its scalability to high-dimensional data. Due to lim-
ited space, we defer related works to Appendix A.

Overall, our key contributions are threefold. (i) We propose Behavior Learning (BL), a novel
general-purpose machine learning framework grounded in behavioral science, which unifies high
predictive performance, intrinsic interpretability, identifiability, and scalability. (ii) For scientific re-
search, BL offers a scientifically grounded and identifiable interpretable ML approach for modeling
complex phenomena that defy precise formalization. BL applies broadly to scientific disciplines
associated with optimization. (iii) At the paradigm level, BL learns from data the optimization
structure of either a single optimization problem or a hierarchical composition of problems through
distributional modeling, contributing a new methodology to data-driven inverse optimization.

2 BEHAVIOR LEARNING (BL)

2.1 UTILITY MAXIMIZATION PROBLEM (UMP)

The modeling of human behavior, particularly in behavioral science and decision theory, often be-
gins with the assumption that observed outcomes arise from a latent optimization process. A canon-
ical formulation of this idea is the Utility Maximization Problem (UMP) (Mas-Colell et al., 1995),
in which an agent selects actions y € Y in response to contextual features x € XX’ by solving:

max U(x,y) st C(x,y) <0, T(x,y)=0 (1)
yey

Here, U(-) denotes a subjective utility function encoding the agent’s internal preferences or goals.
The inequality constraint C(-) captures resource constraints, while the equality constraint 7 (-) en-
codes either endogenous belief consistency or exogenous conservation laws.

The UMP can be recast as a cost—benefit framework, where the agent trades off utility gains against
constraint violations. Formally, under mild regularity conditions, it admits an equivalent uncon-
strained reformulation via a penalty formulation (Han & Mangasarian, 1979), as formalized below.
Theorem 2.1 (Penalty Function Equivalence for UMP). Let X C R% and ) C R% be nonempty
compact sets, and let U : X x Y - R, C: X xY = R"™ andT : X x Y — RP be Lipschitz
continuous. Assume Slater’s condition holds for the Utility Maximization Problem (UMP). Then
there exist \g > 0, A\ € R, Ay € Rﬁ . such that the unconstrained objective

max 20 0(U(x,y)) = M p(Cx,¥)) = A3 (T (x,)) )

have the same global maximizers. Here, ¢ : R — R is a strictly increasing C' map, and p, :
R — Rx are convex “penalty” functions satisfying p(z) = 0 for z < 0, p(z) > 0 for z > 0; and

Y(—=2) = ¥P(2), ¥(0) =0, ¥(z) > 0for z £ 0.
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The proof is provided in Appendix F.1. This unconstrained reformulation offers greater tractability
for both theoretical analysis and model training.

While motivated by behavioral modeling, the UMP formulation is not domain-specific. It applies
to any setting where observed outcomes are solutions to (explicit or latent) optimization problems.
This is because any optimization problem can be equivalently formulated as a UMP. We state this in
the following result, while the formal statement and proof are provided in Appendix F.1.

Theorem 2.2 (Universality of UMP). Any optimization problem of the form maxycy f(x,y) or
minyey f(x,y), subject to equality and inequality constraints, is equivalent to a UMP.

2.2 BL ARCHITECTURE

Figure 1(b—d) illustrates the architecture of BL. We consider samples (x,y) ~ D, where x € R?
denotes contextual features and y is the response, represented as (ydi“, yOrt) € Vgise X R™e, cap-
turing its hybrid structure. Responses are assumed to be stochastically generated by solving multiple
interacting UMPs, each with a penalty-based formulation, which together compose a compositional
utility function BL(x,y). On this basis, we model the data using a conditional Gibbs distribution
(Gibbs, 1902) parameterized by BLg(x,y):
xp(BLe (x
pely | x,0) = SHBLOCINT) () / exp(BLo(x,y)/7)dy’ ()
Z T (Xa @) N

Here the temperature parameter 7 > 0 controls the randomness of the response. As 7 — 0, the
distribution in equation 3 converges to a Dirac measure supported on arg max, BL(x,y), thereby
recovering the deterministic best response obtained by solving the composed UMPs.

Model Structure of BL(x,y). To represent the composition of multiple UMPs, we build
BL(x,y) by composing fundamental modular blocks B(x, y). Each block provides a penalty-based
formulation of a single UMP, and together they yield the overall compositional utility function.
Motivated by Theorem 2.1, we parameterize B(x,y) as

B(x,y36) := Ao 6(Us, (x,¥)) = M p(Coc (%)) = A3 ¥ (Tor (x,y)) 4
where 6 := (Ao, A1, A2, 0y, 8¢, 01) denotes the complete set of learnable parameters. Following
Theorem 2.1, ¢ is an increasing function; p penalizes inequality violations; and 1 captures symmet-
ric deviations. Each block can be written as a well-defined UMP.

We then compose BL(x,y) from multiple B-blocks in three structural forms to improve its repre-
sentational power for optimization structures, as illustrated in Figure 1(d).

1. BL(Single) applies a single instance of B(x,y) as defined in equation 4, without any additional
layers. It can be viewed as learning a single UMP, and offers maximal interpretability.

2. BL(Shallow) uses B(x,y) as the fundamental modular block to construct a shallow net-
work. It introduces one or two intermediate layers of computation. Each layer B,
stacks multiple parallel B,; blocks to produce a vector in R, ie., Bo(x,y;0) =
[Be1(%,y;001),---,Bea,(%x,¥;00.4,)]". The output of By is directly fed into the next By, 1,
and only the final output is passed through a learnable affine transformation.

3. BL(Deep) extends the BL(Shallow) architecture to more than two layers, enabling richer hierar-
chical compositions of UMPs while maintaining the same recursive structure. As before, only
the final output is affine transformed.

The overall structure of BL(Shallow) and BL(Deep) can be expressed in a unified form, where the
shallow case corresponds to L < 2 and the deep case to L > 2:

BL(x,y) := W B (- Ba(Bi(x,y)) ) )

Learning Objective. The response y may contain both discrete and continuous components. For
discrete responses, we directly apply cross-entropy (Kullback & Leibler, 1951) on y4i¢. For contin-
uous responses, since the compositional utility function is analogous to an energy function (LeCun
et al., 2006), we employ denoising score matching (Vincent, 2011) on y°°". The final objective
combines the two with nonnegative weights vq, Vc:

L£(0) = yaE[~log p- (v | )] +7¢ E || Vgeon log p- (5 | x) + 025 — y* ) ||* (6)
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Implementation Details. Here, we describe the key implementation choices for the general form
of BL, taken as defaults unless otherwise noted. Further details are provided in Appendix E.3.

* Function Instantiation. Following equation 4, we instantiate the function B(x,y) as

B(x,y) = A tanh(pu(x,y)) — A ReLU(pc(x,y)) — Ay [P+ (x,y)| (7)
where p,,, P, P¢ are polynomial feature maps of bounded degree, providing interpretable rep-
resentations of utility, inequality, and equality terms, respectively. The bounded tanh reflects
the principle of diminishing marginal utility (Jevons, 2013), a commonly assumed principle in
behavioral science, while ReLU and | - | introduce soft penalties for constraint violations.

* Polynomial Maps. In BL(Single), the structure of polynomial maps is optional. In BL(Shallow)
and BL(Deep), each B-block employs affine transformations as its polynomial maps, with
higher-degree and interaction terms omitted by default for computational efficiency.

* Skip Connections. For deep variants, skip connections can be optionally introduced to improve
representational efficiency.

Theoretical Guarantees. Under the given architecture, the BL framework has universal approxi-
mation power: it can approximate any continuous conditional distribution arbitrarily well, provided
that BL has sufficient capacity, as stated below. The proof is given in Appendix F.2.

Theorem 2.3 (Universal Approximation of BL). Let X C R and) C R™ be compact sets, and let
p*(y | x) be any continuous conditional density such that p*(y | x) > 0 forall (x,y) € X x ).
Then for any T > 0 and € > 0, there exists a finite BL architecture (with depth and width depending
on €) and a parameter 0* such that the Gibbs distribution in equation 18 satisfies

sup KL(p*(- [ x) [ p-(- | x;0%)) <e. ®)
XEX

Interpretability. Alongside its expressive power, BL also exhibits strong intrinsic interpretability.
(i) Each B-block can be expressed in symbolic form as an optimization problem (UMP): the tanh
term defines the objective, the ReL'U term corresponds to an inequality constraint, and the absolute-
value term corresponds to an equality constraint. Thus, BL(Single) can be directly expressed as
a symbolic UMP, whereas deeper architectures can be interpreted as compositions of UMPs, with
each block retaining interpretability. (ii) The polynomial basis ensures a level of transparency
comparable to linear regression, as both objectives and constraints can be represented as linear
combinations of polynomial features. It can further be visualized as a computational graph (Fig-
ure 6), in which each input’s influence on every 5-block is traceable through compositional path-
ways. (iii) BL(Deep) composes B-blocks in a layered manner, forming a hierarchical optimization
system. Interpretation proceeds in a bottom-up fashion, where the relation between any two consec-
utive layers can be viewed as aggregation or coarse-grained observation. Overall, the interpretive
pathway is: raw input features — micro-level optimization blocks — macro-level aggregation or
coarse-grained behavioral constructs — macro-level optimization systems. Appendix B provides a
detailed description of this interpretation procedure. (iv) BL also offers multiple architectural de-
grees of freedom that provide flexibility but simultaneously affect the resulting interpretability. In
deep variants, skip connections introduce cross-layer dependency structures that are modeled in sta-
tistical physics (Yang & Schoenholz, 2017). Replacing polynomial maps with affine transformations
preserves the underlying optimization semantics but reduces symbolic granularity, yielding a more
qualitative rather than symbolic interpretation of each block. (v) BL can be interpreted as a single
UMP when the final layer contains only one B-block, since all lower-layer structures aggregate into
a unified optimization problem. When the final layer contains multiple B-blocks, BL corresponds to
a linear trade-off among multiple optimization problems

2.3 IDENTIFIABLE BEHAVIOR LEARNING (IBL)

Beyond prediction and interpretability, the BL framework supports a third fundamental goal: the
identification of ground-truth parameters, which in turn endows BL with the capacity for scientifi-
cally credible modeling. We refer to this setting as Identifiable Behavior Learning (IBL). In the
IBL setting, we define the modular block as

BY(x,y;0) == A& (Us,, (x,¥)) — AL p'4(Coc (x,5)) — A3 ' (Tor (x,y)) 9)
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Figure 2: (a) Visualization and symbolic form of BL(Single) trained on the Boston Housing dataset,
modeling the UMP (maxU s.t. C < 0, 7 = 0) of a representative buyer in Boston housing
(details in Section 3.3). Top: computat10nal graphs of the polynomials inside the three penalty
functions—tanh (preference), ReLU (budget), and | - | (belief). Each graph is respectively centered
on tanhfl(U ), C, and T from left to right, with surrounding nodes representing input features.
Directed edges (shown only if coefficient > 0.3) indicate how each feature contributes to the corre-
sponding term. Bottom: approximate symbolic formulation of the trained BL model as a UMP. (b)
The BL[2,1] architecture. Layer 1 identifies two key micro-level preference types: the Economic-
sensitive Buyer and the Location-sensitive Buyer. Layer 2 aggregates these two components into an
effective representative buyer. (¢) The BL(Deep) [5,3,1] architecture. Layer 1 recovers five distinct
micro-level housing preference types. Layer 2 identifies three macro-level trade-off types captur-
ing different ways these primitive preferences interact. Layer 3 aggregates them into the overall
representative buyer. Table 11 provides detailed descriptions of each type. BL(Deep) provides a
hierarchical explanation consistent with the coarse-graining principle (Kadanoff, 1966) in statistical
physics, reconstructing the full micro-to-macro optimization hierarchy. In addition, the preference
and trade-off patterns uncovered by BL(Deep) are well documented in the classical economics lit-
erature (see Table 12). (d) BL can be applied to a broad class of hierarchical optimization systems
in science, including hierarchical need structures, hierarchical social-organizational systems, and
renormalization-style coarse-grained systems in physics.

Unlike BL, which uses general nonlinearities, the IBL architecture imposes stricter structural con-
straints: ¢4 and p'? are strictly increasing, while ¥'¢ is symmetric and strictly increasing in | - |. In
addition, all three functions are C''. These properties ensure that each UMP block stays responsive
and adjusts smoothly to objectives and constraints. In practice, we instantiate equation 9 as

B(x,y) = A} tanh (pu (%, y)) — A] softplus(pe(x,y)) — b (pi(x,y)) ™ (10)

where (-)®? denotes elementwise square.
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noise (see Appendix H.3.1).
X-Learner ﬂ&o—o—v{
TARNet T Y Model Synthetic Dataset
DragonNet S oy Within-sample Out-of-sample
IBL-based model  0.53 + 0.09 0.54 +0.13
CausalBL | pefl ) ot : DR-Learner 211 +35 1.89 + 3.03
— — " i DragonNet 0.82 +0.22 0.73 4+ 0.20
o4 TP 04 GRF 191 £ 065 177 = 054
nobsamplelogo W S-Learner 1.22 + 0.41 1.13 + 045
. . L TARNet 0.92 +0.21 0.86 + 0.17
Figure 3: Counterfactual prediction performance (syn- T-Learner 0.94 + 013 0.93 % 0.15

thetic dataset). IBL-based model significantly outper- X-Learner 0.94 + 0.14 0.91 + 022
forms models based on NN, trees, and regression.

We design IBL in three architectural forms. Similar to BL, the IBL(Single) directly uses B'4(x, y) as
the compositional utility function. The IBL(Shallow) and IBL(Deep) variants are defined recursively
as

IBL(x,y) := W - B (--- By (Bi'(x,y)) ---), L>1 (11)

where B} stacks multiple parallel blocks B} (x,y), and W is a learnable affine transformation
without bias. All other design choices follow the BL setting.

Theoretical Foundation. IBL admits favorable properties for ground-truth identification. We be-
gin by establishing identifiability, which is fundamental for statistical inference. We first state our
key assumption (see Assumption F.1 for details).

Assumption 2.1. Let U denote the quotient space of atomic parameters. We assume that the map
U — RYY, @) — gy, is injective, and that any finite set of distinct atoms is linearly indepen-
dent. We further restrict attention to minimal representations with no duplicate atoms and a fixed
canonical ordering.

Theorem 2.4 (Identifiability of IBL). Under Assumption F.I, the architectures IBL(Single),
IBL(Shallow), and IBL(Deep) are identifiable in the parameter quotient space ©.

Theorem 2.5 (Loss Identifiability of IBL). The IBL model is parameterized by 6 € ©. Suppose © is
compact. Then under Assumption F.1, the population loss L defined in equation 6 satisfies:

o If . > 0, it admits a unique minimizer in the quotient space ©;
* If v, = 0, it admits a unique minimizer in the scale-invariant quotient space ©.

Theorems 2.4 and 2.5 together establish the identifiability of IBL. Theorem 2.4 shows that if two IBL
models of the same structure induce the same compositional utility, then their parameters coincide
up to an equivalence class. Theorem 2.5 further extends this result to loss-based identifiability.
These results jointly imply that IBL admits a unique parameter estimate up to an equivalence class,
and thus yields intrinsic interpretability that is unique up to the same class.

Building on identifiability, Theorem 2.6 establishes the statistical consistency of IBL: under com-
pactness of the parameter space, the learned parameters converge in probability to a minimizer of the
population loss as the sample size n — oo. If the model is correctly specified, the estimator further
converges to the ground-truth parameter, recovering the true underlying model, thereby endowing
IBL with the potential to recover the ground-truth model.

Theorem 2.6 (Consistency of IBL). Let Z denote the relevant parameter quotient space: = = ©
ifve >0, and E = © ifyv. = 0. Let 0, € arg mingeg M, (6) denote the empirical minimizer,
and let 0° € argmingco M () denote the population minimizer. Then under the conditions of
Theorem F.5,

0, 5 0° in=, M0, B M(@6°).
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Moreover, if the model is correctly specified (i.e., the data distribution is realized by some 0* € ©),
then 0* = 0* in Z, and thus 0, LNy

Correct specification is a strong and often unrealistic assumption. Fortunately, the IBL frame-
work—Ilike BL—also enjoys a universal approximation guarantee (Theorem F.6). Building on
this result, we further establish the universal consistency of IBL: even under misspecification, IBL
is capable of recovering the ground-truth model with sufficiently large sample sizes.

Theorem 2.7 (Universal Consistency of IBL). Under the conditions of Theorem F.7, for any admis-
sible data-generating distribution p' satisfying the regularity assumptions of Theorem F.6, the IBL
posterior sequence {p; } satisfies

sup KL(p'(- | x) [l pg, (- | X)) =0,
fAS

i.e., the learned conditional distributions {p, } converge in KL to pl uniformly over x.

Specifically, this result implies that, even under model misspecification, the learned predictive dis-
tribution p; , parameterized by the IBL model, converges uniformly in KL to the true conditional

distribution p’, provided that the capacity of the IBL architecture grows with the sample size 7.

We also establish the asymptotic normality of IBL estimators (Theorem F.9), showing that the pa-
rameter estimates converge in distribution to a normal law as the sample size increases. Furthermore,
under additional regularity conditions, the asymptotic variance attains the efficient information
bound (Theorem F.10), demonstrating the statistical optimality of IBL.

Formal statements and proofs of all theorems in this part are deferred to Appendix F.3.

3 EXPERIMENTS

In this section, we conduct four groups of experiments to systematically evaluate the capabilities of
BL. Due to space constraints, details are provided in Appendix H.

3.1 STANDARD PREDICTION TASKS

Performance Scores Performance Scores Performance Ranks
On 10 datasets x 8 seeds On 10 datasets x 8 seeds On 10 datasets x 8 seeds

AUC boxplot F1-Macro boxplot Sorted by mean F1-Macro rank
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Figure 4: Predictive performance of BL and baselines. Left/Middle: relative AUC and F1-Macro
gains over DT, sorted by mean (excluding BL). Right: mean F1-Macro ranks ({ better). BL achieves
first-tier performance in both metrics. Its variants rank second and third in mean F1-Macro rank,
with BL(Shallow) showing no statistically significant difference from state-of-the-art models.

Is BL accurate enough for standard prediction tasks? In this part, we evaluate the predictive
performance of BL on /0 datasets (Table 3), covering diverse sample sizes, feature dimensions,
and scientific domains. For fair comparison, we consider two BL variants—BL(Single) and



Under review as a conference paper at ICLR 2026

BL(Shallow)—and compare them against /0 baseline models (Table 4) drawn from five method-
ological families: neural networks, tree-based models, gradient boosting methods, Bayesian meth-
ods, and linear regressors. All methods share a unified preprocessing and tuning pipeline.

Predictive Performance. Figure 4 shows that BL attains first-tier predictive performance overall,
achieving the best results among intrinsically interpretable models. Notably, BL(Shallow) surpasses
MLP, highlighting that BL delivers interpretability without sacrificing performance.

3.2 COUNTERFACTUAL PREDICTION

Does BL exhibit potential for causal inference? To investigate this, we propose a causal extension of
IBL designed to estimate individual treatment effects (ITEs), with details provided in Appendix G.
We evaluate IBL-based model on three datasets: a synthetic dataset with known individual treatment
effects (ITEs), the semi-synthetic IHDP-100 (Hill, 2011), and the real-world Jobs dataset (Lal.onde,
1986). The synthetic dataset follows de Vassimon Manela et al. (2024), with added covariate nonlin-
earity and stochastic noise to increase complexity (Appendix H.3.1), and includes 30 replications;
IHDP and Jobs contain 100 and 10 realizations, respectively. IBL-based model is compared against
seven widely used baselines (Table 8) spanning four methodological families: tree-based models,
representation-learning networks, meta-learners, and doubly robust methods.

Counterfactual Prediction Performance. Figure 3, Table 1 and Table 9 report counterfactual
prediction results on three datasets. On the synthetic dataset, IBL-based model consistently outper-
forms all baselines with the lowest variance, demonstrating its strong capacity to model complex
nonlinear structures. On IHDP, IBL-based model achieves the second-lowest VPEHE and ATE rel-
ative error, while on Jobs it attains the lowest |ATT| error. Notably, IBL-based model is the only
intrinsically interpretable model among all competitors.

3.3 INTERPRETING BL: A CASE STUDY

How can BL be interpreted in practice? This part presents a case study using the Boston Housing
dataset, where we train a supervised BL(Single) model with a degree-2 polynomial basis, a BL[2,1]
model (i.e., a two-layer BL with two B-blocks in the first layer and one in the second layer), and
a BL(Deep) model with a [5,3,1] architecture to predict median home values. We illustrate how
the internal structure of BL can be interpreted as explicit optimization problems and their hier-
archical versions, accompanied by complementary visualizations. Further details are provided in
Appendix H.4 and H.9.

Symbolic Form of BL(Single) as a UMP. As shown in Figure 2, the trained BL(Single) model
can be interpreted as the UMP of a representative buyer in the Boston Housing market, comprising
a single objective, inequality, and equality term. Each term is represented by an estimated quadratic
polynomial. For parsimony, we extract approximate symbolic expressions by retaining only the
monomials with the largest (2-5) absolute coefficients, while collecting the remaining terms (in-
cluding constants) into a residual term R. For example, the utility term can be written as:

pu=—0.56-P>—0.6-RM+0.57-RM-P+ R, ~ (1 - P)(1+ P —RM) + R,

We similarly simplify the budget and belief terms to recover an approximate UMP for the buyer.
The full symbolic form is illustrated at the bottom of Figure 2.

Interpreting BL(Single) via Model Visualization. Visualizations of each term’s polynomial re-
veal how features constitute the UMP. Three insights emerge from the visualizations in Figure 2.
(1) Median housing price (MEDV) and average number of rooms (RM) are dominant across all
terms—MEDV negatively affects utility in a near-quadratic form, while RM modulates its marginal
effect. (ii) Proportion of lower-income residents (LSTAT) features prominently in the budget con-
straint, reflecting implicit resource limitations. (iii) Crime rate (CRIM) appears only in the belief
term, suggesting that buyers treat it as influencing others’ behavior rather than their own preferences.

Interpreting BL(Deep). (1) Figure 2 (b) illustrates the optimization problems learned by the
BL[2,1] model. Layer 1 identifies two micro-level preference types: an Economic-sensitive Buyer,
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whose utility and constraint terms load primarily on ZN (Large-lot residential share) and LSTAT
(Proportion of lower-income residents); and a Location-sensitive Buyer, driven mainly by CHAS
(Charles River indicator) and RAD (Highway accessibility). Layer 2 aggregates these basic prefer-
ences, yielding an effective “representative buyer” that integrates the two preference types. (2) Fig-
ure 2 (c) presents the internal structure of the BL[5,3,1] model. In Layer 1, BL recovers five distinct
micro-level preference types characterizing heterogeneous patterns in the housing market. Layer 2
identifies three macro-level representative agents, each capturing a different macro-level trade-off
among the basic preferences. Layer 3 then aggregates these components into a single high-level
mechanism, yielding the overall representative buyer. Table 11 provides detailed descriptions of
each type. (3) Beyond interpretability, we find that each preference pattern and trade-off recov-
ered by BL(Deep) aligns with established findings in the economics literature (see Table 12).
This indicates that BL successfully reconstructs underlying scientific knowledge.

3.4 PREDICTION ON HIGH-DIMENSIONAL INPUTS

Is BL scalable to high-dimensional inputs? We evaluate BL against the energy-based MLP (E-
MLP) baseline across network depths d € {1,2,3}, with all models implemented without skip
connections. Experiments are conducted on four datasets spanning both image and text domains,
and are evaluated using six metrics: in-distribution accuracy, calibration metrics (ECE and NLL),
and OOD robustness metrics (AUROC, AUPR, and FPR@95). For OOD evaluation, we adopt
symmetric ID<+>OO0D splits, using MNIST (LeCun et al., 2002) and Fashion-MNIST (Xiao et al.,
2017) as one pair, and AG News and Yelp Polarity (Zhang et al., 2015) as another. E-MLP and BL
are controlled to have comparable parameters.

Scalability on High-Dimensional Inputs. Figure 5 and Table 2 present results for BL and E-
MLP across network depths. Overall, the two models exhibit comparable ID accuracy and OOD
AUROC across datasets. On both the Fashion-MNIST and AGNews datasets, however, BL generally
achieves higher OOD AUROC than E-MLP at similar accuracy levels. This indicates its stronger
out-of-distribution generalization and robustness. BL also achieves better ECE and NLL (Table 19).

Downward Shift of the Pareto Frontier. Table 14 reports the parameter counts of BL and E-
MLP across four tasks, and Tables 15-18 summarize their runtimes. The two models have highly
comparable parameter sizes. Notably, BL runs substantially faster than E-MLP on text datasets,
while being slightly slower on image datasets. These results indicate that BL achieves a downward
shift of the Pareto frontier.
BLYs. EMLP on Image Datasets .. Table 2: ID accuracy and OOD AUROC (%) on image and
Sy .. text datasets. BL and E-MLP are evaluated at depths 1-3
TR ..~ with matched parameter counts, both without skip connec-
§ 5| tions. Top-two per column are blue and red.

LRGR

Fashion-MNIST
MNIST Accu

Image Datasets

Model MNIST Fashion-MNIST
Accuracy OOD AUROC  Accuracy OOD AUROC
E-MLP (depth=1) 98.15 +0.07 8872+ 136 88.79£029 90.57 + 1.39
BL (depth=1)  97.97 £ 018 91.17 £268 89.26 +022 91.89 + 071
E-MLP (depth=2) 98.11 £008 90.32 +1.74 88.88 +026 84.61 &+ 2.56
BL (depth=2)  98.05 £ 0.2 90.57 £249 88.96 £039 89.87 +2.48
3 2 E-MLP (depth=3) 98.14 +0.11  87.76 £255 89.33 +025 83.13 £ 1.90
\ g BL (depth=3)  97.93 £027 9292 + 169 8879 +025 89.24 +4.18
’ Text Datasets
s ’ K Model AG News Yelp
Accuracy OOD AUROC  Accuracy OOD AUROC
O E
0% E-MLP (depth=1) 88.74 £026 59.24 021 91.16 £002 57.60 + 031
00D AUROC (%) BL (depth=1) 89.52 £ 0.16 66.18 £020 91.56 £0.04 57.06 & 0.10
E-MLP (depth=2) 89.29 £ 020 6248 £0.76 91.32+009 57.47 + 021
Figure 5: Comparison of BL and E-  BL (depth=2)  89.22+020 63.68+046 9139 +006 57314027
: . _ E-MLP (depth=3) 89.37 + 021 66.82 +1.01 91.23 +£007 57.36 £0.27
MLP on 1mage and text datasets’ dde BL (depth=3) 88.80 £ 0.18 6444 +£052 91.13 £009 57.16 £+ 048

notes model depth.
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A RELATED WORK

A.1 INTERPRETABILITY

Interpretability has become increasingly vital in machine learning (Lipton, 2018; Molnar, 2020),
especially for scientific domains (Doshi-Velez & Kim, 2017; Roscher et al., 2020). Ensuring inter-
pretability fosters transparency and reproducibility, and may further provide insights into underly-
ing scientific principles. The ideal form of interpretability is intrinsic interpretability, in which
a model’s structure or parameters are directly understandable to humans. However, intrinsic inter-
pretability is challenging to achieve in some widely used high-capacity models such as deep neural
networks (LeCun et al., 2015). This has motivated post-hoc interpretability methods (Ribeiro
et al., 2016; Lundberg & Lee, 2017), which seek to explain a pre-trained black-box model. While
more broadly applicable, such explanations are often considered less suitable for scientific research
(Rudin, 2019), as they may compromise stability and faithfulness to the model’s decision process.

Performance-Interpretability Trade-off. The limited intrinsic interpretability observed in high-
capacity models has long been recognized as a central challenge. This is commonly framed as
the performance—interpretability trade-off (Rudin, 2019; Arrieta et al., 2020), which posits a ten-
sion between predictive performance and intrinsic interpretability. High-performing models such
as deep neural networks often lack transparency, whereas intrinsically interpretable models strug-
gle to capture complex nonlinear patterns. Several efforts have sought to mitigate the perfor-
mance—interpretability trade-off, which can be broadly categorized into four groups. (i) Additive
models. Classical GAMs (Hastie, 2017), modern GA2Ms/EBMs (Caruana et al., 2015; Nori et al.,
2019), and neural variants such as NAM (Agarwal et al., 2021) and NODE-GAM (Chang et al.,
2021) preserve interpretability by decomposing predictions into main effects and low-order interac-
tions. (ii) Concept-based models. Concept Bottleneck Models (Koh et al., 2020), TCAV (Kim et al.,
2018), and SENN (Alvarez Melis & Jaakkola, 2018) map inputs into human-interpretable latent
concepts and use them as intermediate predictors. (iii) Rule- and score-based systems. SLIM (Us-
tun & Rudin, 2016) and CORELS (Angelino et al., 2018) generate transparent scoring functions or
rule lists with provable optimality guarantees. (iv) Shape-constrained networks. Deep Lattice Net-
works (You et al., 2017) and related monotonic architectures impose monotonicity and calibration
constraints to encode domain priors while retaining flexibility.

Limitations in Scientifically Credible Modeling. The above approaches demonstrate strengths,
yet two fundamental limitations restrict their applicability in scientific research. First, most methods
are tool-centric modifications of machine learning architectures rather than frameworks grounded
in scientific theory (e.g., optimization, dynamical systems, conservation laws). As recent surveys
emphasize (Roscher et al., 2020; Karniadakis et al., 2021; Allen et al., 2023; Bereska & Gavves,
2024; Longo et al., 2024; Mersha et al., 2024), genuine scientific insight requires models linked to
mechanistic principles, yet many interpretability techniques remain detached from such principles.
Second, these approaches are typically non-identifiable (Ran & Hu, 2017; Méloux et al., 2025),
meaning that multiple distinct parameterizations can explain the same data. This lack of unique-
ness undermines their reliability for recovering ground-truth mechanisms and, in statistical terms,
complicates consistency guarantees. As a result, the trained model may fail to converge to the true
data-generating process as sample size increases (Newey & McFadden, 1994; Van der Vaart, 2000).

Relation to BL. BL also mitigates the performance—interpretability trade-off. Unlike prior meth-
ods, it is principle-driven and scientifically grounded, learning interpretable latent optimization
structures directly from data. The framework applies broadly to domains where outcomes arise as
solutions to (explicit or latent) optimization problems. It is also identifiable: its smooth and mono-
tone variant, Identifiable Behavior Learning (IBL), guarantees identifiability under mild conditions,
ensuring the scientific credibility of its explanations and supporting recovery of the ground-truth
model under appropriate conditions.

A.2 DATA-DRIVEN INVERSE OPTIMIZATION

Inverse optimization (IO) (Ahuja & Orlin, 2001; Chan et al., 2025) is a core paradigm for learning
latent optimization problems from observed data. Traditional IO aims to construct objectives or
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constraints that exactly rationalize a small set of deterministic decisions. In contrast, data-driven
IO (Keshavarz et al., 2011; Aswani et al., 2018) focuses on statistically recovering the underly-
ing problem from large-scale, noisy observational data. Inverse optimal control (IOC) (Kalman,
1964; Freeman & Kokotovic, 1996) extends this paradigm to dynamic settings, seeking to infer
sequential decision processes from expert trajectories. Within machine learning, inverse reinforce-
ment learning (IRL) (Ng et al., 2000; Wulfmeier et al., 2015) and inverse constrained reinforcement
learning (ICRL) (Malik et al., 2021; Liu et al., 2024a) are prominent instances of data-driven IOC:
Typically, IRL assumes fixed constraints and learns a reward function, whereas ICRL reverses this
role. Both require repeatedly solving for (near-)optimal policies and matching with expert demon-
strations—incurring high computational cost. In the behavioral sciences, particularly economics,
numerous studies can be viewed as instances of the data-driven IO paradigm. Foundational work
(McFadden, 1972; Dubin & McFadden, 1984; Hanemann, 1984; Berry et al., 1993) and related stud-
ies typically posits theoretically grounded, parametric utility maximization problems (UMPs) and
estimates their structural parameters from observed behavior.

Relation to BL.. The BL framework also falls under the paradigm of data-driven inverse optimiza-
tion but differs notably from prior related work in both machine learning and behavioral science.
Compared with IRL and ICRL, BL does not rely on matching expert-demonstrated policies with
the aim of improving task-specific performance. Instead, it is proposed as a general-purpose, scien-
tifically grounded, and intrinsically interpretable framework that operates via low-cost end-to-end
training with a hybrid CE-DSM objective. It jointly learns a utility functions and constraints—a
direction that has received little attention in IRL and ICRL (Park et al., 2020; Jang et al., 2023;
Liu & Zhu, 2024). Meanwhile, in behavioral science, related work typically formulates distinct
utility maximization models under varying assumptions for specific decision contexts, and estimate
their parameters accordingly. However, to the best of our knowledge, no existing work proposes a
structure-free framework for learning UMPs that generalizes across contexts. BL fills this gap with
a structure-free, data-driven approach that does not rely on fixed UMP structures.

A.3 ENERGY-BASED MODELS (EBMS)

Energy-based models (EBMs) (LeCun et al., 2006) are a prominent data-driven IO scheme, rooted
in the principle of energy minimization from statistical physics. They learn an energy function
Ey(z,y) that parameterizes the compatibility between inputs and outputs, inducing a Gibbs distri-
bution py(y | ) x exp{—FEjy(x,y)} that favors outcomes corresponding to low-energy solutions.
In practice, this energy function is almost always instantiated by high-capacity neural networks, en-
dowing the learned landscape with strong expressive power but also a black-box nature. Training
EBMs typically relies on objectives that circumvent the intractable partition function, with classi-
cal approaches including contrastive divergence (Hinton, 2002), persistent contrastive divergence
(Tieleman, 2008), and noise-contrastive estimation (Gutmann & Hyvirinen, 2010). A particularly
influential line of work is score matching (Hyvirinen & Dayan, 2005) and its denoising variant
(DSM) (Vincent, 2011), which have underpinned breakthroughs in score-based generative modeling
(Song & Ermon, 2019; 2020) and laid the foundation for modern diffusion methods (Song et al.,
2020).

Relation to BL. BL and EBMs exhibit a principled correspondence: BL is grounded in behav-
ioral science and rooted in utility maximization, while EBMs are grounded in statistical physics and
based on energy minimization. BL adopts several training techniques common to EBMs, such as
Gibbs distribution modeling and denoising score matching (DSM). However, the two frameworks
differ substantially in model structure. EBMs primarily focus on generative quality and typically
employ black-box neural networks to learn an opaque energy function with little regard for inter-
pretability. In contrast, BL is built on the utility maximization problem (UMP) and its equivalence to
penalty formulations, yielding a principled and scientifically grounded framework. Its architecture
is composed of intrinsically interpretable blocks, each of which can be explicitly expressed in sym-
bolic form as a UMP—a foundational paradigm in behavioral science and a universal optimization
framework. These properties enable BL to jointly achieve high predictive performance, intrinsic
interpretability, and identifiability, thereby supporting scientifically credible modeling that extends
beyond mere generative capability.

18



Under review as a conference paper at ICLR 2026

B SCIENTIFIC EXPLANATION OF BL(DEEP)

BL(Deep) provides a form of interpretability that is consistent with hierarchical optimization sys-
tems. In BL, each layer performs a coarse-graining of the optimization structure implemented by
the layer below. An intuitive analogy is a corporate organizational hierarchy: lower-layer managers
solve their own local optimization problems, while higher-layer managers aggregate and coordi-
nate the outcomes of many such lower-layer problems to achieve broader organizational objectives.
BL(Deep) follows the same principle—higher layers summarize, reorganize, and coordinate the so-
lutions formed at lower layers.

This perspective aligns with many scientific domains characterized by multi-level complexity, in-
cluding (i) the formation of representative behavioral agents in behavioral sciences, and (ii) renor-
malization in statistical physics, where fine-scale interactions are compressed into effective coarse-
scale potentials.

We describe the explanation procedure below. To build intuition, let us first consider a generic
hierarchical optimization system—this may refer to a multi-layer organizational structure composed
of individual agents, or a multi-scale physical system composed of interacting particles.

Step 1: Bottom-layer interpretation.

Each bottom-layer block is an optimization problem that directly receives inputs from the environ-
ment. These blocks correspond to micro-level behavioral mechanisms, such as the decision rules
of individual agents performing environment-facing tasks in an organization, or the motion laws
governing a single particle in statistical physics. Examining these bottom-layer blocks reveals the
fundamental optimization principles followed by all units that directly interact with the environment.

Step 2: Layer-wise coarse-graining and micro-to-macro aggregation.

Blocks in the next layer aggregate the outputs of lower-layer optimization problems through a new
optimization step, producing a coarse-grained behavioral summary. Each higher-level block repre-
sents the effective optimization system that emerges from the interactions among many lower-level
units, thereby capturing macro-level regularities distilled from micro-level mechanisms.

This micro-to-macro transition is consistent with many well-established scientific principles, includ-
ing:

* (i) Aggregation and coordination: in hierarchical organizations, the outputs of lower-level
agents are aggregated, reallocated, and coordinated by higher-level agents to achieve improved
organizational objectives.

* (ii) Coarse-grained observation: in hierarchical behavioral systems, individual agents are
grouped into categories that share characteristic optimization patterns; in statistical physics,
many particles collectively form systems whose coarse-grained behavior is governed by effective
potentials induced by microscopic interactions.

Step 3: Bottom-up reconstruction.

A global explanation is obtained by tracing the hierarchy upward, following the model’s micro-
to-macro abstraction path: raw input features — micro-level optimization blocks — macro-level
aggregation and coordination or coarse-grained behavioral constructs — macro-level optimization
system.

At each layer, we inspect the characteristics of each block and its associated optimization objective,
as well as how these optimization problems evolve across layers. This reveals how each higher layer
aggregates, coordinates, or coarse-grains the outputs of the layer below. Together, these observations
yield a compact multi-scale interpretation in which BL is understood as a hierarchical optimization
system.

C DISCUSSION

In this paper, we propose Behavior Learning (BL). Our key contributions are threefold. (i) We
propose Behavior Learning, a novel general-purpose machine learning framework grounded in be-
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havioral science, which unifies high predictive performance, intrinsic interpretability, identifiability,
and scalability. (ii) For scientific research, BL offers a scientifically grounded and identifiable in-
terpretable ML approach for modeling complex phenomena that defy precise formalization. BL
applies broadly to scientific disciplines associated with optimization. (iii) At the paradigm level, BL
learns from data the optimization structure of either a single optimization problem or a hierarchi-
cal composition of problems through distributional modeling, contributing a new methodology to
data-driven inverse optimization.

In what follows, we discuss the limitations and future directions of Behavior Learning from the
perspectives of theoretical foundations, architecture, and applications.

Scalability of theoretical assumptions. The identifiability-related statistical theorems constitute
the core theoretical pillars of IBL, ensuring uniqueness of the interpretability and supporting its
scientific credibility. Although these results hold under mild conditions, their behavior in large-scale,
highly over-parameterized architectures remains less well understood. This highlights the need for
systematic investigations into the robustness, potential failure modes, and empirical boundaries of
these guarantees when applied to modern large-scale learning systems.

Choice of basis functions. Polynomial basis functions enhance expressivity while preserving
symbolic interpretability in BL (Single). However, high-order polynomials may introduce optimiza-
tion instability, exacerbate sensitivity to initialization and normalization, and complicate training
dynamics. Future work may explore alternative basis families—such as trigonometric, spline-based,
or neural basis functions—and develop conditioning or normalization strategies that improve nu-
merical stability without sacrificing interpretability.

Interpretable generative modeling. BL integrates several training techniques from energy-based
models while retaining intrinsic interpretability, enabling interpretable generative modeling for vi-
sion (e.g., image or video generation) and language (e.g., large language models). Extending BL
to explicitly generative architectures in which outputs correspond directly to human-understandable
and scientifically meaningful blocks represents a compelling direction. Such extensions could yield
generative systems with greater transparency, controllability, and scientific credibility compared to
traditional black-box models.

Hybrid architectures for partial interpretability. A promising direction for future work is to
develop hybrid architectures that integrate BL with black-box models in a principled way to achieve
partial interpretability. Three avenues are particularly worth exploring: (i) Feature-level integra-
tion. Black-box neural networks can serve as high-capacity feature extractors, while BL operates
on the resulting learned representations to impose structured, optimization-based semantics. (ii)
Decision-critical integration. BL blocks may be inserted specifically at high-risk or decision-critical
components of the model, substantially reducing the interpretability and reliability risks associated
with purely black-box architectures. (iii) Mechanism-level integration. Because BL provides an
optimization-driven inductive bias aligned with many real-world mechanisms, selectively applying
BL to the parts of the system where such inductive bias is essential may yield models that better cap-
ture the underlying ground-truth processes while retaining the flexibility of deep networks, thereby
improving generalization performance.

BL for scientific and social-scientific modeling. BL represents data as a composition of opti-
mization problems, closely resonating with modeling paradigms in the natural and social sciences.
Its competitive performance, intrinsic interpretability, and statistical rigor position BL as a promis-
ing framework for scientific machine learning. Future research may apply BL to domains such as
statistical physics, evolutionary biology, computational neuroscience, and climate dynamics, as well
as behavioral science, economics, sociology, and political science—particularly in settings involving
complex, partially formalized, or cognitively meaningful structures.

D USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely for minor grammar correction and polishing of awk-
ward sentences. They were not used in any other part of the research process.
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E ARCHITECTURE DETAILS

E.1 LEARNING SCHEME DETAILS

Input and output of the BL function. We formulate BL as a direct mapping from input—output
pairs to compositional utility representations:

BL: X x Y — Rout (z,y) — BL(z,y) € Rdout,

where the output dimension d,; is chosen according to the modeling choice. This formulation
intentionally allows BL to return either a scalar or a vector for each (z,y); the following cases are
most common:

* Scalar per candidate (pointwise evaluation). Set do,s = 1. Here BL(z,y) € R is a scalar
compositional utility evaluated for the single candidate y. This view is natural for continuous y
(regression or density estimation) or when one prefers to evaluate candidates individually.

* Vectorized over a finite candidate set. If Y = {y1, ..., ym } is finite, one can choose dont = m
and define the vector-valued output by stacking evaluations over the candidate set:

BL(%, 1)
BL(z) := e R™.
BL(z, ym)

This vectorized form is convenient for classification: it evaluates all class candidates at once and
yields a single compositional utility vector per x.

* Flexibility and equivalence. The scalar and vector modes are compatible: the vectorized form is
simply a batch of pointwise evaluations. Conversely, a scalar pointwise evaluator can be used to
assemble a vector by repeated calls over a candidate set. The choice between pointwise (scalar)
and vectorized outputs is therefore an engineering choice that trades off computational efficiency
and convenience.

Given a dataset D = {(x;, y;)}"_,, training and inference may use either mode: vectorized compu-
tation where feasible (e.g., small finite ))), or pointwise evaluation when ) is large or continuous.

Conditional Gibbs model. Let (z,3) ~ D with z € R? and y = (y45¢, y®t) € Vgise x R™e
(discrete, continuous, or hybrid). BL induces a conditional Gibbs distribution with temperature

7> 0:
exp{BL(z,y)/T
pely | a) = SPELEITE 7 ) < [ exp(BLiany)/rhay
() hY
For discrete Y = {y1, ..., ym}, if we choose the vector-output formulation, we define

BL(z) := [BL(z,y1),...,BL(z,yn)] € R™,
so that the conditional distribution reduces to a softmax over this compositional utility vector:
pr(y =k | *) = softmaxy, (£ BL(z)) .

Behaviorally, 7 encodes noisy rationality; as T — 0, p-(- | =) concentrates on arg max, BL(z,y),
corresponding to the deterministic optimal choice implied by the learned model.

Supervised, unsupervised, and generative uses. BL accommodates multiple regimes. (i) Su-
pervised: take x as input and y as label. For discrete y, one may either (a) adopt the vector-
output formulation, where BL(z) € R™ yields a compositional utility vector over all classes and
the likelihood is given by a softmax, or (b) adopt the scalar-output formulation, where BL(z, y)
is evaluated separately for each candidate and then normalized across classes. For continuous 7,
BL naturally operates in the scalar-output mode, treating BL(z,y) € R as a compositional utility
field. (ii) Unsupervised / generative: model a marginal p(y) « exp{BL(y)/7} (empty x) or a joint
p(z,y) x exp{BL(z,y)/7}; sampling the Gibbs distribution yields a generator.
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Learning objective. Since the response y may contain both discrete and continuous components,
we estimate # by minimizing a type-specific risk:

)

i ~con —2(~con con 2
£(0) = Y B[~10gpr (5" | 2)] + 7e B[ Vgeon log ps (5 | 2) + 025 — ™)

where the first term is cross-entropy on the discrete component and the second is denoising score
matching (DSM) on the continuous component with §°1* = <t 4 o ¢ ~ N(0,02I). Set
(7vd,Ye) = (1,0) for purely discrete outputs, (0, 1) for purely continuous outputs, and (> 0,> 0)
for hybrids.

E.2 MODEL STRUCTURE DETAILS

In the main text we adopted a compact notation for BL; here we present an equivalent, more explicit
matrix/vector formulation that makes dimensions, linear maps, and the per-head parameterizations
explicit, which is useful for formal proofs and for implementation details.

Fixed bases and head pre-activations. For a block input z (specified below), let

mu(z) € R%, me(z) € R%, mi(z) € R%
denote fixed basis (e.g., monomial) vectors. Learnable linear maps produce head pre-activations:
w(z) := Mymy(2)+by € R™,  c(z) := M.me(2)+b. € R, t(2) :== Mymy(z) + b € R,
with M, € R"=Xdu M, € R'<*de M, € R"*% and optional biases b,.

Single BL block. A single modular block is
B(z) = Ay d(u(2)) — M Ac(2) — A3 4(t(2)), (12)

where \g € R™, \; € R", Ay € R"* are learnable weights, and ¢, p, ¥ act coordinatewise with the

roles specified in Theorem 2.1 (increasing ¢ for utility, penalty p for inequality violations, symmetric
1) for equalities). Identifying

UOU(x7y) :u(z: (3371/)), C@c(xay) :C(Z: (x,y)), 7—9T($7y) :t(Z: (.%‘,y)),
substituting into equation 12 recovers the main-text parameterization in equation 4.

Layer of parallel blocks. A layer B, stacks d, parallel copies of equation 12 with (possibly)
distinct parameters 6, ;:

Baé,l (Zf)
By(z) = : € R%.
Belf,de (ZZ)
We adopt the standard layered (feedforward) form:
z1 = (z,y), zog1 = By(ze) ({=1,...,L—1),

so that each layer’s input is simply the previous layer’s output. This is the canonical feedforward
architecture.

Optionally, one may allow each layer to explicitly access the original inputs:
21 = (x,9), 241 = Eg((x,y), Zg).
To improve trainability one may also use residual connections:
Zog1 = 21 + Be(ze).

Shallow/Deep composition and final affine readout. For depth L > 1, the BL compositional
utility is produced by a final learnable affine transformation of the top layer:

BL(z,y) = WrBL(2L) + by, (13)

with Wy, € Rz for scalar output or W € R™*% for vector output, and bias by, of matching
dimension. The cases L = 1 (withd; = 1), L < 2, and L > 2 correspond to BL(Single),
BL(Shallow), and BL(Deep), respectively, exactly as described in the main text.
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E.3 IMPLEMENTATION DETAILS
E.3.1 FUNCTION INSTANTIATION

Default instantiation. In practice, we instantiate equation 4 with the specific choice (¢, p, 1) =
(tanh, ReLU, | - |):

B(z,y;0) = ,\E tanh(UQU (w,y)) — )\—{ReLU(C’gc (:my)) — )\—'2—|7'3T (m,y)’ (14)
Here Ao, A1, A2 are learnable nonnegative weights. The bounded tanh captures saturation effects
and diminishing returns in the utility head (Jevons, 2013), while ReLU and | - | impose asymmetric
(one-sided) and symmetric (two-sided) penalties for inequality and equality violations.

Variants and simplifications. Several variants of equation 14 are often useful:

* Identity utility head. Set ¢ = id so the utility head uses raw polynomials:
B = XyUs, — A{ReLU(Cy,,) — A3 |To. |-

* Smooth penalty alternatives. Replace ReLU with softplus to yield smooth inequality penalties,
or replace | - | with Huber or squared penalties to modulate sensitivity near zero for equality
terms.

* Dropping heads. The framework is modular, so one may omit heads depending on the task:

— No T head: ignores symmetric deviations, yielding a constrained maximization with only
inequality penalties.

— No C head: if the T  head is retained, the model reduces to a maximization problem with only
equality constraints; if 7" is also removed, it becomes a fully unconstrained maximization.

— No U head: produces a pure (soft-)constraint model focusing on feasibility.

Strikingly, removing both U and T leaves only piecewise-linear ReLLU penalties; when fol-
lowed by a final affine readout, the resulting architecture becomes highly similar to a standard
MLP—suggesting that MLPs may be viewed as a closely related special instance within the
broader BL framework.

E.3.2 POLYNOMIAL FEATURE MAPS AND LINEAR REDUCTIONS

We adopt a pragmatic default: use low-degree polynomial maps for single-block models to maxi-
mize interpretability, and use affine (degree-1) maps inside blocks for shallow/deep stacks to control
parameter growth and compute. Below we state the instantiations and give the final block formulas
used in experiments.

BL(Single) — polynomial instantiation. Let mp(z,y) denote a fixed basis of monomials up to
total degree D (e.g. D < 2):

mp(z,y) = [:z:, Y, vec(:mT)7 vec(a:yT), Vec(ny),...]T
Parameterize each map as a linear map on this basis:
Ug, (z,y) = My mp(z,y)+by, Cou(x,y) = Mcmp(x,y)+bc, Top(x,y) = My mp(z,y)+br,
with learnable matrices M, and biases be. The block becomes
B(z,y;0) = Ag ¢(Mymp + by) — A p(Memp + bo) — Ay b(Mrmp + br).

BL (Shallow/Deep) — linear-by-layer instantiation. For stacked architectures (Shallow/Deep)
we use affine maps inside each block to keep per-layer complexity low:

UOU(xay) :AU [xay]+bUa Cgc(x,y) :AC [$,y}+bo, %T(x7y) :AT [x;y]+bTa

with learnable A, and b,. The corresponding block is

B(z,y;0) = A ¢(Au[z;y] + bu) — M p(Acz;y] + be) — Ay (Ar[z;y] + br).
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On-demand higher-order terms. If diagnostics or domain knowledge indicate underfitting, we
optionally augment the affine maps with selected higher-order terms or interactions. Concretely,
this is done by appending a small set of monomials (e.g. z;y;, 2, y) to the input vector [z;y]
and re-estimating the same affine maps A,. This targeted augmentation preserves the base affine
parameterization, increases expressivity only where required, and keeps both computational and
statistical costs modest while retaining interpretability.

F=az+by+cxy+d

@0

Figure 6: Visualization of polynomial feature maps as computation graphs, where nodes represent
variables or outputs and edges represent their effects. The left panel illustrates the linear form
F = azx + b, in which the single edge x — F directly encodes the marginal effect of  on F. The
middle panel shows the quadratic form F = ax? + bx + ¢, where x not only has a direct edge z — F
but also acts on its own edge (“x — F”), thereby modifying the strength of its self-effect through
a higher-order contribution. The right panel depicts the interaction form F = ax + by + cxy + d,
where y has an edge y — F and, in addition, x acts on this edge (“y — F°), thereby modulating the
strength of y’s contribution to /. Symmetrically, y may act on the edge (“x — F”°), so that each
variable can reshape the other’s effect through the interaction term.

E.3.3 SKip CONNECTIONS

Skip connections are optional in our implementation. When beneficial, we often consider two pat-
terns tailored to BL: a DenseNet-style (concatenative) variant and a ResNet-style (additive) variant.

Dense skip connections (DenseNet-style, concatenation). This variant feeds each layer with the
concatenation of all preceding representations, mirroring DenseNet (Huang et al., 2017). Let

z1:=[z; y], s51:=By(21) € RN,
For ¢ > 2,
zo = [T Y3 S15...380-1], s = By(ze) € R,
The final compositional utility is read out as
BL(I,y) = Wprsp+br.

Pros. By exposing all earlier block outputs explicitly as inputs to later blocks, dense skips preserve
a transparent feature trail: one can trace which intermediate B-block outputs enter downstream
computations and the final affine readout. This often improves feature reuse and yields favorable
interpretability at the block level.

Residual skip connections (ResNet-style, addition). This variant adds an identity (or projected)
shortcut to each layer, as in ResNet (He et al., 2016). Define

2= [z y],  s1:=Bi(z1) € RY,

and for ¢/ > 2,
sg:=By(se—1) + Hpse1, I, € Rbexde—r,

where 11, is the identity if dy = dy_1, or a bias-free learnable projection otherwise. The readout is
again

BL(x,y) = Wrsp+br.
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Skip Connections and Interpretability. Skip connections introduce explicit cross-layer depen-
dency structures, a form widely studied in statistical physics and other scientific domains. Such
structures enhance scientific interpretability by making long-range influences transparent. In behav-
ioral and organizational sciences, they capture situations in which lower-level agents directly affect
higher-level decision makers without routing through intermediate layers. In physics, microscopic
parameters can exert direct effects on macroscopic behaviors across multiple scales. Architecturally,
ResNet-style skip connections model linear cross-layer dependencies, whereas DenseNet-style con-
nections realize concatenative (information-replicating) dependencies. These mechanisms provide
flexible yet interpretable pathways for representing hierarchical interactions.

F PROOFS OF THEOREMS

F.1 UTILITY MAXIMIZATION PROBLEM (UMP)

Theorem 2.1 (Penalty Function Equivalence for UMP).

Let X C R% and Y C R% be nonempty compact sets, and letU : X x Y - R, C: X x)Y — R™,
and T : X x Y — RP be Lipschitz continuous. Assume Slater’s condition holds for the Utility
Maximization Problem (UMP). Then there exist \g > 0, A1 € RT',, Xy € Rﬂ 4 such that the
unconstrained objective

max Ao (U (x,y)) — Al p(C(x.y)) — A (T (x,y)) (15)

yey

have the same global maximizers. Here, ¢ : R — R is a strictly increasing C' map, and p,1)
R — Rx are convex “penalty” functions satisfying p(z) = 0 for z < 0, p(z) > 0 for z > 0; and

P(—z) =1(z), ¥(0) =0, ¥(z) > 0forz # 0.

Proof. Let f(y) = ¢(U(x,y)), 9(y) = C(x,¥), and h(y) = T (x,y). By assumption, all func-
tions f, g, h are Lipschitz continuous (since ¢ is C! and strictly increasing, its composition with a
Lipschitz function remains Lipschitz). Define the feasible set

F={yeYl|gly) <0, h(y) = 0}.

By Slater’s condition, F' is non-empty and has a non-empty interior. The constrained problem (a) is
equivalent to:

ryng;(f(y) st. g(y) <0, h(y) =0.

Since ¢ is strictly increasing, we have arg max U = argmax ¢(U). Let S C F denote the set of
global optima of this problem, which is non-empty due to compactness of ) and continuity of f.
Take any y* € .S, and denote the optimal value by f* = f(y*).

Define the standard penalty function:

m p

Po(y) =Y plgiy)) + > w(hi(y)).

i=1 j=1
By properties of p and ¢: - Py(y) = Oifandonlyify € F,- Py(y) > 0ify ¢ F.

Under Slater’s condition and the Lipschitz continuity of g and h (see Clarke, 1990), there exists a
constant ¢ > 0 such that:
PO(Y)ZCdISt(y7F)7 vyea)?

where dist(y, F') := inf,cp ||y — z|| denotes the Euclidean distance. This inequality follows from
the Mangasarian-Fromovitz constraint qualification (MFCQ), which is implied by Slater’s condition.

Let Ly denote the Lipschitz constant of f over ). For any y € )V and z € F', we have:

f(y) = f(2) < Lylly — z|.
Choosing z = y* € S gives f(z) < f*, so:

fy)—f" < Lflly —2|.
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Taking infimum over z € F', we obtain:

Combining the inequalities, we get:
) L
fly) =" < Ly - dist(y, F) < %Po(.V), Vy €.

Let > =L£. Then for any y ¢ F, since Py(y) > 0, we have:
fo) =1 <uh(y) = fly)—nPoly) < /"
Fory € F, we have Py(y) = 0 and f(y) < f*, so:
fy) —nhol(y) = f(y) < f*

Hence, the penalized objective f(y) — uPo(y) satisfies: - f(y) — uPo(y) < f*forally € ), -
Equality holds if and only if y € F' and f(y) = f*,ie,y € S.

L
c

Therefore, the unconstrained penalized problem maxyey[f(y) — pFPo(y)] shares the same global
solution set as the original constrained problem.

Now define the penalty-based score with weights A\g = 1, Ay = pl,,, Ag = pl,, where 1,,, and 1,
denote all-ones vectors of appropriate dimensions. Then:

B(x,y) = Ao(U(x,y)) — A p(C(x,¥)) = Ay (T (x,¥)) = f(y) — uPoly)-

Maximizing B(x,y) is thus equivalent to maximizing the penalized objective f(y) — uPy(y), and
hence the set of global optima coincides. All weights are positive, as required. O

Theorem 2.2 (Universality of UMP). Let X and Y be arbitrary nonempty sets. Let f : X x Y — R
be an objective and let

{gitiercs AGr}rers, {hj}jes
be (possibly empty, countable, or uncountable) families of real-valued constraint functions on X X
Y. For each fixed x € X, consider the optimization problem

sgl;f(x,}') st gi(x,y) <0 (i €1c), gr(x,y) >0(kels), hi(x,y)=0(j€J). (16)
Yy

Define (with the convention sup & := —oo and maxima taken in the extended reals)
U(X,y) = f(X7 y)? C<X7y) = max{ 07 sup gi(X,Y)a sup (_gk(xvy))}v
i€l< kel>

T(x,y):= max{ 0, 51611; |hj(x7y)\}.
j

Then for every x € X, problem equation 16 is equivalent to the utility-maximization problem

supU(x,y) st C(x,y) <0, T(x,y) =0, 17
yey

in the sense that the feasible sets of equation 16 and equation 17 coincide; hence the optimal values
coincide, and whenever maximizers exist, the argmax sets coincide. For minimization problems,
replace U by — f.
Proof. Fix x € X and write

F(x) = {y €V gi(x,y) 0Vi, Gu(x.y) > 0k, hi(x,y) = ow}
for the feasible set of equation 16, and

F(x) = {y eY: Cx,y) <0, T(x,y) = O}

for the feasible set of equation 17. We show F(x) = F/(x).
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(i) F(x) C F(x). Takey € F(x). Then g;(x,y) < 0 forall i € I, so sup;er. 9i(x,y) < 0.
Likewise, jx(x,y) > 0 forall k € I> implies sup,c;_ (—gr(x,y)) < 0, and h;(x,y) = 0 for all
j € J implies sup; ; |h;(x,y)| = 0. By the definitions of C and 7,

C(x,y) = max{0,<0,< 0} <0, T(x,y) = max{0,0} =0,
hence y € F(x).
(ii) F(x) C F(x). Take y € F(x). From C(x,y) < 0 we obtain
sup ¢g;(x,y) <0 and sup (—gr(x,y)) <O0.

i€l< cl>

By the defining property of the supremum, the first inequality yields g;(x,y) < 0 for all i €
I<; the second yields gi(x,y) > 0 forall £ € I». From T(x,y) = 0 and 7 > 0 we have
sup;e s |hj(x,y)| < 0, hence |h;(x,y)| = 0 forall j € J, ie., hj(x,y) = 0 for all j. Therefore

y € F(x).

From (i) and (ii) it follows that F'(x) = F(x) Since U = f (or U = — f for minimization), the two
problems optimize the same objective over the same feasible set; consequently the optimal values
agree, and whenever maximizers exist, the argmax sets coincide. O

F.2 BL ARCHITECTURE

Theorem 2.3 (Universal Approximation of BL). Let X € R% and ) C R™ be compact sets, and let
p*(y | x) be any continuous conditional density such that p*(y | x) > 0 for all (x,y) € X x ).
Then for any T > 0 and € > 0, there exists a finite BL architecture (with some depth and width
depending on €) and a parameter 0* such that the Gibbs distribution

e exp(BLg+ (x,y)/T)
prly %07 = Jy exp(BLo- (x,y")/7)dy’

(18)

satisfies

sup KL(p*(- | x) || pr(- | x;9*)) <e. (19)
xeX

Proof. Let f(x,y) = logp*(y | x). Since p* is continuous and strictly positive on the compact
domain X’ x ), the function f is continuous and bounded.

Consider the elementary block By in equation 4. Setting Ay = Ay = 0 and letting Up,, produce
affine features in (x,y), the block reduces to a one-hidden-layer network

k
Bo(x,y) =Y dojHa] xiy] +b)),
j=1
which is a universal approximator on C'(X x Y) for nonpolynomial bounded ¢ (Hornik, 1991).

Hence, for any § > 0 there exist § and a continuous k(x) such that

sup  |By(x,y) — 7f(x,y) — k(%) <. (20)
(x,y)EXXY

Writing By = 7f + k + € with |¢| < d, we have
exp(£2) = exp(f) exp(k/7) exp(e/7).
Letr = exp(e/7) — 1,50 |r| < /7 — 1 =: B(&). The normalizer satisfies
Z(x) = exp(k(x)/7) Ep- [exp(e/T) | x].
With A(x) = Ep«[r(x, -) | x] so that |A(x)| < B(6), we obtain

1+rxy)

pr(y | x0) =p*(y | x) T+ AX)
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Define s(x,y) = 15 — 1. Then |s| < FE{l < 24 = C(9). 11 C(6) < §. the inequality

[log(1 + s)| < 25| yields

KL(p* | py) = — / p*log(1 + 5) < 20(6),

and the bound is uniform in x. Given € > 0, pick 6 > 0 so that 2C'(d) < &, proving the claim for
Gibbs models with energies from the elementary class.

For the layered architectures, let
]:B = {Bg : 9} and fBL = {BLQ : 9},
where BLg denotes any finite-depth BL (Shallow L < 2 or Deep L > 2) obtained by stacking
finitely many parallel By’s into vectors across layers and applying a final affine map. By construc-
ion
o Fr C Fpr, (take L = 1 and the final affine as identity),
hence, under the uniform norm,
FeL 2 Fg = C(X %)),
and therefore g, = C(X x ). The uniform energy approximation argument above then applies
verbatim with g = BLy-, yielding
sup KL(p*(- | %) || p- (- | x:6%)) <e.

Compactness of )V and continuity of BLg« ensure finiteness of the normalizing constant, so the
Gibbs distribution is well defined. This completes the proof. O

F.3 IDENTIFIABLE BEHAVIOR LEARNING (IBL)
F.3.1 SETUP AND ASSUMPTION

Input-output space and data. Let X C R% and ) ¢ R% be compact sets. Assume the data
distribution Py y is supported on X' x ), and that there exists a point zgp = (¢, yo) in the interior
of its support; that is, some open neighborhood of zy has positive Py y-measure. All expectations
are taken with respect to Px y unless otherwise specified.

Parameter space and polynomial feature maps. The parameter space factorizes as
© = Oy x O x O x W,.
For 0y € Oy, 8¢ € O¢, and O € Op, we define polynomial feature maps
Pu: X XY RE p i XxY—RE p X xY— R,

each of fixed degree and injective in their coefficients (i.e., distinct coefficients yield distinct func-
tions). For a single block, 0y, 8¢, 61 correspond to the parameters of the U, C', and T terms together
with their respective external multipliers (e.g., penalty weights ). For a deep network composed
of multiple blocks, § = (8, 0, 1) denotes the collection of all block-level parameters across the
hierarchy, where 8y aggregates the parameters of all U-terms, 6 those of all C-terms, and 67 those
of all T-terms (each including their associated multipliers).

The output component W, corresponds to the affine transformation in the final layer: W, = RY
for single-output prediction, and W, = RY*m for m-way classification, where d’ is the output
dimension induced by the preceding network, whether shallow or deep.

Identifiable base block. Let Ay € R%, \; € R%, and A\, € R% denote nonnegative weight
vectors, treated as learnable parameters. We instantiate the identifiable modular block

B(z,y;0) = N tanh(p,(z,y)) — A softplus(p(z,y)) — A} (pe(z, 1)), @D

where (-)©2 denotes elementwise squaring. By construction, the tanh and softplus heads are strictly
monotone in their arguments, while the quadratic head is even.

We assume that each polynomial feature map p,(x, %) contains no nonzero monomial independent
of y; that is, no feature is a pure function of z or a constant. This ensures that B'%(z, ) is noncon-
stant in ¢ unless all weights vanish.
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Architectures. We implement IBL in three architectural forms, each producing a compositional
utility function over (z,y).

» IBL(Single): A single block is used as the compositional utility,
IBL(z, y) == B(x,y).

» IBL(Shallow): Shallow IBL uses one or two stacked layers of parallel blocks. For instance, a
first layer

Bi'(z,y) = [Bi(2,9),.... Bily, (z,9)]T € R™
feeds into a bias-free affine map
IBLshatiow (¢, y) := W{ B (z, 1),
where W§ € R™*% for classification and W§ € R for scalar output.

* IBL(Deep): Deep IBL extends the construction to depth L > 2, recursively defined as
IBL(z,y) := W{ - B (-~ B5'(Bf' (,y)) -+ ),

where each Bi¢ stacks parallel blocks B}(}i (z,y), and W9 is a bias-free affine transformation.
The cases L = 1 and L = 2 recover the Single and Shallow architectures, respectively.

Induced conditional model. Let IBL(x, y) denote the compositional utility function produced by
the chosen architecture (Single, Shallow, or Deep). It induces the conditional Gibbs distribution

(Discrete y € [m]) p(y | ) = softmax,{IBL(z,y)}, (22)

IBL
(Continuous %) ply | z) = exp{IBL(z,y)/7} 7 > 0 fixed. (23)

[y exp{IBL(z,§)/} dj’

Here 7 is a fixed temperature parameter. Thus, IBL predicts by defining a compositional utility
landscape whose Gibbs distribution governs y given x.

Quotient parameter space.

Definition F.1 (Symmetry Quotient Space). Define the equivalence relation ~ on © as the smallest
relation satisfying

O, ~ 0, < p(x,y;0")°% = pD (2, 4,02 foralli and (z,y).

The corresponding quotient space is

0:=0/~.

Explanation. The T-component is designed to encode equality constraints, which are symbolically
equations. Flipping the overall sign of such a constraint leaves the equation unchanged, so different
parameterizations that differ only by sign should be regarded as equivalent.

Definition F.2 (Scale-Invariant Quotient Space). Define the equivalence relation = on © by

O~0 <= FJc>0 suchthat s(z,y;0) = cs(x,y;0).

The scale-invariant quotient space is then given by

0:=0/~.

Explanation. In classification, predictions depend only on relative compositional utility differences
between candidate labels. From a technical perspective, quotienting out global shifts or uniform
scalings is necessary: without this identification, the cross-entropy loss admits redundant parame-
terizations that differ only by such transformations. At the same time, this quotient is natural and
harmless, since it does not eliminate informative ratios between classes but merely discards absolute
levels or scales that play no role in the softmax decision rule.
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Loss Functions. We adopt a hybrid loss to simultaneously accommodate discrete and continuous
outputs. Specifically, cross-entropy (CE) is applied to discrete targets, while denoising score match-
ing (DSM) is applied to continuous targets. Let 7y, 74 > 0 with . + 74 > 0. The population risk,
defined on the quotient parameter space, is given by

M(0) = 7 E[-logps(Y | X)] + 1. E[Spsm(8; X)], 0 ex'(h), 24)

where 7 denotes the canonical projection from the original parameter space onto its quotient.

For continuous outputs Y € Y CR%,DSM is implemented by perturbing the target with additive

Gaussian noise Y = Y + ¢, ¢ ~ N(0,02I), and penalizing the squared discrepancy between the
model score and the corresponding denoising score:

1
Spsm(6; X) = 2E5|:

o2

’Vglogpg(ﬂ | X)+;2(Y—17)H2‘X,Y] 25)

In classification-only settings we set 7. = 0 (pure CE), while in regression-only settings we set
Y4 = 0 (pure DSM).

For a single observation Z = (X,Y), we define the per-sample loss as
00;Z) = ya [ —logpe(Y | X)] + 7e Spsm(6; X). (26)

The empirical criterion then takes the standard M -estimation form
1 n
Q(0) = 33 ue2) (X..Y) @7

Key Assumptions.

Assumption F.1 (Global Atomic Independence and Injectivity). Let W be the atomic parameter
quotient.

1. Injectivity on the quotient. The map U — RY*Y 1) 1 gy Is injective.

2. Linear Independence. Atomic linear independence. Any finite collection of pairwise distinct
atoms {g;, }i_, with 1; € U is linearly independent in R* Y.

3. Minimality. In all model instances we only consider minimal representations: no duplicate
atoms and its corresponding linear coefficient in the mixture is nonzero.

4. Canonical ordering. For each model instance, a fixed canonical ordering is imposed on the atom
list.

Explanation. Assumption F.1 treats each identifiable block B¢ as an atomic building unit and im-
poses four structural requirements on representations built from these atoms. Together, these four
conditions define a non-ambiguous, non-redundant, and canonical algebra of atoms: after quotient-
ing by the natural symmetries, every model constructed from B-blocks admits a unique minimal
representation (up to the prescribed equivalences). This structural regularity is the foundation on
which identifiability statements are built: it guarantees that observing the model output (or the ob-
jective it optimizes) allows one, in principle, to recover the underlying atomic components and their
coefficients in the appropriate quotient sense.

Practical remark. In practice, these conditions can be encouraged or approximately enforced in two
complementary ways. First, the design of atomic classes (choice of polynomial bases, interaction
terms, and activation heads) can be chosen so that injectivity and linear independence are more
plausible by construction. Second, model selection and post-processing (e.g., pruning atoms with
near-zero coefficients, enforcing a deterministic tie-breaking rule for ordering) can be applied after
training to realize minimality and canonical ordering. These practical measures make the theoretical
assumptions operationally meaningful in empirical applications.
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F.3.2 PROOF OF THEOREMS

Lemma F.1 (Identifiability of Linear Combinations). Let Z be a set. For each j = 1,...,m, let ®;
be a parameter space and define atomic functions

where U := [_|;”:1 D, js thfz disjoint union. Let U be the quotient atomic parameter space, and
denote its elements by 1) € U.

Define the quotient parameter space of the model as

:H((R\{O})X\P)’ gz((a’lawl)?“'a(amai}m))

J=1

[1]

The associated linear combination model is
m
Sg = Z a;jg;p, -
=1

By virtue of Assumption F.1, the model is identifiable in the quotient parameter space Z: if S £ =Sz
on 7, then € = ¢'.

Proof. Suppose Sg = Sz on Z, i.e.,

m

m
D 49660 — D45 9G4 = 0.
j=1

j=1
Let U be the set of distinct atoms in the quotient W that appear on either side, and for each 1) € U
let
= Y w4
Jiligil=6 i1l ]=9
be the net coefficient of g;. Then

> B@W)gs = 0.

Peu
By the linear independence condition (Assumption F.1:2) of pairwise distinct atoms in ¥, we must
have 3(1)) = 0 forall ¢ € U.

Furthermore, by the Minimality requirement (Assumption F.1:3), each v appears exactly once on
each side and with nonzero coefficient. Thus the two sides must contain the exact same list of
coefficient-atom pairs {(a;,;)}7", and since a canonical ordering is imposed (Assumption F.1:4),
it follows that o
{=¢.
O

Theorem F.1 (Identifiability of IBL(Single)). The IBL(Single) architecture uses the atom set

{ tanh(py;), softplus(pe;i), (pei)*: i=1,...,du;i=1,...,de; i=1,...,d; }.
Under Assumption F1, the model is identifiable in the quotient space O: if Bied = Bfﬁ on X XY,
then § = 6’ in ©.
Proof. Write

Bl =) a; f(5¢;),  mi=dytde+dy,
j=1

where each f(+; ¢;) is one of the atoms tanh(p,,;), softplus(pc,;), or (ps,;)?, and a; is the corre-
sponding entry in (Ag, A1, A2), with a fixed ordering over all indices.

If Bj' = Bjj) on X x Y, then Lemma F.1 and Assumption F.1 imply that all atoms and coefficients
must agree in the quotient atomic space W. Since the ordering is fixed, this implies § = ¢’ in ©. [
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Theorem F.2 (Identifiability of IBL(Shallow)). The IBL(Shallow) architecture uses the atom set

(Bl (@.9) )

where each B},‘i = X x Y — Ris a single-block IBL module parametrized by 0, ; € ©1. The full
parameter is denoted

0:=((011,...,014,), Wi) €O := (O1)" x R™*%,
Under Assumption F.1, the mapping 0 +— IBLgpaiion is identifiable in the quotient space ©: if
IBLShalluw(xa Y, 0) = IBLShallow(xv Y, 9/) on X x y,

then

Proof. Write the k-th output component as a linear combination of atoms:

dy

S(Sk)(%y) = Z Bld (@), E=1,...,m,

j=1
where w§k) denotes the (k, j)-th entry of W¥.

Suppose two parameter tuples (W, {6, J}dl ) and (W7, {0} }?1:1) yield identical vector scores
on X x Y. Then for each k, we have s(k) = s(g]f) on X x V.

Fix any k. Under Assumption F.I, Lemma F.l ensures that the coefficient—atom pairs
{(wj(.k), B},‘i )} 1, are uniquely determined (up to equivalence in the quotient ©). In particular,
foreach j = 1,...,d;, we must have

(k) _  1(k) id  _ paid
'LU‘7 = wJ 5 69113_ = Bai

Because this holds for all k = 1,...,m, it follows that W7 = W{" and ¢; ; = 01 ; in the quotient
parameter space for all j.

Thus 6 = ¢’ in O, establishing full identifiability under fixed ordering. O

Theorem E.3 (Identifiability of IBL(Deep)). Fix integers L > 2 and widths dy,...,d;_1. The
IBL(Deep) architecture uses the final-layer atom set

{Bﬁ“ :By)} c RYY,

where each B : R-1 — R is a scalar-valued block applied to the output of layer L—1. Only

the first-layer blocks (¢ = 1) are IBL(Single) modules as in Theorem F.1. For architectures with skip
connections, the final-layer atoms can be extended to include skipped features (e.g., from earlier

layers), which are treated as elements of { BgdL ; (z,y) }jil.

The full parameter is

L

<{19€’J}£ dlf] 1 Wout) €0 := H(@l)de X R"”XdL_
=1

Under Assumption F.1, the mapping 6 — I1BLpee, (2, y; 0) is identifiable in the quotient space .

Proof. Under the given architecture, the IBL(Deep) model ultimately takes the form

Zw(k)[j’ﬂ“my) k=1,...,m,
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where each Bi;ib ; is a scalar-valued function applied to the output of preceding layers. By treating

the set {B; (@, y)}?il as the atom set, we reduce the model to an IBL(Shallow) form:
S(l’, y) = Wout BL(xv y)

Under Assumption F.1, Theorem F.2 applies, implying that the full parameter 6 = ({¢,;}¢,;, Wou)
is identifiable in the quotient space ©. O

Theorem 2.4 (Identifiability of IBL). Under Assumption .1, the architectures IBL(Single), IBL
(Shallow), and IBL(Deep) are all identifiable in the quotient space ©.

Proof. Immediate from Theorems F.1, F.2, and F.3. O

Theorem 2.5 (Loss Identifiability of IBL). Let IBLg(x, y) denote an IBL model, and consider the
conditional Gibbs distribution

poly | z) = exp(IBLg(x, y))
Jy exp(IBLg(z,y")) dy'”

Define the population risk on the symmetry quotient © as in equation 24. Assume that the parameter
space O is compact. Then, under Assumption F.1, the following holds:

(i) If ye > 0, the risk functional M admits a unique minimizer in ©. Moreover,

M(él):M(ég) — gl :ég.

(ii) If v. = 0, the risk functional M admits a unique minimizer in the scale-invariant quotient o.
Moreover, ~ _ o
M(el) :M(eg) — 0, = 0.

Proof. Under Assumption F.1, the IBL architecture is identifiable modulo the symmetry group de-
fined by ©, as established in Theorem 2.4. Let #® € arg mingee M () and set p*(- | ) := pgo (- |
x). Since O is compact and the loss M is continuous, a global minimizer exists. We show that it is
unique in the stated quotient.

Case 7. > 0. At any minimizer we have both pg(- | ) = p*(- | =) and V,logpe(- | ) =
Vylogp*(- | z) a.e. Since

Vylogpy(y | z) = VyIBLg(2,y) — Vy log Zy(x) = V,IBLg(z, y),
(the partition function Zy(z) is y-independent), score equality yields V,, (IBLg — IBLgs ) (y;2) = 0
a.e. IBL contains no y-independent terms. Therefore,
IBLg(z,y) = IBLge (x,y) a.e.
By Theorem 2.4 (identifiability in (:)), the minimizer is unique in O;in particular,
M(01) = M(6y) = 0; = 0s.
Case 7. = 0. Here, M reduces to the cross-entropy risk, which is minimized if and only if

po(- | ) = p*(- | =) almost everywhere.The cross-entropy loss depends on IBLg(z,y) only
through its relative values across y, and is invariant under additive shifts and positive rescalings

of the compositional utility. Hence, the loss depends only on the equivalence class g € é} As a
result,

M) = M(6) = 6, =6,
i.e., the minimizer is unique in o.

Hence, the minimizer is unique in the stated quotient space. This completes the proof. O

Theorem F.4 (Uniform M-estimation consistency (Newey & McFadden, 1994, Theorem 2.1)). Let

(A, d) be a compact metric space, and let L,, : A — R be a sequence of random objective functions,
with population objective L : A — R such that:
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1. L(«) is uniquely minimized at o* € A;
2. Ais compact;

3. L(«) is continuous;

4. L, () & L(a) uniformly in o € A.

Then any sequence &, € arg minge 4 En(a) satisfies éu, 2> a*.
Theorem F.5 (Consistency of IBL). Let M be the population risk defined in equation 24, and let
M, denote its empirical analogue. Suppose:

1. {(X;,Y)}, arei.id. samples;
2. © is compact;

3. 0 — M(0) is continuous, and the loss class admits an integrable envelope such that

sup ’Mn(ﬁ) — M(G)‘ L0,
6eo

Let Z denote the relevant quotient space (© if v, > 0, 5) ifve = 0), and let 0,, € arg mingee M, (0)
and 6° € argmingeo M(0). Then

0, L 0° in=,  M(0,) B M(@6°).
If the model is correctly specified (the data law is realized by some 0* € ©), then 6°* = 6* in Z, so
0, 2> 0.

Proof. Let = denote the relevant quotient space: = = O if v, > Oand 2 = © if 7, = 0. Let
7 : © — E be the canonical quotient map. Since O is compact and 7 is continuous and onto, = is
compact. By assumption, M and M,, are invariant under the corresponding symmetry, hence they
factor through 7:

M) = M(0), M) = My (0) (any 0 €' ()).
These are well-defined and continuous on = because M is continuous on ©. Moreover,
sup | M., (€) — M(€)| < sup |M,.(6) — M(0)] & 0,
I3EE) 0€O

so uniform convergence in probability holds on =.

By Loss Identifiability of IBL (Theorem 2.5), M has a unique minimizer £* € =. Let fn €

arg mingez M, (§) (equivalently, choose 0, € arg mingeo M, (0) and set fn = W(én)). Then
the conditions of Theorem F.4 hold on the compact metric space (=, d), whence

€n T €°.
Since M is continuous on = and M(&,) = M(6,), M(£*) = M(6®) for any representative
6* € m=1(£*), we also obtain
M) = M(En) > M(E%) = M(6°).
If the model is correctly specified (there exists 8* € O inducing the data law), the strict propriety

of the CE/DSM terms implies that the unique minimizer in the quotient is the class of 6*; hence 6,
converges in probability to 8* in the corresponding quotient space. O

Theorem F.6 (Universal Approximation of IBL). Let X C R% and Y C R™ be compact sets, and
let p*(y | ©) be any continuous conditional density such that p*(y | ) > 0 for all (x,y) € X x ).
Then for any 7 > 0 and € > 0, there exists a finite IBL architecture (with some depth and width
depending on €) and a parameter 0* such that the Gibbs distribution

oo exp(IBLg-(z,y)/7)
p-(y | 2;07) = Jy exp(IBLg-(z,y/)/7)dy’

(28)
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satisfies
sug)( KL(p*(~ | z) | pr (- | J:;H*)) <e. (29)
xre

Proof. The argument follows the same construction as in the proof of Theorem 2.3, with only nota-
tional modifications due to the IBL parameterization. For brevity, the details are omitted. O

Lemma F.2 (Sieve Approximation Lemma). Let C : © — [0,00) be a complexity measure on the
parameter space, and let (¢, )n>1 be a nondecreasing sequence with c,, T cc. Define the sieve

0,:={0€0:C0) <cn},

and for a fixed data-generating distribution p', set

5n T -— inf s KL T(. . .
(»") inf sup (P @) o | 2))

Then the following are equivalent:

1. Sieve universal approximation: For every € > 0 there exists a constant C. < oo such that

inf  sup KL(p'(- | z ) < e
it S KU (| 2) ol 2)
2. Vanishing approximation error: 6,(p") | 0asn — oc.
Moreover; if each ©,, is compact and 6 — sup, KL(p'||pg) is continuous on ©,,, then the infimum

in 0, (p') is attained for every n.

Proof. (1) = (2). Fix € > 0 and let C. (pT) be as in (i). Since ¢, 1T oo, there exists N such that
¢, > C.(p") forallm > N. Hence ©,, D {6 : C(#) < C.(p)} for all n > N, and therefore

) = inf KL(p' < inf KL(p'
dn(p") onf sup (p'|lpe) < bcoh o SIP (P"llpe) < e,

for all n > N. Since (8,,) is nonincreasing in n (because ©,, 1), it follows that §,,(p') | 0.
(2) = (I). Fix ¢ > 0. By (ii) choose N such that 6 (p') < . Set C..(p') := cn. Then

inf sup KL (p' < inf supKL(p = on(p'
b.coik i SUP (P"llpe) < (f sup (p'lpe) NP <&

which is (i).

The attainment statement follows immediately from compactness of ©,, and continuity of 6 —
sup,, KL(p'||pg) on ©,,. O

Theorem F.7 (Universal Consistency of IBL). Consider a parameter space © for a class of IBL
models, and let C : © — [0,00) be a lower semi-continuous complexity measure (e.g., network
depth, width, or parameter norm). Let (c,)n>1 be a nondecreasing sequence with ¢, 1 oo, and
define the sieve
©,:={0€0:C0) <c,}.
Assume:
1. The map 0 + sup, KL(p'||pg) is continuous on each compact ©,,.
2. The sequence of empirical minimizers {én} is relatively compact in | J,, Oy, as ensured by the
uniform LLN together with compactness and continuity.

Then for any admissible data-generating distribution p' satisfying the regularity assumptions of
Theorem F.6, the IBL posterior sequence {pén} satisfies

sup KL(p' (- | ) || pg, (- | )) & 0,

zeX

ie. {pén} converges to p' uniformly in x (in KL).

35



Under review as a conference paper at ICLR 2026

Proof. Fix an admissible data law p! (satisfying the regularity of Theorem F.6). For 6 € U,, ©n
define
F(O) == s KLpi(- | 2) [po(-12), 6 := inf F(0).
reX 0co,

Then Theorem F.6 and Lemma F.2 together imply that §,, | 0. By assumption 1, F’ is continuous on
each compact O,,.

Let 0, € argmingee,, M,,(0) be any sequence of ERM solutions. We show F(6,,) 2 0

Step 1 (subsequence reduction and precompactness). Take an arbitrary subsequence (énk)k By
assumption 2 there exists a further subsequence, still denoted (6, )1, and a (possibly k-dependent)

index set N < my with a parameter limit 6., € Oy (for some finite N) such that énk — O in
probability. Passing to a further subsequence if needed, we may assume Ny = N.

Step 2 (risk domination against © n-approximants). For each k pick 0, € Oy with F(6;) <
dn + 1/ (attainment follows from compactness and continuity of ' on © ). By the ERM property
and uniform LLN on O y,

M(0,,) < M) +0,(1)  (k— ).

Assume (w.l.o.g.) the CE component is present with a positive weight, so that the population risk
decomposes as

M(0) = const+vq Ex [KL(p'(- | X) || pa(- | X))] + ~£PM(0),

with v4 > 0 (the DSM-only case is handled analogously by replacing KL with Fisher divergence).
Using E x [KL(-||-)] < F(-), we obtain

limsupEx [KL(pT(- | X) ||pénk(- | X))] < limsup F(6) < dn.

k—o0 k—o0

Hence, along the subsequence,

Ex [KLp'(- | X) [l pg, (-1 X))] 2 o0.
Step 3 (identification of the subsequential limit). By continuity of the model map 6 — py(- | z)
(from Theorem F.6 regularity) and bounded convergence,

Ex [KL(p'(- | X) || po. (- | X))] =

Thus f(z) := KL(p'(- | 2) || po.. (- | z)) equals O for Px-a.e. z. Since f is continuous on compact
X (by the same regularity) and Px has full support (admissible law), we conclude f(z) = 0 on X,

ie.
F(0x) = sup f(x) =
reX

Step 4 (conclude F(0,,) — 0 in probability, hence F(6,) — 0 in probability). By assumption

1 continuity of F on O and 6, — 0. in probability, we have F(6,,) £ F(f.) = 0. Since
the orlglnal subsequence was arbitrary and every subsequence admits a further subsequence with

F(0,,) % 0, the full sequence satisfies F(6,,) 2 0.

Therefore,
SuEKL(pT(- | 2) | ps, (- | 2)) =0,
T€

ie.p; (| x) = p'(- | ) uniformly in z in KL. O
py (| z) = p'(-| ) y

Theorem F.8 (Asymptotic normahty of extremum estimators (Newey & McFadden, 1994, Theorem
1)). Suppose that the estimator 0, satisfies 6, & 0o, and:

1. 0y lies in the interior of the parameter space O;

2. the criterion function Qn(ﬂ) is twice continuously differentiable in a neighborhood N of 0,
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3. the score satisfies

Vi VeQu(fo) > N(0,2);
4. there exists a function H(0), continuous at 6y, such that

sup | V3@ (0) ~ HO)|| % 0
0eN

5. the limiting Hessian H := H (0y) is nonsingular.

Then the estimator is asymptotically normal:
d

Vi (0, —6y) S N0, HT'SH™Y).

Theorem FE.9 (Asymptotic Normality of IBL). Consider the IBL family po(y | )
exp(IBLg(z,y)) with empirical criterion as in equation 27. Assume (X;,Y;)"_, are i.i.d. from an
admissible data law, and that the true parameter 0 is an interior point of a locally identifiable chart.
For each observation Z = (X,Y'), let £(0; Z) denote the per-sample loss defined in equation 26, so

that Q,,(0) = 2 S°0_ | 0(6; Z;) and Q(0) := E[((6; Z)).

Suppose, in addition:

1. Score moments. s(Z) := Vgl(0p; Z) satisfies E[s(Z)] = 0, ¥ := Var(s(Z)) < oo, and
ﬁ Yoy 8(Z;y) = N(0,%).

2. Derivative envelopes. There exists a neighborhood N of 0y and envelopes G1,Go with
supgenr | Vol(0; Z)I| < G1(2), supgen [V3(0; 2)|| < G2(Z), E[GF] + E[Ga] < oo.

3. Nondegenerate curvature. H = VgQ(@o) exists, is continuous at 6y, and is positive definite,
where Q(0) := E[Q,(0)].
Then, under conditions of Theorem 2.7,

Vi (0, —0) = N0, H'SH™).

Proof. We verify the hypotheses of Theorem F.8 with Q.. as above.

(i) Interior & consistency. By quotient identifiability, fix a local chart in which the population

minimizer admits a unique interior representative 6. Consistency én LN 0, follows from uniform
M-estimation consistency for IBL (Theorem F.5).

(ii) C? criterion. Since IBLg is C? in 0, the loss £(6; Z) is twice continuously differentiable in a
neighborhood A of 6, and so is Q,.

(iii) Score CLT. By Score moments,

Vi VoQn(00) ffz Z;) = N(0,%).

(iv) Hessian limit. By Derivative envelopes and dominated convergence,

sup || V5Qn(0) = V3Q(O)]| =

0eN
so Assumption 4 of Theorem F.8 holds with H () := V3Q(6), continuous at .
(v) Nonsingularity. By Nondegenerate curvature, H := H () is positive definite.

All assumptions of Theorem F.8 are thus verified; consequently, \/ﬁ(én —00) = N(0,H 'SH™),
O

Theorem F.10 (Efficiency of IBL Estimators). Under the regularity conditions of Theorem F.9, con-
sider the estimating function associated with the per-sample loss equation 26:

¢9(Z) = ng(e, Z), Z = (X,Y)
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At any population minimizer 6%, the moment condition g« (Z)] = 0 holds. Define the sensitivity
and variability matrices

J = ENoe(2)]| . K = Va(ie(2)).

Then the asymptotic covariance of 0,, is given by the Godambe information matrix (sandwich form):
Vi (0, —0%) = N0, JTIKJ ).
In particular:

1. CE-only. If v. = 0 (pure cross-entropy) and the model is correctly specified and regular, then
Yo(Z) coincides (up to sign) with the log-likelihood score sg(Z). Hence J = —I(0*) and
K = I(0*), where 1(0*) denotes the Fisher information matrix. It follows that

Vb, —0%) = N(0, 1(6*)71),

so the estimator is asymptotically efficient, attaining the Cramér—Rao lower bound.

2. CE+DSM or DSM-only. Suppose there exists a nonsingular matrix R (constant in a neighbor-
hood of 0*) such that
7*/}9*(Z) = Rsgp- (Z) a.s.,

where s¢(Z) = Vglogpe(Z) denotes the parametric score in a local chart. Then J =
RI(0*)R" and K = RI(0*)R", so the sandwich covariance again reduces to 1(0*)~'. Hence
the estimator remains asymptotically efficient.

Proof. The empirical first-order condition is
1 n
0= — 5 (Z:), Z) = Vol(0; 2).
2B n(2) = Val(0:2)

A mean—value expansion around the population minimizer 6* yields
0 = Sp+Gplfn —6%),
where

1 — 1 —
n = — *Z'L'a n = _ ~Zia
s n;w( ) G n;vgwg( )

for some intermediate point 9 lying on the line segment between 6,, and 6*.

Under the regularity conditions of Theorem F.9, we have
Gn 2 J:=E[Vee-(2)], VnS, = N(0,K), K := Var(¢p-(Z)).
Since J is nonsingular, G,, is invertible with probability tending to one, and hence
Vil —0°) = -G, v S, = N0, JTUR(IHT).

Because here 19 = Vg£(6; -), the matrix J coincides with the expected Hessian of the loss, which
is symmetric. Thus the asymptotic covariance may equivalently be written as J ' K.J 1.

(i) CE-only. When 7y, = 0, the per-sample loss reduces to £(0; Z) = —logpg(Z), so that ¢p(Z) =
—s9(Z), with s9(Z) = Vg log pp(Z) denoting the likelihood score. Under correct specification and
standard likelihood regularity conditions, the information identities hold:

E[s¢+(Z)] = 0, Var(sg«(Z)) = 1(6%), —E[Vyso(2)] = 1(07).

Therefore,
K = Var(¢e-(2)) = 1(6"), T = E[Vvy- (2)] = I(87),

and the asymptotic covariance simplifies to 7(6*) 1. Thus the estimator is asymptotically efficient,
attaining the Cramér—Rao lower bound (see also Van der Vaart, 2000, Theorem 5.39).
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(ii) CE+DSM or DSM-only under score-span. Suppose there exists a nonsingular matrix R (constant
in a neighborhood of 6*) such that

Yo (Z) = Rsp«(Z) as.,
where sg(Z) is again the parametric score. In this case,
K = Var(g-(Z)) = RIO*)R",  J=E[Veby-(Z)] = —RI(6*).
Consequently,
JUK(I YT = (= RI%)) " (RIO*)RT) (- RI(6%)) T = 1(6*)".

Hence the sandwich covariance reduces to the Fisher information bound, and the estimator is asymp-
totically efficient. This corresponds to the general efficiency condition for minimum-distance or
GMM estimators (see Newey & McFadden, 1994, Section 5): the condition iy« = R sy« is equiva-
lent to their moment—span condition G'W = C G’QQ~! (Newey & McFadden, 1994, Equation 5.4),
under which the Godambe information collapses to the Fisher bound.

The two claims are thereby established. O

G IBL-BASED MODEL: CAUSAL BEHAVIOR LEARNING (CAUSALBL)

Behavior Learning

Input Layer Score Layer Inference Output

B B B

(X,Y)

B B B

Figure 7: Network architecture of CausalBL. The input layer (x,y) is processed through stacked
interpretable blocks B, whose outputs are aggregated in the score layer to form three heads: the
treatment head BL; and the outcome heads BL(, BL. These heads feed into the inference module
to produce the predicted outcomes 9o, 1 and the treatment effect 7.

Problem setup. Let x € X denote covariates, t € {0, 1} a binary treatment (extensions to multi-
valued ¢ are straightforward), and y the outcome, which can be discrete with K classes or continuous.
For notational simplicity, we write all model-induced distributions as p(-), omitting the dependence
on learnable parameters.

CausalBL adopts a generative formulation and parameterizes the joint conditional distribution
p(t,y | ). Within this framework, the quantity p(¢ | x,y) induced by the model is the posterior
factor of this joint distribution. This posterior factor is used only for parameterizing the joint model
and plays no role in causal identification. Following the potential-outcome framework, our causal
estimands are the potential outcomes yo (), y1 (z) and the resulting individual treatment effect (ITE)

7(x) = y1(2) = yo(@).
Average treatment effects (ATE) are obtained only by averaging ITE over the test distribution.

Remark G.1. We emphasize that the posterior factor p(t | x,y) is not used for causal identification
and never replaces the propensity score; it arises solely from the factorization of the generative
model p(t,y | ©). For continuous outcomes, the dependence of treatment compositional utilities on
y stems only from the generative parameterization of the conditional density p(y | x,t), not from
any causal assumption.
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Design principle. Rather than predicting potential outcomes and treatment assignments with sep-
arate discriminative heads, CausalBL parameterizes the factors of the joint conditional distribution
p(t,y | x) using a collection of compositional utility heads. Each head produces a scalar com-
positional utility, and relative magnitudes are converted into probabilities through a Gibbs/softmax
link. Compositional utilities are constructed by stacking interpretable blocks B (Figure 7), and are
grouped into three families:

» Treatment compositional utilities. Two heads BL{ (-), BL] () encode the relative desirability of
control vs. treatment. For discrete outcomes, the inputs are only covariates z, i.e. BL;»F(x). For

continuous outcomes, the treatment utilities also depend on the outcome variable, i.e. BL;r (z,9).
The resulting treatment probability is the posterior factor

p(t]z,y) = softmax(% [BLOT(:E, Y), BL?(w7y)])t ,

which is induced by the generative model p(¢, y | ) and is not a classical propensity score. The
predicted treatment is
i = BLY (2, v).
(z,y) arg max, BL; (z,y)

* Outcome compositional utilities under ¢ = 0. For discrete outcomes, we define K heads
{BLY (2)}5,. yielding

ply=k|z,t=0)= softmax(% [BL&O)(QE)7 . ,BL(IS)(x)])k . Jo(x) = arg mngL,iO)(x)

For continuous outcomes, we instead use a scalar head BL(?) (z,y) that directly scores candidate
outcomes y given .

* Outcome compositional utilities under ¢ = 1. For discrete outcomes, we symmetrically define

{BL,(:)(:L')},CK:T For continuous outcomes, we instead define BL™" (x, ), which induces the
conditional distribution p(y | «,t = 1) and, analogously, the predicted outcome g ().

Here 7 > 0 is a temperature (fixed or learnable) controlling the sharpness of the softmax/Gibbs link.
Grouping compositional utilities by (T, 0, 1) yields, in the binary case, six heads when K = 2 for
discrete outcomes (two for ¢, two for y | ¢ = 0, two for y | ¢ = 1); for multi-class y the number of
outcome heads scales linearly with K.

Training objectives. Since CausalBL models the joint conditional distribution p(¢,y | ), the
training loss depends on whether the outcome y is discrete or continuous.

Discrete outcomes. When y is discrete, only covariates x are fed into the treatment heads. The pos-
terior factor reduces to p(¢ | ), because BLjT does not depend on y. Training employs a weighted
objective based on cross-entropy terms, where probabilities are induced via softmax over composi-
tional utilities.

Laise = Ar CE (t, softmax( L BL] (z), BL;F(I)]))

T

posterior factor of the generative model

+ Ay []l{t =0} CE (y, softmax(% {BL](CO)(QJ)}szl)) +1{t =1} CE(y, softmax(% {BL](CI)(Z‘)},CK:1>)}
with nonnegative weights A, Ay.

Continuous outcomes. When y is continuous, both x and y are fed into the heads, as the model
must parameterize the conditional density p(y | #,t). Each branch ¢ € {0, 1} defines a Gibbs-form
conditional density

pely | 2,t) o exp(LBLO(z,y)

The score V, log p-(y | x,t) is learned by denoising score matching (DSM). Using Gaussian cor-
ruption § ~ N (y, 0I), the DSM loss is

Lpsm = E“Wg logpr (7 | x,t) + % (5 — Z/)HZ}
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In addition, treatment posterior factor is trained with cross-entropy:
Lprop = A1 CE (t7 softmaux(%[BLOT(:JJ7 Y), BL?(w, y)]))

The total loss for continuous outcomes is

»Ccont = Cprop + )\DSM »CDSM
Remark G.2. This difference from the discrete-outcome case arises purely because, for continuous
y, the model must parameterize a density over possible outcomes. Consequently, the treatment
utilities BL}“(x7 y) depend on y only through this generative parameterization of p(t,y | x). This
dependence does not impose any assumption on the causal structure.

Mixed outcomes. When y contains both discrete and continuous components, we combine the two
objectives by a positive weighted sum:

Linixed = Vdisc Laisc + Ycont Lecont Vdiscs Yeont > 0

Amortized inference for fast prediction. For continuous outcomes, or for high-cardinality dis-
crete outcomes, we adopt amortized inference to avoid expensive test-time optimization over .
Importantly, the amortized predictor is trained after CausalBL has been fitted, so that it learns to
approximate the optimal solution of the fixed underlying model. Specifically, given covariates z, we

learn a branch-specific predictor gf; ) (z) for each treatment ¢.

The predictor is trained with the following objective:

Lamort = & [~BLY (z, ¢ ()] + Blly — ¢ (@) 3. .8>0

where the first term encourages the predicted outcome to achieve high compositional utility under
the appropriate branch, and the second term ensures numerical accuracy on factual pairs.

Prediction and causal queries.

* Model-induced  posterior  factor: For  discrete  outcomes, () =
softmax (2 [BL{ (z), BL ()]),. For continuous outcomes,  7(z,y) =

softmax(% [BLOT(glc7 y), BL{ (, y)])g'

* Potential outcomes: For discrete outcomes, ;(x) = argmaxy BL,(f)(x), with calibrated class

posteriors given by softmax. For continuous outcomes, ;(z) = gg’ )(x) where the amortized

predictor is trained after fitting CausalBL.

* Effects: For binary discrete outcomes, report the difference in success probabilities, Pr(y = 1 |
xz,t =1) —Pr(y = 1| x,¢t = 0). For continuous outcomes, report the individual treatment
effect (ITE), 7(z) = 1 (z) — Jo(z).

Interpretability. Each head is a compositional utility assembled from B-blocks; the value of a
head admits a behavioral meaning (“how favorable is class k under branch ¢”), and the contributions

of individual B-blocks can be traced layer-wise. This preserves BL’s intrinsic interpretability while
enabling causal tasks.

H EXPERIMENTAL DETAILS

H.1 HARDWARE
Most experiments are conducted on a single NVIDIA L40S GPU. A small number of runs are

performed on a laptop equipped with an NVIDIA GeForce RTX 2050 GPU and an Intel Core 17—
12700H CPU.

H.2 STANDARD PREDICTION TASKS

Datasets. In the Standard Prediction Task, we use 10 OpenML datasets across diverse application
domains. Details are given in Table 3.
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Table 3: Standard OpenML datasets used in our task. #Features denotes the number of input vari-
ables (excluding the target and ID).

Name Size #Features Task type Field

German Credit 1,000 20 Binary cls. Finance

Adult Income 48,842 14 Binary cls. Economics

COMPAS (two-years) 5,278 13 Binarycls. Law & Society

Bank Marketing 45,211 16 Binarycls. Marketing

Planning Relax 182 12 Binary cls. Psychology

EEG Eye State 14,980 14 Binary cls. Neuroscience
MAGIC Gamma Telescope 19,020 10 Binary cls. Physics

Electricity 45,312 8 Binary cls. Electrical Engineering
Wine Quality (Red) 1,599 11 Multiclass  Chemistry

Steel Plates Faults 1,941 27 Multiclass Industrial Engineering

Baseline Models. For comparison, we include the following baselines: MLP, Neural Additive
Model (NAM) (Agarwal et al., 2020; Kayid et al., 2020), ElasticNet, Random Forest, Stochastic
Variational Gaussian Process (SVGP) (Gardner et al., 2018), Logistic Regression, Decision Tree,
TabNet (Arik & Pfister, 2021), Polynomial Logistic Regression, and LightGBM (Ke et al., 2017).

Table 4: Overview of baseline models in the standard prediction task

Methodological Family Model Name

Standard MLP

Neural networks Neural Additive Model (NAM)
TabNet
ElasticNet

Linear regressors Logistic Regression

Polynomial Logistic Regression

Random Forest
Decision Tree

Gradient boosting methods  LightGBM

Tree-based models

Bayesian methods Stochastic Variational Gaussian Process (SVGP)

Data preprocessing. For all ten datasets, we apply a consistent preprocessing strategy. Ordinal
categorical variables are mapped to integer levels to preserve their inherent order. Nominal cat-
egorical variables without natural ordering are transformed using one-hot encoding. Continuous
variables are standardized to zero mean and unit variance. Each dataset is randomly partitioned into
train/validation/test splits with a 7:1:2 ratio.

Hyperparameter Tuning Protocol. We perform hyperparameter optimization for most models
using the TPE sampler from the Optuna package (Akiba et al., 2019), with 50 trials per dataset. For
each model and dataset, the tuned configuration is evaluated under 8 random seeds.

BL Model Hyperparameter Space. For BL(Single) and BL(Shallow), we optimize cross-entropy
loss for classification. Both Adam (Kingma, 2014) and AdamW (Loshchilov & Hutter, 2017) op-
timizers are considered, and the better-performing variant is reported for each dataset. No data
augmentation is applied. Batch sizes are chosen in a dataset-specific manner.

* BL(Single): A unified setting is reported across all experiments:
degree;; = [2], degrees = [2,2,2], degreer = [2,2],

Oparams = 0.01, 05, =0.01, o5, =0.01, oy, =0.01.
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Here, degree;;, degree, and degree denote the polynomial degrees of the blocks that param-
eterize U(z,y), C(z,y), and T'(z, y), respectively. Lists indicate both the number of blocks and
each block’s degree: degree;; = [2] means a single quadratic block for U, degree~ = [2, 2, 2]
means three quadratic constraint blocks, and degree;; = [2,2] means two quadratic belief
blocks. o params initializes coefficients of all polynomial blocks, while oy,, 0y,, and oy, ini-
tialize the UMP weights (A, A1, A2). The search grid is reported in Table 5.

» BL(Shallow): We use global gradient clipping of 1.0 and an early stopping patience of 20 epochs
without validation improvement. Shallow architectures with depth I. < 3 are considered. The
search grid is reported in Table 6.

Baseline Model Hyperparameter Spaces. For baseline models, we also consider both Adam
and AdamW for the neural network-based variants, and report results with the better-performing
optimizer on each dataset. Batch sizes are tuned separately for each dataset. The detailed hyperpa-
rameter search spaces are summarized in Table 7.

Table 5: Hyperparameter tuning space for BL(Single)

Model Parameter Search space
learning.rate {le—3, le—1}

BL(Single) batch_size {64, 128, 256, 512}
max_grad.norm  {1.0, 2.0, 5.0}

Table 6: Hyperparameter tuning space for BL(Shallow)

Model Parameter Search space
learning.rate  LogUniform{5e—5, 5e—3}
batch_size {64, 128, 256, 512}
n_layers UniformInt{1, 3}
BL(Shallow) n_first_layer {24, 30, 36, 40}
nmiddle_layer {8,6,4}
n_last_layer {2,4,6}

weight_decay LogUniform{le—4, le—1}

Table 7: The hyperparameter tuning space for baseline models used in the standard prediction tasks

Model Parameter Search space
learning.rate LogUniform{le—5, le—1}
batch_size {32, 64, 128, 256}

MLP n_layers UniformInt{2, 4}
hidden_size UniformInt{32, 256}
weight_decay LogUniform{1le—6, le—2}
learning.rate LogUniform{le—3, le—1}

NAM batch_size {128, 256, 512, 1024}
patience UniformInt{10, 30}
alpha LogUniform{le—4, le+2}
ll_ratio Uniform{0.0, 1.0}
max_iter UniformInt{ 100, 2000}
tol LogUniform{le—6, le—2}

ElasticNet (SGD) fit_intercept {true, false}

learning._rate

etal
validation_fraction
n_iter_no_change

{optimal, constant, invscaling, adaptive}

LogUniform{le—4, le—1}
Uniform{0.05, 0.30}
UniformInt{3, 20}
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Model Parameter Search space
degree {2,3}
penalty {{a, £y, "elasticnet”}
C LogUniform{le—3, le+2}

PolyLogistic 1l ratio Uniform{0.1, 0.9}
solver {”liblinear”, "1bfgs”, “newton-cg”, “saga”}
max_iter UniformInt{500, 2000}
tol LogUniform{le—5, le—3}
C LogUniform{le—3, le+2}
ll._ratio Uniform{0.0, 1.0}

Logistic (ElasticNet) max_iter UniformInt{100, 2000}
tol LogUniform{le—6, le—2}
fit_intercept {true, false}
solver {”liblinear”, "1bfgs”, "sag”}
C LogUniform{le—4, le42}

LogisticRegression max_iter UniformInt{100, 2000}
tol LogUniform{1le—6, le—2}
fit_intercept {True, False}
intercept_scaling Uniform{0.1, 10.0}
learning.rate LogUniform{1le—4, 3e—2}
batch_size {128, 256, 512, 1024}
virtual batch_size {64, 128}

TabNet n.d=n_a UniformInt{16, 64}
n_steps UniformInt{3, 7}
gamma Uniform{1.2, 1.7}
lambda_sparse LogUniform{1le—6, le—3}
criterion {”gini”, "entropy”, "log_loss”}
max_-depth UniformInt{3, 20}
min_samples_split UniformInt{2, 20}
min_samples_leaf UniformInt{1, 10}

DecisionTree min_weight_fraction_leaf Uniform{0.0,0.5}
max_features {"sqrt”, "log2”}
max_leaf nodes UniformInt{10, 1000}
min_impurity.decrease Uniform{0.0, 0.1}
ccp-alpha Uniform{0.0, 0.1}
kernel {rbf, matern, rational quadratic}
lengthscale LogUniform{0.1, 10.0}
rg_alpha LogUniform{0.1, 5.0}

GP (SVGP) num_inducing UniformInt{100, 500}
learning.rate LogUniform{le—2, 5e—1}
training.iters UniformInt{50, 200}
n_estimators UniformInt{100, 500}
max_depth UniformInt{3, 30}

RandomForest max_features {"sqrt”, "log2”}

min_samples_leaf
min_samples_split

UniformInt{1, 10}
UniformInt{2, 20}

H.3 COUNTERFACTUAL PREDICTION

H.3.1

DATASETS AND SYNTHETIC DATA GENERATION.

For the IHDP dataset, we use the benchmark version provided by Shalit et al. (2017), which includes
100 realizations with covariates, treatment assignments, factual and counterfactual outcomes, as well
as noiseless potential outcomes that facilitate unbiased evaluation. For the Jobs dataset, we follow
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the same benchmark format introduced in Shalit et al. (2017), where the variables include covariates,
treatment, factual outcomes, and an indicator of randomized assignment.

For the synthetic dataset, we build on the M3 design in de Vassimon Manela et al. (2024): 10
pretreatment covariates (five gamma, five binary) are generated via a Gaussian-copula dependence
with a fixed 10 x 10 correlation matrix; treatment is binary and the outcome is continuous. On
top of this process, we introduce additional nonlinear interactions, heterogeneous treatment effects,
and heteroskedastic noise, yielding more complex data-generating processes that better mimic real-
world observational studies.

* Nonlinear treatment posterior factor with tunable overlap. We specify
logit P(T=1|Z) =—-0.34+0.1Zc; + 0.2Zc2 + 0.5Zc3 — 0.2Z04 + Zes + 0.3Z41 — 0.4Z40
+0.7Z43 — 0.1Zg4 + 0.9Z45 + Z2% + 0.58in(Ze3) + 0.6 Zca Zes.
A temperature parameter multiplies the logit before the sigmoid to control overlap.
* Outcome model with nonlinear functions and heterogeneous treatment effects. Let

90(Z) = 0.30Zey + 0.20Z2, + 0.20sin(Zu3) — 0.10Zes Zos,
W(Z) = 0.50Ze1 — 0.30Zu3 + 0.20Z2 + 0.308in(Zes) + 0.20Ze1 Zoes.
We set (19(Z) = 1+ go(Z) and 7(Z) = 2+ h(Z), so that E[Y | T, Z] = po(Z2) + T7(2).

Heteroskedastic noise is used: o(Z) = 0.5 + 0.3max{(Z.1 + Ze2)/2, 0} and Y ~ N (uo(Z) +
T7(2), 0%(Z)).

H.3.2 BASELINE MODELS

For comparison, we evaluate the CausalBL model against several established baselines: Causal
Forest (Athey et al., 2019), DragonNet (Shi et al., 2019), TARNet (Shalit et al., 2017), T-Learner,
S-Learner, and X-Learner (Kiinzel et al., 2019), as well as the DR-Learner (Kennedy, 2023).

Table 8: Overview of counterfactual prediction baseline models.

Methodological Family Model
T-Learner

Meta-learners S-Learner
X-Learner

. . DragonNet

Representation-learning networks TARNet

Tree-based models Causal Forest

Doubly robust estimators DR-Learner

H.3.3 METRICS

For datasets with known ground-truth treatment effects, we adopt two evaluation metrics: the Rooted
Precision in Estimation of Heterogeneous Effect and the Relative ATE error. They are defined as:

N
1 . 2

VEPEHE = | 77 ; (F(xi) — (1)), (30)

craar = TR, 3D

where 7(z;) and 7(z;) denote the estimated and true individual treatment effects; 7oy and TaTE
denote the estimated and true average treatment effects.
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For the Jobs dataset, since the ground-truth counterfactual outcomes are unavailable, we employ the
Policy Risk R, (7) (Kiinzel et al., 2019; Shalit et al., 2017) and the Absolute Treatment Effect on
the Treated error (ATT error) (Shalit et al., 2017). Specifically,

Rpai(ms) = 1= {p(ms(2) = 1) - EIY* | m5(x) = 1]

(32)
+ p(ms(2) = 0)- B[ | mo(2) = 0]},
EATT = |TATT — ﬁ Z (fzi, 1) = flai, 0))| ; (33)
€T

where 7o is the true ATT from the RCT subset, and the second term is the average estimated ITE
on the treated units.

H.3.4 MODEL HYPERPARAMETER CONFIGURATIONS

We summarize the hyperparameter configurations for both CausalBL and the baseline models used
in the counterfactual prediction experiments. In general, we adopt the default hyperparameters
provided by the respective implementations, with minimal tuning as detailed below.

» CausalBL. Unless otherwise specified, we use a single hidden layer with h = 12 units, weight
decay A\ = 104, and batch size B = 64. We apply nyoisc = 1 denoising score matching (DSM)
perturbation per sample with variance opgy. Training proceeds in two phases. Phase 1 runs for
E; = 100 epochs with early stopping (patience p; = 10, improvement threshold i, = 107%).
The loss is weighted by At (treatment posterior factor loss term) and Ay (outcome loss term).
Phase 2 uses E'5 = 50 epochs with early stopping (patience py = 6, improvement threshold
Smin = 107°). The learning rate is fixed at n = 103 for both phases. For model selection, we
perform a discrete grid search over

OpsSM € {1.0, 1.2, 1.5}, At € {0.1,0.2}, FEy € {50, 100}, Ay € {08,09}

* EconML implementations. For DR-Learner, T-Learner, X-Learner and Causal Forest, we use
the implementations provided by the EconML package (Battocchi et al., 2019), with the recom-
mended default hyperparameters from the official documentation.

* CausalML implementations. For DragonNet and S-Learner, we adopt the implementations from
the CausalML package (Chen et al., 2020), using the recommended hyperparameters as in the
official Jupyter notebook examples.

* TARNet. We start from the default configuration of Shalit et al. (2017), but apply minor tuning
for consistency with DragonNet. Concretely, we use three hidden layers with 200 units in the
shared representation and two hidden layers with 100 units in each outcome head, with ELU
activations. We also set the batch size to 64, in line with the DragonNet implementation.

H.3.5 RESULTS

IHDP results. Figure 8 reports the forest plots of vVPEHE on the IHDP dataset, with the left and
right panels showing within-sample and out-of-sample performance, respectively. Each marker indi-
cates the mean over runs, and the horizontal bar denotes its uncertainty interval. Across both splits,
CausalBL consistently ranks among the top methods, outperforming most baselines and achieving
performance comparable to the best-performing baseline, T-Learner. In general, CausalBL attains

consistently low +VPEHE with narrow intervals, indicating a stable estimation in both settings.

Jobs results. Figure 9 presents box plots of the absolute ATT error on the Jobs dataset, with the left
and right panels showing within-sample and out-of-sample performance, respectively. CausalBL is
among the top performers, with low median error and small variance, and remains competitive with
the strongest baselines across both settings.
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Table 9: Within- and out-of-sample performance on the IHDP and Jobs datasets. Reported are the

mean * standard error of vV PEHE, ATE relative error, policy risk, and |ATT| error. Top two results
per column are highlighted in blue and red.

Within-sample Out-of-sample
Model IHDP Jobs IHDP Jobs
V€PEHE €ATE RpoL EATT V€PEHE €ATE RpoL EATT

IBL-based Model 1.07 £ 0.62 0.03 +£0.02 0.23 £0.01 0.01 001 1.19 +0.67 0.05 4+ 0.04 0.26 4 0.03 0.07 £ 0.07
DR-Learner 2.87 £ 1.57 0.10 £0.09 0.14 £ 0.02 0.05 &£ 0.02 2.65 £1.53 0.11 &£ 0.10 0.23 £ 0.04 0.08 £ 0.07
DragonNet 1.20 £ 062 0.07 £0.06 0.23 £0.01 0.24 £0.14 1.25 £ 0.67 0.07 £ 0.06 0.24 4+ 0.04 0.24 &+ 0.16

GRF 1.47 £ 1.04 0.05 £0.05 0.14 £ 0.01 0.01 £0.01 1.50 &+ 1.05 0.07 £ 0.08 0.22 + 0.04 0.08 £ 0.07
S-Learner 1.16 + 0.87 0.03 £ 0.02 0.17 £ 0.01 0.02 £ 0.01 1.19 £ 090 0.05 £ 0.07 0.22 £ 0.04 0.08 £ 0.07
TARNet 1.37 £ 028 0.10 £0.07 0.20 £ 0.01 0.03 £0.02 1.42 +0.37 0.11 +0.09 0.24 + 0.04 0.08 + 0.08

T-Learner 0.88 +0.24 0.02 +£0.02 0.11 £ 0.01 0.01 +0.01 0.99 £ 039 0.03 +0.03 0.22 £ 0.05 0.08 £ 0.06
X-Learner 1.32 +0.80 0.03 +£0.03 0.12 +0.01 0.01 +£0.01 1.36 £ 0.85 0.05 £ 0.05 0.21 £ 0.05 0.08 £ 0.06

DR-Learner - F—0— DR-Learner 1 00—
GREF 4 00— GRF 4 e |
TARNet o+ TARNet —o—

X-Learner { ——0— X-Learner { 00—
DragonNet —o0— DragonNet 1 —o0—

S-Learner -| F——o0— S-Learner | 00—

T-Learner | @i T-Learner 1 F—@—4

CausalBL —o0— CausalBL - F——0—

1(')" 2x10° 3x10" ]60 2x10° 3x10°
Within-sample VPEHE (| except CausalBL) Out-of-sample VPEHE (| except CausalBL)

Figure 8: Forest plots of v PEHE for within-sample (left) and out-of-sample (right) evaluation on
the IHDP dataset. Methods are ordered by mean error, with CausalBL fixed at the bottom for clarity.

DragonNet - QD—T DragonNet . <> ‘:E}—{
DR-Learner - +—Er GRF e
TARNet V—[E“—i X-Learner {}
S-Learner T-Learner 3—.‘{35—’—‘
GRF . #ﬂﬂ—i S-Learner b Ej 1
T-Leamer KR} TARNet —{ Ol F———i
X-Learner - , }w—( DR-Learner ﬂj—‘f
CausalBL P—Ej—i CausalBL b {jj 1
-40 35 30 25 20 -15 -1.0  -05 0.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
Within-sample 10g19 (JATT] error) (| except CausalBL) Out-of-sample 10g10 (|ATT| error) (| except CausalBL)

Figure 9: Box plots of absolute ATT error for within-sample (left) and out-of-sample (right) evalu-
ation on the Jobs dataset. Metrics are log-transformed before plotting and methods are ordered by
the median error, with CausalBL fixed at the bottom for clarity.
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H.4 INTERPRETING BL: A CASE STUDY

H.4.1 INTERPRETING BL(DEEP): HIGH-LEVEL OVERVIEW

Deeper variants of BL are constructed by stacking multiple BL(Single) modules into hierarchical
layers, followed by a final affine transformation. This forms a system of interacting UMPs (each
of which can be viewed as an agent), where each internal block B represents a single interpretable
UMP. As shown in Figure 10, first-layer modules correspond to individual UMPs, while the second-
layer module performs optimal coordination by aggregating or allocating their outputs. This layered
structure offers a compositional interpretation of deeper BL models as systems of interacting, inter-
pretable UMPs.

max U (x,y)

yER™

C(x,y) <0
T(x,y) =0

Figure 10: Interpreting deeper BL architectures as hierarchical systems of interacting agents. Each
block B represents an interpretable agent solving its own UMP, while a layer corresponds to a set of
heterogeneous agents operating in parallel. The next layer then aggregates and reallocates the neg-
ative energies from the previous layer, thereby performing higher-level coordination across agents.
This layered organization provides a natural compositional interpretation of deep BL: bottom-layer
modules encode local objectives, while upper layers synthesize these into collective outcomes. Anal-
ogous structures arise in biological and social systems—for example, in ant colonies, individual ants
(first-layer agents) follow simple local rules, yet their collective behavior is coordinated through
higher-level interactions (second-layer aggregation), yielding globally efficient resource allocation
and task division.

H.4.2 CASE STUDY: ADDITIONAL DETAILS
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Table 10: Boston Housing dataset variables and descriptions.

Variable  Description

CRIM Per-capita crime rate by town

ZN Proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS Proportion of non-retail business acres per town

CHAS Charles River dummy variable (=1 if tract bounds river)
NOX Nitric oxide concentration (parts per 10 million)

RM Average number of rooms per dwelling

AGE Proportion of owner-occupied units built prior to 1940

DIS Weighted distances to five Boston employment centers

RAD Index of accessibility to radial highways

TAX Full-value property-tax rate per $10,000

PTRATIO  Pupil-teacher ratio by town

B 1000(By, — 0.63)? where By, is the proportion of Black residents by town
LSTAT Percentage of lower-status population

MEDV Median value of owner-occupied homes in $1000s

Table 11: Semantic roles of blocks in the deep BL architecture.

Layer Block Representative preference
Location-Sensitive Buyer Values river access, transport accessibility, and neighbor-
hood amenities.
Risk-Sensitive Buyer Averse to local disamenities such as pollution and envi-
ronmental risk.
Layer 1 Economic-Sensitive Buyer Sensitivg to schqql quality and neighborhood socio-
economic composition.
Zoning-Contrast Buyer Responds to zoning and land-use patterns that shape local
housing supply.
Affordability-Preferring Buyer Strongly prefers more affordable housing and dislikes
high prices.

Integrated Location—Economic Buyer  Jointly evaluates location and socio-economic attributes
in an integrated way.

Layer2  Budget-Conflict Buyer Exhibits strong preferences for desirable locations but
faces binding budget constraints.
Balanced Trade-off Buyer Jointly considers multiple housing attributes in a balanced
manner.
Layer 3  Representative Composite Buyer Aggregates all lower-level preference components into a

representative household.

Table 12: Each block in the deep BL architecture is aligned with a classic preference mechanism
documented in the economics literature.

Layer / Block Representative reference
Layer 1: Location-Sensitive Buyer Gibbons & Machin (2005)
Layer 1: Risk-Sensitive Buyer Chay & Greenstone (2005)
Layer 1: Economic-Sensitive Buyer Black (1999)

Layer 1: Zoning-Contrast Buyer Glaeser & Gyourko (2002)
Layer 1: Affordability-Preferring Buyer McFadden (1977)

Layer 2: Integrated Location—-Economic Buyer  Bayer et al. (2007)

Layer 2: Budget-Conflict Buyer Balseiro et al. (2019)
Layer 2: Balanced Trade-off Buyer Rosen (1974)
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H.5 PREDICTION ON HIGH-DIMENSIONAL INPUTS

Datasets Description and Preprocessing. For image datasets, we use the official train/test splits
of MNIST and Fashion-MNIST: Inputs are converted to single-channel images scaled to [0, 1] and
standardized with dataset-specific statistics. No resizing or data augmentation is applied. Training
uses shuffled mini-batches of size 64. For text datasets, we apply the following procedures:

1 Data sources and official splits. We use the official training and test splits for AG News and Yelp
Review Polarity without any custom re-partitioning. Both datasets are class-balanced across
labels, and we do not perform any resampling.

2 Dataset sizes. AG News: 120,000 training / 7,600 test samples with four balanced classes. Yelp
Review Polarity: 560,000 training / 38,000 test samples with two balanced classes.

3 Label mapping. AG News: labels 1—4 are mapped to 0-3. Yelp Review Polarity: labels 1-2 are
mapped to 0—1.

4 Text preprocessing and feature representation. All texts are lowercased and tokenized at the word
level. The vocabulary is built with unigrams and bigrams, discarding words that appear fewer
than two times in the training corpus. The vocabulary size is capped (AG News: 200,000; Yelp:
100,000). We compute TF-IDF weights on the training split and apply the learned weights to
the test split. Dimensionality is reduced to 128 latent components using truncated singular value
decomposition (SVD). Features are standardized to zero mean and unit variance and finally /-
normalized. We fix the random seed for reproducibility and reuse the learned preprocessing
components across runs.

Additional OOD Detection Results. In additional to accuracy and AUROC, we also report AUPR
and FPR @95 for both image and text datasets; the results are shown in Table 13. On image datasets,
BL (depth=1) achieves the best overall balance: it ranks first on Fashion-MNIST AUPR and second
on Fashion-MNIST FPR@95. On MNIST, it is second in AUPR but underperforms in FPR@95
compared with E-MLP (depth=2). These results suggest that BL yields separable score distributions,
particularly on Fashion-MNIST, although its 95% FPR threshold admits more OOD samples than
E-MLP at the same recall. On text tasks, BL remains competitive: BL (depth=3) achieves the lowest
FPR@95 on AG News, and BL (depth=2) leads AUPR on Yelp.

Table 13: OOD AUPR and FPR@95 (%) on image and text datasets. BL and E-MLP are evaluated
at depths 1-3 with matched parameter counts, both without skip connections. Top-two per column
are blue and red.

MNIST Fashion-MNIST
AUPR FPR@95 AUPR FPR@95

E-MLP (depth=1) 89.37 +152 3557 £587 91.35+ 125 28.24 4+ 437
BL (depth=1) 91.57 £239 47.81 £1129 91.79 £ 090 38.86 + 257
E-MLP (depth=2) 91.52+127 2889 +285 86.19+227 47.72+479
BL (depth=2) 91.20+£122 52.71 £1866 89.30+247 42.65+0953
E-MLP (depth=3) 90.04 + 189 3192 +576 84.30+150 54.49 +274
BL (depth=3) 92.36 +203 32.32+576 88.41 +404 41.19 +1336

AG News Yelp
AUPR FPR@95 AUPR FPR@95

E-MLP (depth=1) 87.06 +008 91.75 015 20.76 + 028 92.27 + 052
BL (depth=1) 89.53 £ 005 86.68 +051 2049 o014 97.06 + 0.05
E-MLP (depth=2) 88.59 +018 89.26 +029 20.65 +054 92.37 + 1.06
BL (depth=2) 88.06 £0.17 86.86+079 20.80+028 96.95 + 0.07
E-MLP (depth=3) 89.82 +035 87.53+038 20.74+053 92.41 +1.00
BL (depth=3) 88.38 £ 026 86.04 +049 2044 +019 96.77 £ 043

Model

Model
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Number of Parameters. To ensure a fair comparison between E-MLP and BL, we match the
number of trainable parameters as closely as possible for models with the same depth (see Table 14).

Running Time. In order to further evaluate the computational efficiency of BL, we report the run-
ning time comparisons between Energy-based MLP and BL across image and text datasets. Under
comparable parameter budgets, we observe that on image datasets BL requires slightly more run-
ning time, whereas on text datasets it is considerably more efficient, with running time reduced to
roughly one third to one half of that of E-MLP (see Table 15, 16, 17, 18). Importantly, BL achieves
better predictive performance while maintaining running time that is similar to standard MLPs, and
in some cases even shorter.

Calibration We report ECE and NLL metrics to assess calibration quality, and the results are
presented in Table 19. On image datasets, BL provides substantially better calibration, with BL
models occupying the top two positions in each column. On text datasets, BL and E-MLP exhibit
comparable calibration performance, with no systematic advantage for either model. Overall, these
results indicate that BL delivers strong predictive performance together with reliable probability
estimates.

Table 14: Number of trainable parameters for E-MLP and BL models across high-dimension
datasets.

Dataset Model # Parameters
E-MLP (depth=1) 203,530
BL (depth=1) 208,384
. E-MLP (depth=2) 235,146
MNIST & FashionMNIST BL (depth=2) 219.264
E-MLP (depth=3) 238,314
BL (depth=3) 221,684
E-MLP (depth=1) 136,196
BL (depth=1) 149,720
E-MLP (depth=2) 386,284
AGNews BL (depth=2) 397.568
E-MLP (depth=3) 230,788
BL (depth=3) 224,128
E-MLP (depth=1) 134,146
BL (depth=1) 148,960
Yel E-MLP (depth=2) 385,770
p BL (depth=2) 397,312
E-MLP (depth=3) 230,530
BL (depth=3) 224,000

Table 15: Comparison of running time between BL and E-MLP on the MNIST dataset

Model Train Time (s) Eval Time (s) Total Time (s)
E-MLP (depth=1) 100.59 =+ 0.29 0.33 £ 0.03 100.92 + 0.30
BL (depth=1) 110.63 + 334 0.23 + 051 110.86 + 3.85
E-MLP (depth=2) 102.64 + 0.26 0.35 +0.03 102.98 + 0.26
BL (depth=2) 122.85 + 3.95 0.28 + 0.63 123.14 + 4.58
E-MLP (depth=3) 104.52 + 030 0.32 4+ 0.00 104.84 + 0.30
BL (depth=3) 140.17 + 442 0.00 + 0.00 140.18 + 4.43
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Table 16: Comparison of running time between BL and E-MLP on the FashionMNIST dataset

Model Train Time (s) Eval Time (s) Total Time (s)
E-MLP (depth=1) 73.57 +1.20 0.23 £ 0.01 73.80 + 1.19
BL (depth=1) 96.52 +2.90 0.23 + 051 96.75 + 341
E-MLP (depth=2) 78.25 +0.28 0.22 + 0.01 78.47 + 027
BL (depth=2) 11443 +3.72 0.28 + 0.63 114.72 + 435
E-MLP (depth=3) 85.57 + 1.19 0.22 4+ 001 85.79 + 1.19
BL (depth=3) 130.03 + 4.96 0.00 =+ 0.00 130.03 + 4.96

Table 17: Comparison of running time between BL and E-MLP on the AGNews dataset

Model Train Time (s) Eval Time (s) Total Time (s)
E-MLP (depth=1) 60.15 + 047 0.04 + 0.04 60.19 + 046
BL (depth=1) 22.96 + 0.79 0.06 + 0.14 23.02 +0.93
E-MLP (depth=2) 65.28 £ 032 0.03 £ 0.00 65.31 £ 032
BL (depth=2) 28.09 +0.79 0.09 + 020 28.18 +£0.99
E-MLP (depth=3) 68.81 +0.28 0.03 + 0.00 68.84 + 028
BL (depth=3) 34.08 + 355 0.00 + 0.00 34.08 + 3.56

Table 18: Comparison of running time between BL and E-MLP on the Yelp dataset

Model Train Time (s) Eval Time (s) Total Time (s)
E-MLP (depth=1) 606.93 +3.14 0.23 + 0.01 607.16 + 3.14
BL (depth=1) 186.53 + 1.49 0.02 + 0.04 186.55 + 1.51
E-MLP (depth=2) 612.15 £ 633 0.34 + 0.08 612.49 + 6.32
BL (depth=2) 184.03 + 1.30 0.00 + 0.00 184.03 + 1.30
E-MLP (depth=3) 614.99 + 6.08 0.27 + 0.05 615.26 + 6.06
BL (depth=3) 183.51 + 138 0.00 + 0.00 183.51 + 138

Table 19: ECE and NLL on image and text datasets. BL and E-MLP are evaluated at depths 1-3
with matched parameter counts. Top-two per column are blue and red.

MNIST Fashion-MNIST
Model
ECE NLL ECE NLL
E-MLP (depth=1) 0.02 +£000 0.20+002 0.08 £000 0.74 +0.01
BL (depth=1) 0.02 +000 0.26+001 0.05+000 0.36+0.01
E-MLP (depth=2) 0.02 +000 0.23 +002 0.09+000 0.89 +0.03
BL (depth=2) 0.02 +£000 0.16 001 0.07+000 0.44 + 001
E-MLP (depth=3) 0.02 +£000 0.16+002 0.09+000 0.85+0.04
BL (depth=3) 0.02 4000 0.13+002 0.07+000 0.49 +0.02
Model AG News Yelp
ECE NLL ECE NLL
E-MLP (depth=1) 0.01 000 0.31+000 0.00+000 0.22 + 0.00
BL (depth=1) 0.02+000 0.30+001 0.01+000 0.21 +0.00
E-MLP (depth=2) 0.02 +000 0.30+001 0.00+000 0.21 £ 0.00
BL (depth=2) 0.02 000 0.30+000 0.00=+000 0.21 +0.00
E-MLP (depth=3) 0.02 +000 0.30+001 0.01 £000 0.21 +0.00
BL (depth=3) 0.02 £ 001 0.32+001 0.01 000 0.22 + 0.00
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H.6 EVALUATING PENALTY-BASED CONSTRAINT ENFORCEMENT UNDER FINITE
TEMPERATURE

To evaluate whether the learnable penalty blocks in BL are capable of enforcing near-hard con-
straints under finite temperature, we isolate the penalty mechanism and test it on a high-dimensional
energy-conservation constraint. This diagnostic experiment removes the utility term and focuses
solely on the penalty structure, providing a clean characterization of how the penalty block controls
constraint violations as a function of temperature 7 and penalty scale .

Experiment setup. We sample z € R% i.i.d. from a standard Gaussian x ~ N (0, Is4) and define
a pure penalty compositional utility

T(z,y) = |yl* = ll«l?,  BL(z,y) = -AT(z,y)?
which plays the role of an energy-conservation residual and its quadratic penalty.

We target the Gibbs distribution
ply | @) o exp(BL(z,y)/7)

using overdamped Langevin dynamics with step size = 104
Ye+1 = Yk + 0 VyBL(2, yx) /T + /207 &, Ex ~ N(0, Isa).

For each pair (A, 7) we run 512 parallel chains, each for 1500 Langevin steps (500 burn-in). We
sweep over temperatures 7 € {2.0,1.0,0.5,0.25,0.1,0.05,0.02,0.01,0.005} at a fixed penalty A\ =
25, and over penalty weights A € {0, 1, 3, 10, 30, 100, 200, 500} at a fixed temperature 7 = 0.05.

For each configuration we record the residual magnitude |7'(x, y)| from the final state of every chain.
We then report three summary statistics: (i) the mean violation E[|T'(z,y)|], (ii) the 95th percentile
of |T'(x,y)|, and (iii) the empirical probability of near-feasible samples. We declare a sample to
satisfy the constraint approximately if

T(z,y)| < e With e =10"",

and estimate P(|T(x,y)| < ei1) across chains. This tolerance scale is chosen to be small relative
to the typical unconstrained residuals, so that the near-feasible regime corresponds to a practically
tight energy-conservation constraint.

Results. The results (Fig. 11) exhibit the classical behavior of Gibbs-type penalty methods. Both
decreasing the temperature 7 and increasing the penalty weight A substantially reduce constraint
violation. When 7 becomes sufficiently small (7 < 0.01), nearly all samples satisfy the constraint
threshold. Similarly, increasing A sharpens the energy well around T'(x, y) = 0, leading to rapidly
diminishing violations. All curves are smooth and monotone in the 64-dimensional setting, indi-
cating excellent numerical stability of the Langevin sampler and demonstrating that the BL penalty
structure functions as a genuine, controllable penalty mechanism inside a stochastic energy-based
model.

H.7 PARAMETER RECOVERY ANALYSIS

We conduct a simulation-based parameter recovery study in a teacher—student setup to examine
whether BL can recover the underlying utility and constraint functions. We generate covariates

X € R? with independent components ; g (—2,2), and define the teacher function
Y* = z129 + 0.523 + 0.2z, 23.

The observed target variable is generated as
Y =Y"+e¢, e~ N(0,0?%),

so that Y represents a noisy observation of the teacher function. A BL student model is then trained
on the synthetic pairs (X,Y"), and its recovered parameters are compared against the ground-truth
teacher parameters to assess recovery performance.
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Figure 11: Constraint enforcement test of the BL penalty block on an energy-conservation con-
straint. The figure reports violation statistics |T'(z, y)| when varying the temperature 7 (left side of
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* Depth-1 parameter recovery. We directly compare the learned parameters with the ground-
truth coefficients of the teacher model. As shown in Table 20, the recovered coefficients in the
utility block, as well as in both the inequality and equality constraint blocks, are extremely close

1 3

10° 10" 10

Penalty weight

10 10 10

to the true values, with very small absolute and relative estimation errors.

Higher-depth recovery (depth 3 and 5). At larger depths, individual parameter alignment
is less informative because the block compositions become more complex. We therefore assess
recovery by comparing the learned and ground-truth block outputs through Q—Q plots. As shown
in Figure 12, the points lie almost perfectly on the identity line, indicating that the learned

functions accurately reproduce the teacher functions even in deeper architectures.

Table 20: Parameter recovery results for the depth-1 BL model.

Category Feature Teacher Student Diff Rel. Error
Utility 1 0.38 0.38 0.0030 0.0080
Utility T2 0.41 0.41 0.0008 0.0019
Utility T3 -0.12 -0.11  0.0025 0.0213
Utility C 0.45 0.45 0.0069 0.0152
Inequality Constraints  z; -0.11 -0.11  0.0025 0.0229
Inequality Constraints — xo 0.10 0.11  0.0057 0.0553
Inequality Constraints — x3 -0.25 -0.25 0.0034 0.0140
Inequality Constraints C 0.29 0.28 0.0069 0.0239
Equality Constraints b 0.44 0.44 0.0022 0.0051
Equality Constraints To -0.37 -0.36  0.0012 0.0034
Equality Constraints T3 0.43 0.44 0.0009 0.0021
Equality Constraints C 0.09 0.08 0.0064 0.0711

H.8 EMPIRICAL VERIFICATION OF STRUCTURAL IDENTIFIABILITY

To empirically validate the theoretical identifiability property of the proposed IBL model, we con-
ducted an experiment based on the Jacobian rank criterion. Structural identifiability is ensured when
the parameterization yields a full-rank Jacobian almost everywhere (Ljung & Glad, 1994). Follow-

54



Under review as a conference paper at ICLR 2026

Parameter Recovery Analysis: 3-Layer vs 5-Layer Architecture
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Figure 12: Q—Q recovery plots for 3-layer and 5-layer BL models.

ing this classical criterion, we evaluate whether each model instance maintains a non-degenerate
Jacobian under random initialization.

Experimental Setup We evaluate identifiability across three model families: ReLU MLP, Soft-
plus MLP, and IBL. For each architecture depth L € {2,3,4,5,6, 7}, we construct networks with
matched parameter budgets and generate 20 random initializations. Each initialized model is as-
sessed by computing the numerical rank of its Jacobian through automatic differentiation. A model
is considered identifiable if the Jacobian is full-rank under the singular-value criterion described
above. The identifiability ratio for each depth is defined as the proportion of identifiable instances
among the total trials.

Results Figure 13 shows that IBL achieves a 100% identifiability ratio across all depths. Softplus
MLPs rapidly lose identifiability as depth increases (from 95% at L = 2 to 10% at L = 7), while
ReLU MLPs remain non-identifiable due to degenerate Jacobians. These findings empirically cor-
roborate our theoretical analysis: IBL maintains an identifiable parameterization whereas standard
MLPs do not.

H.9 CASE STUDY: ESTIMATION RESULTS OF BL ON THE BOSTON HOUSING DATASET
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Identifiability Comparison between IBL and MLP
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Figure 13: Identifiability Comparison between IBL and MLP. The IBL model maintains 100%
identifiability across depths, whereas Softplus MLPs suffer from rank degeneracy as layers increase.

Table 21: Estimated UMP block parameters learned by the BL model (layer = [2, 1]) on the Boston
Housing dataset. For each block, U denotes the Utility component, C' the Inequality-Constraint
component, and 7' the Equality-Constraint component.

Block 11 Block 12
Variable U11 Cn T11 U12 012 T12
A 1.003  0.997 0.999 | 0.997 1.003 1.000
per capita crime rate (CRIM) 0.21 0.14 0.03 0.12 0.09 0.25
residential land proportion (ZN) 023 -0.04 -0.27 | 025 0.00 0.09
non-retail business acreage (INDUS) -0.06 0.21 0.25 0.16 0.22 0.27
Charles River dummy (CHAS) 0.25 0.04 -024 | -0.12 -020 -0.23
nitric oxide concentration (NOX) -0.06 -0.13 0.21 0.16 0.02 -0.28
average rooms per dwelling (RM) 0.06 0.07 0.05 0.05 -0.19  -0.22
proportion of older units (AGE) -0.13  -0.12 -0.09 | 0.14 0.08 -0.18
distance to employment centres (DIS) | 0.16  -0.03 0.17 | -0.17 -0.09 0.11
radial highway accessibility (RAD) 024 -0.11 0.04 | -0.28 0.09 0.10
property tax rate (TAX) -0.20  0.18 022 | -0.11 -0.06 0.23
low-income population (LSTAT) 005 -0.12 -0.09 | 023 -0.16 -0.19
median home value (MEDV) 0.21 -0.08  0.07 0.08 -0.17 0.15
Constant term (C) 0.03 -0.17  -0.07 0.11 -0.16  -0.12
Block 21
Variable | Un Ca To1
A 1.000  1.003  0.999

Block 11 output (b1,1) | 0.428 -0.551  0.147
Block 12 output (b1,2) | -0.168 -0.356  -0.178
Constant term (C) 0.406  0.219 0.421
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Table 22: Estimated UMP parameters for the Layer 1 blocks of the BL model (layer = [5, 3, 1])
trained on the Boston Housing dataset. Here, U denotes the Utility component, C' the Inequality-
Constraint component, and 7' the Equality-Constraint component.

Variable ‘ Ui Uiz Uis Uia Uis
A 1.000  0.998 1.003 1.002 1.000
per capita crime rate (CRIM) 0.21 0.12 0.17  -0.09 0.06
residential land proportion (ZN) 0.23 025 -0.07 -022 -0.16
non-retail business acreage (INDUS) -0.06 0.16 0.16 0.23 -0.14
Charles River dummy (CHAS) 025 -0.12 -022 -0.05 -0.01
nitric oxide concentration (NOX) -0.06 0.16 -0.14 0.24 0.16
average rooms per dwelling (RM) 0.05 0.05 0.08 0.09 -0.07
proportion of older units (AGE) -0.13  0.14 0.06 -0.23 -0.15
distance to employment centres (DIS) | 0.16 -0.17 -0.07 0.19 -0.10
radial highway accessibility (RAD) 024 -027 017 -0.08 -0.20
property tax rate (TAX) -020 -0.11  0.19 -0.11 0.10
low-income population (LSTAT) 0.05 023 -0.15 -0.28 -0.26
median home value (MEDV) 0.21 0.08 0.25 0.08 0.06
Constant term (C) 0.03 0.12 -0.09 -0.06 0.15
| Cn Ci2 Cis Cia Cis
A 0.999 1.001 1.000 0.997 1.002
per capita crime rate (CRIM) 0.13 0.09 -0.10 0.11 0.05
residential land proportion (ZN) -0.04 -0.01 -027 -0.23 -0.10
non-retail business acreage (INDUS) 0.21 022 -0.16 0.20 0.15
Charles River dummy (CHAS) 0.04 -0.19 007 -020 0.15
nitric oxide concentration (NOX) -0.13 0.02 -0.04 -0.05 0.11
average rooms per dwelling (RM) 0.07 -0.19 -020 0.06 -0.05
proportion of older units (AGE) -0.13  0.08 0.01 0.14  -0.07
distance to employment centres (DIS) | -0.03  -0.09 -0.19 0.22 0.03
radial highway accessibility (RAD) -0.11 008 -023 025 -0.05
property tax rate (TAX) 0.18 -0.06 -0.15 -0.22 -0.08
low-income population (LSTAT) -0.13  -0.17 -0.18 -0.12 0.24
median home value (MEDV) -0.08 -0.17 0.28 -0.03 -0.03
Constant term (C) -0.17  -0.16 0.05 -0.21  -0.06
‘ Tl 1 Tl 2 Tl 3 T14 Tl 5
A 0.999 1.002 0999 1.004 1.001
per capita crime rate (CRIM) 0.03 0.25 0.08 0.25 0.00
residential land proportion (ZN) -0.27  0.10 -026 -0.20 -0.02
non-retail business acreage (INDUS) 0.25 0.26 -0.18 0.15 0.07
Charles River dummy (CHAS) -0.23  -023 -0.09 0.10 0.08
nitric oxide concentration (NOX) 0.21 -0.28 0.04 0.09 -0.25
average rooms per dwelling (RM) 0.05 -021 -024 -0.15 -0.10
proportion of older units (AGE) -0.09 -0.19 -0.12 0.26 0.24
distance to employment centres (DIS) | 0.17 0.12  -0.17  0.06 0.10
radial highway accessibility (RAD) 0.04 010 000 0.04 -0.01
property tax rate (TAX) 0.22 023 -0.10 -0.24 -0.17
low-income population (LSTAT) -0.09 -0.19 -0.19 -0.04 -0.25
median home value (MEDV) 0.08 0.15 -0.19 -0.13  -0.09
Constant term (C) -0.07 -0.11 -0.16 0.24 0.10
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Table 23: Layer 2 and Layer 3 UMP parameters (U, C', T') for Blocks in the BL model (layer = [5,
3, 1]).

Block 21 Block 22 Block 23
Variable U2 Co1 T>1 U2z Cao Tso Uas Cas T23
A 1.000  1.000 1.000 | 0.999 1.003 1.002 | 1.001 1.002 0.999

Block 11 output (by,1) | 0.28 0.06 -0.20 | -031 0.24 0.18 | -029 -0.08 022
Block 12 output (b1,2) | 021  -0.11 -0.09 | -044 0.12 -022 | 0.15 -022 020
Block 13 output (b1,3) | -0.40 0.18 -044 | -036 -0.01 -0.09 | -0.13 -0.14 0.32
Block 14 output (b1,4) | -0.27 -0.17  0.30 033 -034 -026 | 028 -042 -034
Block 15 output (b1,5) | -0.07 -0.29  0.34 022 -038 -0.08 | -0.14 0.25 0.32

Constant term (C) 0.43 0.33 0.16 0.38 -0.42 -0.32 -0.33 -0.31 -0.21
Variable Us1 Cs1 131
A 1.002 0.998 1.000

Block 21 output (b2,1)  0.21 -0.13  0.36
Block 22 output (b2,2) 054  -0.48  0.43
Block 23 output (b2,3) -0.08  0.28 0.55
Constant term (C) -0.01 -0.58 -0.14
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