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Abstract

Vision-Language Models (VLMs) are increasingly pivotal for generalist robot
manipulation, enabling tasks such as physical reasoning, policy generation, and
failure detection. However, their proficiency in these high-level applications often
assumes a deep understanding of low-level physical prerequisites, a capability that
is largely unverified. To perform actions reliably, robots must comprehend intrin-
sic object properties (e.g., material, weight), action affordances (e.g., graspable,
stackable), and physical constraints (e.g., stability, reachability, or an object’s state
like being closed). Despite their ubiquitous use in manipulation, we argue that
off-the-shelf VLMs may lack this granular, physically-grounded understanding,
as these specific prerequisites are often overlooked during training. Addressing
this critical gap, we introduce PAC Bench, a comprehensive benchmark designed
to systematically evaluate VLMs on their understanding of these core Properties,
Affordances, and Constraints (PAC) from a task executability perspective. PAC
Bench features a diverse dataset with more than 30,000 annotations, comprising
673 real-world images (115 object classes, 15 property types, 1–3 affordances
defined per object class), 100 real-world humanoid view scenarios, and 120 unique
simulated constraint scenarios across four tasks. Our evaluations reveal significant
gaps in the ability of VLMs to grasp fundamental physical concepts, underscor-
ing their current limitations for reliable robot manipulation and pointing to key
areas that require targeted research. PAC Bench also serves as a standardized
benchmark for rigorously evaluating the physical reasoning capabilities of VLMs
guiding the development of more robust and physically grounded models for robot
manipulation. Hugging Face : https://huggingface.co/datasets/lens-lab/pacbench.

1 Introduction

The quest for generalist robots capable of intelligently and safely interacting with the complexities of
the physical world represents a grand challenge in artificial intelligence. Recent breakthroughs in
Large Language Models (LLMs) and Vision-Language Models (VLMs) have catalyzed remarkable
progress, particularly enabling the development of versatile Vision-Language-Action (VLA) mod-
els [1, 2, 3]. These systems leverage the powerful representational capabilities of pre-trained models
to interpret multimodal sensory input, generate language-grounded plans, and execute a diverse range
of manipulation tasks, showcasing impressive generalization. However, their impressive capabilities
often mask a critical, yet largely unverified, assumption: that the underlying foundation models
possess a sufficiently deep and physically grounded understanding of the fundamental prerequisites
for safe, effective, and truly generalizable manipulation.
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Figure 1: Evaluating foundation models’ understanding of Properties, Affordances, and Constraints
(PAC) for robotic manipulation. (Left) PAC Bench uses scenarios requiring nuanced physical
understanding. (Right) We present example performance of leading VLMs (e.g., GPT-4o, Llama,
Claude, Deepseek) on tasks related to Properties (blue), Affordances (green), and Constraints (red),
indicating varied strengths and weaknesses across these fundamental reasoning skills.

This assumption demands rigorous scrutiny. Foundation models, despite their exposure to vast
quantities of text and video, often lack explicit grounding in the fine-grained physical interplay
of objects, actions, and their environmental context knowledge that is intuitive to humans and
essential for robust robotic interaction. Consequently, high performance on standard vision-language
benchmarks (e.g., VQA [4]) does not reliably translate to the nuanced physical reasoning required
to anticipate action outcomes or adapt to novel physical scenarios. Before a robot can confidently
execute any manipulation, it must implicitly or explicitly reason about the world: assessing intrinsic
object Properties (e.g., Is it heavy? Is it fragile?), discerning valid action Affordances (e.g., Can
this be stacked?), and recognizing critical physical Constraints (e.g., Is the target reachable without
collision?). Relying on superficial correlations learned from web-scale data, without a robust grasp
of these Properties, Affordances, and Constraints (PAC), can lead to unpredictable failures, unsafe
operations, and a fundamental brittleness that severely limits their deployment in safety-critical or
economically vital open-world applications. As these powerful models are increasingly positioned at
the core of autonomous systems, rectifying these gaps in physical understanding is not merely an
academic pursuit but a prerequisite for trustworthy and scalable robotic intelligence.

Despite the critical importance of this granular physical understanding, existing benchmarks predomi-
nantly focus on end-to-end task performance [5], broad physical knowledge question-answering [6, 7],
or other aspects of model behavior like trustworthiness [8] or safety from a policy perspective [9]. A
targeted evaluation framework to specifically dissect and measure foundation models’ comprehension
of the core prerequisites for manipulation has been notably absent. This absence hinders targeted
improvements, as developers lack precise diagnostics to identify why end-to-end policies fail or which
specific aspects of physical reasoning are underdeveloped in their foundation models.

To bridge this crucial diagnostic gap, we introduce PAC Bench (Figure 1): the first benchmark
meticulously engineered to evaluate foundation models’ understanding of Properties, Affordances,
and Constraints essential for robotic manipulation. PAC Bench moves beyond holistic task success
by decomposing physical reasoning into these three core, queryable components. Through a diverse
suite of targeted evaluations across both simulated and real-world scenarios, our benchmark enables
researchers to pinpoint specific deficiencies in models’ internal representations of the physical world.
We envision PAC Bench not just as an evaluation tool, but as a catalyst for a new wave of research
into building more robustly and verifiably grounded foundation models. This detailed diagnostic
capability is vital for accelerating the development of VLA systems that can reason causally about
their actions, adapt to unforeseen circumstances, and ultimately operate with greater safety and
efficacy, advancing the frontier of general-purpose robotics. Our primary contributions are as follows.

1. A benchmark featuring over 30,000 annotations of real scenarios targeting the essential
Properties, Affordances, and Constraints for robotic manipulation.

2. A comprehensive suite of tasks and metrics for fine-grained assessment of VLM physical
understanding across the three PAC dimensions.

3. Extensive empirical results highlighting current VLM capabilities and critical limitations in
PAC reasoning, offering a clear path for advancing physically grounded AI.
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Table 1: Comparison of benchmarks evaluating physical properties (P), affordances (A), constraints
(C), or related concepts. Manip: Manipulation focus. Sim/Real/Human: Data sources. Parenthe-
ses indicate implicit or partial coverage of that concept rather than explicit, task-level evaluation.
(†) PhysBench includes limited physical dynamics implying some constraint understanding but lacks
explicit executability evaluation. (‡) UniAff focuses narrowly on tool-use and 3D motion constraints,
covering a subset of affordances but not general manipulation PAC evaluation.

Concepts Evaluated Focus Data Source Access Size
Benchmark P A C Manip Sim Real Human Open Data Size (GB) (# Points)

PAC Bench (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼10 30,529 images-text
PhysBench [7] ✓ (✓) (✓)† × ✓ ✓ ✓ ✓ ∼10 10,002 video-image-text
ActAffordance [14] × ✓ × ✓ × ✓ ✓ ✓ 25–40 278,000 images
EQA-phys [15] × × ✓ ✓ ✓ ✓ × ✓ <1 1,300 Q&A
Physion [16] × × ✓ × ✓ × × ✓ ∼5 1,200 examples
ManipVQA [17] ✓ ✓ × ✓ × ✓ ✓ ✓ ∼20 84,000 examples
UniAff [18] (✓) ✓ (✓)‡ ✓ ✓ ✓ ✓ ✓ 3–5 1,500 objects
NrVLM [19] × ✓ × ✓ ✓ × × ✓ 5–10 4,500 episodes
PHYBench [6] ✓ × ✓ × ✓ × × ✓ <1 ∼500 problems

2 Related Work

The rapid evolution of LLMs and VLMs has spurred a critical need for comprehensive evaluation
methodologies. General frameworks like HELM [10] and its visual counterpart VHELM [11]
provide holistic assessments across a wide array of tasks and capabilities. Complementing these,
numerous benchmarks target specific facets of foundation models, such as trustworthiness with
DecodingTrust [8], safety through regulatory lenses with Air-Bench [9], domain-specific reliability in
medicine with CARES [12], and agentic capabilities in scientific discovery with MLAgentBench [13].
Public leaderboards further track ongoing performance on various safety and ethical dimensions2.
While these efforts are crucial for understanding the broader landscape of model behavior, they
do not typically delve into the nuanced, granular physical common sense specifically required as
prerequisites for robust robotic manipulation.

Closer to the domain of robotics and physical interaction, several benchmarks have begun to probe
foundation models’ understanding of the physical world. Some focus on general physics knowl-
edge or predictive capabilities. For instance, PHYBench [6] primarily uses text-based scenarios to
assess LLMs on formal physics problems, while Physion [16] evaluates visual physical prediction,
implicitly testing understanding of object properties and physical constraints governing dynamics.
PhysBench [7] offers a broader multimodal evaluation of VLMs, covering aspects like explicit
object properties, object relationships, scene understanding, and rudimentary physical dynamics, thus
touching upon elements of properties, affordances (via relationships), and constraints (via dynamics).

Other research lines target more specific components of physical understanding relevant to manipula-
tion. For affordances, ManipVQA [17] injects affordance knowledge into VLMs alongside property
understanding, ActAffordance [14] focuses on learning bimanual affordances from human videos,
and NrVLM [19] develops benchmarks for affordance-guided manipulation based on fine-grained
language instructions. UniAff [18] proposes a unified representation for affordances, especially for
tool use, and importantly, also incorporates the reasoning of 3D motion constraints and object proper-
ties within its framework. For constraints, EQA-phys [15] specifically targets VLM understanding of
robotic physical reachability. Distinct from these, benchmarks like The Colosseum [5] are vital for
assessing the generalization of end-to-end robotic manipulation policies to various environmental
perturbations, rather than the underlying conceptual understanding of physical prerequisites.

Despite this valuable landscape (summarized and compared in Table 1), a critical gap remains: a ded-
icated, fine-grained benchmark that systematically evaluates whether foundation models comprehend
the fundamental and interconnected prerequisites for executing manipulation actions, specifically
framed through object properties, action affordances, and physical constraints. While works like
PhysBench [7] and UniAff [18] evaluate aspects across P, A, and C (as indicated in Table 1) and
more recent efforts such as ManipBench [20] explore complementary low-level visuomotor reason-
ing for robotic manipulation through key-point and trajectory prediction, PAC Bench distinguishes

2https://huggingface.co/spaces/AI-Secure/llm-trustworthy-leaderboard
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itself through several key dimensions. First, it focuses on the explicit, understanding of these three
components as preconditions for action, rather than evaluating them solely through downstream task
performance. Second, PAC Bench is designed to assess these PAC dimensions with a granularity
specifically tailored to common manipulation scenarios, supported by a dataset that combines di-
verse real-world images (for properties and affordances) with both simulated and novel real-world
humanoid-view scenarios (for constraints). While existing benchmarks may test general physics
knowledge, dynamic prediction, or policy generalization, PAC Bench fundamentally probes whether
VLMs can reason about the specific P, A, and C conditions that make a manipulation task executable
in the first place, a crucial step towards building more robust, and safe VLA systems.

3 The PAC Bench Dataset

PAC Bench evaluates a VLM’s understanding of three fundamental, interdependent components
crucial for determining the executability of robotic manipulation actions:

1. Properties: These are the inherent physical or material characteristics of objects, as well
as their states, that dictate how they behave and can be interacted with. In PAC Bench, we
focus on a comprehensive suite of 12 distinct physical and material attributes, including, for
instance, an object’s inferred Weight (e.g., light, medium, heavy), its Material (e.g., wood,
metal, plastic), its Containment State (e.g., lidded, open, sealed). Accurately perceiving
these properties is the first step towards effective physical reasoning.

2. Affordances: Affordances [21, 22] describe the potential for action that an object offers
to an agent, or that an agent can enact upon an object [23, 24], given its properties and the
broader environmental context. These are specifically tailored to manipulation, covering
common interactions such as is-graspable (by a standard gripper), is-containable-in (for
placing objects), and is-stackable-on (another object). Understanding affordances bridges
the gap between object perception and actionable knowledge.

3. Constraints: These are the physical, geometric, or environmental limitations and conditions
that govern whether an intended action can be successfully executed given a task. Failure
to recognize constraints often leads to task failure or unsafe robot behavior. PAC Bench
evaluates understanding of constraints such as stability limits (e.g., predicting if stacking a
specific object will cause a topple), containment failure (e.g., contents spilling if an open
container is moved inappropriately), and reachability issues for a robotic arm.

A grounded understanding of these three pillars – Properties, Affordances, and Constraints – is
paramount for any robotic system intended to operate robustly in the complexities of the real world.
Without it, even sophisticated policies are prone to errors stemming from a superficial interpretation
of the scene. For instance, attempting to lift an object perceived as light (misjudged Property) might
fail if it is actually heavy. Similarly, trying to stack an object that appears stackable (misjudged
Affordance) might lead to collapse if its instability (unrecognized Constraint) is not considered. PAC
Bench is therefore designed to specifically probe these interconnected concepts, offering a more
targeted benchmarks focusing on broader physics knowledge. By focusing on PAC, we aim to evaluate
the foundational understanding that enables models to predict action feasibility before execution,
a critical component for building more reliable and adaptable robotic agents. Note that we only
evaluate pre-trained VLMs’ capabilities without having access to a specific robot or the environment
it operates in as these generic pre-trained VLMs serve as the backbone for the development of
VLAs [1], failure detection models [25], etc.

3.1 Data Acquisition and Curation

The PAC Bench dataset is constructed through a multi-faceted approach, aggregating data from
diverse real-world image sources and meticulously designed scenarios from both simulated and
real-world robot interactions (Fig 2). This hybrid strategy ensures broad visual diversity for property
and affordance, complemented by targeted and varied constraint evaluations from multiple views.

Data for Properties and Affordances: Diverse Real-World and Simulated Imagery. To ground our
property and affordance assessments in varied visual data, PAC Bench aggregates images from four
key sources (2 real, 2 simulation): the extensive OpenImages Dataset V7 and Extensions [26], novel
real-world captures from multiple perspectives (agent and side views) of a Unitree G1 humanoid
robot, multi-angle(24) capture of 45 unique objects from the RoboCasa framework [27], which
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Figure 2: Distribution of annotations in PAC Bench across three dimensions: (Left) physical proper-
ties annotated in the dataset, showing the relative frequency of each property; (Center) affordance
categories, with slices below 5% omitted for clarity; (Right) constraint domains, contrasting simula-
tion (blue shades) and real-world (green shades) scenarios.

leverages the MuJoCo physics engine for structured household environments. Across these sources,
we target 115 unique object classes (e.g., Container, Towel, Chair, Apple, Knife), selected for their
prevalence and relevance to household manipulation. These are organized into 18 primary categories
(e.g., Appliances, Furniture, Kitchen Items; see Appendix B.2 for full taxonomy). We utilized the
provided human-annotated bounding boxes for annotations. This ensures precise localization for our
subsequent PAC annotations. For the VLM evaluations detailed in this paper, we curated 977 images
from OpenImages and our Unitree G1 captures. The RoboCasa image data (1080 unique images),
while part of the full PAC Bench dataset release to support broader research, is not included in the
current VLM evaluation set due to computational costs.

Property Annotation: For each of the 977 curated images, we annotated a comprehensive suite of
intrinsic and extrinsic physical properties. We defined a set of 12 distinct property types relevant to
manipulation, including: Stickiness, Thickness, Density, Sealing, Contents, Capacity, Complexity of
Parts, Consumability, Orientation, Hardness, Color, and Weight. This resulted in a total of 27,674
property annotations across the dataset. (Detailed definitions are shown in Appendix B.1.) The
property annotation process was designed for high quality. Each image instance, along with a specific
property query (e.g., "What is the material of the object in the bounding box?"), was presented to
annotators with a set of predefined, mutually exclusive answer choices. To ensure reliability, every
image instance was independently annotated for each property by two human annotators. The final
ground-truth label for a given property was determined by consensus, requiring agreement between
both annotators. Disagreements were resolved by a senior annotator or discarded if no consensus
could be reached. This rigorous process yielded a high-quality set of property labels. We utilized
LabelBox as our annotation platform, with a team of over 10 annotators contributing to this effort
(Appendix E.4).

Affordance Annotation: For each of the 115 selected object classes, we also collected affordance
labels. The process involved manually identifying and listing the top three most common action
affordances associated with each object class, ranked in order of typicality or importance. For
example, for the object class Chair, the annotated affordances include (1) is-sittable, (2) is-climbable,
and (3) can-place-objects-on. This initial phase of affordance annotation was conducted by assigning
each object class to a primary annotator. This initial phase of affordance annotation involved a
primary annotator per object class. While this provides a foundational set of common affordances,
we acknowledge that future work will involve expanding this with multiple annotators to establish
inter-annotator agreement and a consensus-based label set.

Data for Constraints: Simulated and Real-World Humanoid Scenarios. To evaluate the un-
derstanding of physical constraints often involving complex or dynamic interactions PAC Bench
incorporates data from both simulated environments and the real-world humanoid robot perspectives.
This hybrid strategy allows for scalable, controlled generation of diverse constraint types in simula-
tion, ideal for iterative VLM testing and aligning with common policy training paradigms. These
are complemented by authentic real-world humanoid scenarios that ground evaluations in genuine
physical complexities and robot-centric perspectives, offering a crucial testbed for sim-to-real transfer
of constraint comprehension. (Detailed specifications for all constraint domains are in Appendix B.3).
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Figure 3: Examples from PAC Bench. (Left 4 Images) Scenarios designed to evaluate understanding
of various physical Constraints: Impossible Placement, Occlusion, Reachabilityand Stability. (Right
4 images) Example of a Property query presented with a real-world robot view from PAC Bench.

Simulated Constraint Scenarios: We leveraged the MuJoCo physics engine [28] to generate synthetic
scenarios depicting various constraints (Fig 3 (left)) relevant to robotic manipulation. We designed
four primary constraint domains:

1. Impossible Placement: Scenarios where an object cannot be stably placed on another due
to factors like shape, size mismatch, or unstable support.

2. Occlusion/Support Issues: Challenges related to accessing an object, such as attempting to
pick up a target block that is currently supporting another block.

3. Stability Constraints: Situations involving picking up an object that is itself part of an
unstable assembly.

4. Reachability and Access Constraints: Scenarios where an object is present but difficult or
impossible to reach due to its position or surrounding obstacles.

For each simulated constraint domain, we procedurally generated 10 distinct environment instantia-
tions by introducing randomization in object positions, orientations, and/or distractor elements. Each
instantiation was rendered from three different camera viewpoints (front, agent, and side view) to
provide visual diversity and assess view-invariance. This resulted in a total of 120 unique simulated
constraint scenarios.

Real-World Humanoid Constraint Scenarios: These scenarios involve a dual-arm Unitree G1 hu-
manoid robot attempting simple manipulation tasks in tabletop environments with everyday objects.
For each scenario, we captured synchronized images from two camera views. A question was then
formulated about a potential action and the physical constraints that might prevent its successful
execution (see Appendix D.1 for an example prompts). The ground-truth answer provides an expla-
nation of the relevant constraint(s). This real-world component currently comprises 2727 unique
question-answer scenarios, focusing on constraints such as (Question: Can you keep the food on the
plate? Expected Answer: No the plate is inverted.). (Appendix B.3 provides further examples.)

4 Experimental Results and Analysis

In this section, we present the empirical evaluation of several state-of-the-art foundation models [29,
30, 31, 32, 33, 34, 35, 36, 37] on PAC Bench. We detail our experimental setup, followed by an
analysis of model performance on understanding object properties, action affordances, and physical
constraints.

4.1 Experimental Setup

Models Evaluated: We evaluated a diverse suite of publicly available and proprietary VLMs to
assess their PAC understanding capabilities. For some models, we also explored different prompting
strategies (e.g., direct querying vs. chain-of-thought prompting in Appendix D).
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Figure 4: Comparative PAC understanding profiles of selected VLMs. The x-axis indicates nominal
model release time periods (1=earlier to 4=most recent among those shown). The diverse performance
signatures suggest varied developmental trajectories in acquiring physical common sense.

Evaluation Protocol: For each task in PAC Bench, VLMs were provided with images from a scenario
and a textual prompt (Appendix D.1) that queries a specific property, affordability, or constraint.
Model responses were evaluated against ground-truth annotations derived from our dataset.

1. Property questions were multiple-choice (typically [Number, e.g., 3-5] options) targeting
one of 12 predefined attributes for a specified object (e.g., “What is the density of the object
in the box? A) High, B) Low...”).

2. Affordance questions required models to provide all applicable affordances for a given object
class (e.g., “What are the affordances of [object]? A) Can carry items, B) is-stackable...”).

3. Constraint questions asked models to determine the feasibility of an action or identify the
most constraining pre-condition to successfully complete a task. (e.g., “Can the robot stack
X on Y? If no, why?”).

Table 2: Property accuracies (%) for Open Images (PAC Bench) vs. Humanoid benchmarks. Properties
P1–P6 are: Color, Contents, Weight, Density, Sealing, Hardness.

Open Images Humanoid Avg

Model P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

Claude 3.5 Sonnet 0.0 31.9 0.0 0.0 2.7 42.3 50.2 28.9 50.7 52.7 19.4 55.2 27.8
Claude 3.7 Sonnet 20.2 23.5 32.6 36.7 66.4 37.0 47.8 30.3 48.3 55.7 13.2 55.7 38.9
Claude 3.7 Sonnet (T) 6.7 22.3 15.0 9.0 50.9 23.4 24.9 11.9 28.5 36.3 8.3 39.8 23.1

Gemini 2.0 Flash 001 19.7 35.3 40.8 58.0 56.1 43.9 55.2 39.8 40.3 46.8 38.2 54.7 44.1
Gemini 2.5 Flash P 26.9 28.8 27.1 40.1 58.9 31.1 53.2 27.9 33.8 40.3 41.8 63.2 39.4
Gemini 2.5 Pro Pre (T) 27.0 34.1 31.2 43.2 57.2 16.7 13.0 42.7 49.5 55.7 53.5 64.0 40.6

GPT-4.1 Mini 26.6 28.4 24.1 43.2 64.0 18.1 36.3 36.3 26.9 40.3 15.3 60.2 35.0
GPT-4.1 13.8 29.0 4.4 25.9 91.0 27.8 51.2 55.7 43.3 58.2 43.8 64.2 42.4
o4-mini-high (T) 17.1 0.2 4.7 26.4 72.7 26.2 20.4 36.6 31.5 52.7 43.1 63.8 33.0

Llama 3.2 90B Vision I 13.1 14.8 4.2 25.0 30.2 12.8 37.3 51.2 31.3 44.8 27.1 37.3 27.4
Llama 4 Scout 30.4 0.6 36.4 51.1 84.9 18.6 51.2 60.2 37.8 43.3 36.1 51.2 41.8
Llama 4 Maverick 36.2 34.9 37.6 47.0 90.0 14.6 43.8 77.1 59.2 57.7 40.3 54.2 49.4

Qwen 3 18.7 22.7 9.9 20.1 85.2 28.6 0.0 0.0 0.0 0.0 0.0 0.0 15.4
Qwen 2.5 VL 21.9 20.7 18.7 9.6 61.8 42.3 47.8 22.9 24.9 4.5 2.8 35.8 26.1

4.2 Analyzing Property Awareness: Do VLMs Discern Fundamental Object Features?
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Figure 5: All affordance subset heatmap.
Full heatmap in Appendix D.3

This subsection presents a detailed evaluation of how well
contemporary VLMs are grounded in these essential at-
tributes. We assessed model performance across twelve
distinct property categories critical for robotic manipu-
lation: P1 (Capacity), P2 (Color), P3 (Complexity), P4
(Consumability), P5 (Contents), P6 (Density), P7 (Hard-
ness), P8 (Orientation), P9 (Sealing), P10 (Stickiness),
P11 (Thickness), and P12 (Weight). The comprehensive
results are detailed in Table 7.

Overall Property Performance and Domain Sensitivity:
Table 2 reveals considerable VLM performance disparities
across models and, notably, between the Open Images and
Humanoid data subsets for the six evaluated properties. No single model masters all properties
across both domains, highlighting varied strengths and significant domain sensitivity. Many models,
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such as ‘Claude 3.5 Sonnet’ and ‘GPT-4.1’, demonstrate decent accuracy on properties like ‘Color
(P1)’, ‘Weight (P3)’ when evaluated on Humanoid views compared to the more varied Open Images
data. Conversely, properties like ‘Sealing (P5)’ frequently see higher scores on Open Images (e.g.,
‘Llama 4 Maverick’: 90.0% vs. 40.3%). Some models show extreme domain dependence; for
instance, ‘Qwen 3’ performs reasonably on Open Images but scores 0.0% across all six properties
on the Humanoid dataset. These findings underscore that VLM property understanding is not yet
consistently robust across different visual contexts, even for fundamental attributes, pointing to
challenges in generalization. For detailed results across all 12 evaluated properties from our primary
dataset, see Appendix D.2.

4.3 Evaluating Affordance Understanding: Can VLMs Discern Possible Interactions?

Recognizing potential actions, or affordances, that an object offers is fundamental for goal-oriented
manipulation. In this subsection, we assess VLM performance on identifying common affordances
for 115 object classes, primarily grouped into 14 primary categories derived from web-scale images
(A1-A14). Table 3 presents results for the metric of identifying at least one correct affordance, and
importantly, also includes overall accuracies from our distinct Humanoid dataset evaluations and
an aggregated average. The stricter metric, requiring identification of all ground-truth affordances,
is detailed in Table 10 (further visualized in Figure 5). Additional results for multi-category and
per-object evaluations are in Appendix D.3.

Partial Affordance Recognition and Humanoid Insights: As shown in Table 3, VLMs exhibit
highly varied success in recognizing at least one correct affordance. Based on the overall average
scores (Avg), which combine web-image category and humanoid task performance, models like
‘Llama 4 Scout’ (40.9%) and ‘Llama 4 Maverick’ (35.2%) demonstrate broader, albeit still moderate,
capabilities. Performance peaks on specific web-image categories are notable, for instance, ‘GPT 4.1
Mini’ and ‘Qwen 2.5 VL’ achieve 100% for A10, and several Llama models along with ‘Claude 3.7
Sonnet’ show perfect scores for A1. However, many categories, such as A2.The Humanoid dataset
scores (H1-H3) reveal further nuances; for example, ‘Gemini 2.0 Flash 001’ performs decent across
H1-H3 (avg. 60%), while ‘Gemini 2.5 Pro P’ scores 0% on all Humanoid tasks despite reasonable
performance on A1-A14. This suggests that affordance understanding from diverse web images may
not readily transfer to specific robot-centric views or tasks without further adaptation, with models
like ‘Qwen VP’ (0.0% Avg) struggling broadly.

Comprehensive Affordance Recognition Remains Elusive: The capacity of VLMs to identify the
full set of an object’s affordances is far more limited. As starkly illustrated in Table 10 (and the
heatmap in Figure 5), when requiring models to recognize all ground-truth affordances, performance
plummets to near-zero across almost all models and categories. The rare non-zero scores (e.g., ‘GPT
4.1’ at 20.0% for Home Fixtures. This significant drop from the “at least one” metric highlights that
while VLMs might identify a primary or common affordance, they generally lack the comprehensive
functional understanding critical for versatile and truly intelligent robotic interaction.

4.4 Assessing Constraint Comprehension: Can VLMs Understand Physical Limits?

PAC Bench evaluates constraints by presenting VLMs with scenarios where proposed actions might
be infeasible due to underlying physical limitations. Our evaluation spans four distinct constraint
domains. Furthermore, we introduce a novel set of real-world constraint scenarios captured from a
humanoid robot’s perspective, which will be analyzed subsequently. The performance of VLMs on
the simulated constraint tasks is detailed in Table 4 (More in Appendix D.4).

Constraint Understanding: A Profound Challenge Across Simulated and Real-World Scenarios.
The results presented in Table 4 underscore that reasoning about physical constraints remains a
profound challenge for current VLMs, with overall average (Avg) accuracies being exceptionally
low for most models. Many prominent VLMs, including Claude 3.5 Sonnet (0.4% Avg), Llama 3.2
90B Vision I (0.2% Avg), and Llama 4 Scout (1.5% Avg), register near-zero performance across
the majority of both simulated and real-world tasks. This pervasive failure highlights a fundamental
difficulty in inferring basic stability, support, occlusion, and reachability limits from visual input.

In the Simulated Domains, “Impossible Placement” scenarios almost universally failed. The
“Occlusion” domain saw slightly more success, particularly from Gemini 2.5 Pro Preview (up to
90.0%) and GPT-4.1 (up to 70.0%). “Stability” and “Reachability” tasks in simulation also proved
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Table 3: Affordance Accuracy (%) of VLMs on recognizing at least one correct affordance for objects
grouped by primary categories (Single-Category Mapping) in PAC Bench, plus overall accuracy in
the humanoid dataset scores H1–H3. Categories A1–A18 are: A1 (Adhesives), A2 (Appliances),
A3 (Luggage), A4 (Bathroom Items), A5 (Cleaning), A6 (Clothing), A7 (Storage), A8 (Decor), A9
(Electronics), A10 (Food & Beverage), A11 (Furniture), A12 (Home Fixtures), A13 (Kitchen Items),
A14 (Instruments), H1 (Humanoid Front View), H2 (Side View), H3 (Both Views)
Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 H1 H2 H3 Avg
Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 16.7 25.0 0.0 66.7 13.3 40.0 9.1 0.0 2.9 47.1 14.7 13.9
Claude 3.7 Sonnet 100.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 11.1 66.7 0.0 20.0 22.7 100.0 2.9 58.8 11.8 24.4
Claude 3.7 Sonnet (T) 0.0 5.6 0.0 30.0 0.0 0.0 0.0 0.0 11.1 0.0 6.7 20.0 18.2 0.0 2.9 54.4 10.3 9.4
Gemini 2.0 Flash 001 0.0 0.0 0.0 40.0 0.0 0.0 16.7 0.0 0.0 66.7 0.0 40.0 13.6 0.0 54.4 66.2 64.7 21.3
Gemini 2.5 Flash P 0.0 5.6 0.0 20.0 0.0 50.0 0.0 0.0 11.1 66.7 13.3 40.0 18.2 0.0 52.9 55.9 57.4 23.0
Gemini 2.5 Pro P 0.0 16.7 66.7 30.0 0.0 0.0 33.3 25.0 22.2 66.7 26.7 60.0 31.8 0.0 0.0 0.0 0.0 22.3
Llama 3.2 11B Vision I 100.0 22.2 0.0 30.0 0.0 50.0 33.3 0.0 22.2 66.7 0.0 0.0 13.6 0.0 20.5 27.9 25.0 24.2
Llama 3.2 90B Vision I 100.0 11.1 33.3 10.0 0.0 50.0 50.0 25.0 22.2 66.7 26.7 60.0 9.1 0.0 22.1 44.1 0.0 31.2
Llama 4 Scout 0.0 11.1 66.7 50.0 0.0 50.0 50.0 25.0 33.3 66.7 53.3 60.0 54.6 100.0 20.6 27.9 26.5 40.9
Llama 4 Maverick 0.0 22.2 33.3 50.0 0.0 100.0 50.0 0.0 33.3 66.7 26.7 100.0 31.8 0.0 20.6 39.7 23.5 35.2
GPT 4.1 Mini 0.0 5.6 0.0 30.0 0.0 0.0 50.0 25.0 0.0 100.0 13.3 60.0 36.4 0.0 20.6 57.4 25.0 24.9
GPT 4.1 0.0 5.6 0.0 20.0 0.0 0.0 16.7 25.0 0.0 0.0 6.7 60.0 18.2 0.0 48.5 67.6 45.6 18.5
o4-mini-high (T) 0.0 16.7 0.0 20.0 0.0 0.0 16.7 25.0 11.1 33.3 33.3 20.0 22.7 0.0 16.2 45.6 35.3 17.4
Qwen 2.5 VL 0.0 0.0 0.0 30.0 0.0 0.0 33.3 0.0 0.0 100.0 6.7 80.0 9.1 0.0 14.7 48.5 20.6 20.2
Qwen 3 0.0 5.5 0.0 30.0 0.0 0.0 33.3 25.0 0.0 100.0 0.0 60.0 13.6 0.0 4.4 1.4 8.8 16.6
Grok Vision Beta 0.0 5.6 0.0 10.0 0.0 0.0 0.0 0.0 11.1 0.0 13.3 20.0 4.6 0.0 8.8 8.8 7.4 5.3
Grok 2 Vision 0.0 5.6 33.3 50.0 0.0 0.0 0.0 0.0 11.1 100.0 6.7 20.0 13.6 100.0 44.1 47.1 41.2 27.8

Table 4: Constraint Accuracy (%) of VLMs on understanding physical constraints in PAC Bench
across four simulated domains, three views (F: front-view, A: agent-view, S: side-view), and a
real-world Humanoid split ( Both=A+S).

Model Simulation Real World Avg
Impossible Place (↑) Occlusion (↑) Stability (↑) Reachability (↑) Humanoid (↑)

F A S F A S F A S F A S A S Both
Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 3.7 0.4
Claude 3.7 Sonnet 0.0 0.0 0.0 40.0 10.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 1.8 5.6
Claude 3.7 Sonnet (T) 0.0 0.0 0.0 20.0 20.0 30.0 0.0 0.0 10.0 10.0 0.0 0.0 0.0 0.0 3.7 7.5
Gemini 2.0 Flash 001 0.0 0.0 0.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6 3.7 9.4 2.6
Gemini 2.5 Flash P 0.0 0.0 0.0 50.0 20.0 40.0 10.0 40.0 20.0 0.0 20.0 0.0 9.4 9.4 1.8 14.7
Gemini 2.5 Pro P 10.0 20.0 10.0 90.0 30.0 60.0 0.0 40.0 0.0 30.0 0.0 20.0 11.3 18.8 9.4 25.8
Llama 3.2 11B Vision I 20.0 10.0 0.0 30.0 30.0 20.0 20.0 20.0 20.0 10.0 30.0 0.0 0.0 1.8 0.0 17.5
Llama 3.2 90B Vision I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.2
Llama 4 Scout 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.5
Llama 4 Maverick 0.0 0.0 0.0 10.0 0.0 50.0 30.0 10.0 10.0 0.0 0.0 0.0 9.4 7.5 7.5 9.0
GPT-4.1 0.0 0.0 0.0 50.0 70.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 11.3 13.2 9.4 13.6
GPT-4.1 Mini 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.8 24.5 22.6 4.4
o4-mini-high (T) 0.0 0.0 0.0 60.0 40.0 50.0 0.0 0.0 20.0 0.0 0.0 0.0 11.3 13.2 11.3 11.3
Qwen 2.5 VL 0.0 0.0 0.0 20.0 20.0 10.0 10.0 20.0 20.0 20.0 0.0 0.0 0.0 0.0 0.0 8.0
Qwen 3 10.0 0.0 0.0 60.0 20.0 70.0 30.0 80.0 80.0 10.0 10.0 0.0 3.7 0.0 0.0 3.3
Grok Vision Beta 0.0 0.0 0.0 33.3 50.0 0.0 25.0 0.0 22.2 11.1 0.0 11.1 0.0 0.0 0.0 10.9
Grok 2 Vision 0.0 0.0 0.0 20.0 50.0 40.0 10.0 0.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 9.3

very difficult, with only sporadic, low scores from most models, though Gemini 2.5 Pro P and Llama
3.2 11B Vision Instruct showed some capability in specific views for Reachability. Viewpoint (F,
A, S) within simulation influenced scores inconsistently (e.g., Gemini 2.5 Pro P on Sim-Occlusion:
F:90.0%, A:30.0%, S:60.0%), indicating a lack of robust view-invariance.

In Real-World Humanoid scenarios performance is generally low, though some models show
interesting divergences. GPT-4.1 Mini, despite near-zero performance in simulation, achieves com-
paratively better scores on the Humanoid tasks (18.8% Agent, 24.5% Side, 22.6% Both), although
its overall average remains low (4.4%). Conversely, Gemini 2.5 Pro, the strongest performer in
simulation (25.8% Avg), shows more modest results on the Humanoid tasks (11.3% Agent, 18.8%
Side, 9.4% Both). This suggests that performance in simulated constraint scenarios does not directly
translate to real-world robot-centric views, pointing to a significant sim-to-real gap in constraint
understanding. Reasoning models, as seen with “(T),” provided only marginal and inconsistent
benefits in these highly challenging constraint tasks. The overall poor performance across con-
straint evaluations clearly marks constraint comprehension as a critical area requiring substantial
advancement for reliable VLM-driven robotics.
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5 Key Findings

Key Findings from PAC Bench

• VLMs perform moderately on object properties and basic affordances.
• They fail significantly on understanding complex affordances and physical con-

straints.
• Performance varies drastically across domains and viewpoints.

We expect PAC Bench to help the development of physical AI agents in the following ways:

1. Targeted diagnosis of failure modes:
Training large VLAs is still a largely heuristic, trial-and-error process that demands sub-
stantial computational resources. PAC Bench helps determine whether failures arise from
poor physical understanding in the foundation VLM itself (e.g., lack of ability to understand
a particular constraint) vs. issues introduced during architectural choices or fine-tuning
process.

2. Improved robustness and transferability:
PAC Bench exposes the sensitivity of VLMs to domain, viewpoint, and other shifts, high-
lighting the sim-to-real and view-invariance challenges critical to real-world robotics. This
enables more systematic adaptation of VLA systems to diverse environments, improving
both reliability and generalization.

3. Cognitive modular testing and verification:
By decomposing the pre-requisites for manipulation into Properties, Affordances, and
Constraints, PAC Bench allows each component of a robot’s reasoning pipeline to be
individually tested and empirically verified. This cognitive modularity, inspired by the
core knowledge systems [38] identified in developmental psychology, stands in contrast to
traditional data-flow modularity by enabling the development of interpretable and verifiable
manipulation policies in the era of foundation models, thereby helping ensure that learned
behaviors align with real-world safety and reliability requirements prior to deployment.

6 Limitations and Conclusion
Although PAC Bench offers a significant step forward with its diverse hybrid dataset for evaluating
VLM understanding of Properties, Affordances, and Constraints (PAC), we acknowledge current
limitations. These include the initial single-annotator pass for affordances, the exclusion of the
RoboCasa subset from current VLM evaluations due to cost all of which suggest avenues for future
expansion and refinement. Despite these, we introduced PAC Bench to address the critical, often
unverified, assumption of deep physical grounding in VLMs for robotic manipulation. Our extensive
evaluations of state-of-the-art models starkly reveal widespread deficiencies: while partial success is
observed in property and basic affordance recognition, VLMs profoundly struggle with comprehensive
affordance understanding and nearly all aspects of constraint reasoning in both simulated and real-
world tests. These findings underscore that current VLM sophistication does not yet equate to robust
physical grounding. PAC Bench thus provides the community with a crucial diagnostic tool and a
structured methodology to systematically measure these foundational skills, pinpoint key weaknesses
(such as poor constraint generalization or difficulty with compositional affordances), and catalyze
the development of more physically intelligent, reliable, and ultimately, safer VLMs for real-world
robotic interaction.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the abstract and introduction (Section 1) accurately reflect the paper’s
contributions and scope. We claim to introduce PAC Bench, a novel, hybrid benchmark for
evaluating VLM understanding of physical Properties, Affordances, and Constraints (PAC)
as prerequisites for manipulation. We also claim to provide a comprehensive evaluation suite
and empirical insights from testing state-of-the-art VLMs. These claims are substantiated by
the detailed description of the PAC Bench dataset (Section 3), its multi-source composition
and annotation methodology (Section 3.1), and the presentation and analysis of experimental
results on various VLMs (Section 4). The scope is clearly defined as assessing foundational
physical reasoning for task executability.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

14



• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 (Limitations and Conclusion) discusses current limitations and
opportunities for future expansion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper introduces PAC Bench, a new benchmark dataset and evaluation
framework for VLMs. It presents empirical findings from model evaluations rather than new
theoretical results, mathematical derivations, or formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, We provide the dataset and github link (in Abstract) and also a experiment
setup which can be seen in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, We have given open access to code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes we show these results in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes we show these results in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: Compute resource required can be seen in Appendix B.1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research was conducted in accordance with the NeurIPS Code of Ethics.
The development of PAC Bench involved using publicly available datasets (OpenImages,
RoboCasa components), newly generated simulated data, and new real-world robotic data
collection focused on common objects and non-sensitive scenarios. Human annotationefforts
(detailed in Section 3.1 and Appendix E.1) were designed with ethical considerations,
including fair practices for annotators. The benchmark aims to promote robust and grounded
VLM development for safer robotic systems.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes we provide this in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The PAC Bench dataset primarily comprises images of common objects from
public datasets , controlled simulated environments and new robotic captures of everyday
tabletop scenarios which do not involve sensitive personal data. We are not releasing new
pre-trained generative models or other assets typically associated with a high risk for direct
misuse that would necessitate specific safeguards beyond responsible dataset curation and
intended use for research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The PAC Bench dataset and associated assets are released on Hugging Face
under the MIT License, with proper attribution to original contributors. The repository
includes clear documentation outlining intended research use and limitations, ensuring
compliance with the license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes new data collected are well documented and is provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Yes we show this in Appendix E.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve direct experiments with human subjects in a
way that would typically require IRB approval. The human involvement was limited to
data annotation of common objects and scenarios by trained annotators who were fairly
compensated (details in Appendix E.1), and data collection with robotic platforms observing
these objects, not interacting with human participants in an experimental context. No
sensitive personal data was collected or used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The core focus of this paper is the introduction of PAC Bench, a benchmark
specifically designed to evaluate Vision-Language Models (VLMs), which inherently involve
Large Language Model components. Furthermore, our evaluation methodology for assessing
constraint understanding (detailed in Section 4.1 and Appendix D) utilizes an LLM-as-a-
judge approach for evaluation.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


A Broader impacts

The primary goal of PAC Bench is to catalyze the development of more capable, reliable, and
physically grounded VLMs and their fine-tuned variants, often called VLAs for real-world robotic
applications. Because VLA fine-tuning typically relies on low-level trajectory data rather than higher
level reasoning, probing the underlying VLM’s understanding of object Properties, action Affordances,
and physical Constraints (PAC) gives us a grounded lens into the capabilities that downstream
robotic policies will inherit. By diagnosing PAC weaknesses in the base model, researchers can
distinguish whether a VLA’s performance stems from genuine physical common sense or simply
memorized motion patterns, and thus guide targeted improvements in model architectures, training
methodologies, and dataset curation. In doing so, PAC Bench helps ensure that robotic systems
become more predictable, less prone to errors from a lack of physical understanding, and better
equipped for safe, effective collaboration in complex, everyday environments.

By providing a fine-grained diagnostic tool, PAC Bench can help researchers and developers identify
specific weaknesses in current models, thereby guiding targeted improvements in model architectures,
training methodologies, and dataset curation. This, in turn, can lead to robotic systems that are more
predictable, less prone to errors stemming from a lack of physical common sense, and better able to
perform a wide range of useful tasks. The open release of our benchmark and its diverse data sources
(including web-scale images, real-world humanoid captures, and simulated scenarios) is intended to
foster broad community engagement and accelerate progress in this crucial area of AI.

While any advancement in AI capabilities warrants ongoing consideration of its societal implications,
our work focuses on enhancing the fundamental understanding and robustness of AI systems, which
we see as a positive step towards more responsible AI development. We encourage the community
to leverage PAC Bench to build systems that not only demonstrate impressive capabilities but also
operate with a clear and verifiable understanding of their physical environment, ultimately contributing
to the beneficial integration of AI into society.

B Dataset Statistics

Carey and Spelke, in their work on core knowledge notes that “the perceptual and action capacities of
humans result not from one general-purpose system for perceiving or acting, but from the orchestration
of distinct, specialized systems for perceiving different kinds of environmental properties (e.g., color,
depth, melodies, etc.) and for engaging in different patterns of activity (e.g., reaching, grasping,
locomoting, scanning a scene)” [38].

In the first few months of life, infants begin by understanding basic object properties; they
then explore what actions those objects afford, and only later, through trial and error, do
they learn the physical constraints that govern whether those actions can be successfully
executed to achive a task. We test VLMs on these three distinct cognitive capabilities required
to complete a robot manipulation task.

B.1 Properties

Real Robo

The Real Robo properties subset contains 785 annotations spread across 67 unique scenario im-
age–pairs, giving a mean of 11.7 annotated properties per scenario (the schema expects 12).

Property–name frequency. Every property except SEALING appears exactly 67 times, correspond-
ing to 8.54 % of all annotations each. SEALING appears 48 times (6.11 %).

Category distribution (overall). Non-consumable 67 (8.54 %), Medium thickness 63 (8.03 %),
Non-sticky 55 (7.01 %), Contains 50 (6.37 %), Non-containable 38 (4.84 %), Horizontal 38 (4.84 %),
Hard 36 (4.59 %), Simple 36 (4.59 %), High-density 34 (4.33 %), Light 33 (4.20 %), Multicolored
33 (4.20 %), Low-density 33 (4.20 %), Soft 31 (3.95 %), Multi-object 31 (3.95 %), Sealed 29 (3.69
%), Containable 29 (3.69 %), Monochromatic 29 (3.69 %), Unsealed 19 (2.42 %), Vertical 19 (2.42
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%), Empty 17 (2.17 %), Thick 16 (2.04 %), Thin 16 (2.04 %), Multi-directional 10 (1.27 %), Sticky 7
(0.89 %), Heavy 6 (0.76 %), Metallic 5 (0.64 %), Variable 5 (0.64 %).

Category distribution per property. CAPACITY: Non-containable 38 (56.7 %), Containable 29
(43.3 %). COLOR: Multicolored 33 (49.3 %), Monochromatic 29 (43.3 %), Metallic 5 (7.5 %).
COMPLEXITY: Simple 36 (53.7 %), Multi-object 31 (46.3 %). CONSUMABILITY: Non-consumable
67 (100 %). CONTENTS: Contains 50 (74.6 %), Empty 17 (25.4 %). DENSITY: High-density 34
(50.8 %), Low-density 33 (49.2 %). HARDNESS: Hard 36 (53.7 %), Soft 31 (46.3 %). ORIENTATION:
Horizontal 38 (56.7 %), Vertical 19 (28.4 %), Multi-directional 10 (14.9 %). SEALING: Sealed 29
(60.4 %), Unsealed 19 (39.6 %). STICKINESS: Non-sticky 55 (82.1 %), Sticky 7 (10.4 %), Variable 5
(7.5 %). THICKNESS: Medium 35 (52.2 %), Thick 16 (23.9 %), Thin 16 (23.9 %). WEIGHT: Light 33
(49.3 %), Medium 28 (41.8 %), Heavy 6 (9.0 %).

Descriptor distribution (overall). Solid 74 (4.71 %); Reusable 67, Permanent 67 (4.27 % each);
Lightweight 66 (4.20 %); Balanced 63 (4.01 %); Smooth 55, Slippery 55 (3.50 % each); Filled 50,
Occupied 50 (3.18 % each); Dense 40 (2.55 %); Flat 38, Reclined 38, Unperforated 38 (2.42 % each);
Rigid 36, Single-unit 36, Monolithic 36 (2.29 % each); Standard Thickness 35 (2.23 %); Compact
34 (2.17 %); Gradient 33, Striped 33, Featherweight 33, Buoyant 33 (2.10 % each); Assembled 31,
Interconnected 31, Plush 31, Flexible 31 (1.97 % each); Airtight 29, Watertight 29, Single Color 29,
Neutral 29, Hollow 29, Enclosable 29 (1.85 % each); Moderate 28 (1.78 %); Bulky 22 (1.40 %);
Upright 19, Standing 19, Open 19, Can-leak 19 (1.21 % each); Vacant 17, Void 17 (1.08 % each);
Sturdy 16, Slim 16, Minimal Thickness 16 (1.02 % each); Rotational 10, Adjustable 10 (0.64 %
each); Adhesive 7, Tacky 7 (0.45 % each); Glossy 5, Shiny 5, Temporary Stickiness 5, Conditional
Adhesion 5 (0.32 % each).

Descriptor distribution per property & category. Each category listed above is characterised by
exactly two descriptors, each accounting for half of the annotations in that category—for example,
Containable objects are equally annotated as Hollow and Enclosable, Metallic objects as Glossy and
Shiny, Hard objects as Solid and Rigid, and so on across all 27 property–category pairs.

Robocasa

The Robocasa synthetic-properties subset comprises 424 property annotations describing 41 distinct
household objects (≈10.3 properties per object).

Property–name frequency. Eight properties (WEIGHT, COLOR, HARDNESS, CONSUMABILITY,
COMPLEXITY, THICKNESS, DENSITY, STICKINESS) appear once for every object (41 annotations
each, 9.67 % apiece). CAPACITY appears 39 times (9.20 %), CONTENTS 38 (8.96 %), and SEALING
19 (4.48 %).

Category distribution (overall). Medium 36 (8.49 %), Non-sticky 36 (8.49 %), Contains 33 (7.78
%), Simple 31 (7.31 %), Non-containable 24 (5.66 %), Consumable 24 (5.66 %), Monochromatic 23
(5.42 %), High-density 21 (4.95 %), Low-density 20 (4.72 %), Hard 20 (4.72 %), Multicolored 18
(4.25 %), Light 18 (4.25 %), Soft 17 (4.01 %), Non-consumable 17 (4.01 %), Containable 15 (3.54
%), Sealed 13 (3.07 %), Thick 10 (2.36 %), Multi-object 10 (2.36 %), Heavy 10 (2.36 %), Thin 8
(1.89 %), Unsealed 6 (1.42 %), Empty 5 (1.18 %), Brittle 4 (0.94 %), Sticky 3 (0.71 %), Variable 2
(0.47 %).

Category distribution per property. CAPACITY: Non-containable 24 (61.5 %), Containable 15
(38.5 %). COLOR: Monochromatic 23 (56.1 %), Multicolored 18 (43.9 %). COMPLEXITY: Simple 31
(75.6 %), Multi-object 10 (24.4 %). CONSUMABILITY: Consumable 24 (58.5 %), Non-consumable
17 (41.5 %). CONTENTS: Contains 33 (86.8 %), Empty 5 (13.2 %). DENSITY: High-density 21 (51.2
%), Low-density 20 (48.8 %). HARDNESS: Hard 20 (48.8 %), Soft 17 (41.5 %), Brittle 4 (9.8 %).
SEALING: Sealed 13 (68.4 %), Unsealed 6 (31.6 %). STICKINESS: Non-sticky 36 (87.8 %), Sticky 3
(7.3 %), Variable 2 (4.9 %). THICKNESS: Medium 23 (56.1 %), Thick 10 (24.4 %), Thin 8 (19.5 %).
WEIGHT: Light 18 (43.9 %), Medium 13 (31.7 %), Heavy 10 (24.4 %).

Descriptor distribution (overall). Solid 44 (5.05 %); Lightweight 38 (4.36 %); Balanced 36,
Smooth 36, Slippery 36 (4.13 % each); Filled 33, Occupied 33 (3.78 % each); Single-unit 31,
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Monolithic 31, Dense 31 (3.56 % each); Edible 24, Burnable 24, Disposable 24, Unperforated 24
(2.75 % each); Single Color 23, Neutral 23, Standard Thickness 23 (2.64 % each); Compact 21 (2.41
%); Buoyant 20, Bulky 20, Rigid 20 (2.29 % each); Featherweight 18, Gradient 18, Striped 18 (2.06
% each); Plush 17, Flexible 17, Reusable 17, Permanent 17 (1.95 % each); Hollow 15, Enclosable 15
(1.72 % each); Moderate 13, Airtight 13, Watertight 13 (1.49 % each); Sturdy 10, Assembled 10,
Interconnected 10 (1.15 % each); Slim 8, Minimal Thickness 8 (0.92 % each); Open 6, Can-leak 6
(0.69 % each); Vacant 5, Void 5 (0.57 % each); Fragile 4, Breakable 4 (0.46 % each); Adhesive 3,
Tacky 3 (0.34 % each); Temporary Stickiness 2, Conditional Adhesion 2 (0.23 % each).

Descriptor distribution per property & category. The synthetic generator enforces symmetric
pairings: every category co-occurs with exactly two descriptors that split its count evenly—for
instance, Containable objects are half Hollow and half Enclosable; Consumable items distribute
equally among Edible, Burnable, and Disposable; Brittle objects are evenly Fragile and Breakable;
analogous 50 % pairings hold across all remaining property–category combinations.

OpenImages

The OpenImages split aggregates 10 506 property annotations covering 679 everyday-object images
for each of the 12 properties, i.e. 8 148 image–property pairs in total. Annotator effort is uneven but
broad: Annot.,7 contributed 2 037 labels (19.4 %), Annot.,4 — 1 928 (18.4 %), Annot.,11 — 1 821
(17.3 %), Annot.,1 and 9 — 1 358 each (12.9 % ea.), Annot.,10 — 694 (6.6 %), Annot.,5 — 585 (5.6
%), Annot.,3 — 319 (3.0 %), Annot.,8 — 214 (2.0 %), Annot.,6 — 192 (1.8 %).

Capacity. All 679 images carry a CAPACITY label: Containable 321 (47.28 %), Non-containable
317 (46.69 %), Don’t-know 35 (5.15 %), Not-applicable 6 (0.88 %). Descriptors cluster in two
symmetrical pairs—Hollow/Enclosable (321 each, 25.16 % apiece) and Solid/Unperforated (317
each, 24.84 %).

Color. 818 colour judgements (often double-annotated) span the same image set. Categories:
Multicolored 300 (36.67 %), Metallic 260 (31.78 %), Monochromatic 188 (22.98 %), Matte 59 (7.21
%), Don’t-know 10 (1.22 %), Not-applicable 1. Descriptors: Gradient and Striped 300 each (18.59
%), Glossy and Shiny 260 each (16.11 %), Single Color 188 (11.65 %).

Complexity. 1 140 annotations—Multi-object 883 (77.46 %), Simple 242 (21.23 %), Don’t-know
10, Invalid-format 5. Descriptors: Assembled / Interconnected 883 each (39.24 %), Single-unit /
Monolithic 242 each (10.76 %).

Consumability. Every image is labelled once: Non-consumable 633 (93.23 %), Consum-
able 41 (6.04 %), Invalid-format 4, Not-applicable 1. Descriptors split into reusable
pairs—Reusable/Permanent 633 each (45.57 %) versus Edible/Burnable/Disposable 41 each (2.95
%).

Contents. 679 labels: Contains 249 (36.67 %), Empty 149 (21.94 %), Not-applicable 149 (21.94
%), Don’t-know 130 (19.15 %), Invalid-format 2. Descriptors: Filled/Occupied 249 each (31.28 %);
Vacant/Void 149 each (18.72 %).

Density. High-density 412 (60.68 %), Low-density 248 (36.52 %), Not-applicable 12, Don’t-
know 6, Variable 1. Descriptors mirror the split—Dense/Compact 412 each (31.16 %) versus
Lightweight/Buoyant 248 each (18.76 %); one image is uniquely Adjustable.

Hardness. Hard 297 (43.74 %), Brittle 160 (23.56 %), Don’t-know 126 (18.56 %), Soft 86 (12.67
%), Not-applicable 10. Descriptor pairs: Solid/Rigid 297 each (27.35 %), Fragile/Breakable 160 each
(14.73 %), Plush 86 (7.92 %).

Orientation. Vertical 496 (55.92 %), Horizontal 241 (27.17 %), Multi-directional 70 (7.89 %) plus
70 identical Invalid-format rows, Don’t-know 8, Not-applicable 2. Descriptors: Upright/Standing
496 each (30.73 %), Flat/Reclined 241 each (14.93 %), Rotational 70 (4.34 %).
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Sealing. Unsealed 495 (56.83 %), Sealed 351 (40.30 %), Don’t-know 16 (1.84 %), Not-applicable
5 (0.57 %), Invalid-format 4 (0.46 %). Descriptors partition cleanly: Open/Can leak 495 each (29.26
%), Airtight/Watertight 351 each (20.74 %).

Stickness. 1 358 labels (two annotators × all images): Non-sticky 1 097 (80.78 %), Sticky 244 (17.97
%), Don’t-know 15, Variable 2. Descriptors: Smooth/Slippery 1 097 each (40.84 %), Adhesive/Tacky
244 each (9.08 %), Temporary Stickiness 2 (0.07 %).

Thickness. Thick 258 (38.00 %), Medium 220 (32.40 %), Thin 163 (24.01 %), Not-applicable
27 (3.98 %), Don’t-know 11 (1.62 %). Descriptors: Sturdy/Bulky 258 each (20.12 %), Standard
Thickness/Balanced 220 each (17.16 %), Slim 163 (12.71 %).

Weight. Heavy 482 (35.49 %), Light 443 (32.62 %), Medium 426 (31.37 %), Not-applicable 3,
Don’t-know 2, Dynamic 2. Descriptors: Bulky/Dense 482 each (17.81 %), Featherweight/Lightweight
443 each (16.37 %), Moderate 426 (15.74 %).

B.2 Affordance

OpenImages

Across 116 objects every image is annotated once, giving 116 affordance rows produced by seven
annotators. Most images list three affordances (61 entries, 52.6 %), 50 list two (43.1 %), four list one
(3.5 %) and one lists none. The ten most frequent affordances are: Hold 36 (12.5 %), Holding 11 (3.8
%), Open/Close 9 (3.1 %), Cook 9 (3.1 %), Turn on/off 8 (2.8 %), Hold items 6 (2.1 %), Pour 6 (2.1
%), Fill 5 (1.7 %), Manipulating controls 4 (1.4 %) and Hold food 4 (1.4 %).

Real Robot

Sixty-eight scenario pairs each have one affordance row, totalling 68 sets. Half of the scenarios list
three affordances (34, 50 %), 29 list two (42.7 %) and five list one (7.4 %). Across all 170 recorded
affordance slots the most common actions are: act as weight 29 (17.6 %), Contain things 12 (7.3 %),
scrape things 10 (6.1 %), stick things 7 (4.2 %), add thickness 7 (4.2 %), act as cushion 7 (4.2 %),
followed by fifteen further affordances occurring five or six times each. Slot-wise patterns highlight
typical triplets such as Contain things / act as cushion / act as weight (7 cases, 10.3 %), and frequent
pairs like stick things / add thickness or break things / act as weight. Slot 3 is often left blank (34
empty entries, 50 %).

Robocasa

The synthetic set covers 41 household objects. Eight objects list a single affordance (19.5 %),
eighteen list two (43.9 %) and fifteen list three (36.6 %), giving 89 affordance mentions overall.
edible dominates slot 1 (23 occurrences, 56.1 %) and is the single most frequent affordance overall
(24, 27 %). Other common actions are cookable 10 (11.2 %), garnish and can be used to stir things 4
each (4.5 %), can contain things, can be used to pour things, stackable and can be contain things
3 each (3.4 %). All remaining 26 affordances appear once or twice (≤2.5 % each), illustrating the
long-tail synthetically injected diversity. The most common triplet is edible / cookable / ∅ (10 objects,
24.4 %), followed by edible / ∅ / ∅ (8, 19.5 %).

B.3 Constraints

Real Robo

This constraint Dataset contains 53 question–answer pairs, one per scenario. The nine distinct
questions appear with the following frequencies: “Can we keep the ball inside the penstand?” 13
(24.53 %); “Can we keep the pen inside the penstand?” 10 (18.87 %); “Can you keep the food on the
plate?” 8 (15.09 %); “Can you reverse the stacking of the objects?” 8 (15.09 %); “Can you write on
the notepad using the marker?” 6 (11.32 %); “Can the robot stack the object near the right hand on
the object near the left hand?” 4 (7.55 %); “Can the robot stack the object near the left hand on the
object near the right hand?” 2 (3.77 %); “Can the robot stack the object away from it on the object
near it?” 1 (1.89 %); and the lower-case duplicate “can you keep the food on the plate?” 1 (1.89 %).
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All responses are negative and distributed across nineteen phrasings: “No the cube won’t balance on
the pyramid.” 14 (26.42 %); “No the penstand is inverted.” 11 (20.75 %); “No the the penstand is
inverted.” 4 (7.55 %); “No the penstand is not upright.” 4 (7.55 %); “No the box is on the plate.” 2
(3.77 %); “No the the penstand is not upright.” 2 (3.77 %); “No the plate is inverted.” 2 (3.77 %);
“No the marker is closed.” 2 (3.77 %); “No the notepad is inside the cup.” 2 (3.77 %); plus nine
single-occurrence answers covering cube–pyramid balance, covered openings, inverted or closed
objects, and misplaced items.

Keyword extraction highlights the chief obstacles: “penstand” 23 mentions, “inverted” 20, and the
instability trio “cube/balance/pyramid” 15 each, followed by “box” 9, “plate” 8, “closed” 7, “upright”
6, and sporadic references to notepad, cup, marker, inside, covered openings, under-placement and
table contact.

Mapping these words to constraint types shows that inverted-orientation issues account for 20 cases
(37.74 %); balance on a pyramid for 15 (28.30 %); object closure for 7 (13.21 %); non-upright
alignment for 6 (11.32 %); containment failures (“inside”, “covered”, “under”, “on table”) and other
special cases each represent ≤4 % of the set. Overall, tasks are blocked chiefly because penstands or
plates are upside-down, cubes cannot balance on pyramids, or target objects are sealed or mis-aligned.

Mujoco

The Mujoco constraint Dataset contains 4 sub domains wach with 3 camera views. For each view we
sample 10 different scenes configurations.

C Experimental Setup

This appendix provides further details on the experimental setup used for collecting data and for
evaluating VLMs on PAC Bench, complementing Section 4.1 of the main paper.

C.1 Models Evaluated and Access

The VLM evaluations reported in this paper (Section 4) encompass a diverse suite of models. All
models were accessed via their respective APIs available through the OpenRouter service4 between
April 2024 and May 2024. The specific models evaluated are detailed below, along with their
OpenRouter paths:

1. Claude 3.7 Sonnet: https://openrouter.ai/anthropic/claude-3.7-sonnet
2. Claude 3.7 Sonnet (T): https://openrouter.ai/anthropic/claude-3.7-sonnet:

thinking (This denotes Chain-of-Thought prompting applied to the Claude 3.7 Sonnet
model.)

3. Claude 3.5 Sonnet: https://openrouter.ai/anthropic/claude-3.5-sonnet
4. Gemini 2.0 Flash 001: https://openrouter.ai/google/gemini-2.0-flash-001
5. Gemini 2.5 Flash P: https://openrouter.ai/google/gemini-2.

5-flash-preview
6. Gemini 2.5 Pro P: https://openrouter.ai/google/gemini-2.

5-pro-preview-03-25
7. GPT-4.1: https://openrouter.ai/openai/gpt-4.1
8. o4-mini-high: https://openrouter.ai/openai/o4-mini-high (Note: The "(T)" for

this model in some tables also indicates Chain-of-Thought prompting.)
9. GPT-4.1 Mini: https://openrouter.ai/openai/gpt-4.1-mini

10. Llama 4 Maverick: https://openrouter.ai/meta-llama/llama-4-maverick
11. Llama 4 Scout: https://openrouter.ai/meta-llama/llama-4-scout
12. Llama 3.2 90B VI: https://openrouter.ai/meta-llama/llama-3.

2-90b-vision-instruct (VI denotes Vision Instruct. Your tables may use Llama 3.2
90B Vision I)

4https://openrouter.ai/
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13. Grok 2 Vision: https://openrouter.ai/x-ai/grok-2-vision-1212
14. Grok Vision Beta: https://openrouter.ai/x-ai/grok-vision-beta
15. Qwen2.5 VL: https://openrouter.ai/qwen/qwen2.5-vl-72b-instruct (VL de-

notes Vision Language.)
16. Qwen VL Plus: https://openrouter.ai/qwen/qwen-vl-plus
17. Qwen 3 (235B): https://openrouter.ai/qwen/qwen3-235b-a22b (This appears as

"Qwen 3".)

C.2 Simulated Constraint Scenario Generation

To generate a diverse and controllable set of scenarios for evaluating VLM understanding of physical
constraints, we developed a simulation-based pipeline using the MuJoCo physics engine. This
approach allows for the systematic creation of situations where specific physical limitations are the
primary factor determining task feasibility. Our design focused on four primary constraint domains
critical for robotic manipulation:

Figure 6: Example scenes corresponding to each constraint domain (left to right): (a) Impossible
Placement: attempting to fit the blue block into the brown box; (b) Occlusion/Support Issues: picking
up the red block beneath another; (c) Stability Constraints: lifting the unstable green block from the
top of a stack; (d) Reachability and Access Constraints: grasping a block placed at the very edge of
the workspace.

• Impossible Placement: These scenarios test the understanding of basic stability and
geometric fit. Examples include attempting to place a larger object into a smaller container
or balancing an object on an inadequately small or unstable surface. Objects with varying
shapes (e.g., cubes, spheres, custom meshes) and sizes were utilized.

Prompt: “I want to place the blue object inside the brown box, are there any
constraints that prevent me from doing so or is it possible?”
Verification Prompt: “Does the following text say that the task is impossible?
Answer only with ’true’ or ’false’.”

• Occlusion/Support Issues: These scenarios evaluate reasoning about object inter-
dependencies and access. A typical setup involves a target object being either partially or
fully occluded by another object, or where the target object is currently supporting another,
making its removal problematic (e.g., preventing a stack from toppling if a lower block is
removed).

Prompt: “I want to pick up the red object from the bottom of the stack, are there
any constraints that prevent me from doing so or is it possible?”
Verification Prompt: “Does the following text say that object on the top might fall
due to it’s placement? Answer only with ’true’ or ’false’.”

• Stability Constraints: These focus on the inherent stability of an object or an assembly
if an action is performed. Examples include attempting to pick a block from an unstable
stack where the act of picking itself or the removal of the object leads to the collapse of the
remaining structure, or attempting to place an object such that the resulting configuration is
unstable.

Prompt: “I want to pick up the green object from the top of the stack, are there
any constraints that prevent me from doing so or is it possible?”
Verification Prompt: “Does the following text say that object on the top might fall
due to it’s placement? Answer only with ’true’ or ’false’.”
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Figure 7: Samples from robocasa datapoint in PACBench

• Reachability and Access Constraints: These scenarios test understanding of spatial and
kinematic limitations. Objects might be placed at the edge of a workspace, behind obstacles,
or in orientations that make them difficult or impossible for a standard robotic gripper to
access without collision or exceeding plausible joint limits.

Prompt: “I want to pick up the red object from the edge of the stack, are there any
constraints that prevent me from doing so or is it possible?”
Verification Prompt: “Does the following text say that object is out of reach?
Answer only with ’true’ or ’false’.”

For each of these four domains, we procedurally generated 10 distinct environment instantiations.
Randomization was applied to object properties (e.g., slight variations in size and mass where relevant
for dynamics), initial positions and orientations, as well as the placement of minor distractor objects
to increase visual diversity while ensuring the core constraint remained salient.

Figure 6 provides a visual summary of one example from each sub-domain.

C.3 Synthetic Object-Centric Dataset from RoboCasa Assets

To support fine-grained object reasoning evaluations, we constructed a synthetic image dataset by
curating a subset of authentic 3D meshes from the RoboCasa simulation framework. While RoboCasa
provides a rich large-scale kitchen environment with hundreds of AI-generated and hand-modeled
assets, we selected only the 45 objects that had artist-modeled meshes (i.e., excluding purely AI-
generated models). Each object is paired with high-resolution renders, manual affordance annotations,
and detailed physical/property labels.

• Asset Selection: We chose 45 common kitchen and tabletop items, spanning food-
stuffs, containers, utensils, and small appliances. The full set is: apple, baguette,
beer, bottled_water, bowl, boxed_food, broccoli, candle, cereal,
cheese, chocolate, corn, croissant, cucumber, cupcake, cutting_board,
donut, egg, eggplant, jug, ketchup, kettle_non_electric, knife,
lime, liquor, milk, onion, orange, pan, peach, pot, potato, shaker,
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spatula, sponge, spoon, spray, sweet_potato, tangerine, teapot,
tomato, tray, waffle, wine, yogurt.

• Viewpoint Sampling: Each object was rendered from 24 distinct viewpoints by rotating
the camera around the object’s vertical axis (Z) at three elevations (−30◦, 0◦,+30◦) and
eight azimuths (0◦, 45◦, . . . , 315◦). Filenames follow the pattern:

elev<elevation>_azim<azimuth>.png

for example elev-30_azim135.png, yielding 45× 24 = 1080 high-resolution images.

• Affordance Annotation and Evaluation: We hand-annotated 41 of the 45 objects with
one or more affordances (e.g., edible, pourable, stackable). To probe model understanding,
we used the prompt:

List all the possible affordances of a <object_name>.
An affordance is what an object can be used for or what
actions can be performed with it. List them in a clear,
comma-separated format.

We then computed two strict metrics:

1. All-correct: Does the LLM output contain all ground-truth affordances?
2. At-least-one: Does the LLM output contain at least one ground-truth affordance?

Verification prompts were:

Given the following ground truth affordances for a
<object_name>: <list>
And the following LLM response: <llm_response>
Does the LLM response contain all the ground truth
affordances? Answer only with ’true’ or ’false’.

Given the following ground truth affordances for a
<object_name>: <list>
And the following LLM response: <llm_response>
Does the LLM response contain at least one of the ground
truth affordances? Answer only with ’true’ or ’false’.

• Property Annotation and Evaluation: We manually labeled each object with up to
11 physical and functional properties: COLOR, COMPLEXITY, CONSUMABILITY, DENSITY,
HARDNESS, STICKINESS, THICKNESS, WEIGHT, CAPACITY, CONTENTS, and SEALING. Ta-
ble 5 summarizes the number of objects annotated per property. For example, yogurt was
annotated as:

yogurt|WEIGHT|Medium|Moderate, Balanced
yogurt|COLOR|Multicolored|Gradient, Striped
yogurt|HARDNESS|Hard|Solid, Rigid
. . .

Each property uses a predefined set of discrete options and synonyms. We defined:

WEIGHT_options = """
Light: Featherweight, Lightweight
Medium: Moderate, Balanced
Heavy: Bulky, Dense
Dynamic: Fluctuating, Variable
"""

COLOR_options = """
Monochromatic: Single Color, Neutral
Multicolored: Gradient, Striped
Metallic: Glossy, Shiny
Matte: Flat, Dull
"""

HARDNESS_options = """
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Hard: Solid, Rigid
Soft: Plush, Flexible
Brittle: Fragile, Breakable
"""

ORIENTATION_options = """
Vertical: Upright, Standing
Horizontal: Flat, Reclined
Multi-directional: Rotational, Adjustable
"""

CONSUMABILITY_options = """
Consumable: Edible, Burnable, Disposable
Non-consumable: Reusable, Permanent
"""

COMPLEXITY_options = """
Simple: Single-unit, Monolithic
Multi-object: Assembled, Interconnected
"""

CAPACITY_options = """
Containable: Hollow, Enclosable
Non-containable: Solid, Unperforated
"""

CONTENTS_options = """
Contains: Filled, Occupied
Empty: Vacant, Void
"""

SEALING_options = """
Sealed: Airtight, Watertight
Unsealed: Open, can leak
"""

DENSITY_options = """
High-density: Dense, Compact
Low-density: Lightweight, Buoyant
Variable: Adjustable, Fluid
"""

THICKNESS_options = """
Thin: Slim, Minimal Thickness
Medium: Standard Thickness, Balanced
Thick: Sturdy, Bulky
"""

STICKINESS_options = """
Sticky: Adhesive, Tacky
Non-sticky: Smooth, Slippery
Variable: Temporary Stickiness, Conditional Adhesion
"""

Models were queried with the following template:

Evaluate the {property} of the object(s) enclosed within the
red bounding box in the image.
Respond with only one of the following options:
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{options}
Provide no additional text, explanations, or numbers.

Property # Objects Annotated
COLOR 41
COMPLEXITY 41
CONSUMABILITY 41
DENSITY 41
HARDNESS 41
STICKINESS 41
THICKNESS 41
WEIGHT 41
CAPACITY 39
CONTENTS 38
SEALING 19

Table 5: Number of objects annotated per property.

Overall, this dataset comprises 1080 images of 45 objects, enriched with manual affordance and prop-
erty labels, enabling comprehensive evaluation of VLM performance on view-invariant recognition,
affordance inference, and property classification tasks.

C.4 Open Images V7 Subset for Object-Centric Affordance and Property Evaluation

Open Images V7 is a comprehensive, real-world image corpus of approximately 1.9 million im-
ages spanning 600 object classes, annotated with image-level labels, bounding boxes, segmenta-
tion masks, visual relationships, and localized narratives. From this large-scale dataset, we se-
lected 116 object classes for which single-instance examples could be clearly isolated and anno-
tated. For each class, we sampled between four and eight representative images, yielding a total
of 679 unique frames. Filenames conform to the pattern <object_id>_<image_id>.jpg (e.g.
012w5l_226957c99fab6ddf.jpg), where the first token denotes the Open Images class identifier
and the second is the image hash. In every image, exactly one instance of the target object is marked
with a yellow bounding box (see Fig. 8).

To probe visual-language models’ understanding of object affordances, we gathered human
annotations at the class level, specifying between one and three affordances per object (for
example, “Sit”, “Pour”, or “Cut”). These annotations were recorded in CSV form as
object,affordance1,affordance2,affordance3, resulting in over 300 total affordance en-
tries across the 116 classes. Model outputs are evaluated under two strict criteria: (1) whether
all ground-truth affordances appear in the response (“all-correct”), and (2) whether at least one
ground-truth affordance appears (“at-least-one”). Verification is automated via prompts that present
the ground-truth list alongside the model’s response and request a single answer of “true” or “false.”

In addition to affordances, we annotated each image for up to 15 physical and functional properties
(COLOR, COMPLEXITY, CONSUMABILITY, DENSITY, HARDNESS, STICKINESS, THICK-
NESS, WEIGHT, CAPACITY, CONTENTS, SEALING, ORIENTATION, plus four domain-specific
traits). Over 12,421 annotation entries were collected, corresponding to 10,506 unique (image,
property) pairs—some images received multiple annotations for the same property. The distribution
of annotations per property file is summarized below:

31



Figure 8: Example from our Open Images subset: a single object annotated with a red bounding box.

Property File Lines
property_CAPACITY_.csv 679
property_COLOR_.csv 818
property_COMPLEXITY_.csv 1140
property_CONSUMABILITY_.csv 679
property_CONTENTS_.csv 679
property_DENSITY_.csv 679
property_HARDNESS_.csv 679
property_ORIENTATION_.csv 887
property_SEALING_.csv 871
property_STICKINESS_.csv 1358
property_THICKNESS_.csv 679
property_WEIGHT_.csv 1358

Models are queried with the template:

Evaluate the {property} of the object(s) enclosed within the
red bounding box in the image.
Respond with only one of the following options: {options}
Provide no additional text, explanations, or numbers.

Because Open Images V7 comprises 600 classes and nearly two million images, this protocol can
be extended seamlessly to new categories and additional examples. Once class-level affordance and
property labels are established, any further images sampled under the same class identifier inherit
those annotations, enabling scalable evaluation of view-invariant recognition, affordance inference,
and physical attribute classification.

C.5 Embodied Robot Capture: Unitree G1 Dual-Arm Dataset

To complement our web-sourced and simulated resources with truly embodied visual data, we
collected a fresh corpus of interactions using a dual-arm Unitree G1 humanoid operating in an indoor
laboratory. The robot was tele-operated or executed short, pre-programmed primitives at a standing
workstation filled with diverse household objects that were not present in either our RoboCasa or
Open-Images subsets, thereby increasing inter-dataset heterogeneity. Each scene was photographed
simultaneously from two calibrated perspectives: an egocentric camera rigidly attached to the robot’s
head (1280× 720 at 30 Hz) and a side-mounted static camera that offered a wider allocentric view of
the workspace. The resulting paired images allow Vision–Language Models (VLMs) to be probed
under both first- and third-person viewpoints—conditions that often lead to markedly different
perceptual challenges in robotics.

32



Figure 9: Samples from Unitree G1 humanoid from PacBench

Property annotations. For every object-centric tabletop configuration we recorded up to twelve
physical and functional properties using the controlled vocabulary introduced in previous sections
(e.g., WEIGHT, COLOR, SEALING). A total of 785 property rows were produced across 67 unique image
pairs, giving an average of roughly twelve properties per scenario. All properties except SEALING
are exhaustively annotated for every scene; SEALING appears in 48 of the 67 cases, reflecting either
inapplicability or annotator uncertainty for the remaining scenes. Distributions are well balanced:
for example, the WEIGHT axis splits into Light (49 %), Medium (42 %), and Heavy (9 %), while
COLOR is almost evenly divided between Monochromatic and Multicolored with a small metallic tail.
Descriptor-level statistics show that every categorical choice is accompanied by its canonical pair of
synonyms (e.g., Dense, Compact whenever High-density is selected), a consequence of the structured
drop-down interface used during labelling.

Affordance annotations. Sixty-eight scenarios were further enriched with up to three free-form
affordances per object, resulting in 181 individual affordance strings. Half of the scenes list a full
triplet, roughly 43 % include two entries, and only seven per cent contain a single affordance. The
vocabulary is intentionally open; nevertheless several patterns emerge—“act as weight” accounts for
18 % of all mentions, followed by “contain things” and “scrape things.” Frequent combinations such as
(contain things, act as cushion, act as weight) illustrate that annotators naturally link physical support,
compliance, and mass when reasoning about everyday artefacts. Evaluation uses the same strict
“all-correct” and “at-least-one” metrics adopted for our other datasets, coupled with the verification
prompts described earlier.

Constraint annotations. Finally, 53 of the scenarios include a natural-language question about the
feasibility of a specific robot action together with a short justification when the answer is negative.
These queries test spatial reasoning (e.g., balancing a cube on a pyramid), containment under
orientation changes (placing items inside an inverted pen-stand), and accessibility issues (writing
when a marker cap is closed). Recurrent keywords such as inverted, balance, upright, and closed
reveal the dominant failure modes considered. Although the majority of responses start with a terse
“No,” the accompanying explanations provide fine-grained cues that are invaluable for evaluating
whether a VLM can pinpoint the exact limiting factor.

Cross-modal linking and usage. Because every record—whether property, affordance, or con-
straint—references the same cam0_file / cam1_file pair, researchers can seamlessly join the three
ground-truth tables to obtain a fully articulated description of each physical scene. This makes it
possible to explore, for instance, how an object’s annotated orientation (Vertical, Horizontal,
Multi-directional) influences both its perceived affordances and the constraints imposed on
manipulation tasks. The corpus therefore serves as a high-fidelity test-bed for embodied VLM
evaluation, filling the gap between purely synthetic renders and images scraped from the web. In total,
the Unitree G1 set delivers 67–68 richly annotated scenarios, amounting to hundreds of individual
labels that capture the intertwined facets of Properties, Affordances, and Constraints from a truly
robot-centric vantage point.
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D Additional Model Evaluation Results

D.1 Prompt Design

Notations like "(T)" or "CoT" in the result tables (e.g., for Claude 3.7 Sonnet (T), o4-mini-high (T))
indicate the application of a Chain-of-Thought prompting strategy, where models were explicitly
instructed to "think step by step" or provide reasoning before their final answer. The syntax for
prompts are shown in Section C.2 C.3 C.4

D.2 Properties Evaluations

Beyond direct querying, we investigated the influence of prompting strategies, specifically Chain-of-
Thought (CoT), on the performance of VLMs in understanding object properties. Table 8 presents
the accuracies for various models when employing CoT prompting, which can be compared against
their direct query performance shown in Table 7 (our main property results table with new data).

Table 6: Properties accuracy (%) of leading VLMs across twelve distinct object property categories
Model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Claude 3.5 Sonnet 17.8 0.0 0.4 0.3 31.9 0.0 42.3 15.8 2.7 0.0 52.0 0.0
Claude 3.7 Sonnet 88.1 20.2 34.0 91.4 23.5 36.7 37.0 48.7 66.4 96.6 59.2 32.6
Claude 3.7 Sonnet (T) 81.3 6.7 38.4 93.8 22.3 9.0 23.4 24.0 50.9 73.8 46.2 15.0

Gemini 2.0 Flash 001 59.4 19.7 84.8 7.0 35.3 58.0 43.9 57.6 56.1 38.2 24.3 40.8
Gemini 2.5 Flash P 54.9 26.9 47.3 11.0 28.8 40.1 31.1 41.1 58.9 74.5 29.2 27.1
Gemini 2.5 Pro P** 48.9 27.0 47.4 23.7 34.1 43.2 16.7 33.1 57.2 23.2 32.6 31.2

Llama 3.2 90B Vision I 35.6 13.1 33.3 1.3 14.8 25.0 12.8 47.5 30.2 23.1 26.8 4.2
Llama 4 Maverick 53.0 36.2 52.5 69.6 34.9 47.0 14.6 53.9 90.0 93.6 37.9 37.6
Llama 4 Scout 43.3 30.4 12.6 0.2 0.6 51.1 18.6 31.7 84.9 9.5 28.3 36.4

GPT-4.1 Mini 70.1 26.6 85.0 59.9 28.4 43.2 18.1 45.6 64.0 91.9 52.3 24.1
GPT-4.1 10.9 13.8 38.1 5.3 29.0 25.9 27.8 42.3 91.0 35.3 37.0 4.4
o4-mini-high (T) 1.2 17.1 62.7 15.6 0.2 26.4 26.2 35.2 72.7 60.6 23.6 4.7

Qwen VL Plus 50.0 25.0 66.7 0.0 0.0 50.0 0.0 0.0 50.0 0.0 0.0 66.7
Qwen2.5 VL 53.2 21.9 34.2 9.0 20.7 9.6 42.3 57.1 61.8 70.7 66.6 18.7

Chain-of-Thought Efficacy: A Mixed Bag for Property Recognition. Our analysis reveals that the
impact of CoT prompting on property recognition is model-dependent and not uniformly beneficial
across all properties or models. For instance, ‘Claude 3.7 Sonnet‘ shows a notable improvement with
CoT on ‘Sealing (P9)‘ (from 13.2% direct to 69.8% CoT) and ‘Stickiness (P10)‘ (from 79.1% direct
to 100.0% CoT). However, for the same model, CoT appears to slightly decrease performance on
‘Density (P6)‘ (from 55.7% direct to 41.5% CoT). Its ‘(T)‘ variant in Table 8 (which is its CoT run)
also shows improvements in some areas like ‘Complexity (P3)‘.

D.3 Affordance Evaluations

Following Table 12 shows Accuracy (%) of VLMs on recognizing atleast one affordances for objects
using Single-Category Mapping in PAC Bench. For the object classes ’Adhesive tape’, ’Backpack’,
’Band-aid’, ’Bathroom accessory’, ’Bathroom cabinet’, ’Bathtub’, ’Blender’, ’Book’, ’Bookcase’,
’Bottle’, ’Bowl’, ’Box’, ’Cabinetry’, ’Can opener’, ’Cart’, ’Chair’, ’Chest of drawers’, ’Closet’,
’Clothing’, ’Coffeemaker’, ’Container’, ’Cooking spray’, ’Countertop’, ’Cupboard’, ’Cutting board’,
’Desk’, ’Diaper’, ’Dishwasher’, ’Door’, ’Door handle’, ’Drawer’, ’Drill (Tool)’, ’Egg (Food)’,
’Filing cabinet’, ’Flashlight’, ’Flowerpot’, ’Food processor’, ’Fork’, ’Frying pan’, ’Furniture’, ’Gas
stove’, ’Glove’, ’Grinder’, ’Hammer’, ’Home appliance’, ’Infant bed’, ’Jug’, ’Kettle’, ’Kitchen &
dining room table’, ’Kitchen appliance’, ’Kitchen knife’, ’Kitchen utensil’, ’Knife’, ’Ladder’, ’Ladle’,
’Laptop’, ’Lavender (Plant)’, ’Light bulb’, ’Light switch’, ’Measuring cup’, ’Microwave oven’, ’Milk’,
’Mirror’, ’Mixer’, ’Mixing bowl’, ’Mobile phone’, ’Mug’, ’Organ (Musical Instrument)’, ’Oven’,
’Paper towel’, ’Pen’, ’Pitcher (Container)’, ’Plant’, ’Plastic bag’, ’Plate’, ’Plumbing fixture’, ’Power
plugs and sockets’, ’Pressure cooker’, ’Refrigerator’, ’Remote control’, ’Scissors’, ’Screwdriver’,
’Serving tray’, ’Shelf’, ’Shower’, ’Sink’, ’Slow cooker’, ’Soap dispenser’, ’Spatula’, ’Spice rack’,
’Spoon’, ’Stairs’, ’Stool’, ’Table’, ’Tablet computer’, ’Tableware’, ’Tap’, ’Toaster’, ’Toilet’, ’Toilet
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Table 7: Properties Accuracy for Humanoid dataset
Model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Claude 3.7 Sonnet 74.6 47.8 47.3 93.0 30.3 55.7 55.7 59.7 13.2 79.1 39.3 48.3
Claude 3.5 Sonnet 83.6 50.2 48.8 89.6 28.9 52.7 55.2 58.7 19.4 83.6 42.8 50.7

Gemini 2.0 Flash 001 76.6 55.2 49.3 63.2 39.8 46.8 54.7 41.3 38.2 66.7 53.2 40.3
Gemini 2.5 Flash P 71.6 53.2 56.2 74.1 27.9 40.3 63.2 65.2 37.5 41.8 42.3 33.8

GPT-4.1* 76.1 51.2 52.7 66.7 55.7 58.2 64.2 60.7 43.8 81.6 41.8 43.3
GPT-4.1 Mini 55.2 36.3 47.3 75.1 36.3 40.3 60.2 58.7 15.3 49.3 38.8 26.9

Llama 4 Maverick 82.1 43.8 46.3 82.6 77.1 57.7 54.2 47.8 40.3 62.7 40.8 59.2
Llama 4 Scout 81.6 51.2 45.8 62.2 60.2 43.3 51.2 54.2 36.1 73.6 44.3 37.8
Llama 3.2 90B VI* 59.7 37.3 36.3 39.3 51.2 44.8 37.3 39.8 27.1 56.7 16.9 31.3

Qwen2.5 VL 31.3 47.8 46.3 27.9 22.9 4.5 35.8 34.3 2.8 5.0 15.4 24.9
Qwen VL Plus* 25.4 15.4 28.4 22.9 20.4 39.3 34.3 29.4 31.3 12.4 14.4 5.5

Grok 2 Vision 69.7 49.3 45.8 53.7 82.6 40.3 56.7 55.2 11.1 78.6 37.3 31.8
Grok Vision Beta* 7.5 4.5 4.5 8.0 1.5 5.0 4.5 3.0 1.4 7.0 3.5 1.0

Table 8: Properties accuracy using chain-of-thought (COT) prompting. (**) Subset of properties
evaluated.
Model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Claude 3.5 Sonnet 21.5 2.6 4.4 4.2 35.2 1.2 43.2 20.0 6.4 3.5 52.2 4.9
Claude 3.7 Sonnet 89.9 21.3 36.8 94.6 24.6 41.5 41.7 50.2 69.8 100.0 63.3 35.1
Claude 3.7 Sonnet (T) 84.5 9.9 41.0 94.2 25.9 10.9 28.2 24.8 54.4 78.3 48.0 16.6

Gemini 2.0 Flash 001 62.5 20.6 86.0 7.8 36.5 62.5 48.5 60.3 57.9 39.9 24.9 44.8
Gemini 2.5 Flash P 57.6 30.3 47.8 15.5 30.4 43.2 32.9 45.8 60.3 76.4 31.8 28.4
Gemini 2.5 Pro P** – 28.9 – – – 20.7 – – – – 35.0 –

Llama 3.2 90B Vision I 36.1 17.8 37.8 4.4 18.5 27.6 12.9 51.0 34.3 23.5 27.9 6.4
Llama 4 Maverick 57.2 36.8 57.0 69.7 38.1 49.9 19.2 56.7 94.1 96.5 41.0 38.0
Llama 4 Scout 44.9 32.1 15.7 0.7 4.8 53.6 20.7 32.2 89.2 9.6 28.7 36.5

GPT-4.1 Mini 71.0 27.1 86.7 63.2 31.6 44.1 22.9 48.7 68.6 94.2 52.5 28.9
GPT-4.1 11.1 18.4 39.8 5.4 31.8 29.5 32.7 47.2 93.5 38.0 39.6 8.6
o4-mini-high 4.1 21.5 66.3 16.4 0.6 27.8 30.5 35.9 75.2 62.0 26.3 8.1

Qwen VL Plus 53.4 26.3 71.2 2.7 1.8 50.1 1.5 2.6 54.0 3.0 3.2 68.7
Qwen2.5 VL 53.3 25.2 38.6 12.5 22.0 12.8 44.2 61.4 65.1 70.9 70.2 19.5

paper’, ’Tool’, ’Toothbrush’, ’Torch’, ’Towel’, ’Toy’, ’Waffle iron’, ’Wardrobe’, ’Washing machine’,
’Waste container’, ’Whisk’, ’Window blind’, ’Wok’, ’Wood-burning stove’, ’Wrench’, ’Zucchini’.
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Adhesive Tape 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Backpack 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Band-Aid 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bathroom Accessory 0.0 0.0 0.0 0.0 100.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0
Bathroom Cabinet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bathtub 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Blender 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Book 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bookcase 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bottle 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bowl 0.0 0.0 0.0 0.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0 0.0
Box 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
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Cabinetry 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Can Opener 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cart 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chair 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Chest Of Drawers 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Closet 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0
Clothing 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Coffeemaker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Container 100.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0
Cooking Spray 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Countertop 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cupboard 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Cutting Board 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Desk 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 100.0
Diaper 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dishwasher 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Door 100.0 100.0 100.0 0.0 0.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
Door Handle 100.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0
Drawer 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Drill (Tool) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Egg (Food) 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0
Filing Cabinet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Flashlight 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Flowerpot 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Food Processor 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fork 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Frying Pan 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Furniture 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Gas Stove 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Glove 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Grinder 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Hammer 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Home Appliance 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Infant Bed 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jug 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Kettle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Kitchen Appliance 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen Knife 0.0 100.0 100.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
Kitchen Utensil 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
Knife 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Ladder 100.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0
Ladle 0.0 0.0 100.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Laptop 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lavender (Plant) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Light Bulb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Light Switch 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 100.0
Measuring Cup 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Microwave Oven 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Milk 100.0 0.0 0.0 0.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0
Mirror 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0
Mixer 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing Bowl 100.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0
Mobile Phone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Organ (Musical Instrument) 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Oven 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Paper Towel 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pen 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Pitcher (Container) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0
Plant 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plastic Bag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plate 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plumbing Fixture 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0
Power Plugs And Sockets 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pressure Cooker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Refrigerator 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
Remote Control 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Scissors 100.0 0.0 0.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0

(continued on next page)
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Screwdriver 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0
Serving Tray 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shelf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shower 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sink 0.0 100.0 0.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0
Slow Cooker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Soap Dispenser 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0
Spatula 100.0 100.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0
Spice Rack 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Spoon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stairs 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 0.0 100.0
Stool 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Table 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Tablet Computer 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tableware 0.0 100.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
Toaster 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toilet 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Toilet Paper 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Tool 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Toothbrush 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Torch 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Towel 0.0 100.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0 100.0 0.0
Toy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Waffle Iron 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wardrobe 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Washing Machine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0
Waste Container 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Whisk 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
Window Blind 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wok 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Wood-Burning Stove 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wrench 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 100.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 100.0
Zucchini 0.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0 100.0 0.0 100.0 0.0 100.0 100.0 0.0

Following Table 14 shows Accuracy (%) of VLMs on recognizing all correct affordances for objects
using Single-Category Mapping in PAC Bench.
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Adhesive Tape 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Backpack 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Band-Aid 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bathroom Accessory 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bathroom Cabinet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bathtub 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Blender 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Book 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bookcase 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bottle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bowl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Box 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cabinetry 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Can Opener 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cart 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chair 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chest Of Drawers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Closet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Clothing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Coffeemaker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Container 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cooking Spray 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Countertop 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cupboard 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cutting Board 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Desk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Diaper 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dishwasher 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Door 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Door Handle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Drawer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Drill (Tool) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Egg (Food) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Filing Cabinet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Flashlight 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Flowerpot 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Food Processor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fork 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Frying Pan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Furniture 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gas Stove 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Glove 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Grinder 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hammer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Home Appliance 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Infant Bed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kettle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen Appliance 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen Knife 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen Utensil 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Knife 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ladder 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ladle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Laptop 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lavender (Plant) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Light Bulb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Light Switch 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Measuring Cup 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Microwave Oven 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mirror 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing Bowl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mobile Phone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Organ (Musical Instrument) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Oven 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Paper Towel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pitcher (Container) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plant 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plastic Bag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plumbing Fixture 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Power Plugs And Sockets 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pressure Cooker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Refrigerator 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Remote Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Scissors 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Screwdriver 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Serving Tray 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shelf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shower 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sink 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Slow Cooker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Soap Dispenser 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Spatula 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Spice Rack 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Spoon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stairs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
Stool 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Table 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tablet Computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tableware 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toaster 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toilet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toilet Paper 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tool 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toothbrush 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Torch 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Towel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Waffle Iron 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wardrobe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Washing Machine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Waste Container 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Whisk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Window Blind 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wok 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wood-Burning Stove 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wrench 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Zucchini 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

D.4 Constraint Evaluations

E Human Survey

This section describes how we gathered and filtered the human–annotated labels that accompany
our three image collections: (i) a single–image subset of OpenImages, (ii) the Real-Robo dual-
view humanoid dataset, and (iii) the RoboCasa synthetic renders. Across all datasets we collected
categorical judgements for 15 physical-property ontologies (e.g. Weight, Hardness, Capacity)
together with free-form affordances and, where relevant, environment constraints. The same label
set, category order, and keyboard shortcuts were used everywhere to ensure a uniform annotation
experience (see Figures 11–15).
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Figure 10: Performance of best models from each family
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Table 9: Affordance Accuracy (%) of VLMs on recognizing at least one correct affordance for
objects grouped by primary categories (Single-Category Mapping)
Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 H1 H2 H3
Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 16.7 25.0 0.0 66.7 13.3 40.0 9.1 0.0 0.0 0.0 44.4 0.0 2.9 47.1 14.7
Claude 3.7 Sonnet (T) 0.0 5.6 0.0 30.0 0.0 0.0 0.0 0.0 11.1 0.0 6.7 20.0 18.2 0.0 0.0 0.0 0.0 0.0 2.9 54.4 10.3
Claude 3.7 Sonnet 100.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 11.1 66.7 0.0 20.0 22.7 100.0 0.0 0.0 33.3 0.0 2.9 58.8 11.8

Gemini 2.0 Flash 001 0.0 0.0 0.0 40.0 0.0 0.0 16.7 0.0 0.0 66.7 0.0 40.0 13.6 0.0 0.0 0.0 11.1 0.0 54.4 66.2 64.7
Gemini 2.5 Flash P 0.0 5.6 0.0 20.0 0.0 50.0 0.0 0.0 11.1 66.7 13.3 40.0 18.2 0.0 50.0 0.0 22.2 0.0 52.9 55.9 57.4
Gemini 2.5 Pro P 0.0 16.7 66.7 30.0 0.0 0.0 33.3 25.0 22.2 66.7 26.7 60.0 31.8 0.0 0.0 33.3 11.1 0.0 0.0 0.0 0.0

Llama 3.2 11B Vision I 100.0 22.2 0.0 30.0 0.0 50.0 33.3 0.0 22.2 66.7 0.0 0.0 13.6 0.0 50.0 33.3 33.3 0.0 20.5 27.9 25.0
Llama 3.2 90B Vision I 100.0 11.1 33.3 10.0 0.0 50.0 50.0 25.0 22.2 66.7 26.7 60.0 9.1 0.0 0.0 0.0 22.2 0.0 22.1 44.1 0.0
Llama 4 Maverick 0.0 22.2 33.3 50.0 0.0 100.0 50.0 0.0 33.3 66.7 26.7 100.0 31.8 0.0 0.0 33.3 11.1 100.0 20.6 39.7 23.5
Llama 4 Scout 0.0 11.1 66.7 50.0 0.0 50.0 50.0 25.0 33.3 66.7 53.3 60.0 54.6 100.0 50.0 0.0 33.3 0.0 20.6 27.9 26.5

GPT 4.1 Mini 0.0 5.6 0.0 30.0 0.0 0.0 50.0 25.0 0.0 100.0 13.3 60.0 36.4 0.0 0.0 0.0 55.6 0.0 20.6 57.4 25.0
GPT 4.1 0.0 5.6 0.0 20.0 0.0 0.0 16.7 25.0 0.0 0.0 6.7 60.0 18.2 0.0 0.0 0.0 33.3 0.0 48.5 67.6 45.6
o4-mini-high (T) 0.0 16.7 0.0 20.0 0.0 0.0 16.7 25.0 11.1 33.3 33.3 20.0 22.7 0.0 0.0 0.0 11.1 0.0 16.2 45.6 35.3

Qwen 2.5 VL 0.0 0.0 0.0 30.0 0.0 0.0 33.3 0.0 0.0 100.0 6.7 80.0 9.1 0.0 0.0 0.0 11.1 0.0 14.7 48.5 20.6
Qwen 3 0.0 5.5 0.0 30.0 0.0 0.0 33.3 25.0 0.0 100.0 0.0 60.0 13.6 0.0 0.0 0.0 44.4 0.0 4.4 1.4 8.8

Grok 2 Vision 0.0 5.6 33.3 50.0 0.0 0.0 0.0 0.0 11.1 100.0 6.7 20.0 13.6 100.0 50.0 0.0 0.0 0.0 44.1 47.1 41.2
Grok 2 Beta 0.0 5.6 0.0 10.0 0.0 0.0 0.0 0.0 11.1 0.0 13.3 20.0 4.6 0.0 0.0 0.0 33.3 100.0 8.8 8.8 7.4

Table 10: Accuracy (%) of VLMs on recognizing all correct affordances for objects grouped by
primary categories (Single-Category Mapping) in PAC Bench. Categories C1-C18 are as defined in
Table 3
Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18
Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Claude 3.7 Sonnet (T) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Claude 3.7 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Gemini 2.0 Flash 001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gemini 2.5 Flash P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gemini 2.5 Pro P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Llama 3.2 11B Vision I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 3.2 90B Vision I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 4 Maverick 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 4 Scout 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0

GPT 4.1 Mini 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GPT 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0
o4-mini-high (T) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Qwen VP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen 2.5 VL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 0.0

Grok 2 Vision 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Grok 2 Beta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 11: Accuracy (%) of VLMs on recognizing at least one correct affordance for objects using
Multi-Category Mapping in PAC Bench.
Model A1 A2 A3 A4 A5 C6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18
Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 18.2 20.0 0.0 50.0 18.8 14.3 5.3 0.0 14.3 0.0 35.7 0.0
Claude 3.7 Sonnet (T) 0.0 5.6 0.0 27.3 0.0 0.0 0.0 0.0 9.1 0.0 12.5 14.3 10.5 0.0 0.0 12.5 7.1 0.0
Claude 3.7 Sonnet 100.0 0.0 0.0 18.2 0.0 0.0 0.0 0.0 9.1 50.0 6.2 14.3 13.2 100.0 14.3 12.5 35.7 0.0
Gemini 2.0 Flash 001 0.0 0.0 0.0 36.4 0.0 0.0 9.1 0.0 0.0 50.0 0.0 21.4 7.9 0.0 14.3 25.0 7.1 0.0
Gemini 2.5 Flash P 0.0 5.6 0.0 27.3 0.0 33.3 9.1 0.0 9.1 50.0 12.5 21.4 13.2 0.0 28.6 12.5 14.3 0.0
Gemini 2.5 Pro P 0.0 16.7 66.7 36.4 0.0 33.3 36.4 20.0 27.3 50.0 31.2 57.1 26.3 0.0 14.3 37.5 28.6 0.0
Llama 3.2 11B VI 100.0 22.2 0.0 27.3 0.0 33.3 18.2 20.0 18.2 50.0 0.0 7.1 18.4 0.0 42.9 50.0 28.6 0.0
Llama 3.2 90B VI 100.0 11.1 33.3 18.2 0.0 33.3 45.5 20.0 18.2 50.0 31.2 42.9 10.5 0.0 28.6 25.0 14.3 0.0
Llama 4 Maverick 0.0 22.2 33.3 54.5 0.0 66.7 36.4 0.0 36.4 50.0 31.2 57.1 23.7 0.0 28.6 62.5 21.4 100.0
Llama 4 Scout 0.0 11.1 66.7 54.5 0.0 33.3 54.5 40.0 27.3 50.0 56.2 35.7 36.8 100.0 42.9 50.0 42.9 0.0
GPT 4.1 Mini 0.0 5.6 0.0 36.4 0.0 0.0 27.3 20.0 0.0 75.0 12.5 42.9 23.7 0.0 28.6 25.0 50.0 0.0
GPT 4.1 0.0 5.6 0.0 27.3 0.0 0.0 9.1 20.0 0.0 0.0 12.5 35.7 13.2 0.0 28.6 12.5 35.7 0.0
o4-mini-high (T) 0.0 16.7 0.0 18.2 0.0 0.0 9.1 20.0 18.2 25.0 31.2 21.4 18.4 0.0 14.3 12.5 21.4 0.0
Qwen VP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen 2.5 VL 0.0 0.0 0.0 36.4 0.0 0.0 18.2 0.0 0.0 75.0 12.5 35.7 5.3 0.0 14.3 25.0 7.1 0.0
Grok 2 Vision 0.0 5.6 33.3 45.5 0.0 0.0 0.0 0.0 18.2 75.0 6.2 28.6 7.9 100.0 14.3 37.5 7.1 0.0
Grok Vision Beta 0.0 5.6 0.0 9.1 0.0 0.0 0.0 0.0 9.1 0.0 12.5 14.3 5.3 0.0 14.3 0.0 21.4 100.0
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Table 12: Accuracy (%) of VLMs on recognizing all correct affordances for objects using Multi-
Category Mapping in PAC Bench.
Model C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Claude 3.7 Sonnet (T) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Claude 3.7 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Gemini 2.0 Flash 001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gemini 2.5 Flash P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gemini 2.5 Pro P 0.0 0.0 0.0 0.0 0.0 0.0 9.1 0.0 0.0 0.0 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Llama 3.2 11B VI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 3.2 90B VI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 4 Maverick 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 4 Scout 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0

GPT 4.1 Mini 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GPT 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0
o4-mini-high (T) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Qwen VP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen 2.5 VL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.3 0.0 7.1 0.0

Grok 2 Vision 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Grok Vision Beta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 15: Examples of Real-World Humanoid Constraint Scenarios from PAC Bench. Each scenario
includes a question posed about a potential action and the ground-truth constraint explanation.
Scenarios are captured using synchronized Agent View (from robot’s perspective) and Side View
cameras.

Views Provided Question Posed Ground-Truth Constraint Explana-
tion

Agent View (cam_0)
Side View (cam_1)

Can the robot stack the object near the
right hand on the object near the left
hand?

No the cube won’t balance on the pyra-
mid.

Agent View (cam_0)
Side View (cam_1)

Can we keep the ball inside the pen-
stand?

No the the penstand is inverted.

Agent View (cam_0)
Side View (cam_1)

Can we keep the ball inside the pen-
stand?

No the the opening of the penstand is
covered by the hand.

Agent View (cam_0)
Side View (cam_1)

Can you keep the food on the plate? No the box is closed.

Agent View (cam_0)
Side View (cam_1)

Can you write on the notepad using the
marker?

No the marker is closed.

Agent View (cam_0)
Side View (cam_1)

Can you keep the food on the plate? No the box is on the plate.

E.1 Annotation Pipelines

Single-image (OpenImages). We created one Label Studio5 project per property. Each task presents
a pre-cropped object (bounding box supplied) and radio-button choices covering the ontology plus
Don’t Apply and Don’t Know. Annotators select exactly one option that best reflects the object’s
current visual state (e.g. a sauce-coated spoon is marked Sticky); an example interface is shown
in Figure 15. Hot-keys (1–4 to pick a category, Ctrl/Cmd+\Enter to advance) support rapid,
fatigue-free labelling. The per-property job dashboard is illustrated in Figure 14. Open-vocabulary
affordances could not be captured with fixed radio buttons, so they were instead filled into a shared
Google Sheet (≤3 verbs per image ID).

Dual-view (Real-Robo & RoboCasa). Label Studio does not support paired views, so we developed
a lightweight Python/Tkinter GUI that shows the left/right camera frames side-by-side (Figures 12
and 13). The GUI mirrors the exact ontologies, category ordering, and hot-keys of the single-image
pipeline and appends three affordance text boxes plus a drop-down for task-level constraints. For

5https://labelstud.io
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completeness, the corresponding single-image TkInter variant used for synthetic objects is depicted
in Figure 11.

E.2 Annotation Schedule and Effort

Each property job comprises ∼680 items and takes ≈40 minutes per annotator after a brief tutorial.
All properties were labelled by at least two annotators to enable later consensus filtering (see below);
several critical properties were triple-annotated when calendar time allowed. The total annotation
effort is roughly 15 properties × 2.2 annotators × 40 min ≈ 22 person-hours for OpenImages and 7
person-hours for the dual-view collections.

E.3 Quality Control

We employ a strict unanimity filter: for every image (or view-pair) the final label is retained only if
all assigned annotators agreed. Disagreements are discarded from the main release (and provided
as a separate “disagreement split”) to guarantee that the benchmark set reflects high-confidence,
noise-free supervision.

E.4 Annotators

All annotations were performed by members of the LENS Lab (2024).6 We thank the lab for their
contributions and support.

Figure 11: TkInter single-image property annotator (synthetic objects).

6https://ransml.github.io/lens-lab/
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Figure 12: TkInter dual-view affordance annotator.

Figure 13: TkInter dual-view property annotator (Real-Robo / RoboCasa).
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Figure 14: Label Studio project dashboard with 15 property jobs.

Figure 15: Label Studio image view with bounding box and radio-button options.
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