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ABSTRACT

DP-FedAvg is one of the most popular algorithms for federated learning (FL) with
differential privacy (DP), but it is known to suffer from the slow convergence in
the presence of heterogeneity among clients’ data. Most of the existing methods
to accelerate DP-FL require 1) additional hyperparameters or 2) additional com-
putational cost for clients. This is not desirable since 1) hyperparameter tuning is
computationally expensive and data-dependent choice of hyperparameters raises
the risk of privacy leakage, and 2) clients are often resource-constrained. To ad-
dress this issue, we propose DP-FedEXP, which adaptively selects the global step
size based on the diversity of the local updates without requiring any additional
hyperparameters or client computational cost. We show that DP-FedEXP prov-
ably accelerates the convergence of DP-FedAvg and it empirically outperforms
existing methods tailored for DP-FL.

1 INTRODUCTION

Federated learning (FL) (Konečný et al., 2017) with differential privacy (DP) (Dwork et al., 2006)
has been intensively studied due to the growing concern for privacy in the field of machine learning.
A practical approach to incorporate DP to the FL framework is DP-FedAvg (McMahan et al., 2017).
Unfortunately, (DP-)FedAvg has been known to suffer from slow convergence in the presence of
data heterogeneity across clients. This issue is known as the client drift error (Karimireddy et al.,
2019).

To deal with data heterogeneity, a line of work has studied variance reduction techniques in (non-
private) FL setting (Karimireddy et al., 2020a;b; Mitra et al., 2021). Extending the above techniques
to the DP setting, DP-SCAFFOLD (Noble et al., 2022) has been proposed and shown to achieve
improved convergence guarantee. Although the above methods enjoy theoretically favorable prop-
erties, they require clients to be stateful and additional computational cost in clients. This is imprac-
tical since clients are often resource-constrained.

Another line of work has sought to accelerate the convergence of (DP-)FedAvg by regarding the local
updates as pseudo-gradients and updating the global model using global optimization algorithms
such as Adam (Kingma & Ba, 2015) with additional hyperparameters such as global step size (Reddi
et al., 2021). Although the performance crucially relies on the choice of the hyperparameters, it is
difficult to obtain the optimal hyperparameters in the DP settings since hyperparameter tuning on
sensitive data leads to additional privacy leakage Papernot & Steinke (2021). Furthermore, it is
highly costly in practice to tune the hyperparameters in the FL setting, since the data is distributed
across clients.

To develop an effective and practical DP-FL algorithm, we pose the following question:

Can DP-FL be accelerated under heterogeneity of client data without any additional hyperparame-
ters and computational cost for clients?

In this paper, to address the above question, we propose DP-FedEXP by incorporating Fed-
EXP (Jhunjhunwala et al., 2023), which adaptively determines the global step size to the heterogene-
ity of the local updates, into the DP-FL framework in a non-trivial way. Specifically, we consider
the two different scenarios of DP: Local Differential Privacy (LDP) and Central Differential Privacy
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(CDP). We found that the step size formula for FedEXP cannot be directly extended in both cases.
Thus, we carefully design the step size formula for LDP and CDP and develop a simple but effective
framework to accelerate the convergence of existing DP-FL algorithms. We would like to emphasize
that our proposed method is orthogonal to existing works which try to accelerate (DP-)FL by modi-
fying the local training procedure (Li et al., 2020; Karimireddy et al., 2020b; Noble et al., 2022; Shi
et al., 2023) and thus, it can be combined with them to further improve the performance.

Our contribution can be summarized as follows:

• We propose LDP-FedEXP and CDP-FedEXP with simple but effective parameter-free step
size rules in DP-FL.

• We provide formal differential privacy guarantee and convergence guarantees for general
non-convex objectives. We prove that the proposed method provably accelerates the con-
vergence in the presence of data heterogeneity.

• In the numerical experiments, we show that DP-FedEXP outperforms existing algorithms
in utility while preserving the privacy guarantee.

2 PROBLEM SETTINGS AND PRELIMINARIES

2.1 PROBLEM SETTINGS

Federated Learning We consider the following optimization problem with M clients:

min
w∈Rd

F (w) :=
1

M

M∑
i=1

fi(w), (1)

where w ∈ Rd, M is the number of clients and fi(w) :=
1

|Di|
∑

di∈Di
l(w, di) is the loss function

of the i-th client computed on a loss function l and the local dataset Di.

Differential Privacy In this paper, we consider two scenarios of differential privacy: Central Dif-
ferential Privacy (CDP) and Local Differential Privacy (LDP) . In the CDP setting, we assume that
the central server is trusted while we do not assume any trusted server in the LDP setting. Here, we
provide the formal definitions of (ε, δ)-CDP and (ε, δ)-LDP.

Definition 2.1 (Central Differential Privacy Dwork et al. (2014)). Let X be the set of all possible
client datasets. A central randomized mechanism Q : XM → Y satisfies (ε, δ)-CDP if for any two
neighboring inputs x, x′ ∈ XM , which differ in one client dataset, we have

∀S ⊂ Y : Pr[Q(x) ∈ S] ≤ eε Pr[Q(x′) ∈ S] + δ.

Definition 2.2 (Local Differential Privacy Kasiviswanathan et al. (2011)). Let X be the set of all
possible client datasets. A local randomized mechanism R : X → Y satisfies (ε, δ)-LDP if for any
two inputs x, x′ ∈ X , we have

∀S ⊂ Y : Pr[R(x) ∈ S] ≤ eε Pr[R(x′) ∈ S] + δ.

If δ = 0,R is called to satisfy pure differential privacy.

2.2 DP-FEDAVG

At round t in DP-FedAvg (McMahan et al., 2017), the server sends the global model w(t−1) to
all clients. Then, each client performs τ steps of local training w

(t−1,0)
i := w(t−1), w

(t−1,k)
i :=

w
(t−1,k−1)
i − ηl∇fi(w(t−1,k−1)

i ) (k = 1 . . . τ) using (stochastic) gradient descent with step size
ηl and computes the local update ∆̃

(t)
i := w

(t−1,τ)
i − w(t−1). To bound the sensitivity of the local

updates, each client i applies clipping to their local update ∆
(t)
i := min{C/∥∆̃(t)

i ∥, 1} · ∆̃
(t)
i with

threshold C > 0. Then, each client sends the central server the local update ∆(t)
i in the CDP setting

and the randomized update c
(t)
i = ∆

(t)
i + ε

(t)
i (ε

(t)
i ∼ N (0, σ2)) in the LDP setting. The central
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server aggregates the local updates as follows:{
c̄(t) := 1

M

∑M
i=1 c

(t)
i (LDP setting),

c̄(t) := 1
M

∑M
i=1 ∆

(t)
i + ε(t) (ε(t) ∼ N (0, σ2/M)) (CDP setting).

Here, we consider Gaussian mechanism as a local randomizer in the LDP setting but our pro-
posed framework can be applied to PrivUnit (Bhowmick et al., 2018), which is known to satisfy
pure differential privacy and achieve the asymptotically optimal trade-off between privacy and util-
ity Bhowmick et al. (2018); Asi et al. (2022). See Appendix D for details.

In DP-FedAvg, the server updates the global model by just adding the averaged local update as
w(t+1) = w(t) + c̄(t). To accelerate the convergence, several works deal with the noisy local up-
dates as pseudo-gradients and update the global model as w(t+1) = w(t) + ηg c̄

(t), where ηg is a
global step size (Reddi et al., 2021; Noble et al., 2022). To ensure the convergence, ηg should be
chosen carefully. However, it is difficult in practice to tune such a hyperparameter with formal DP
guarantee since hyperparameter tuning is computationally expensive and requires additional privacy
budget (Papernot & Steinke, 2021). To fill the gap between the theory and practice, it is desirable to
determine the step size in an adaptive manner.

2.3 FEDEXP
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Figure 1: The adaptive step size η
(0)
g at initializa-

tion in the LDP setting. Our proposed step size is
close to the target step size η

(0)
target for both Gaus-

sian mechanism and PrivUnit case.

In the context of non-DP federated learning,
FedEXP (Jhunjhunwala et al., 2023) and Fed-
EXProx (Li et al., 2024) have been proposed
to determine the global step size adaptively to
the heterogeneity of the local updates. Follow-
ing the adaptive step size rule of POCS (Pierra,
1984), they define the global step size as

η(t)g :=

1
M

∑M
i=1

∥∥∥∆(t)
i

∥∥∥2∥∥∆̄(t)
∥∥2 , (2)

where ∆̄(t) = 1
M

∑M
i=1 ∆

(t)
i is the average of the local updates. Here, we follow the formula in Li

et al. (2024) and omit the coefficient 1/2 and a small constant added to the denominator, which ap-
pear in Jhunjhunwala et al. (2023) since the convergence analysis in Jhunjhunwala et al. (2023) does

not require these factors. In the case of τ = 1, the above formula is reduced to
1
M

∑M
i=1∥∇fi(w

(t))∥2
∥∇F (w(t))∥2 ,

which is known as a measure of the heterogeneity among clients (Haddadpour & Mahdavi, 2019;
Wang et al., 2020). Thus, FedEXP adaptively determines the global step size based on the diver-
sity of the clients’ data. Although FedEXP has been shown to accelerate the convergence in the
non-private setting, it is still unclear how to extend the algorithm to the DP setting.

3 PROPOSED METHOD: DP-FEDEXP

In this section, we propose DP-FedEXP (LDP-FedEXP and CDP-FedEXP), which extend FedEXP
to the LDP and CDP setting in a non-trivial way.

3.1 LDP-FEDEXP

3.1.1 NAIVE IMPLEMENTATION OF FEDEXP WITH NOISY UPDATES

In the setting of LDP, the server can only access the noisy updates c(t)i . Extending equation 2 to the
DP setting naively, we obtain the following formula:

η̃(t)g :=

1
M

∑M
i=1

∥∥∥c(t)i

∥∥∥2∥∥c̄(t)∥∥2 . (3)
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Unfortunately, Fig. 1 shows that η̃(t)g is extremely large and causes instability in the training process.

To investigate the reason of this phenomenon, let us evaluate the expectation of the numerator in the
above formula. We have E[ 1

M

∑M
i=1 ∥c

(t)
i ∥2] = 1

M

∑M
i=1 ∥∆

(t)
i ∥2 + dσ2. Since the noise scale σ is

relatively large in the LDP setting, the noise term dσ2 dominates the numerator. Furthermore, since
the noise term does not depend on the number of clients M , increasing the number of clients does
not help to stabilize the training.

3.1.2 STEP SIZE FORMULA FOR GAUSSIAN MECHANISM

To develop a practical step size rule in the DP setting, let us consider the following approximate
projection condition:

1

M

M∑
i=1

∥∥∥w(t,τ)
i − w∗

∥∥∥2 = (1− α)
∥∥∥w(t) − w∗

∥∥∥2, (4)

for some 0 ≤ α ≤ 1 (Jhunjhunwala et al., 2023), where w∗ is a optimal solution of problem equa-
tion 1. Intuitively, this condition implies that the parameters of the local models are closer to the
optimal solution on average after τ steps of local training. Under the above condition, the distance
between updated model and the optimal model is evaluated as∥∥∥w(t+1) − w∗

∥∥∥2 ≃ (1− αηg)
∥∥∥w(t) − w∗

∥∥∥2 − ηg
1

M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥2 + η2g

∥∥∥c̄(t)∥∥∥2,
for sufficiently large d with high-probability. Here, we ignore the effect of clipping for simplicity.
See Lemma C.4 for the detailed derivation. To ensure that the distance between the global model
and the optimal model decreases for any ∥w(t) − w∗∥2, we need to set the global step size as

ηg ≤ η
(t)
target :=

1
M

∑M
i=1

∥∥∥∆(t)
i

∥∥∥2∥∥c̄(t)∥∥2 (5)

but we cannot compute η
(t)
target since the server cannot access ∆

(t)
i directly. Instead of the exact

calculation of 1
M

∑M
i=1 ∥∆

(t)
i ∥2, we propose to use its unbiased estimator 1

M

∑M
i=1 ∥c

(t)
i ∥2 − dσ2.

That is, the global step size for LDP-FedEXP is given by

η(t)g := max

1,

1
M

∑M
i=1

∥∥∥c(t)i

∥∥∥2 − dσ2∥∥c̄(t)∥∥2
. (6)

Here, we take the maximum of 1 and the bias-corrected step size to ensure the acceleration of the
convergence. As shown in Fig. 1, η(t)g is close to η

(t)
target for large M . Using the above formula,

LDP-FedEXP updates the global model as w(t+1) := w(t) + η
(t)
g c̄(t). We show the entire training

process in Algorithm 1.

3.2 CDP-FEDEXP

In the CDP setting, the server can calculate equation 5 but it does not satisfy DP. Since ∥c̄(t)∥ can be
arbitrarily small and the sensitivity of η(t)target is not bounded, we cannot apply Gaussian mechanism
to Eq. equation 5 directly. Thus, we propose the following formula:

η(t)g := max

1,

1
M

∑M
i=1

∥∥∥∆(t)
i

∥∥∥2 + ξ(t)∥∥c̄(t)∥∥2
, (7)

where ξ(t) follows N (0, σ2
ξ ). We show the entire training process in Algorithm 2.
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4 THEORETICAL ANALYSIS

In this section, we show that the proposed methods provably accelerate the DP-FedAvg while main-
taining the privacy guarantee.

4.1 PRIVACY

Here, we provide the formal privacy guarantee of LDP-FedEXP and CDP-FedEXP.
Proposition 4.1 (LDP case). LDP-FedEXP satisfies the same privacy guarantee as DP-FedAvg
in the LDP setting. That is, the local computation at each client in LDP-FedEXP with Gaussian
mechanism satisfies (ε, δ)-LDP, where ρ = 2C2/σ2 and ε = αρ + log(1/δ)/(α − 1) for any
δ ∈ (0, 1) and α ∈ (1,∞).
Proposition 4.2 (CDP case). The entire training process of CDP-FedEXP satisfies (ε, δ)-CDP,
where ρ = 2C2T/Mσ2, ρξ = C4T/2M2σ2

ξ and ε = α(ρ + ρξ) + log(1/δ)/(α − 1) for any
δ ∈ (0, 1) and α ∈ (1,∞).

See Appendix E for details. For LDP case, the privacy guarantee of LDP-FedEXP is the same as
that of LDP-FedAvg since we use the same mechanism for the local computation. For CDP case,
additional privacy budget αρξ is required for privatizing the numerator in the step size formula.
However, as shown in the utility analysis, it is sufficient to set σξ = dσ2/M and we have ρξ =
C4T/2d2σ4 = O(ρ2M2/Td2). Thus, the additional privacy budget consumption is negligible if
ρ = O(1) and T · d2 ≫M2, which is a common setting in modern deep learning tasks.

4.2 UTILITY

In this section, we prove the convergence guarantee of DP-FedEXP for general non-convex objec-
tives. Here, we require the following standard assumptions:
Assumption 4.3 (Smoothness and Lipschitz continuity). Each client loss function fi is L-smooth
and G-Lipschitz continuous, where L,G > 0 are constants. That is, for any w,w′ ∈ Rd, we have
∥∇fi(w)−∇fi(w′)∥ ≤ L∥w − w′∥ and ∥∇fi(w)∥ ≤ G.
Assumption 4.4 (Bounded gradient diversity). For any w ∈ Rd, the diversity of the gradients is
bounded as 1

M

∑M
i=1∥∇fi(w)−∇F (w)∥2 ≤ σg

2, where σ2
g is a constant.

Under the above assumptions, we have the following results.
Theorem 4.5 (LDP case). Assume that Assumptions 4.3 and 4.4 hold. Let F ∗ = minw F (w) and
C = ηlτG. Then, for any ηl = Θ(1/(Lτ)) < 1/(24Lτ) and the sequence {w(t)}Tt=1 generated by
LDP-FedEXP satisfies

min
t∈[T ]

∥∥∥∇F (w(t))
∥∥∥2 ≤ O

(
F (w0)− F ∗∑T

t=1 η
(t)
g ηlτ︸ ︷︷ ︸

T1

+ η2l L
2τ2σ2

g︸ ︷︷ ︸
T2

+ ηlLτσ
2
g︸ ︷︷ ︸

T3

+
Lσ2q2

ηlτ

[
d

M
+

√
d

M

]
︸ ︷︷ ︸

T gauss
4 :=privacy error

)

with probability at least 1− Te−c·q2 for any q ∈ [1,
√
M ], where c is a numerical constant.

Theorem 4.6 (CDP case). Assume that Assumptions 4.3 and 4.4 hold. Let F ∗ = minw F (w), σξ =

dσ2/M , and C = ηlτG. Then, for any ηl = Θ(1/(Lτ)) < 1/(24Lτ), the sequence {w(t)}Tt=1
generated by CDP-FedEXP satisfies

min
t∈[T ]

∥∥∥∇F (w(t))
∥∥∥2 ≤ T1 + T2 + T3 +O

(
Lσ2q2

ηlτ
· d

M

)
︸ ︷︷ ︸
T cdp
4 :=privacy error

with probability at least 1− Te−c·q2 for q ∈ [1,
√
M ], where c is a numerical constant

See Appendix F for the proof. The difficulty of the proof lies in the correlation between the global
step size η

(t)
g and the noisy update c̄(t) as discussed in previous works (Jhunjhunwala et al., 2023;

Li et al., 2024). Since the step size η
(t)
g depends on noisy update c̄(t) in a complicated way, we need

to carefully evaluate the error terms from DP noise.
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Figure 2: The distance to the optimal solution for the synthetic dataset (left) and test accuracy for
the MNIST dataset (right). DP-FedEXP consistently outperforms baseline algorithms.

Comparison with FedEXP The above theorems imply that the error of DP-FedEXP are decom-
posed into four terms: initialization error T1, client drift error T2, global variance T3, and privacy
error T4. As shown in Theorem 2 from Jhunjhunwala et al. (2023), the error of FedEXP is given
by T1 + T2 + T3. Thus, the DP noise only affects the privacy error term T4, which vanishes as the
number of clients M goes to infinity.

Comparison with DP-FedAvg The error of DP-FedAvg is given by O
(

F (w(0))−F∗

Tηlτ

)
+

O(η2l L
2τ2σ2

g) + O(Lσ2

ηlτ
· d
M ) for both LDP and CDP cases (Zhang et al., 2022). The initializa-

tion error term O
(

F (w(0))−F∗

Tηlτ

)
is always larger than that of LDP-FedEXP and CDP-FedEXP since

η
(t)
g ≥ 1 for any t. Thus, DP-FedEXP provably accelerate the convergence of DP-FedAvg in both

LDP and CDP setting. For the privacy error term T4, LDP-FedEXP with the Gaussian mechanism
has the additional term of order

√
d/M . This can be reduced to 1/

√
M by adopting PrivUnit as a

local randomizer as shown in Section D. In contrast, for the CDP case, CDP-FedEXP achieves the
same privacy error as DP-FedAvg by setting σξ = dσ2/M .

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of DP-FedEXP on synthetic and real datasets. For
the synthetic experiment, we consider a linear regression problem, where clients share the common
minimizer following Jhunjhunwala et al. (2023). For the realistic experiment, we consider the image
classification task on the MNIST dataset (LeCun, 1998). We compare our proposed method with
the baseline algorithms such as DP-FedAvg and DP-SCAFFOLD. For fair comparison, we have
tuned the clipping threshold C and the local learning rate ηl for each method via grid search. See
Appendix G for the detailed setup and additional results.

Table 1: Comparison of the privacy budget ε (δ =
10−5) for DP-FedEXP and DP-FedAvg.

Problem setting DP-FedEXP DP-FedAvg

LDP (Gaussian) 15.659 15.659
LDP (PrivUnit) 6 6
CDP (Synthetic) 15.647 15.258
CDP (MNIST) 15.261 15.258

DP-FedEXP consistently outperforms base-
lines Fig. 2 illustrates the distance to the opti-
mum w∗ for the synthetic experiment and the
test accuracy for the MNIST experiment. In
both experiments, we can see that DP-FedEXP
effectively accelerates DP-FedAvg. In addi-
tion, as shown in Table 1, our proposed meth-
ods achieve the same privacy guarantee as DP-
FedAvg in the LDP setting and the additional
privacy budget in the CDP setting is negligible. Furthermore, DP-FedEXP consistently outperforms
DP-SCAFFOLD. In our setup, DP-SCAFFOLD does not improve the performance compared to
DP-FedAvg except for the case of CDP in the synthetic experiment. One possible reason is that
DP-SCAFFOLD in Noble et al. (2022) is designed for sample-level DP and the noise scale for
client-level DP is much larger than that for sample-level DP.

6 CONCLUSION

In this study, we have pursued a practical federated learning framework with formal privacy guaran-
tee. To this end, we have proposed DP-FedEXP for both LDP and CDP settings, which adaptively
selects the global step size in DP-FL with respect to the heterogeneity of the local updates. Our
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proposed framework does not require any additional hyperparameters, additional communication
cost or additional computational cost at clients. Then, we have proved differential privacy guarantee
and provided the convergence analysis of our proposed methods. We have shown that DP-FedEXP
provably accelerates DP-FedAvg while maintaining the privacy guarantee. Finally, we have shown
that our proposed methods outperform existing DP-FL algorithms in the numerical experiments.
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Maxence Noble, Aurélien Bellet, and Aymeric Dieuleveut. Differentially private federated learning
on heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pp.
10110–10145, 2022.

Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differential privacy. arXiv
preprint arXiv:2110.03620, 2021.

Guy Pierra. Decomposition through formalization in a product space. Mathematical Programming,
28(1):96–115, 1984.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
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A OTHER RELATED WORK

Adapive Optimization Algorithms with DP Inspired by the success of adaptive optimization
algorithms such as Adam (Kingma & Ba, 2015) in the non-private setting, their DP variants have
been utilized in various fields (Li et al., 2021; Daigavane et al., 2022). However, despite their
success in the non-private setting, their DP variants often suffer from the slow convergence. Tang
et al. (2024) have found that the bias from DP noise degrades the performance of DP-Adam and
proposed DP-AdamBC, which removes the bias in the second moment estimation of Adam update.
This implies that it is not straightforward to extend adaptive methods in the non-private setting to
the DP setting. Note that the above attempts are mainly focused on the centralized setting and it
is still unclear how to incorporate the adaptivity to the heterogeneity of the client data into DP-FL
algorithms.

Hyperparameter Tuning with DP In the most of the existing works, the privacy leakage from
hyperparameter tuning is ignored. However, as discussed in Papernot & Steinke (2021), hyperpa-
rameters can raise the privacy risks of memorizing the training data. Thus, to ensure the formal
privacy guarantee, we should audit the privacy leakage from the entire training process including
hyperparameter tuning. Several works (Liu & Talwar, 2019; Wang et al., 2023; Papernot & Steinke,
2021; Mohapatra et al., 2022) have proposed to privatize hyperparameter tuning by consuming ad-
ditional privacy budget. However, these methods often result in much weaker privacy guarantees
unless larger DP noise is used. For example, Papernot & Steinke (2021) have reported that the pri-
vacy parameter can be doubled or even tripled by accounting the privacy leakage from hyperparam-
eter tuning. Furthermore, it is prohibitively expensive or even infeasible to conduct hyperparameter
tuning with distributed data in the FL setting.

Hyperparameter-Free DP Optimization A line of work has investigated adaptive methods to se-
lect hyperparameters for DP optimization algorithms (Andrew et al., 2021; Bu et al., 2023; Anony-
mous, 2024). For example, Adaptive clipping (Andrew et al., 2021) selects clipping threshold in
DP-FL by estimating a quantile of the update norm with a negligible amount of privacy budget. Fur-
thermore, Anonymous (2024) have proposed a hyperparameter-free algorithm for DP optimization
in the centralized setting. However, to the best of our knowledge, there is no work that provides
hyperparameter-free step size rule to deal with the heterogeneity of the client data for DP-FL.
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B DETAILED PROCEDURE OF THE PROPOSED ALGORITHMS

Algorithm 1 LDP-FedEXP

Input: initial w(0), clipping threshold C, number of rounds T
Output: final w(T )

for t = 1 to T do
Server sends w(t−1) to all clients
for client i = 1 to M do

∆̃
(t)
i ← localupdate(w(t−1),Di)

∆
(t)
i ← min{C/∥∆̃(t)

i ∥, 1} · ∆̃
(t)
i

c
(t)
i ← LocalRandomizer(∆

(t)
i )

Client i sends c(t)i to server
end for
Aggregate local updates:
c̄(t) ← 1

M

∑M
i=1 c

(t)
i

Compute global step size η
(t)
g as in equation 6 or equation 8.

Update global model with w(t) ← w(t−1) + η
(t)
g c̄(t)

end for

Algorithm 2 CDP-FedEXP

Input: initial w(0), clipping threshold C, noise scale σ, number of rounds T
Output: final w(T )

for t = 1 to T do
Server sends w(t−1) to all clients
for user i = 1 to M do
∆̃

(t)
i ← localupdate(w(t−1),Di)

∆
(t)
i ← min{C/∥∆̃(t)

i ∥, 1} · ∆̃
(t)
i

Client i sends ∆(t)
i to server

end for
Aggregate local updates and add noise:
c̄(t) ← 1

M

∑M
i=1 ∆

(t)
i + ε(t) (ε(t) ∼ N (0, σ2/M))

Compute global step size η
(t)
g as in equation 7.

Update global model with w(t) ← w(t−1) + η
(t)
g c̄(t)

end for

C AUXILIARY RESULTS

Lemma C.1 (Gaussian tail bound). Let X be a random variable following the Gaussian distribution
N (0, σ2). Then, for any q > 0, we have

X ≤ σq with probability at least 1− e−q2/2.

Proof. From the Hoeffding bound Wainwright (2019), we obtain

Prob (X > t) ≤ e−t2/2σ2

.

Setting t = σq completes the proof.

Lemma C.2 (Tail bound for norm of Gaussian). Let xi ∈ Rd be a random variable following the
Gaussian distribution N (0, σ2Id). Then, for any q ≥ 1, we have

1

n

n∑
i=1

∥xi∥2 − dσ2 ≤
√

d

n
σ2 · q2 with probability at least 1− e−q2/8.

10
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Proof. It is sufficient to consider the case of σ2 = 1 by scaling xi with 1/σ. Since Zi := ∥xi∥2
follows the χ2-distribution with d degrees of freedom, we have

E
[
eλ(Zi−d)

]
= e−dλ ·

[∫
eλX

2 1√
2π

e−X2/2dX

]d
= e−dλ ·

[
1√

1− 2λ

]d
≤ e−2dλ2

for any |λ| ≤ 1/4.

Thus,
∑n

i=1 Zi is subexponential random variable with parameters (ν2, b) = (4dn, 4) and satisfies

Prob

(
n∑

i=1

Zi − dn ≥ t

)
≤

{
exp
(
− t2

8dn

)
for t ∈ (0, dn),

exp
(
− t

8

)
otherwise.

Setting t = q2 ·
√
dn, we obtain

Prob

(
1

n

n∑
i=1

Zi − d ≥
√

d

n
· q2
)
≤

{
exp
(
−q4/8

)
for t ∈ (0,

√
dn),

exp
(
− q2

8

)
otherwise.

≤ exp

(
−q2

8

)
for any q ≥ 1.

This completes the proof.

Lemma C.3 (Vector Bernstein Inequality). Let x1, . . . , xn ∈ Rd be independent zero-mean random
variables. Assume that ∥xi∥ ≤ R almost surely for any i. Then, for any q ∈ [0,

√
n], we have

Prob

(∥∥∥∥∥ 1n
n∑

i=1

xi

∥∥∥∥∥ ≥ R(1 + q)√
n

)
≤ exp

(
−q2

4

)
.

Proof. Let V =
∑n

i=1 E
[
∥xi∥2

]
. Note that V ≤ nR2 since ∥xi∥ ≤ R almost surely. Then,

Theorem 12 in Gross (2011) implies

Prob

(∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≥ √nR+ t

)
≤ Prob

(∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≥ √V + t

)
≤ exp

(
− t2

4V

)
for any t ∈ [0, V/R]. Setting t =

√
nRq, we obtained

Prob

(∥∥∥∥∥ 1n
n∑

i=1

xi

∥∥∥∥∥ ≥ R(1 + q)√
n

)
= Prob

(∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≥ √nR(1 + q)

)
≤ exp

(
−nR2q2

4V

)
≤ exp

(
−q2

4

)
for any q ∈ [0,

√
n].

Lemma C.4. Assume that the generalized approximate projection condition Eq. equation 4 holds.
Then, for any ηg > 0, we have∥∥∥w(t+1) − w∗

∥∥∥2 = (1− αηg)
∥∥∥w(t) − w∗

∥∥∥2 − ηg
1

M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥2

+ η2g

∥∥∥c̄(t)∥∥∥2 +O

ηg ·
√

d
M σ2 ·

∥∥w(t) − w∗
∥∥

√
d

· q

,

with probability at least 1− e−q2/2 for any q > 0.
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Proof. From the generalized approximate projection condition Eq. equation 4, we have

1

M

n∑
i=1

∥∥∥w(t) +∆
(t)
i − w∗

∥∥∥2 =
∥∥∥w(t) − w∗

∥∥∥2 + 2

M

M∑
i=1

⟨w(t) − w∗,∆
(t)
i ⟩+

1

M

n∑
i=1

∥∥∥∆(t)
i

∥∥∥2
= (1− α)

∥∥∥w(t) − w∗
∥∥∥2.

This implies

2

M

M∑
i=1

⟨w(t) − w∗,∆
(t)
i ⟩ = −α

∥∥∥w(t) − w∗
∥∥∥2 − 1

M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥2.
Substituting the above equation, we obtain∥∥∥w(t) + ηgc

(t) − w∗
∥∥∥2 =

∥∥∥w(t) − w∗
∥∥∥2 + 2ηg

M

M∑
i=1

⟨∆(t)
i , w(t) − w∗⟩

+ 2ηg⟨ε̄(t), w(t) − w∗⟩+ η2g

∥∥∥c̄(t)∥∥∥2
= (1− αηg)

∥∥∥w(t) − w∗
∥∥∥2 − ηg

M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥2
+ η2g

∥∥∥c(t)∥∥∥2 +O

(
ηgσ
∥∥w(t) − w∗

∥∥
√
M

· q

)
,

with probability at least 1− e−q2/2 for any q > 0. Here, we used the fact that 2ηg⟨ε̄(t), w(t) − w∗⟩
follows N (0, η2gσ

2
∥∥w(t) − w∗

∥∥2/M) and Lemma C.1. This completes the proof.

D EXTENTION TO PRIVUNIT

D.1 BRIEF REVIEW OF PRIVUNIT

Here, we briefly explain PrivUnit and ScalarDP algorithms proposed by Bhowmick et al. (2018).
In this paper, we follow the procedure in Bhowmick et al. (2018) and privatize the norm and the
direction of the local update separately. That is, we randomize the local update ∆

(t)
i as c

(t)
i =

r̂
(t)
i · z

(t)
i , where z

(t)
i := PrivUnit

(
∆

(t)
i /∥∆(t)

i ∥; ε0, ε1
)

, r̂(t)i := ScalarDP
(
∥∆(t)

i ∥; ε2
)

, and
ε0, ε1, ε2 are privacy parameters. Here, PrivUnit privatizes the direction and ScalarDP privatizes
the norm. See Algorithm 3 and 4 for the detailed procedure. As shown in Lemma D.1, c(t)i is an
unbiased estimator of ∆(t)

i and its variance is bounded by O(dC2 · ( 1
ε1
∨ 1

(eε1−1)2 )) if ε1 ∈ (0, d)

and ε2 = Ω(1). We define σ2 := C2 ·( 1
ε1
∨ 1

(eε1−1)2 ) for the PrivUnit case to ensure the consistency

in the notation with the Gaussian mechanism case, where the variance of c(t)i is given by dσ2. We
provide the detailed description of the algorithms in Algorithm 3 and 4.
Lemma D.1. For ε0, ε1, ε2 ∈ [0, d], c = PrivUnit(∆/∥∆∥; ε0, ε1) · ScalarDP(∥∆∥; ε2) is an
unbiased estimator of ∆ if ∥∆∥ ≤ C. That is, E[c] = ∆. Moreover, c satisfies (ε0 + ε1 + ε2)-DP.

Proof. See Proposition 3 and Lemma 4.1 in Bhowmick et al. (2018) for the proof.

D.2 STEP SIZE FORMULA FOR PRIVUNIT

Here, we provide the step size rule for PrivUnit. Let r̂
(t)
i = ScalarDP(∆

(t)
i ; ε2) and z

(t)
i =

PrivUnit(∆
(t)
i /∥∆(t)

i ∥; ε0, ε1). Note that c(t)i = r̂
(t)
i · z

(t)
i . Since ∥zi∥ = 1/m, where m > 0

is a constant, we can calculate |r̂(t)i | as m · ∥c(t)i ∥. Furthermore, since r̂
(t)
i takes discrete values,

we can reconstruct r̂(t)i from |r̂(t)i | except for special choices of privacy parameter ε2. However, as

12
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Algorithm 3 PrivUnit
Input: u ∈ Sd−1, ε0, ε1 > 0
Output: Randomized vector Z ∈ Rd

p← eε0

1+eε0

Select γ such that

γ ≤ eε1 − 1

eε1 + 1

√
π

2(d− 1)
,

or

ε1 ≥
1

2
log d+ log 6− d− 1

2
log(1− γ2) + log γ and γ ≥

√
2

d

Draw random vector V according to the following distribution:

V ←
{

uniform on {v ∈ Sd−1 | ⟨v, u⟩ ≥ γ} w.p. γ,
uniform on {v ∈ Sd−1 | ⟨v, u⟩ < γ} otherwise.

α← d−1
2 , τ = 1+γ

2 , and

m← (1− γ2)α

2d−2(d− 1)

[
p

B(α, α)−B(τ ;α, α)
− 1− p

B(τ ;α, α)

]
Rescale V as Z ← 1

m · V

Algorithm 4 ScalarDP
Input: magnitude r ∈ [0, C], privacy parameter ε2 > 0
Output: Randomized magnitude r̂
k ← e⌈ε2/3⌉

rmax ← C
Sample J ∈ {0, . . . , k} according to the following distribution:

J ←
{
⌊kr/rmax⌋ w.p. ⌈kr/rmax⌉ − kr/rmax,

⌈kr/rmax⌉ otherwise.

Draw randomized response Ĵ according to the following distribution:

Ĵ ←

{
J w.p. eε2

eε2+k ,

uniform on {0, . . . , k}\{J} otherwise.

Debias r̂ as r̂ ← a(Ĵ − b), where a =
(

eε2+k
eε2−1

)
rmax

k and b = k(k+1)
2(eε2+k)

shown in Bhowmick et al. (2018), the variance of the noisy update is not constant and depends on
the norm of the original update in a complicated way. Thus, it is not straightforward to develop an
unbiased estimator of ∥∆(t)

i ∥2. To deal with this issue, we utilize the following upper bound of the
variance of PrivUnit:

E
[(

r̂
(t)
i − r

(t)
i

)2]
≤ c1

(
r
(t)
i

)2
+ c2r

(t)
i + c3,

where r
(t)
i = ∥∆(t)

i ∥, and c1, c2, c3 are constants defined in Algorithm 5. Based on the above upper
bound, we propose the following formula for the step size:

η(t)g = max

{
1,

1
M

∑M
i=1 ŝi∥∥c̄(t)∥∥2

}
, (8)

13
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where ŝi =
(r̂

(t)
i )2−c2r̂

(t)
i −c3

1+c1
. See Algorithm 5 for the detailed procedure. Here, 1

M

∑M
i=1 ŝi is not

Algorithm 5 Norm Estimation for PrivUnit
Input: Noisy update c := PrivUnit(∆/∥∆∥; ε0, ε1) · ScalarDP(∥∆∥; ε2)
Output: Estimated value ŝ of ∥∆∥2
Set a, b, k > 0 as in Algorithm 4 and m as in Algorithm 3
r̃ ← m · ∥c∥, J̃ ← r̃/a+ b.
if J̃ ∈ Z then r̂ ← r̃ else r̂ ← −r̃
ŝ← 1

1+c1
(r̂2 − c2r̂ − c3),

where c1 = k+1
eε2−1 , c2 = −c1C, c3 = (c1 + 1) C2

4k2 + c1C
2
[
(2k+1)(eε2+k)

6k(eε2−1) − k+1
4(eε2−1)

]
.

an unbiased estimator of 1
M

∑M
i=1 ∥∆

(t)
i ∥2 but it satisfies

E

[
1

M

M∑
i=1

ŝi

]
≤ 1

M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥2.
This property is sufficient to prove the convergence guarantee in Theorem D.2. In addition, as shown
in Fig. 1, the step size formula in equation 8 accurately estimates η(t)target.

Theorem D.2. Assume that Assumptions 4.3 and 4.4 hold. Let F ∗ = minw F (w) and C = ηlτG.
Then, for any ηl = Θ(1/(Lτ)) < 1/(24Lτ) and the sequence {w(t)}Tt=1 generated by LDP-FedEXP
with PrivUnit for ε1, ε2 = Θ(1) satisfies

min
t∈[T ]

∥∥∥∇F (w(t))
∥∥∥2 ≤ T1 + T2 + T3 +O

(
Lσ2q2

ηlτ

[
d

M
+

√
1

M

])
︸ ︷︷ ︸

T privunit
4 :=privacy error

with probability at least 1− Te−c·q2 for any q ∈ [1,
√
M ], where c is a numerical constant.

See Appendix F for the proof.

In the following, we prove some properties of PrivUnit and norm estimation procedure in Algo-
rithm 5 for the convergence analysis.

Lemma D.3. Assume that k(k+1)
eε2+k /∈ Z. Then, the estimated value ŝ computed by Algorithm 5

satisfies E[ŝ] ≤ r2.

Proof. First, we show that r̂ = ScalarDP(∥∆∥). From the definition of c = PrivUnit(∆/∥∆∥) ·
ScalarDP(∥∆∥) and ∥PrivUnit(∆/∥∆∥)∥ = 1/m, we have r̃ = |ScalarDP(∥∆∥)|. If
ScalarDP(∥∆∥) < 0 and J̃ ∈ Z, ScalarDP(∥∆∥) = −r̃ and Ĵ = ScalarDP(∥∆∥)/a + b =

−r̃/a + b ∈ Z. This implies Ĵ + J̃ = 2b = k(k+1)
eε+k ∈ Z, which contradicts the assumption.

Thus, J̃ /∈ Z and r̂ = −r̃ = ScalarDP(∥∆∥) if ScalarDP(∥∆∥) < 0. On the other hand, if
ScalarDP(∥∆∥) ≥ 0, J̃ = r̃/a+ b = ScalarDP(∥∆∥)/a+ b ∈ Z and r̂ = r̃ = ScalarDP(∥∆∥).
Combining the above arguments, we have r̂ = ScalarDP(∥∆∥).
Next, we show that E[ŝ] ≤ r2. As shown in Bhowmick et al. (2018), the variance of r̂ is bounded
as follows:

Varr̂ ≤ k + 1

eε2 − 1

[
r2 +

r2max

4k2
− rrmax +

(2k + 1)(eε2 + k)r2max

6k(eε2 − 1)
− (k + 1)r2max

4(eε2 − 1)

]
+

r2max

4k2

= c1r
2 + c2r + c3.

14



SynthData workshop at ICLR 2025

Thus, we have

E [ŝ] = E
[

1

1 + c1
(r̂2 − c2r̂ − c3)

]
=

1

1 + c2

(
r2 +Varr̂ − c2r − c3

)
≤ 1

1 + c2

(
r2 + c1r

2 + c2r + c3 − c2r − c3
)

= r2.

This completes the proof.

Lemma D.4 (Properties of PrivUnit and ScalarDP). Assume that ε1 ∈ [0, d]. Then, z =
PrivUnit(u/∥u∥) and r̂ = ScalarDP(∥u∥) satisfy

∥z∥2 = O

(
d

ε1
∨ d

(eε1 − 1)2

)
,

|r̂| = O

(
eε2

eε2 − 1
· C
)
,

with probability 1.

Proof. The first inequality follows from Proposition 4 in Bhowmick et al. (2018).

From the definition of r̂, we have |r̂| ≤ a
∣∣∣Ĵ − b

∣∣∣ ≤ a(k+b). Substituting, k = ⌈eε2/3⌉, a = eε2+k
eε2−1

C
k

and b = k(k+1)
2(eε2+k) , we obtain the second inequality.

Lemma D.5 (Tail bounds for PrivUnit). Let zi = PrivUnit(ui/∥ui∥) and r̂i = ScalarDP(∥ui∥)
for ui ∈ Rd (∥ui∥ ≤ C) with ε1, ε2 = O(1). Then, for any vi ∈ Rd, we have

1

M

M∑
i=1

⟨r̂i · zi − ui, vi⟩ = O

√C2d
∑M

i=1∥vi∥
2

M2
· q

,

∥∥∥∥∥ 1

M

M∑
i=1

(r̂i · zi − ui)

∥∥∥∥∥
2

= O

(
dC2(1 + q2)

M

)
,

1

M

M∑
i=1

ŝi −
1

M

M∑
i=1

∥∆i∥2 = O

(
C2

√
1

M
· q

)
,

with probability at least 1− e−q2/4 for any q ∈ (0,
√
M ].

Proof. From Lemma D.4 and D.1, we have |⟨r̂i · zi − ui, vi⟩| ≤ ∥r̂izi − ui∥∥vi∥ = O(
√
dC∥vi∥)

and E [⟨r̂i · zi − ui, vi⟩] = 0. Thus, from the Hoeffding inequality, we have

1

M

M∑
i=1

⟨r̂i · zi − ui, vi⟩ = O

√dC2
∑M

i=1∥vi∥
2

M2
· q

,

with probability at least 1− 2e−2q2 for any q > 0.

For the second inequality, Lemma D.4 and D.1 imply ∥r̂i · zi − ui∥ = O(
√
dC) and

E [r̂i · zi − ui] = 0. Thus, using the vector Bernstein inequality in Lemma C.3, we have∥∥∥∥∥ 1

M

M∑
i=1

(r̂i · zi − ui)

∥∥∥∥∥ = O

(√
d

M
C(1 + q)

)
,
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with probability at least 1− e−q2/4 for q ∈ (0,
√
M). This yields∥∥∥∥∥ 1

M

M∑
i=1

(r̂i · zi − ui)

∥∥∥∥∥
2

= O

(
dC2(1 + q2)

M

)
.

For the third inequality, from the definition of ŝi and Lemma D.4, we have

|ŝi| =
∣∣∣∣ 1

1 + c1
(r̂2 − c2r̂ − c3)

∣∣∣∣ = O(C2).

Thus, from the Hoeffding inequality, we have

1

M

M∑
i=1

ŝi −
1

M

M∑
i=1

∥∆i∥2 ≤
1

M

M∑
i=1

ŝi −
1

M

M∑
i=1

E [ŝi] = O

(
C2q

√
1

M

)
,

with probability at least 1− e−q2/2 for any q > 0. For the first inequality, we used Lemma D.3.

E PROOFS FOR SECTION 4.1

To tightly audit the privacy leakage of the Gaussian mechanism, we adopt the Rényi Differential
Privacy (RDP) Mironov (2017).
Definition E.1 (RDP). For any α ∈ (1,∞) and any ε > 0, a mechanism M : X → Y is said to be
(local) (α, ε)−RDP if for any inputs x, x′ ∈ X ,

Dα(M(x) |M(x′)) :=
1

α− 1
logEθ∼M(x′)

[(
M(x)(θ)

M(x′)(θ)

)α]
≤ ε.

LDP case Since the l2-sensitivity of the local computation at each step is bounded by 2C, as
shown in Mironov (2017), Gaussian mechanism is (α, αρ)-RDP, where ρ = 2C2/σ2

The RDP bound can be converted into the (ϵ, δ)-DP bound using the following lemma:
Lemma E.2 (Mironov (2017)). Let M be (α, ε)-RDP for α ∈ (1,∞). Then, M is (ϵ +
log(1/δ)/(α− 1), δ)-DP for every δ ∈ (0, 1).

Applying this lemma, we obtain the result for the Gaussian mechanism.

CDP case The l2-sensitivity of ∆̄(t) and 1
M

∑M
i=1

∥∥∥∆(t)
i

∥∥∥2 are bounded by 2C/M and C2/M ,

respectively. Thus, c̄(t) and 1
M

∑M
i=1

∥∥∥∆(t)
i

∥∥∥2+ξ(t) satisfies (α, 2αC2/Mσ2)-RDP and (α, αC4

2M2σ2
ξ
)-

RDP, respectively. Then, the entire training process with T iterations satisfy (α, α(ρ + ρξ))-RDP,
where ρ = 2C2T/Mσ2, ρξ = C4T/2M2σ2

ξ . Applying Lemma E.2 yields Proposition 4.2.

F PROOF FOR THEOREM 4.5 AND 4.6

To simplify the notation, let

h
(t)
i := −∆(t)

i /(ηlτ) =
1

τ

τ−1∑
k=0

∇Fi(w
(t,k)
i ),

h̄(t) := −∆̄(t)/(ηlτ) =
1

M

∑
h
(t)
i ,

ϵ̄(t) := −(c̄(t) − ∆̄(t))/(ηlτ)

δ(t)s :=


1
M

∑M
i=1

∥∥∥c(t)i

∥∥∥2 − dσ2 − 1
M

∑M
i=1

∥∥∥∆(t)
i

∥∥∥2 for LDP-FedEXP with Gaussian,

1
M

∑M
i=1 ŝ

(t)
i − 1

M

∑M
i=1

∥∥∥∆(t)
i

∥∥∥2 for LDP-FedEXP with PrivUnit,

ξ(t) for CDP-FedEXP.
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Then, the global step size η
(t)
g is given by

η(t)g = max

1,

1
M

∑M
i=1

∥∥∥h(t)
i

∥∥∥2 + δ
(t)
s /(ηlτ)

2∥∥h̄(t) + ϵ̄(t)
∥∥2

. (9)

From the smoothness of F , F (w(t+1)) satisfies the following:

F (w(t+1))− F (w(t)) ≤ −ηgηlτ⟨∇F (w(t)), h̄(t) + ϵ̄(t)⟩+ (η
(t)
g )2η2l τ

2L

2
∥h̄(t) + ϵ̄(t)∥2,

≤ −ηgηlτ

[
⟨∇F (w(t)), h̄(t) + ϵ̄(t)⟩

− ηlτL

2
max

{
1

M

M∑
i=1

∥∥∥h(t)
i

∥∥∥2 + δ(t)s /(ηlτ)
2,
∥∥∥h̄(t) + ϵ̄(t)

∥∥∥2}]. (10)

Here, the second inequality follows from Eq. equation 9.

For the right-hand side of Eq. equation 10, we have

⟨∇F (w(t)), h̄(t) + ϵ̄(t)⟩ = ⟨∇F (w(t)), h̄(t)⟩+ ⟨∇F (w(t)), ϵ̄(t)⟩

=
1

2

(∥∥∥∇F (w(t))
∥∥∥2 + ∥∥∥h̄(t)

∥∥∥2 − ∥∥∥∇F (w(t))− h̄(t)
∥∥∥2)+ ⟨∇F (w(t)), ϵ̄(t)⟩

≥ 1

2

∥∥∥∇F (w(t))
∥∥∥2 − 1

2

∥∥∥∇F (w(t))− h̄(t)
∥∥∥2 − ∥∥∥∇F (w(t))

∥∥∥∥∥∥ϵ̄(t)∥∥∥
≥ 1

2

∥∥∥∇F (w(t))
∥∥∥2 − 1

2

∥∥∥∇F (w(t))− h̄(t)
∥∥∥2

− 1

2

(
1

2

∥∥∥∇F (w(t))
∥∥∥2 + 2

∥∥∥ϵ̄(t)∥∥∥2)
≥ 1

4

∥∥∥∇F (w(t))
∥∥∥2 − 1

2M

M∑
i=1

∥∥∥∇Fi(w
(t))− h

(t)
i

∥∥∥2 − ∥∥∥ϵ̄(t)∥∥∥2,∥∥∥h̄(t) + ϵ̄(t)
∥∥∥2 ≤ 2

∥∥∥h̄(t)
∥∥∥2 + 2

∥∥∥ϵ̄(t)∥∥∥2,
≤ 2

M

M∑
i=1

∥∥∥h(t)
i

∥∥∥2 + 2
∥∥∥ϵ̄(t)∥∥∥2.

Substituting the above inequalities into Eq. equation 10, we have

F (w(t+1))− F (w(t)) ≤ −ηgηlτ

[
1

4

∥∥∥∇F (w(t))
∥∥∥2 − 1

2M

∑∥∥∥∇Fi(w
(t))− h

(t)
i

∥∥∥2 − ∥∥∥ϵ̄(t)∥∥∥2
− ηlτL

2
max

{
1

M

M∑
i=1

∥∥∥h(t)
i

∥∥∥2 + δ(t)s /(ηlτ)
2,

2

M

M∑
i=1

∥∥∥h(t)
i

∥∥∥2 + 2
∥∥∥ϵ̄(t)∥∥∥2}] (11)

≤ −ηgηlτ

[
1

4

∥∥∥∇F (w(t))
∥∥∥2 − 1

2M

∑∥∥∥∇Fi(w
(t))− h

(t)
i

∥∥∥2 − ηlτL ·
1

M

M∑
i=1

∥∥∥h(t)
i

∥∥∥2︸ ︷︷ ︸
:=R

−

(∥∥∥ϵ̄(t)∥∥∥2 + ηlτL

2
max

{
δ
(t)
s

(ηlτ)2
− 1

M

M∑
i=1

∥∥∥h(t)
i

∥∥∥, 2∥∥∥ϵ̄(t)∥∥∥2})︸ ︷︷ ︸
:=T4

]
. (12)
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As in the proof of Theorem 2 in Jhunjhunwala et al. (2023), we have

R ≤ 1

M

∑∥∥∥h(t)
i

∥∥∥2
≤ 1

M

∑∥∥∥h(t)
i −∇fi(w

(t)) +∇fi(w(t))−∇F (w(t)) +∇F (w(t))
∥∥∥2

≤ 3

M

∑(∥∥∥h(t)
i −∇fi(w

(t))
∥∥∥2 + ∥∥∥∇fi(w(t))−∇F (w(t))

∥∥∥2 + ∥∥∥∇F (w(t))
∥∥∥2)

≤ 3

M

M∑
i=1

∥∥∥h(t)
i −∇Fi(w

(t))
∥∥∥2 + 3

∥∥∥∇F (w(t))
∥∥∥2 +O(σ2

g).

Substituting R into Eq. equation 12, we arrive at

F (w(t+1) − F (w(t)))

≤ −η(t)g ηlτ

[
1

4

∥∥∥∇F (w(t))
∥∥∥2 − 1

2M

∑∥∥∥∇Fi(w
(t))− h

(t)
i

∥∥∥2 − ηlτL ·R− T4

]

≤ −η(t)g ηlτ

[
1

4

∥∥∥∇F (w(t))
∥∥∥2 − 1

2M

∑∥∥∥∇Fi(w
(t))− h

(t)
i

∥∥∥2 −O(ηlτLσ
2
g)︸ ︷︷ ︸

:=T3

−T4

− ηlτL ·

(
3

M

M∑
i=1

∥∥∥h(t)
i −∇Fi(w

(t))
∥∥∥2 + 3

∥∥∥∇F (w(t))
∥∥∥2)]

≤ −η(t)g ηlτ

[
1

8

∥∥∥∇F (w(t))
∥∥∥2 − ηlτL

M

M∑
i=1

∥∥∥∇Fi(w
(t))− h

(t)
i

∥∥∥2 − T3 − T4

]

≤ −η(t)g ηlτ

[
1

8

∥∥∥∇F (w(t))
∥∥∥2 −O

(
η2l τ

2L2σ2
g

)︸ ︷︷ ︸
T2

−T3 − T4

]
.

Here, we used ηl ≤ 1/(24τL) and Lemma 7 in Jhunjhunwala et al. (2023).

Averaging over T iterations, we have

∑
η
(t)
g

∥∥∇F (w(t))
∥∥2∑

η
(t)
g

≤ O

(
(F (w(0))− F ∗)∑

η
(t)
g ηlτ

+ T2 + T3 + T4

)
,

which implies

min
∥∥∥∇F (w(t))

∥∥∥2 ≤ O

(
F (w0)− F ∗∑

η
(t)
g ηlτ

+ T2 + T3 + T4

)
.

The remaining task is to evaluate T4. Recall that T4 is defined as

T4 =
∥∥∥ϵ̄(t)∥∥∥2 + ηlτL

2
max

{
δ
(t)
s

(ηlτ)2
− 1

M

M∑
i=1

∥∥∥h(t)
i

∥∥∥, 2∥∥∥ϵ̄(t)∥∥∥2}

≤ (1 + ηlτL)
∥∥∥ϵ̄(t)∥∥∥2 + L

ηlτ

(
δ(t)s −

1

M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥2).
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For LDP-FedEXP with Gaussian mechanism, Lemma C.1 and C.2 yield∥∥∥ϵ̄(t)∥∥∥2 ≤ d

(ηlτ)2
·
[
1 + q2

]σ2

M
= O

(
q2

(ηlτ)2
dσ2

M

)
,

1

M

M∑
i=1

∥∥∥ε(t)i

∥∥∥2 = d ·
[
1 +

q2√
Md

]
σ2

1

M

M∑
i=1

⟨∆(t)
i , ε

(t)
i ⟩ ≤ q ·

 σ

M

√√√√ M∑
i=1

∥∥∥∆(t)
i

∥∥∥2


≤ 1

2M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥2 + q2σ2

2M
,

with probability 1 − Te−c·q2 for q ∈ [1,
√
M ], where c is a numerical constant. Here, we used the

union bound over t = 1, . . . , T . Then, we obtain

δ(t)s −
1

M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥ =
1

M

M∑
i=1

∥∥∥c(t)i

∥∥∥2 − dσ2 − 2

M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥2
=

1

M

M∑
i=1

∥∥∥∆(t)
i + ε

(t)
i

∥∥∥2 − dσ2 − 2

M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥2
=

1

M

M∑
i=1

∥∥∥ε(t)i

∥∥∥2 − dσ2 +
2

M

M∑
i=1

⟨∆(t)
i , ε

(t)
i ⟩ −

1

M

M∑
i=1

∥∥∥∆(t)
i

∥∥∥2
= q2 ·

√
d

M
σ2 +

q2σ2

M
.

Substituting these concentration inequalities, we obtain

T4 = O

(
(1 + ηlτL)

q2

(ηlτ)2
dσ2

M
+

L

ηlτ

(
q2 ·

√
d

M
σ2 +

q2σ2

M

))

= O

(
Lσ2q2

ηlτ

[
d

M
+

√
d

M

])
,

since q ≥ 1 and ηl = Θ(1/Lτ).

For LDP-FedEXP with PrivUnit, Lemma D.5 yields

δ(t)s =
1

M

M∑
i=1

ŝ
(t)
i = O(C2q

√
1

M
),

∥∥∥ϵ̄(t)∥∥∥2 = O

(
dC2(1 + q2)

M(ηlτ)2

)
with probability 1 − Te−c·q2 for q ∈ [1,

√
M ], where c is a numerical constant. Substituting these

concentration inequalities, we obtain

T4 = O

(
(1 + ηlτL)

dC2(1 + q2)

M(ηlτ)2

)
+O

(
L

ηlτ
C2q

√
1

M

)

= O

(
LC2q2

ηlτ

[
d

M
+

√
1

M

])

= O

(
Lσ2q2

ηlτ

[
d

M
+

√
1

M

])
.
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For CDP-FedEXP, we have

δ(t)s = ξ
(t)
i = O(qσξ),∥∥∥ϵ̄(t)∥∥∥2 = O

(
q

(ηlτ)2
dσ2

M

)
,

with probability 1 − Te−c·q2 for q ∈ [1,
√
M ], where c is a numerical constant. Substituting these

concentration inequalities, we obtain

T4 = O

(
(1 + ηlτL)

q

(ηlτ)2
dσ2

M
+

L

ηlτ
qσξ

)
= O

(
Lσ2q2

ηlτ

d

M

)
.

G SUPPLEMENTARY MATERIAL FOR NUMERICAL EXPERIMENTS

Here, we provide additional details and results for the numerical experiments in Section 5.

G.1 DETAILED SETUP

Common Setup In both experiments, we run the training for T = 50 rounds and set σ = 5 ·
C/
√
M,σξ = dσ2/M for the CDP case, σ = 0.7 · C for the LDP (Gaussian) case, and ε0 = ε1 =

ε2 = 2 for the LDP (PrivUnit) case. Following Jhunjhunwala et al. (2023), we set the final model
as the average of the last 2 iterates to mitigate the effect of oscillating behavior of DP-FedEXP.
For privacy analysis, we utilized the numerical composition (Gopi et al., 2021) to tightly audit the
privacy leakage.

Synthetic Experiment Setup First, we generate the target vector w∗ ∈ Rd according to the stan-
dard normal distribution, which is shared among all clients. Then, we generate the local dataset
following a similar procedure in Li et al. (2020); Jhunjhunwala et al. (2023) with M = 1000. In this
experiment, we set τ = 20. For the CDP setting, we set d = 500 while d = 100 for the LDP setting
since the noise level of LDP is much larger than that of CDP.

Realistic Experiment Setup We divide the training data into M = 1000 clients according to
Dirichlet distribution with α = 0.3, following the procedure in Hsu et al. (2019). In this experiment,
we set τ = 10. For the CDP setting, we use a simple convolutional neural network (CNN) model
with two convolutional layers and two fully connected layers. For LDP setting, we use a small CNN
model with two convolutional layers and one fully connected layer.

Hyperparameter Tuning We tuned the hyper parameters (local learning rate ηl and clipping
threshold C) via grid search and select the best hyperparameters which maximize the test accu-
racy for the realistic dataset or minimize the training loss for the synthetic dataset averaged over
the last 5 rounds. In the synthetic experiment, the grid for ηl is {0.01, 0.03, 0.1, 0.3, 1} and for C is
{0.1, 0.3, 1, 3, 10}. In the realistic experiment, the grid for ηl is {0.0001, 0.0003, 0.001, 0.003, 0.01}
and for C is {0.1, 0.3, 1, 3, 10}. We summarize the best performing hyperparameters in Table 2.

Synthetic Dataset In principle, we follow a similar procedure in Li et al. (2020); Jhunjhun-
wala et al. (2023). First, we generate the true model w∗ by sampling from the standard nor-
mal distribution. Then, we generate vectors xi ∈ Rd according to xi ∼ N (mi, Id), where
mi ∼ N (ui, 1), ui ∼ N (0, 0.1). The client objective is defined as fi(w) :=

∥∥x⊤
i w − yi

∥∥2, where
yi = x⊤

i w
∗.
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Table 2: Best hyperparameters selected via grid search for DP-FedEXP, DP-FedAvg, and DP-
SCAFFOLD.

FedEXP FedAvg SCAFFOLD
Dataset DP type ηl C ηl C ηl C

Synthetic LDP (Gaussian) 0.003 0.3 0.003 3 0.003 0.3
LDP (PrivUnit) 0.003 1 0.003 3 0.003 0.3

CDP 0.001 0.3 0.003 3 0.001 1
MNIST LDP (Gaussian) 0.03 0.1 0.03 0.3 0.1 0.1

LDP (PrivUnit) 0.03 0.3 0.03 0.3 0.03 0.1
CDP 0.1 0.3 0.1 1 0.1 0.3
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Model Architectures We summarize the architectures of the models used in the MNIST experi-
ments in Table 3.

Table 3: Model architectures used in the experiments.
Setting Model Architecture

CDP

Convolutional layer (4 filters, 4x4)
Convolutional layer (8 filters, 4x4)
Fully connected layer (128→ 32)

ReLU activation
Fully connected layer (32→ 10)

Softmax activation

LDP

Convolutional layer (2 filters, 4x4)
Convolutional layer (1 filters, 4x4)
Fully connected layer (16→ 10)

Softmax activation

G.2 ADDITIONAL RESULTS

Here, we provide additional results omitted in the main text due to space constraints.

Adaptivity in Global Step Size Fig. 3 plots the global step size η
(t)
g of each algorithm. Inter-

estingly, in the synthetic experiment, the global step size of DP-FedEXP decreases as the training
progresses. This enables to speed up the training process and to mitigate the effect of the DP noise
on the converged model at the same time. This phenomenon clearly demonstrates the advantage of
the adaptive step size in DP-FL.
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Figure 3: Global step sizes for the synthetic dataset (left) and the MNIST dataset (right).

Additional Results for the MNIST Dataset To evaluate the performance of the model at the end
of the training process, we report the test accuracy averaged over the last 5 rounds in Table 4. Our
proposed DP-FedEXP comprehensively outperforms the baselines in all settings.

Table 4: Test accuracy of algorithms on the MNIST dataset averaged over the last 5 rounds. Mean
(standard deviation) over 5 runs with different random seeds is reported.

DP Type DP-FedEXP DP-FedAvg DP-SCAFFOLD
LDP (Gaussian) 80.24 (0.94) 78.69 (1.26) 66.89 (2.29)
LDP (PrivUnit) 79.65 (1.23) 78.40 (1.18) 56.83 (3.95)

CDP 94.57 (0.19) 92.88 (0.29) 86.61 (0.52)
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