
Regularized Langevin Dynamics for Combinatorial Optimization

Shengyu Feng 1 Yiming Yang 1

Abstract

This work proposes a simple yet effective sam-
pling framework for combinatorial optimization
(CO). Our method builds on discrete Langevin dy-
namics (LD), an efficient gradient-guided genera-
tive paradigm. However, we observe that directly
applying LD often leads to limited exploration.
To overcome this limitation, we propose the Reg-
ularized Langevin Dynamics (RLD), which en-
forces an expected distance between the sampled
and current solutions, effectively avoiding local
minima. We develop two CO solvers on top of
RLD, one based on simulated annealing (SA),
and the other one based on neural network (NN).
Empirical results on three classic CO problems
demonstrate that both of our methods can achieve
comparable or better performance against the pre-
vious state-of-the-art (SOTA) SA- and NN-based
solvers. In particular, our SA algorithm reduces
the runtime of the previous SOTA SA method by
up to 80%, while achieving equal or superior per-
formance. In summary, RLD offers a promising
framework for enhancing both traditional heuris-
tics and NN models to solve CO problems. Our
code is available at https://github.com/
Shengyu-Feng/RLD4CO.

1. Introduction
Combinatorial Optimization (CO) problems are central chal-
lenges in computer science and operations research (Pa-
padimitriou & Steiglitz, 1998), with diverse real-world ap-
plications such as logistics optimization (Chopra & Meindl,
2001), workforce scheduling (Ernst et al., 2004), finan-
cial portfolio management (Rubinstein, 2002; Lobo et al.,
2007), distributed computing (Zheng et al., 2022; Feng et al.,
2025a), and bioinformatics (Gusfield, 1997). Despite their
wide-ranging utility, CO problems are inherently difficult

1Language Technologies Institute, Carnegie Mellon University.
Correspondence to: Shengyu Feng <shengyuf@cs.cmu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

due to their non-convex nature and often NP-hard com-
plexity, making them intractable in polynomial time by
exact solvers. Traditional CO algorithms often rely on hand-
crafted domain-specific heuristics, which are costly and
difficult to design, posing significant challenges in solving
novel or complex CO problems.

Recent advances in simulated annealing (SA) (Kirkpatrick
et al., 1983) and neural network (NN)-based learning (Ben-
gio et al., 2020; Cappart et al., 2023) algorithms have rede-
fined approaches to combinatorial optimization by minimiz-
ing dependence on manual heuristics:

• Simulated Annealing: SA is a general-purpose opti-
mization algorithm that explores the solution space
probabilistically, avoiding dependence on problem-
specific heuristics. Although its cooling schedule and
acceptance criteria require some design decisions, SA
is highly adaptable across diverse problems free from
detailed domain knowledge (Johnson et al., 1991).

• Neural Network Models: NN-based methods lever-
age supervised learning (Kool et al., 2019; Zhang et al.,
2023; Sun & Yang, 2023; Li et al., 2023; 2024), re-
inforcement learning (Khalil et al., 2017; Qiu et al.,
2022; Feng & Yang, 2025) or unsupervised learning
(Karalias & Loukas, 2020; Wang et al., 2022; Wang
& Li, 2023; Sanokowski et al., 2024) to learn opti-
mization strategies directly from data. By automating
the process, these models replace hand-crafted heuris-
tics with learned representations and decision-making
processes, enabling tailored solutions refined through
training rather than manual adjustment.

Langevin dynamics (LD) (Welling & Teh, 2011) and re-
lated diffusion models (whose inference is built on LD)
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Er-
mon, 2019; Song et al., 2020) have greatly advanced the
recent development of SA- and NN-based solvers. The
key idea of LD is to guide the iterative sampling via the
gradient for a more efficient searching/generation process.
This gradient-informed approach has been adapted to the
discrete domain—examples include GWG (Grathwohl et al.,
2021), PAFS (Sun et al., 2022), and the discrete Langevin
sampler (Zhang et al., 2022)—and yields SA solvers that
attain state-of-the-art (SOTA) results on various CO bench-

1

https://github.com/Shengyu-Feng/RLD4CO
https://github.com/Shengyu-Feng/RLD4CO

Regularized Langevin Dynamics for Combinatorial Optimization

marks (Sun et al., 2023). Meanwhile, discrete diffusion
models have also shown substantial gains. For example,
DIFUSCO (Sun & Yang, 2023) adopts continuous diffusion
models from computer vision to address the discrete nature
of CO problems, outperforming previous end-to-end neural
models in both the solution quality and computational ef-
ficiency. Additionally, DiffUCO (Sanokowski et al., 2024)
generalizes DIFUSCO by eliminating the need for labeled
training data, using unsupervised learning for CO problems.
However, existing discrete LD/diffusion methods are mostly
adapted from the methods in the continuous domain, this
raises important questions: Is there any difference between
continuous optimization and combinatorial optimization?
Do these adapted methods sufficiently consider the nature
of discrete data? Exploring these questions is the central
focus of this paper.

Our key observation is that the optimization process is more
prone to local optima in a discrete domain than in a con-
tinuous one. That is, local optima in a continuous domain
typically have a zero gradient (under the smoothness condi-
tion), but this is often not true in a discrete domain, where
the gradient may be very large in magnitude, but pointing
to an infeasible region. Such a difference makes the escap-
ing of local optima more difficult in a discrete domain than
in a continuous one, with the common strategy of adding
random noise as in LD. We propose to address this issue by
enforcing a constant norm of the expected Hamming dis-
tance between the sampled solution and the current solution
during the searching process. In other words, we control
the magnitude of the update in LD, encouraging the search
to explore more promising areas. We name this sampling
method Regularized Langevin Dynamics (RLD). We apply
RLD on both SA- and NN-based CO solvers, leading to
Regularized Langevin Simulated Annealing (RLSA) and
Regularized Langevin Neural Network (RLNN). Our em-
pirical evaluation on three CO problems demonstrate the
significant improvement of RLSA and RLNN over both SA
and NN baselines. Notably, RLSA only needs 20% runtime
to outperform the previous SOTA SA baselines. And it
shows a clear efficiency advantage with either less or more
sampling steps. Compared with previous diffusion models,
RLNN could be efficiently trained with a local optimiza-
tion objective in an unsupervised manner, eliminating the
need for labeled data or the estimation of a long-term return
throughout the sampling process.

To summarize, we propose a new variant of discrete
Langevin dynamics for combinatorial optimization by regu-
larizing the expected update magnitude on the current solu-
tion at each step. Our method is featured by its simplicity,
effectiveness, and wide applicability to both SA- and NN-
based solvers, indicating its strong potential in addressing
CO problems.

2. Related Work
2.1. Simulated Annealing for CO

Simulated Annealing (SA) (Metropolis et al., 1953; Hast-
ings, 1970; Neal, 1996; IBA, 2001) is a classic metaheuristic
for combinatorial optimization (WANG et al., 2009; Bhat-
tacharya et al., 2014; Tavakkoli-Moghaddam et al., 2007;
Seçkiner & Kurt, 2007; Chen & Ke, 2004). However, tradi-
tional SA methods often require up to millions of sampling
steps for convergence, which limits its applicability on large-
scale instances. The recent advances in discrete Markov
Chain Monte Carlo (MCMC) offer the potential solutions
by accelerating the convergence with locally-balanced pro-
posals (Zanella, 2017). For example, GWG (Grathwohl
et al., 2021) uses a first-order approximation to estimate
energy changes within the 1-Hamming-ball neighborhood,
steering each proposal toward high-density regions. To mit-
igate local-optima issues caused by small neighborhoods,
PAS/PAFS (Sun et al., 2022) instead samples d coordinates
sequentially at each step. Their SA variant iSCO (Sun et al.,
2023) achieves SOTA performance on various CO bench-
marks. To address the inefficiency of sequential sampling in
PAS/PAFS, Zhang et al. (2022) derive a discrete Langevin
sampler from the continuous domain, assigning gradient-
informed change probabilities to all coordinates in parallel.
However, direct transformation of the discrete Langevin
sampler into an SA framework overlooks key domain dif-
ferences, resulting in severe local-optima issues. In this
work, we build on these discrete MCMC developments by
proposing a simple method that unifies parallel sampling
with effective local-optima escape.

2.2. Neural Solvers for CO

The neural network (NN) models have recently garnered
vast attention in solving CO problems (Bengio et al., 2020;
Cappart et al., 2023; Feng et al., 2025b). The NN-based
solvers could be roughly categorized into three classes ac-
cording to the training methods, namely the supervised
learning-based (Li et al., 2018a; Gasse et al., 2019; Sun &
Yang, 2023; Li et al., 2023; 2024), reinforcement learning-
based (Khalil et al., 2017; Qiu et al., 2022; Feng & Yang,
2025), and unsupervised learning-based (Karalias & Loukas,
2020; Wang et al., 2022; Wang & Li, 2023; Zhang et al.,
2023; Sanokowski et al., 2024). Although neural networks
offer strong expressivity, the end-to-end neural solvers still
struggle with the inherent non-convexity of CO problems.
To address this, recent works (Sun & Yang, 2023; Li et al.,
2023; 2024) have introduced discrete diffusion models,
leveraging their success in capturing complex, multimodal
distributions from image generation. However, these diffu-
sion approaches depend on high-quality training data—often
expensive to generate for large-scale CO instances, some-
times requiring hours per instance. DiffUCO (Sanokowski

2

Regularized Langevin Dynamics for Combinatorial Optimization

et al., 2024) alleviates this by using unsupervised learning
guided by energy-based models, but its training still relies on
reinforcement learning across the entire sampling trajectory,
leading to inefficiency. In contrast, our RLNN method could
be optimized only through a local objective, dramatically
improving training efficiency while achieving comparable
performance to SOTA NN-based solvers.

3. Preliminary
3.1. Combinatorial Optimization Problem

Following Papadimitriou & Steiglitz (1982), we formulate
the combinatorial optimization (CO) problem as a con-
strained optimization problem, i.e.,

min
x∈{0,1}N

a(x) s.t. b(x) = 0, (1)

where a(x) stands for the target to optimize and b(x) ≥ 0
corresponds to the amount of constraint violation (0 means
no violation). In particular, we focus on the penalty form
that can be written as

min
x∈{0,1}N

H(x) = a(x) + βb(x), (2)

where β > 0 is the penalty coefficient that should be suffi-
ciently large, such that the minimum of Equation 2 corre-
sponds to the feasible solution in Equation 1. H(x) is also
generally named as the energy function, and its associated
energy-based model (EBM) is defined as

pτ (x) =
exp(−H(x)/τ)

Z
, (3)

where τ > 0 is the temperature controlling the smoothness
of pτ (x), and Z =

∑
x∈{0,1}N exp(−H(x)/τ) is the nor-

malization factor, typically intractable. When τ is small, the
probability mass of pτ tends to concentrate around low-
energy samples, making the task of solving Equation 1
equivalent to sampling from pτ (x). Markov Chain Monte
Carlo (MCMC) (Lecun et al., 2006) is the most widely used
method for sampling from the EBM defined above. How-
ever, directly applying MCMC may lead to inefficiencies
due to the non-smoothness introduced by the small τ . To
mitigate this issue, the simulated annealing (SA) technique
is commonly employed to gradually decrease τ towards zero
during the MCMC process.

3.2. Langevin Dynamics

Langevin dynamics (LD) (Welling & Teh, 2011) is an effi-
cient MCMC algorithm initially developed in the continuous
domain. It takes a noisy gradient ascent update at each step
to gradually increase the log-likelihood of the sample:

x′ = x+
α

2
s(x) +

√
αζ, ζ ∼ N (0, IN×N), (4)

where s(x) = ∇ log p(x) is known as the score function
(gradient of the log likelihood), and α > 0 represents the
step size. By iteratively performing the above update, the
sample x would eventually end up at a stationary distribution
approximately equal to p(x).

Recently, Zhang et al. (2022) have extended LD to a discrete
Langevin sampler by rewriting Equation 4 as

q(x′|x) =
exp

(
− 1

2α∥x
′ − x− α

2 s(x)∥
2
2

)
Z(x)

=
exp

(
1
2s(x)

T (x′ − x)− 1
2α∥x

′ − x∥22
)

Z(x)
.

(5)

The above distribution could be factorized coordinatewisely,
i.e., q(x′|x) =

∏N
i=1 q(x

′
i|x), into a set of categorical dis-

tributions:

q(x′
i|x) ∝ exp

(
1

2
s(x)i(x

′
i − xi)−

(x′
i − xi)

2

2α

)
. (6)

When x is a binary vector, we can obtain the flipping (chang-
ing the value of xi from 0 to 1, or 1 to 0) probability:

q(x′
i = 1− xi|x) = σ

(
1

2
s(x)i(1− 2xi)−

1

2α

)
, (7)

where σ(·) stands for the sigmoid function.

In particular, it can be shown that the discrete Langevin sam-
pler is a first-order approximation to the locally-balanced
proposal (Zanella, 2017):

q(x′|x) ∝
√

p(x′)/p(x)k(x,x′), (8)

where k(·, ·) is a symmetric function corresponding to
exp

(
−∥x′−x∥2

2

2α

)
here, and log p(x′)− log p(x) (inside the

exponential) is approximated by s(x)T (x′ − x).

4. Method
4.1. Regularized Langevin Dynamics

Although the discrete Langevin sampler can be directly
converted into an SA solver by annealing the temperature
τ , it nonetheless frequently gets stuck in local optima (see
Figure 1 in Section 5.3). As τ decreases, the gradient term
dominates the transition probabilities, driving the flipping
probabilities to zero and confining the next sample to a
very small neighborhood of the current solution. In order
to effectively avoid this undesired behavior, we propose to
regularize the expected Hamming distance, i.e., the number
of changed coordinates between the sampled and current
solutions. Concretely, we start from a locally-balanced
proposal and impose:

q(x′|x) ∝
√

p(x′)/p(x)k(x,x′),

s.t. Eq(x′|x)[Ham(x′,x)] = d,
(9)

3

Regularized Langevin Dynamics for Combinatorial Optimization

where Ham(·, ·) stands for the Hamming distance and d
represents the regularized step size. For simplicity, we
always treat d as a positive integer in our design. Note that,
k(x,x′) does not necessarily remain symmetric (and thus
the locally-balanced condition may not be satisfied) once
the regularization constraint is enforced; instead, it can be
chosen to satisfy the constraint at each state.

Since the exact ratio p(x′)/p(x) is typically intractable, we
follow the discrete Langevin sampler to substitute its first-
order Taylor series expansion:

q(x′|x) ∝ exp

(
1

2
s(x)T (x′ − x)

)
k(x,x′),

s.t. Eq(x′|x)[Ham(x′,x)] = d.

(10)

Empirically, this simple regularization technique substan-
tially reduces the tendency to get stuck in local optima. We
therefore call our approach Regularized Langevin Dynamics
(RLD) and proceed to describe how it integrates into both
SA- and NN-based CO solvers.

4.2. Regularized Langevin Simulated Annealing

When x is binary, we could follow Zhang et al. (2022) to
let k(x,x′) = exp

(
−∥x′−x∥2

2

2α

)
and explicitly write out the

expectation in Equation 10 with the flipping probabilities:

N∑
i=1

σ

(
1

2
s(x)i(1− 2xi)−

1

2α

)
= d. (11)

Since the gradient of the energy function could be computed
in a closed form for various CO problems, here we first
assume∇H(x) is available. Note that the score function of
the EBM could be written as

sτ (x) = log pτ (x) = −
1

τ
∇H(x). (12)

To avoid clutter, we denote ∆ = (2x−1)⊙∇H(x), whose
i-th coordinate approximates the drop of the energy function
if we flip the value of xi.

The exact solving of Equation 11 is challenging due to the
presence of the sigmoid function. However, when τ → 0,
we observe that the sigmoid function is approximately an
indicator function:

lim
τ→0

σ

(
1

2τ
∆i −

1

2α

)
= 1

(
1

2τ
∆i −

1

2α
> 0

)
. (13)

This property allows us to efficiently regularize the SA
algorithm with the d-th largest element in ∆, denoted as
∆(d). We then obtain the flipping probabilities by letting
1
α =

∆(d)+ϵ

τ , where ϵ ≥ 0 (e.g., 10−6) is optional:

q(x′
i = 1− xi|x) = σ

(
1

2τ
(∆i −∆(d) − ϵ)

)
. (14)

We call the resultant SA algorithm as Regularized Langevin
Simulated Annealing (RLSA), whose details are summarized
in Algorithm 1.

Algorithm 1 Regularized Langevin Simulated Annealing
1: Input: T , d and τ0
2: Initialize x ∈ {0, 1}N ; x∗ ← x
3: for t = 1, · · · , T do
4: τ ← τ0

(
1− t−1

T

)
5: ∆← (2x− 1)⊙∇H(x)
6: for i = 1, · · · , N do
7: p← σ

(
1
2τ (∆i −∆(d) − ϵ)

)
8: c ∼ Bernoulli(p)
9: xi ← xi(1− c) + (1− xi)c

10: end for
11: if H(x) < H(x∗) then
12: x∗ ← x
13: end if
14: end for
15: return x∗

It is worth noting that k(x,x′) = exp
(
−∥x′−x∥2

2

2α

)
is cho-

sen here just for simplicity, but other strategies may perform
just as well. For instance, one could omit the − 1

α term and
instead normalize the sigmoid outputs:

p̃i =
σ
(
1
2 s(x)i (1− 2xi)

)∑N
j=1 σ

(
1
2 s(x)j (1− 2xj)

) d, (15)

pi = min{1,max{0, p̃i}}, (16)

so that
∑

i pi ≈ d. Investigating alternative kernel functions
or normalization strategies—potentially adapted to specific
problem structures—offers a promising avenue for future
work aimed at further minimizing the approximation error.

In our implementation, the elementwise sampling is run
in parallel and we maintain K independent SA processes
simultaneously. The whole algorithm could be implemented
in a few lines and accelerated with GPU-based deep learn-
ing frameworks, such as PyTorch (Paszke et al., 2017) and
Jax (Bradbury et al., 2018). An example PyTorch code is
attached in Appendix C.

Given the overall RLSA framework, we now address the
question of how to compute the gradient of the energy func-
tion. Numerous CO problems are defined on graphs and
could be formulated in the quadratic form, known as QUBO
(Lucas, 2014). Let G = (V, E) be an undirected graph, with
node set V = {1, · · · , N}, edge set E ∈ V × V , and adja-
cency matrix A ∈ {0, 1}N×N . In this work, we focus on
the following three problems, which have been commonly
used in benchmark evaluations for CO solvers.

4

Regularized Langevin Dynamics for Combinatorial Optimization

Maximum Independent Set. The maximum independent
set (MIS) problem aims to select the largest subset of nodes
of the graph G, without any adjacent pair. Denote a selected
node as xi = 1 and an unselected one as xi = 0, the energy
function of MIS could be expressed as

H(x) =−
N∑
i=1

xi + β
∑

(i,j)∈E

xixj

= −1⊤x+ β
x⊤Ax

2
,

(17)

As this is a quadratic function, it is straightforward to com-
pute the gradient of the energy function as

∇H(x) = −1+ βAx. (18)

Maximum Clique. The maximum clique (MCl) stands
for the largest subset of nodes in a graph such that every two
nodes in the set are adjacent to each other. It could actually
be expressed as the MIS problem in the complete graph,
with the energy function:

H(x) = −
N∑
i=1

xi + β
∑

(i,j)/∈E

xixj . (19)

In order to represent the energy function with the adjacency
matrix A, we can write the penalty as

((∑N
i=1 xi

)2 −∑N
i=1 x

2
i

)
/2 −

∑
(i,j)∈E xixj , reformulating the energy

function and its gradient as

H(x) = −1⊤x+ β
(1⊤x)2 − x⊤x− x⊤Ax

2
, (20)

∇H(x) = −1+ β
(
(1⊤x)1− x−Ax

)
. (21)

Maximum Cut. The maximum cut (MCut) problem looks
to partition the nodes into two sets so that the number of
edges between two sets is maximized. Here we use xi = 1
and xi = 0 to represent the belonging to two sets, and the
energy function could be expressed as

H(x) = −
∑

(i,j)∈E

1− (2xi − 1)(2xj − 1)

2

= x⊤Ax− 1⊤Ax,

(22)

whose gradient could be accordingly computed as

∇H(x) = A(2x− 1). (23)

4.3. Regularized Langevin Neural Network

The efficacy of gradient-guided SA solvers, including
RLSA, is critically dependent on the knowledge of∇H(x)

(Sun et al., 2022). However, ∇H(x) often lacks a closed-
form expression or is too costly to compute directly, neces-
sitating the gradient approximation. To evaluate RLD under
these conditions, we employ a neural network to approx-
imate the sampling distribution qθ(x

′|x), thereby demon-
strating its effectiveness even when only an approximate
gradient is available.

Here we still utilize a mean-field decomposition, letting
qθ(x

′|x) = ΠN
i=1qθ(x

′
i|x). The RLD update in Equation 10

could be translated into the following training loss

lRLD(θ;x, d, λ) = Eqθ(x′|x)[H(x′)]

+λ

(N∑
i

qθ(x
′
i = 1− xi|x)− d

)2

.
(24)

The first term minimizes the conditional expectation of
the energy function after the one-step update. When
the expectation is tractable, this term is equivalent to
the unsupervised learning loss of Erdőes Goes Neural
(EGN) (Karalias & Loukas, 2020); otherwise, we could
optimize this loss by estimating the policy gradient, i.e.,
Eqθ(x′|x)[H(x′)∇ log qθ(x

′|x)], via Monte Carlo methods.
In this work, we focus on verifying the effectiveness of RLD
and adopts the unsupervised training loss for simplicity. The
second term regularizes the expected Hamming distance be-
tween the two solutions, with λ being the regularization
coefficient. We name this NN-based solver as Regularized
Langevin Neural Network (RLNN).

We train RLNN in a similar fashion to reinforcement learn-
ing through sampling and update, but without the need to
account the future states except the immediate next one.
This allows RLNN to circumvent the high variance in esti-
mating the future return when trained with a long sampling
process. In detail, each time we sequentially sample T ′ sam-
ples with the current proposal distribution qθ(x

′|x), then for
each sample, we train RLNN to minimize the loss in Equa-
tion 24. The training algorithm of RLNN is summarized in
Algorithm 2.

Algorithm 2 Regularized Langevin Neural Network
1: Input: T ′, d, λ
2: Initialize θ
3: while the stopping criterion is not met do
4: Initialize x ∈ {0, 1}N , D = {x}
5: for t = 1, · · · , T ′ do
6: x′ ∼ qθ(x

′|x)
7: D ← D ∪ {x′}
8: x← x′

9: end for
10: θ ← minθ Ex∈D[lRLD(θ;x, d, λ)]
11: end while
12: return θ

5

Regularized Langevin Dynamics for Combinatorial Optimization

Similarly, we maintain K ′ parallel sampling processes in
our implementation to obtain more efficient training data
collection. During the inference time, we simply sample
from qθ(x

′|x) sequentially for T steps with K processes
run in parallel. Note that temperature annealing is not used
here as we do not find it useful and we simply leave τ = 1.

4.4. Connection to Normalized Gradient Descent

Our proposed RLD method is closely related to the normal-
ized gradient descent (NGD) method (Cortés, 2006) in the
continuous domain:

x′ = x− α
∇f(x)
∥∇f(x)∥2

. (25)

NGD is developed to address the vanishing/exploding gradi-
ent by normalizing the L2 norm of the gradient for a scale-
invariant update at each step. Our method, especially RLSA,
could be treated as a discrete version of this approach by
regularizing the Hamming distance between the solutions
before and after the update. And both methods accelerate
the descent under the smoothness condition.

The key difference between the two lies in the case when
∆(d) < 0, RLSA could not be translated into a gradient
descent algorithm to minimize the energy function, since
α = τ

∆(d)
< 0 (ignore ϵ) reverses the direction of gradient

descent. Instead, RLSA should be treated now as a way
to escape local optima without dramatically increasing the
energy function. Utilizing Equation 5, we can fully express
the proposal at this state as

q(x′|x) =
exp

(
−∆(d)

2τ ∥x
′ − x+ 1

2∆(d)
∇H(x)∥22

)
Z(x)

. (26)

It should be noted that the density of q(x′|x) increases with
respect to the distance from x − 1

2∆(d)
∇H(x), which is

the gradient ascent direction (note that ∆(d) is negative
here) of the energy function. This behavior is desirable due
to the different property of the local optima in the discrete
data, which may not vanish to zero but point to an infeasible
region (i.e., with ∆ negative in all coordiantes).

Let us take MIS as an example, whose local optimum
corresponds to a maximal independent set, that is, each
unselected node has at least one neighbor in the set. At
the local optimum, the gradient at the selected node xi is
∇H(x)i = −1, which points to the direction of increasing
xi, and is infeasible since xi ≤ 1. Similarly, the gradient at
an unselected node is bounded by∇H(x)i ≥ −1 + β > 0,
which points to the direction of decreasing the value, and is
also infeasible. Since the gradient descent direction is not
informative, RLSA would try to escape this local optima but
avoid the steepest direction to increase the energy function,
i.e., the gradient ascent direction x− 1

2∆(d)
∇H(x).

With the same example, we could also see why the stan-
dard discrete Langevin sampler (Zhang et al., 2022) with a
constant step size fails here. Since LD is a first-order approx-
imation of the locally-balanced proposal (Zanella, 2017), a
small α is needed to make the approximation accurate. How-
ever, a small α would also lead to a strong penalization on
the magnitude of the update. At local optima, ∆i < 0 would
further discourage the change, as indicated in Equation 7.
Therefore, additional efforts are needed to help LD escape
the local optima beyond the force of random noise. This dis-
tinction between combinatorial and continuous optimization
highlights the significance of RLD.

5. Experiments
5.1. Experimental Setup

Benchmark datasets. Following Zhang et al. (2023), we
evaluate MIS and MCl using Revised Model B (RB) graphs
(Xu & Li, 2000), and we evaluate MCut using Barabási-
Albert (BA) graphs (Barabási & Albert, 1999). Following
Qiu et al. (2022), we also include Erdős-Rényi (ER) graphs
for MIS. As in prior work, each graph type is generated at
two scales:

• RB and BA graphs: small (200–300 nodes) and large
(800–1200 nodes).

• ER graphs: small (700–800 nodes) and large (9000–
11000 nodes).

The large-scale ER graphs serve as a transfer-testing set for
models trained on small-scale ER. We append a suffix “-[
n–N]” to each graph name to indicate its size range.

For RB and BA (both scales) and ER-[700–800], we use
1000 graphs for training, 100 for validation, and 500
(RB/BA) or 128 (ER-[700–800]) for testing. ER-[9000–
11000] is reserved solely for testing (16 graphs).

Baselines. Following Qiu et al. (2022) and Zhang et al.
(2023), we categorize our baselines as the classical oper-
ations research solvers (OR), (human-designed) heuristic
solvers (H), supervised learning-based solvers (SL), rein-
forcement learning-based solvers (RL), and unsupervised
learning-based solvers (UL). For MIS, we have the integer
linear programming solver Gurobi (Gurobi Optimization,
LLC, 2023) and MIS-specific solver KaMIS (Großmann
et al., 2023) as the OR baselines, and the recent SA method
iSCO (Sun et al., 2023) as a heuristic baseline. In the SL
category, we include INTEL (Li et al., 2018b), DGL (Böther
et al., 2022), and DIFUSCO (Sun & Yang, 2023). In the
RL category, we have PPO (Ahn et al., 2020) and DIMES
(Qiu et al., 2022). In the UL category, we use LTFT (Zhang
et al., 2023) and DiffUCO (Sanokowski et al., 2024). For

6

Regularized Langevin Dynamics for Combinatorial Optimization

Table 1. Comparative results on the Mximum independent Set (MIS) problem. On each dataset, we bold the best result and color the
second-best one in green. By “best” or “second best”, we exclude the OR solvers (Gurobi and KaMIS) as their runtime is excessively
large, preventing a fair comparison with the methods in other categories.

MIS RB-[200–300] RB-[800–1200] ER-[700–800] ER-[9000–11000]

METHOD TYPE SIZE ↑ TIME ↓ SIZE ↑ TIME ↓ SIZE ↑ TIME ↓ SIZE ↑ TIME ↓
Gurobi OR 19.98 47.57m 40.90 2.17h 41.38 50.00m — —
KaMIS OR 20.10 1.40h 43.15 2.05h 44.87 52.13m 381.31 7.60h

PPO RL 19.01 1.28m 32.32 7.55m — — — —
INTEL SL 18.47 13.07m 34.47 20.28m 34.86 6.06m 284.63 5.02m
DGL SL 17.36 12.78m 34.50 23.90m 37.26 22.71m — —

DIMES RL — — — — 42.06 12.01m 332.80 12.72m
DIFUSCO SL 18.52 16.05m — — 41.12 26.67m — —

LTFT UL 19.18 32s 37.48 4.37m — — — —
DiffUCO UL 19.24 54s 38.87 4.95m — — — —

iSCO H 19.29 2.71m 36.96 11.26m 42.18 1.45m 365.37 1.10h

RLNN UL 19.52 1.64m 38.46 6.24m 43.34 1.37m 363.34 11.76m
RLSA H 19.97 35s 40.19 1.85m 44.10 20s 375.31 1.66m

Table 2. Comparative results on the Maximum Clique (MCl) and Maximum Cut (MCut) problems. On each dataset, we bold the best result
and color the second-best one in green. By “best” or “second best”, we exclude the OR solvers (Gurobi and SDP) as their runtime is
excessively large, preventing a fair comparison with the methods in other categories.

MCl RB-[200–300] RB-[800–1200] MCut BA-[200–300] BA-[800–1200]

METHOD TYPE SIZE ↑ TIME ↓ SIZE ↑ TIME ↓ METHOD TYPE SIZE ↑ TIME ↓ SIZE ↑ TIME ↓
Gurobi OR 19.05 1m55s 33.89 19.67m Gurobi OR 730.87 8.50m 2944.38 1.28h
SDP OR — — — — SDP OR 700.36 35.78m 2786.00 10.00h

Greedy H 13.53 25s 26.71 25s Greedy H 688.31 13s 2786.00 3.12m
MFA H 14.82 27s 27.94 2.32m MFA H 704.03 1.60m 2833.86 7.27m
EGN UL 12.02 41s 25.43 2.27m EGN UL 693.45 46s 2870.34 2.82m
LTFT UL 16.24 42s 31.42 4.83m LTFT UL 704.30 2.95m 2864.61 21.33m

DiffUCO UL 16.22 1.00m — — DiffUCO UL 727.32 1.00m 2947.53 3.78m
iSCO H 18.96 54s 40.35 11.37m iSCO H 728.24 1.67m 2919.97 4.18m

RLNN UL 18.13 1.36m 35.23 7.83m RLNN UL 729.00 1.58m 2907.18 3.67m
RLSA H 18.97 23s 40.53 1.27m RLSA H 733.54 27s 2955.81 1.45m

the non-MIS problems, the baselines include two OR meth-
ods, which are Gurobi and a semi-definite programming
method (SDP) for MCut; three heuristic methods, which are
greedy, mean-field annealing (MFA) (Bilbro et al., 1988)
and iSCO (Sun et al., 2023); and three UL methods, which
are EGN (Karalias & Loukas, 2020), LTFT (Zhang et al.,
2023) and DiffUCO (Sanokowski et al., 2024), respectively.
For most of these methods, we report their published results
(Qiu et al., 2022; Zhang et al., 2023; Sun & Yang, 2023;
Sanokowski et al., 2024; Li et al., 2024). If an NN solver
has multiple variants, we only compare with the variant
with the longest runtime (typically corresponding to the best
result). We rerun the official code of iSCO1 on our datasets
due to the inconsistency of time measurement in this work,
where the average runtime of iSCO is compared to the total
runtime of its baselines. For a fair comparison, we run iSCO
with the same number of steps and trials as we do for RLSA.

1https://github.com/google-research/discs

Implementation Details. Our implementation is based on
PyTorch Geometric (Fey & Lenssen, 2019) and Accelerate
(Gugger et al., 2022). We use two servers for the RLNN
training, one with 8 NVIDIA RTX A6000 GPUs and the
other with 10 NVIDIA RTX 2080 Ti GPUs. We evaluate
all methods on the first server, using a single A6000 GPU.
We find the efficiency of RLNN highly susceptible to the
inductive bias of the NN architecture, e.g., a two-parameter
linear model is enough to fit the gradient of MIS in Equation
19. Since the main focus of our evaluation is to verify the
effectiveness of RLD under the approximate gradient, we
keep the model architecture of RLNN basically the same as
the ones used in prior works (Qiu et al., 2022; Sanokowski
et al., 2024). Future work may further optimize the neural
architecture by injecting more prior knowledge about the
problem structure, as in Yau et al. (2024). In our experiment,
we parameterize RLNN with a five-layer GCN (Kipf &
Welling, 2017) with 128 hidden dimensions. Due to the

7

https://github.com/google-research/discs

Regularized Langevin Dynamics for Combinatorial Optimization

Figure 1. Primal-gap trajectories for SA solvers using RLD versus the standard discrete LD method (Zhang et al., 2022). The RLD
(corresponding to RLSA) curve is shown in red, and the remaining curves (in distinct colors) correspond to discrete LD with various
step-size settings. Solid lines denote the mean primal gap over the test set, and shaded regions represent the standard deviation.

increasing computational complexity at each step, we also
accordingly reduce the number of sampling steps and trials
of RLNN compared to RLSA, with other hyperparameters
kept the same. We include more details in Appendix A.

5.2. Main Results

In performance evaluation, we compare the mean value of
the achieved problem-specific objective (larger is better) of
each method on each problem, including the set size for
MIS, clique size for MCl and cut size for MCut. In addi-
tion, we compare the total runtime (lower is better) of each
method throughout the test set by sequentially evaluating
each instance. Since OR solvers are guaranteed to find the
optimal solution with enough runtime, we do not include
them for comparison.

Table 1 reports our results on the MIS problem. RLSA
achieves significant improvements over SOTA NN-based
methods on both RB and ER graphs, with similar or even
shorter runtime. Moreover, RLSA consistently outperforms
iSCO, another gradient-guided SA method, with the same
number of sampling steps and independent trials. Due to
its parallel sampling design, RLSA requires only 5-20% of
iSCO’s runtime while delivering better objective values.

Based on less prior knowledge (using an approximate gra-
dient), RLNN shows a lower performance than RLSA, but
still claims the second-best result in two of the four datasets.
On ER-[9000–11000] graphs, RLNN matches iSCO’s per-
formance but uses under 20% of the runtime. Compared

to the SOTA NN baselines, RLNN shows a performance
comparable to DiffUCO on the RB graphs and clearly out-
performs DIMES on ER. Moreover, it should be pointed out
that DiffUCO can require up to two days of training even
on small graphs, e.g., RB-[200–300], whereas RLNN com-
pletes the training in under three hours regardless the graph
scales, while delivering comparable performance. This high-
lights RLNN’s superior training efficiency against previous
diffusion models, thanks to its local training objective.

Table 2 summarizes our comparative results on MCl and
MCut. RLSA retains a clear efficiency advantage over iSCO.
Although iSCO matches RLSA’s performance on MCl at
both scales, RLSA and RLNN still outperform all other base-
lines. On MCut, RLSA consistently leads; while RLNN,
DiffUCO, and iSCO achieve comparable results—all signif-
icantly better than the remaining methods.

We also include extended comparisons between iSCO and
RLSA with ten times more sampling steps in Appendix B,
which confirms the above findings. Overall, both RLSA and
RLNN remain highly competitive across our benchmarks,
with RLSA delivering impressive results on every dataset at
minimal computational cost.

5.3. Ablation Study

To verify the effectiveness of the proposed regularization in
RLD, we conduct the ablation study on RLSA and RLNN,
respectively. We first compare RLD with the standard dis-
crete LD (Zhang et al., 2022) for SA, searching the step

8

Regularized Langevin Dynamics for Combinatorial Optimization

Table 3. Ablation study on the effectiveness of regularization in RLNN. The numbers correspond to the set size (larger is better).

MIS MCl MCut
METHOD RB-[200–300] ER-[700–800] RB-[200–300] BA-[200–300]

RLNN w/o regularization 18.64 37.73 16.62 730.20
RLNN w/ regularization 19.52 43.34 18.13 729.00

Figure 2. Training curves of RLNN with or without regularization.
Validation performance (set/clique size) is shown.

size α over the set {0.1, 0.01, 0.001}. All other hyperpa-
rameters are kept the same as in RLSA. Figure 1 compares
the dynamics of the primal gap (Berthold, 2014) across the
sampling process. Here, the primal gap on each instance is
defined as{

|H(x)−H(x∗)|
max{|H(x)|,|H(x∗)|} , if H(x)H(x∗) ≥ 0;

1, otherwise,
(27)

where x corresponds to the best solution found so far and
x∗ is a pre-computed optimal (or best known) solution.

It is evident that the standard discrete LD always ends up at
a sub-optimal solution except on MCl. The searching could
easily get stuck in a local optimum, indicated by the flat
stage. In contrast, RLSA typically converges in fewer than
100 steps without becoming trapped. Note that our search
set already includes the most common gradient-descent step
sizes used for continuous problems, and even a smaller step
size (e.g., 0.001) yields worse results. Unlike continuous
optimization, combinatorial optimization presents unique
challenges; RLD is specifically designed to address these.

We next perform an ablation study on the regularization
term in Equation 24 for RLNN training. Specifically, we
train RLNN on small-scale graphs both with and without
regularization, and report results in Table 3. Adding regular-
ization significantly improves RLNN’s performance in most
cases, with the exception of MCut—likely because MCut is
unconstrained and is less prone to local optima. On all other
benchmarks, training RLNN without regularization proves
almost ineffective. Figure 2 visualizes this effect by plotting
the set/clique size on the validation set (larger is better) for
MIS and MCl.

From Figure 2, the curve without regularization (orange)

remains flat on MIS or even deteriorates after more training
epochs on MCl. This highlights that only using the unsuper-
vised loss of EGN makes sample diversity a critical concern.
By contrast, the regularization term encourages RLNN to
gather more diverse training samples and explore more effec-
tively during inference, resulting in the stable performance
gains shown by the blue curve throughout training.

In fact, the idea of RLNN also parallels well-known re-
inforcement learning techniques to encourage exploration,
such as curiosity-driven exploration (Pathak et al., 2017)
and soft policies (Haarnoja et al., 2017; 2018).

6. Conclusion & Limitation
In this work, we point out the specific challenge from the lo-
cal optima in combinatorial optimization (CO), and propose
a novel sampling framework called Regularized Langevin
Dynamics (RLD) to tackle the issue in CO. On top of that,
we develop two CO solvers, one based on simulated anneal-
ing (SA), and the other one based on neural networks. Our
empirical evaluation on three classic CO problems demon-
strate that our proposed methods can achieve state-of-the-art
(SOTA) or near-SOTA performance with high efficiency. In
particular, our proposed SA method consistently outper-
forms the previous SA baseline using only 20% running
time, while RLNN significantly improves the training effi-
ciency of previous diffusion models. In summary, RLD is a
simple yet effective framework that shows great potential in
addressing CO problems.

In this work, we only consider binary data for ease of anal-
ysis. Although the whole framework could be generalized,
its effectiveness remains unclear in other CO problems with
categorical, integer, or mixed integer variables. Future work
may also extend it to other CO problems with global con-
straints, such as the Traveling Salesman Problem. Besides,
we have only given an intuitive explanation of RLD in this
work, but the theoretical understanding of RLD is generally
missing. We also expect to address this part in the future.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

Regularized Langevin Dynamics for Combinatorial Optimization

References
Ahn, S., Seo, Y., and Shin, J. Learning what to defer for

maximum independent sets. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

Barabási, A.-L. and Albert, R. Emergence of scal-
ing in random networks. Science, 286(5439):
509–512, 1999. doi: 10.1126/science.286.5439.
509. URL https://www.science.org/doi/
abs/10.1126/science.286.5439.509.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon, 2020.

Berthold, T. Heuristic algorithms in global minlp solvers.
2014. URL https://api.semanticscholar.
org/CorpusID:124820186.

Bhattacharya, A., Ghatak, S., Ghosh, S., Das, R. K.,
and Bengal, W. Simulated annealing approach onto
vlsi circuit partitioning. 2014. URL https://api.
semanticscholar.org/CorpusID:33197762.

Bilbro, G., Mann, R., Miller, T., Snyder, W., van den Bout,
D., and White, M. Optimization by mean field annealing.
In Touretzky, D. (ed.), Advances in Neural Information
Processing Systems, volume 1. Morgan-Kaufmann,
1988. URL https://proceedings.neurips.
cc/paper_files/paper/1988/file/
ec5decca5ed3d6b8079e2e7e7bacc9f2-Paper.
pdf.

Böther, M., Kißig, O., Taraz, M., Cohen, S., Seidel, K.,
and Friedrich, T. What’s wrong with deep learning
in tree search for combinatorial optimization. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=mk0HzdqY7i1.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C.,
and Veličković, P. Combinatorial optimization and rea-
soning with graph neural networks. Journal of Machine
Learning Research, 24(130):1–61, 2023.

Chen, Y. L. and Ke, Y.-L. Multi-objective var planning
for large-scale power systems using projection-based
two-layer simulated annealing algorithms. 2004.
URL https://api.semanticscholar.org/
CorpusID:119669727.

Chopra, S. and Meindl, P. Strategy, planning, and operation.
Supply Chain Management, 15(5):71–85, 2001.

Cortés, J. Finite-time convergent gradient flows with ap-
plications to network consensus. Automatica, 42:1993–
2000, 11 2006. doi: 10.1016/j.automatica.2006.06.015.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., and Sier, D.
Staff scheduling and rostering: A review of applications,
methods and models. European journal of operational
research, 153(1):3–27, 2004.

Feng, S. and Yang, Y. Sorrel: Suboptimal-demonstration-
guided reinforcement learning for learning to branch. In
The 39th Annual AAAI Conference on Artificial Intelli-
gence, 2025.

Feng, S., Kim, J., Yang, Y., Boudreau, J., Chowdhury,
T., Hoisie, A., Khan, R., Kilic, O. O., Klasky, S., Ko-
rchuganova, T., Nilsson, P., Outschoorn, V. I. M., Park,
D. K., Podhorszki, N., Ren, Y., Suter, F., Vatsavai, S. S.,
Yang, W., Yoo, S., Maeno, T., and Klimentov, A. Alter-
native mixed integer linear programming optimization
for joint job scheduling and data allocation in grid com-
puting, 2025a. URL https://arxiv.org/abs/
2502.00261.

Feng, S., Sun, W., Li, S., Talwalkar, A., and Yang, Y.
A comprehensive evaluation of contemporary ml-based
solvers for combinatorial optimization, 2025b. URL
https://arxiv.org/abs/2505.16952.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convolu-
tional neural networks. In Advances in Neural Informa-
tion Processing Systems 32, 2019.

Grathwohl, W., Swersky, K., Hashemi, M., Duvenaud, D. K.,
and Maddison, C. J. Oops i took a gradient: Scalable sam-
pling for discrete distributions. ArXiv, abs/2102.04509,
2021. URL https://api.semanticscholar.
org/CorpusID:231855281.

Großmann, E., Lamm, S., Schulz, C., and Strash, D. Find-
ing near-optimal weight independent sets at scale. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO ’23, pp. 293–302, New
York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400701191. doi: 10.1145/
3583131.3590353. URL https://doi.org/10.
1145/3583131.3590353.

10

https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://api.semanticscholar.org/CorpusID:124820186
https://api.semanticscholar.org/CorpusID:124820186
https://api.semanticscholar.org/CorpusID:33197762
https://api.semanticscholar.org/CorpusID:33197762
https://proceedings.neurips.cc/paper_files/paper/1988/file/ec5decca5ed3d6b8079e2e7e7bacc9f2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/ec5decca5ed3d6b8079e2e7e7bacc9f2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/ec5decca5ed3d6b8079e2e7e7bacc9f2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/ec5decca5ed3d6b8079e2e7e7bacc9f2-Paper.pdf
https://openreview.net/forum?id=mk0HzdqY7i1
https://openreview.net/forum?id=mk0HzdqY7i1
http://github.com/google/jax
https://api.semanticscholar.org/CorpusID:119669727
https://api.semanticscholar.org/CorpusID:119669727
https://arxiv.org/abs/2502.00261
https://arxiv.org/abs/2502.00261
https://arxiv.org/abs/2505.16952
https://api.semanticscholar.org/CorpusID:231855281
https://api.semanticscholar.org/CorpusID:231855281
https://doi.org/10.1145/3583131.3590353
https://doi.org/10.1145/3583131.3590353

Regularized Langevin Dynamics for Combinatorial Optimization

Gugger, S., Debut, L., Wolf, T., Schmid, P., Mueller,
Z., Mangrulkar, S., Sun, M., and Bossan, B. Ac-
celerate: Training and inference at scale made sim-
ple, efficient and adaptable. https://github.com/
huggingface/accelerate, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Gusfield, D. Algorithms on stings, trees, and sequences:
Computer science and computational biology. Acm Sigact
News, 28(4):41–60, 1997.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Reinforce-
ment learning with deep energy-based policies. 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In Dy, J. and Krause,
A. (eds.), Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 1861–1870. PMLR,
10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/haarnoja18b.html.

Hastings, W. K. Monte carlo sampling meth-
ods using markov chains and their applications.
Biometrika, 57:97–109, 1970. URL https://api.
semanticscholar.org/CorpusID:21204149.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion
probabilistic models. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.
pdf.

IBA, Y. Extended ensemble monte carlo. Interna-
tional Journal of Modern Physics C, 12(05):623–656,
June 2001. ISSN 1793-6586. doi: 10.1142/
s0129183101001912. URL http://dx.doi.org/
10.1142/S0129183101001912.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., and
Schevon, C. Optimization by simulated annealing: An
experimental evaluation; part ii, graph coloring and
number partitioning. Operations Research, 39(3):378–
406, 1991. ISSN 0030364X, 15265463. URL http:
//www.jstor.org/stable/171393.

Karalias, N. and Loukas, A. Erdos goes neural:
an unsupervised learning framework for combinato-
rial optimization on graphs. ArXiv, abs/2006.10643,
2020. URL https://api.semanticscholar.
org/CorpusID:219792252.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms
over graphs. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.
pdf.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fication with graph convolutional networks. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=SJU4ayYgl.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Op-
timization by simulated annealing. Science, 220
(4598):671–680, 1983. doi: 10.1126/science.220.4598.
671. URL https://www.science.org/doi/
abs/10.1126/science.220.4598.671.

Kool, W., van Hoof, H., and Welling, M. Attention, learn
to solve routing problems! In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ByxBFsRqYm.

Lecun, Y., Chopra, S., and Hadsell, R. A tutorial on energy-
based learning. 01 2006.

Li, Y., Guo, J., Wang, R., and Yan, J. From distribution learn-
ing in training to gradient search in testing for combinato-
rial optimization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=JtF0ugNMv2.

Li, Y., Guo, J., Wang, R., Zha, H., and Yan, J. Fast
t2t: Optimization consistency speeds up diffusion-based
training-to-testing solving for combinatorial optimiza-
tion. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=xDrKZOZEOc.

Li, Z., Chen, Q., and Koltun, V. Combinatorial opti-
mization with graph convolutional networks and guided
tree search. In Neural Information Processing Systems,
2018a. URL https://api.semanticscholar.
org/CorpusID:53027872.

Li, Z., Chen, Q., and Koltun, V. Combinatorial op-
timization with graph convolutional networks and
guided tree search. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018b. URL https://proceedings.neurips.

11

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://www.gurobi.com
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://api.semanticscholar.org/CorpusID:21204149
https://api.semanticscholar.org/CorpusID:21204149
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
http://dx.doi.org/10.1142/S0129183101001912
http://dx.doi.org/10.1142/S0129183101001912
http://www.jstor.org/stable/171393
http://www.jstor.org/stable/171393
https://api.semanticscholar.org/CorpusID:219792252
https://api.semanticscholar.org/CorpusID:219792252
https://proceedings.neurips.cc/paper_files/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=JtF0ugNMv2
https://openreview.net/forum?id=JtF0ugNMv2
https://openreview.net/forum?id=xDrKZOZEOc
https://openreview.net/forum?id=xDrKZOZEOc
https://api.semanticscholar.org/CorpusID:53027872
https://api.semanticscholar.org/CorpusID:53027872
https://proceedings.neurips.cc/paper_files/paper/2018/file/8d3bba7425e7c98c50f52ca1b52d3735-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8d3bba7425e7c98c50f52ca1b52d3735-Paper.pdf

Regularized Langevin Dynamics for Combinatorial Optimization

cc/paper_files/paper/2018/file/
8d3bba7425e7c98c50f52ca1b52d3735-Paper.
pdf.

Lobo, M. S., Fazel, M., and Boyd, S. Portfolio optimiza-
tion with linear and fixed transaction costs. Annals of
Operations Research, 152:341–365, 2007.

Lucas, A. Ising formulations of many np problems.
Frontiers in Physics, 2, 2014. ISSN 2296-424X.
doi: 10.3389/fphy.2014.00005. URL https://
www.frontiersin.org/journals/physics/
articles/10.3389/fphy.2014.00005.

Metropolis, N. C., Rosenbluth, A. W., Rosenbluth, M. N.,
and Teller, A. H. Equation of state calculations
by fast computing machines. Journal of Chemical
Physics, 21:1087–1092, 1953. URL https://api.
semanticscholar.org/CorpusID:1046577.

Neal, R. M. Sampling from multimodal distribu-
tions using tempered transitions. Statistics and Com-
puting, 6:353–366, 1996. URL https://api.
semanticscholar.org/CorpusID:11106113.

Papadimitriou, C. and Steiglitz, K. Combinatorial Opti-
mization: Algorithms and Complexity, volume 32. 01
1982. ISBN 0-13-152462-3. doi: 10.1109/TASSP.1984.
1164450.

Papadimitriou, C. H. and Steiglitz, K. Combinatorial opti-
mization: algorithms and complexity. Courier Corpora-
tion, 1998.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning
(ICML), 2017.

Qiu, R., Sun, Z., and Yang, Y. DIMES: A differentiable meta
solver for combinatorial optimization problems. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=9u05zr0nhx.

Rubinstein, M. Markowitz’s” portfolio selection”: A fifty-
year retrospective. The Journal of finance, 57(3):1041–
1045, 2002.

Sanokowski, S., Hochreiter, S., and Lehner, S. A diffu-
sion model framework for unsupervised neural combi-
natorial optimization. In ICML, 2024. URL https:
//openreview.net/forum?id=AFfXlKFHXJ.

Seçkiner, S. U. and Kurt, M. A simulated an-
nealing approach to the solution of job rotation
scheduling problems. Applied Mathematics and
Computation, 188(1):31–45, 2007. ISSN 0096-
3003. doi: https://doi.org/10.1016/j.amc.2006.09.
082. URL https://www.sciencedirect.com/
science/article/pii/S0096300306013166.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In Bach, F. and Blei, D. (eds.),
Proceedings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 2256–2265, Lille, France, 07–
09 Jul 2015. PMLR. URL https://proceedings.
mlr.press/v37/sohl-dickstein15.html.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2020.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In Advances in Neural
Information Processing Systems, pp. 11895–11907, 2019.

Sun, H., Dai, H., Xia, W., and Ramamurthy, A. Path
auxiliary proposal for MCMC in discrete space. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=JSR-YDImK95.

Sun, H., Goshvadi, K., Nova, A., Schuurmans, D., and
Dai, H. Revisiting sampling for combinatorial opti-
mization. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 32859–32874. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/sun23c.html.

Sun, Z. and Yang, Y. DIFUSCO: Graph-based diffusion
solvers for combinatorial optimization. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=JV8Ff0lgVV.

Tavakkoli-Moghaddam, R., Safaei, N., Kah, M., and
Rabbani, M. A new capacitated vehicle routing
problem with split service for minimizing fleet cost
by simulated annealing. Journal of the Franklin
Institute, 344(5):406–425, 2007. ISSN 0016-0032.
doi: https://doi.org/10.1016/j.jfranklin.2005.12.002.
URL https://www.sciencedirect.com/
science/article/pii/S0016003205001171.
Modeling, Simulation and Applied Optimization Part II.

12

https://proceedings.neurips.cc/paper_files/paper/2018/file/8d3bba7425e7c98c50f52ca1b52d3735-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8d3bba7425e7c98c50f52ca1b52d3735-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8d3bba7425e7c98c50f52ca1b52d3735-Paper.pdf
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2014.00005
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2014.00005
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2014.00005
https://api.semanticscholar.org/CorpusID:1046577
https://api.semanticscholar.org/CorpusID:1046577
https://api.semanticscholar.org/CorpusID:11106113
https://api.semanticscholar.org/CorpusID:11106113
https://openreview.net/forum?id=9u05zr0nhx
https://openreview.net/forum?id=9u05zr0nhx
https://openreview.net/forum?id=AFfXlKFHXJ
https://openreview.net/forum?id=AFfXlKFHXJ
https://www.sciencedirect.com/science/article/pii/S0096300306013166
https://www.sciencedirect.com/science/article/pii/S0096300306013166
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=JSR-YDImK95
https://openreview.net/forum?id=JSR-YDImK95
https://proceedings.mlr.press/v202/sun23c.html
https://proceedings.mlr.press/v202/sun23c.html
https://openreview.net/forum?id=JV8Ff0lgVV
https://openreview.net/forum?id=JV8Ff0lgVV
https://www.sciencedirect.com/science/article/pii/S0016003205001171
https://www.sciencedirect.com/science/article/pii/S0016003205001171

Regularized Langevin Dynamics for Combinatorial Optimization

WANG, C., HYMAN, J. D., PERCUS, A., and
CAFLISCH, R. Parallel tempering for the travel-
ing salesman problem. International Journal of Mod-
ern Physics C, 20(04):539–556, 2009. doi: 10.1142/
S0129183109013893. URL https://doi.org/10.
1142/S0129183109013893.

Wang, H. P. and Li, P. Unsupervised learning for combina-
torial optimization needs meta learning. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=-ENYHCE8zBp.

Wang, H. P., Wu, N., Yang, H., Hao, C., and Li, P. Un-
supervised learning for combinatorial optimization with
principled objective relaxation. In Oh, A. H., Agarwal,
A., Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=HjNn9oD_v47.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
International Conference on International Conference on
Machine Learning, ICML’11, pp. 681–688, Madison, WI,
USA, 2011. Omnipress. ISBN 9781450306195.

Xu, K. and Li, W. Exact phase transitions in random
constraint satisfaction problems. ArXiv, cs.AI/0004005,
2000. URL https://api.semanticscholar.
org/CorpusID:2407346.

Yau, M., Karalias, N., Lu, E., Xu, J., and Jegelka, S.
Are graph neural networks optimal approximation
algorithms? In Globerson, A., Mackey, L., Belgrave, D.,
Fan, A., Paquet, U., Tomczak, J., and Zhang, C. (eds.),
Advances in Neural Information Processing Systems,
volume 37, pp. 73124–73181. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.
cc/paper_files/paper/2024/file/
85db52cc08c5e00cfb1d216b1c85ba35-Paper-Conference.
pdf.

Zanella, G. Informed proposals for local mcmc in dis-
crete spaces. Journal of the American Statistical Asso-
ciation, 115:852 – 865, 2017. URL https://api.
semanticscholar.org/CorpusID:88514775.

Zhang, D., Dai, H., Malkin, N., Courville, A., Bengio, Y.,
and Pan, L. Let the flows tell: Solving graph combi-
natorial problems with GFlownets. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=sTjW3JHs2V.

Zhang, R., Liu, X., and Liu, Q. A langevin-like sampler
for discrete distributions. International Conference on
Machine Learning, 2022.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang,
Y., Wang, Y., Xu, Y., Zhuo, D., Xing, E. P., et al. Alpa:
Automating inter-and {Intra-Operator} parallelism for
distributed deep learning. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 559–578, 2022.

13

https://doi.org/10.1142/S0129183109013893
https://doi.org/10.1142/S0129183109013893
https://openreview.net/forum?id=-ENYHCE8zBp
https://openreview.net/forum?id=-ENYHCE8zBp
https://openreview.net/forum?id=HjNn9oD_v47
https://openreview.net/forum?id=HjNn9oD_v47
https://api.semanticscholar.org/CorpusID:2407346
https://api.semanticscholar.org/CorpusID:2407346
https://proceedings.neurips.cc/paper_files/paper/2024/file/85db52cc08c5e00cfb1d216b1c85ba35-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/85db52cc08c5e00cfb1d216b1c85ba35-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/85db52cc08c5e00cfb1d216b1c85ba35-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/85db52cc08c5e00cfb1d216b1c85ba35-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:88514775
https://api.semanticscholar.org/CorpusID:88514775
https://openreview.net/forum?id=sTjW3JHs2V
https://openreview.net/forum?id=sTjW3JHs2V

Regularized Langevin Dynamics for Combinatorial Optimization

A. Additional Experiment Details
A.1. Overview of Hyperparameters

Tables 4 and 5 summarize the hyperparameters for RLSA and RLNN, respectively. We use random search to determine
the initial temperature τ0 within [0.001, 10] and the regularized step size d within [2, 100]. Since larger values of K and T
generally yield better performance, we chose K and T for RLSA so that its runtime matches that of the fastest baseline on
each dataset. For RLNN, we allow a larger time budget by selecting K and T such that its runtime is comparable to most
baselines. The inference is performed using the float16 data type to accelerate tensor operations.

Table 4. Hyperparameters used by RLSA on all datasets.

Problem Dataset τ0 d K T β

MIS

RB-[200-300] 0.01 5 200 300 1.02
RB-[800-1200] 0.01 5 200 500 1.02
ER-[700-800] 0.01 20 200 500 1.001
ER-[9000-1100] 0.01 20 200 5000 1.001

MCl RB-[200-300] 4 2 200 100 1.02
RB-[800-1200] 4 2 200 500 1.02

MCut BA-[200-300] 5 20 200 200 1.02
BA-[800-1200] 5 20 200 500 1.02

Table 5. Hyperparameters used by RLNN on all datasets.

Problem Dataset τ0 d K T β K ′ T ′ λ

MIS

RB-[200-300] 1 5 20 100 1.02 10 50 0.5
RB-[800-1200] 1 5 20 200 1.02 10 300 0.5
ER-[700-800] 1 20 20 200 1.001 10 500 0.5
ER-[9000-1100] 1 20 20 800 1.001 — — —

MCl RB-[200-300] 1 2 20 100 1.02 10 100 0.5
RB-[800-1200] 1 2 20 200 1.02 10 300 0.5

MCut BA-[200-300] 1 20 20 100 1.02 10 50 0.5
BA-[800-1200] 1 20 20 200 1.02 10 300 0.5

A.2. Implementation of RLNN

RLNN is parameterized by a five-layer GCN (Kipf & Welling, 2017) with 128 hidden dimensions. A linear layer is first
used to project the input x to a 128-dim embedding H0. Each layer of GCN performs the following update:

Hl+1 = ReLU(UlHl +VlD−1/2ÂD−1/2Hl) +Hl, (28)

where Ul and Vl are the model parameters at l-th layer, Â = A+ IN×N is the adjacency matrix with the self loop, D is a
diagonal degree matrix with Dii =

∑N
j=1 Âij . The output hidden representation is projected to a scalar via a linear layer,

and then a sigmoid activation yields the flipping probability qθ(x
′
i = 1− xi|x) for each node.

We train RLNN with 50 epochs on all datasets, except RB-[700–800] for MCl, where we use 80 epochs because the model
does not converge in 50 epochs. On each graph, we sample K ′ trajectories of length T ′, yielding K ′T ′ training samples.
The batch size is set to 32 per GPU, and we optimize with Adam at a learning rate of 0.0001.

In terms of training time, our model completes training on small-scale graphs (except ER-[700–800]) in under half an hour
using eight RTX A6000 GPUs, and the larger instances finish within one hour; on a server with ten RTX 2080 Ti GPUs,
runtimes are slightly longer, but the longest experiment still finishes within three hours. By comparison, baseline methods

14

Regularized Langevin Dynamics for Combinatorial Optimization

such as DiffUCO (Sanokowski et al., 2024) require two days to train a single model on RB–[200–300]. We attribute this
efficiency advantage to the local training objective of RLNN, which avoids estimating long-term high-variance reward
signals with standard reinforcement learning methods, as employed by DiffUCO.

Note that the float32 data type is used during RLNN training, which is switched to float16 at the inference time.

A.3. Postprocessing

We postprocess the lowest-energy solutions to enforce feasibility, though in practice our methods almost always produce
valid solutions, so we use a simple greedy decoder.

Specifically, we calculate the gradient of the current solution x: if max∆i < 0, then the solution has already reached a local
optimum and the feasibility is guaranteed; otherwise, we flip the coordinate corresponding to argmax∆i. This process is
iterated until the convergence.

B. Comparison under Longer Runtime
To assess whether RLSA retains its advantage when given longer runtime, we run both RLSA and iSCO for ten times more
iterations than those specified in Table 4. The results in Tables 6 and 7 show that, although iSCO matches RLSA on some
small-scale instances, RLSA still outperforms on large-scale datasets while requiring substantially less computation time.

Furthermore, the results demonstrate that RLSA achieves performance comparable to exact solvers across multiple
benchmarks—especially on large-scale problem instances—underscoring its effectiveness in CO.

Table 6. Comparative results between iSCO and RLSA with ten times more steps on MIS. The best one is bolded.

MIS RB-[200–300] RB-[800–1200] ER-[700–800] ER-[9000–11000]

METHOD TYPE SIZE ↑ TIME ↓ SIZE ↑ TIME ↓ SIZE ↑ TIME ↓ SIZE ↑ TIME ↓
iSCO (10×) H 20.01 26.25m 40.47 1.87h 44.41 7.21m 378.56 11.03h
RLSA (10×) H 20.10 6.98m 41.83 10.65m 45.05 2.92m 379.19 17.63m

Table 7. Comparative results between iSCO and RLSA with ten times more steps on MCl and MCut. The best one is bolded.

MCl RB-[200–300] RB-[800–1200] MCut BA-[200–300] BA-[800–1200]

METHOD TYPE SIZE ↑ TIME ↓ SIZE ↑ TIME ↓ METHOD TYPE SIZE ↑ TIME ↓ SIZE ↑ TIME ↓
iSCO (10×) H 18.97 8.81m 40.41 1.83h iSCO (10×) H 734.62 1.20h 2960.23 43.98m
RLSA (10×) H 18.97 3.14m 40.63 8.67m RLSA (10×) H 734.62 4.07m 2968.59 10.25m

C. Example Code for RLSA
The following Python code outlines our implementation of RLSA. The energy function corresponds to the formulas in
Section 4.2 and the input parameters are summarized in Section A. In our experiments, the time measurement corresponds
to the runtime of the entire RLSA function below.

1 def energy_func(A, b, x, penalty_coeff=1.02):
2 """
3 The energy function is: bˆTx+penalty_coeff*xˆTAx
4 Return the energy and the gradient
5 """
6

7 L = A@x
8 energy = torch.sum(x*(penalty_coeff*L+b), dim=0)
9 grad = 2*penalty_coeff*L+b

10

11 return energy, grad
12

13 def RLSA(graph, tau0, step_size, num_runs, num_steps, penalty_coeff):

15

Regularized Langevin Dynamics for Combinatorial Optimization

14 """
15 graph: the graph object in torch_geometric
16 num_runs: the number of parallel SA processes
17 num_steps: the number of SA steps
18 tau0: the initial temperature
19 """
20

21 # initialization
22 num_nodes = graph.num_nodes
23

24 A = torch.sparse_coo_tensor(
25 graph.edge_index,
26 graph.edge_weight,
27 torch.Size((num_nodes, num_nodes))
28)
29 x = torch.randint(0,2, (num_nodes, num_runs))
30

31 energy, grad = energy_func(A, graph.b, x, penalty_coeff)
32 best_energy = energy
33 best_sol = x.clone()
34

35 # SA
36 for epoch in range(num_steps):
37 # annealing
38 tau = tau0*(1-epoch/num_steps)
39

40 # sampling
41 delta = grad*(2*x-1)/2
42 term2 = -torch.kthvalue(
43 -delta,
44 step_size,
45 dim=0,
46 keepdim=True
47).values
48

49 flip_prob = torch.sigmoid((delta-term2)/tau)
50 rr = torch.rand_like(x.data)
51 x = torch.where(rr<flip_prob, 1-x, x)
52

53 # update loss
54 energy, grad = energy_func(A, graph.b, x, penalty_coeff)
55 to_update = energy<best_energy
56 best_sol[:,to_update] = x[:,to_update]
57 best_energy[to_update] = energy[to_update]
58

59 return best_energy, best_sol

16

