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Abstract

Vision-Language Models (VLMs) are increasingly pivotal for generalist robot1

manipulation, enabling tasks such as physical reasoning, policy generation, and2

failure detection. However, their proficiency in these high-level applications often3

assumes a deep understanding of low-level physical prerequisites, a capability that4

is largely unverified. To perform actions reliably, robots must comprehend intrin-5

sic object properties (e.g., material, weight), action affordances (e.g., graspable,6

stackable), and physical constraints (e.g., stability, reachability, or an object’s state7

like being closed). Despite their ubiquitous use in manipulation, we argue that8

off-the-shelf VLMs may lack this granular, physically-grounded understanding,9

as these specific prerequisites are often overlooked during training. Addressing10

this critical gap, we introduce PAC Bench, a comprehensive benchmark designed11

to systematically evaluate VLMs on their understanding of these core Properties,12

Affordances, and Constraints (PAC) from a task executability perspective. PAC13

Bench features a diverse dataset with more than 30,000 annotations, comprising14

673 real-world images (115 object classes, 15 property types, 1–3 affordances15

defined per object class), 100 real-world humanoid view scenarios, and 120 unique16

simulated constraint scenarios across four tasks. Our evaluations reveal significant17

gaps in the ability of VLMs to grasp fundamental physical concepts, underscor-18

ing their current limitations for reliable robot manipulation and pointing to key19

areas that require targeted research. PAC Bench also serves as a standardized20

benchmark for rigorously evaluating the physical reasoning capabilities of VLMs21

guiding the development of more robust and physically grounded models for robot22

manipulation. Hugging Face : https://huggingface.co/datasets/lens-lab/pacbench.23

1 Introduction24

The quest for generalist robots capable of intelligently and safely interacting with the complexities of25

the physical world represents a grand challenge in artificial intelligence. Recent breakthroughs in26

Large Language Models (LLMs) and Vision-Language Models (VLMs) have catalyzed remarkable27

progress, particularly enabling the development of versatile Vision-Language-Action (VLA) mod-28

els [1, 2, 3]. These systems leverage the powerful representational capabilities of pre-trained models29

to interpret multimodal sensory input, generate language-grounded plans, and execute a diverse range30

of manipulation tasks, showcasing impressive generalization. However, their impressive capabilities31

often mask a critical, yet largely unverified, assumption: that the underlying foundation models32

possess a sufficiently deep and physically grounded understanding of the fundamental prerequisites33

for safe, effective, and truly generalizable manipulation.34
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Figure 1: Evaluating foundation models’ understanding of Properties, Affordances, and Constraints
(PAC) for robotic manipulation. (Left) PAC Bench uses scenarios requiring nuanced physical
understanding. (Right) We present example performance of leading VLMs (e.g., GPT-4o, Llama,
Claude, Deepseek) on tasks related to Properties (blue), Affordances (green), and Constraints (red),
indicating varied strengths and weaknesses across these fundamental reasoning skills.

This assumption demands rigorous scrutiny. Foundation models, despite their exposure to vast35

quantities of text and video, often lack explicit grounding in the fine-grained physical interplay36

of objects, actions, and their environmental context knowledge that is intuitive to humans and37

essential for robust robotic interaction. Consequently, high performance on standard vision-language38

benchmarks (e.g., VQA [4]) does not reliably translate to the nuanced physical reasoning required39

to anticipate action outcomes or adapt to novel physical scenarios. Before a robot can confidently40

execute any manipulation, it must implicitly or explicitly reason about the world: assessing intrinsic41

object Properties (e.g., Is it heavy? Is it fragile?), discerning valid action Affordances (e.g., Can42

this be stacked?), and recognizing critical physical Constraints (e.g., Is the target reachable without43

collision?). Relying on superficial correlations learned from web-scale data, without a robust grasp44

of these Properties, Affordances, and Constraints (PAC), can lead to unpredictable failures, unsafe45

operations, and a fundamental brittleness that severely limits their deployment in safety-critical or46

economically vital open-world applications. As these powerful models are increasingly positioned at47

the core of autonomous systems, rectifying these gaps in physical understanding is not merely an48

academic pursuit but a prerequisite for trustworthy and scalable robotic intelligence.49

Despite the critical importance of this granular physical understanding, existing benchmarks predomi-50

nantly focus on end-to-end task performance [5], broad physical knowledge question-answering [6, 7],51

or other aspects of model behavior like trustworthiness [8] or safety from a policy perspective [9]. A52

targeted evaluation framework to specifically dissect and measure foundation models’ comprehension53

of the core prerequisites for manipulation has been notably absent. This absence hinders targeted54

improvements, as developers lack precise diagnostics to identify why end-to-end policies fail or which55

specific aspects of physical reasoning are underdeveloped in their foundation models.56

To bridge this crucial diagnostic gap, we introduce PAC Bench (Figure 1): the first benchmark57

meticulously engineered to evaluate foundation models’ understanding of Properties, Affordances,58

and Constraints essential for robotic manipulation. PAC Bench moves beyond holistic task success59

by decomposing physical reasoning into these three core, queryable components. Through a diverse60

suite of targeted evaluations across both simulated and real-world scenarios, our benchmark enables61

researchers to pinpoint specific deficiencies in models’ internal representations of the physical world.62

We envision PAC Bench not just as an evaluation tool, but as a catalyst for a new wave of research63

into building more robustly and verifiably grounded foundation models. This detailed diagnostic64

capability is vital for accelerating the development of VLA systems that can reason causally about65

their actions, adapt to unforeseen circumstances, and ultimately operate with greater safety and66

efficacy, advancing the frontier of general-purpose robotics. Our primary contributions are as follows.67

1. A benchmark featuring over 30,000 annotations of real scenarios targeting the essential68

Properties, Affordances, and Constraints for robotic manipulation.69

2. A comprehensive suite of tasks and metrics for fine-grained assessment of VLM physical70

understanding across the three PAC dimensions.71

3. Extensive empirical results highlighting current VLM capabilities and critical limitations in72

PAC reasoning, offering a clear path for advancing physically grounded AI.73
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Table 1: Comparison of benchmarks evaluating physical properties (P), affordances (A), constraints
(C), or related concepts. Manip: Manipulation focus. Sim/Real/Human: Data sources. Parenthe-
ses indicate implicit or partial coverage of that concept rather than explicit, task-level evaluation.
(†) PhysBench includes limited physical dynamics implying some constraint understanding but lacks
explicit executability evaluation. (‡) UniAff focuses narrowly on tool-use and 3D motion constraints,
covering a subset of affordances but not general manipulation PAC evaluation.

Concepts Evaluated Focus Data Source Access Size
Benchmark P A C Manip Sim Real Human Open Data Size (GB) (# Points)

PAC Bench (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼10 30,529 images-text
PhysBench [7] ✓ (✓) (✓)† × ✓ ✓ ✓ ✓ ∼10 10,002 video-image-text
ActAffordance [14] × ✓ × ✓ × ✓ ✓ ✓ 25–40 278,000 images
EQA-phys [15] × × ✓ ✓ ✓ ✓ × ✓ <1 1,300 Q&A
Physion [16] × × ✓ × ✓ × × ✓ ∼5 1,200 examples
ManipVQA [17] ✓ ✓ × ✓ × ✓ ✓ ✓ ∼20 84,000 examples
UniAff [18] (✓) ✓ (✓)‡ ✓ ✓ ✓ ✓ ✓ 3–5 1,500 objects
NrVLM [19] × ✓ × ✓ ✓ × × ✓ 5–10 4,500 episodes
PHYBench [6] ✓ × ✓ × ✓ × × ✓ <1 ∼500 problems

2 Related Work74

The rapid evolution of LLMs and VLMs has spurred a critical need for comprehensive evaluation75

methodologies. General frameworks like HELM [10] and its visual counterpart VHELM [11]76

provide holistic assessments across a wide array of tasks and capabilities. Complementing these,77

numerous benchmarks target specific facets of foundation models, such as trustworthiness with78

DecodingTrust [8], safety through regulatory lenses with Air-Bench [9], domain-specific reliability in79

medicine with CARES [12], and agentic capabilities in scientific discovery with MLAgentBench [13].80

Public leaderboards further track ongoing performance on various safety and ethical dimensions2.81

While these efforts are crucial for understanding the broader landscape of model behavior, they82

do not typically delve into the nuanced, granular physical common sense specifically required as83

prerequisites for robust robotic manipulation.84

Closer to the domain of robotics and physical interaction, several benchmarks have begun to probe85

foundation models’ understanding of the physical world. Some focus on general physics knowl-86

edge or predictive capabilities. For instance, PHYBench [6] primarily uses text-based scenarios to87

assess LLMs on formal physics problems, while Physion [16] evaluates visual physical prediction,88

implicitly testing understanding of object properties and physical constraints governing dynamics.89

PhysBench [7] offers a broader multimodal evaluation of VLMs, covering aspects like explicit90

object properties, object relationships, scene understanding, and rudimentary physical dynamics, thus91

touching upon elements of properties, affordances (via relationships), and constraints (via dynamics).92

Other research lines target more specific components of physical understanding relevant to manipula-93

tion. For affordances, ManipVQA [17] injects affordance knowledge into VLMs alongside property94

understanding, ActAffordance [14] focuses on learning bimanual affordances from human videos,95

and NrVLM [19] develops benchmarks for affordance-guided manipulation based on fine-grained96

language instructions. UniAff [18] proposes a unified representation for affordances, especially for97

tool use, and importantly, also incorporates the reasoning of 3D motion constraints and object proper-98

ties within its framework. For constraints, EQA-phys [15] specifically targets VLM understanding of99

robotic physical reachability. Distinct from these, benchmarks like The Colosseum [5] are vital for100

assessing the generalization of end-to-end robotic manipulation policies to various environmental101

perturbations, rather than the underlying conceptual understanding of physical prerequisites.102

Despite this valuable landscape (summarized and compared in Table 1), a critical gap remains: a ded-103

icated, fine-grained benchmark that systematically evaluates whether foundation models comprehend104

the fundamental and interconnected prerequisites for executing manipulation actions, specifically105

framed through object properties, action affordances, and physical constraints. While works like106

PhysBench [7] and UniAff [18] evaluate aspects across P, A, and C (as indicated in Table 1) and107

more recent efforts such as ManipBench [20] explore complementary low-level visuomotor reason-108

ing for robotic manipulation through key-point and trajectory prediction, PAC Bench distinguishes109

2https://huggingface.co/spaces/AI-Secure/llm-trustworthy-leaderboard
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itself through several key dimensions. First, it focuses on the explicit, understanding of these three110

components as preconditions for action, rather than evaluating them solely through downstream task111

performance. Second, PAC Bench is designed to assess these PAC dimensions with a granularity112

specifically tailored to common manipulation scenarios, supported by a dataset that combines di-113

verse real-world images (for properties and affordances) with both simulated and novel real-world114

humanoid-view scenarios (for constraints). While existing benchmarks may test general physics115

knowledge, dynamic prediction, or policy generalization, PAC Bench fundamentally probes whether116

VLMs can reason about the specific P, A, and C conditions that make a manipulation task executable117

in the first place, a crucial step towards building more robust, and safe VLA systems.118

3 The PAC Bench Dataset119

PAC Bench evaluates a VLM’s understanding of three fundamental, interdependent components120

crucial for determining the executability of robotic manipulation actions:121

1. Properties: These are the inherent physical or material characteristics of objects, as well122

as their states, that dictate how they behave and can be interacted with. In PAC Bench, we123

focus on a comprehensive suite of 12 distinct physical and material attributes, including, for124

instance, an object’s inferred Weight (e.g., light, medium, heavy), its Material (e.g., wood,125

metal, plastic), its Containment State (e.g., lidded, open, sealed). Accurately perceiving126

these properties is the first step towards effective physical reasoning.127

2. Affordances: Affordances [21, 22] describe the potential for action that an object offers128

to an agent, or that an agent can enact upon an object [23, 24], given its properties and the129

broader environmental context. These are specifically tailored to manipulation, covering130

common interactions such as is-graspable (by a standard gripper), is-containable-in (for131

placing objects), and is-stackable-on (another object). Understanding affordances bridges132

the gap between object perception and actionable knowledge.133

3. Constraints: These are the physical, geometric, or environmental limitations and conditions134

that govern whether an intended action can be successfully executed given a task. Failure135

to recognize constraints often leads to task failure or unsafe robot behavior. PAC Bench136

evaluates understanding of constraints such as stability limits (e.g., predicting if stacking a137

specific object will cause a topple), containment failure (e.g., contents spilling if an open138

container is moved inappropriately), and reachability issues for a robotic arm.139

A grounded understanding of these three pillars – Properties, Affordances, and Constraints – is140

paramount for any robotic system intended to operate robustly in the complexities of the real world.141

Without it, even sophisticated policies are prone to errors stemming from a superficial interpretation142

of the scene. For instance, attempting to lift an object perceived as light (misjudged Property) might143

fail if it is actually heavy. Similarly, trying to stack an object that appears stackable (misjudged144

Affordance) might lead to collapse if its instability (unrecognized Constraint) is not considered. PAC145

Bench is therefore designed to specifically probe these interconnected concepts, offering a more146

targeted benchmarks focusing on broader physics knowledge. By focusing on PAC, we aim to evaluate147

the foundational understanding that enables models to predict action feasibility before execution,148

a critical component for building more reliable and adaptable robotic agents. Note that we only149

evaluate pre-trained VLMs’ capabilities without having access to a specific robot or the environment150

it operates in as these generic pre-trained VLMs serve as the backbone for the development of151

VLAs [1], failure detection models [25], etc.152

3.1 Data Acquisition and Curation153

The PAC Bench dataset is constructed through a multi-faceted approach, aggregating data from154

diverse real-world image sources and meticulously designed scenarios from both simulated and155

real-world robot interactions (Fig 2). This hybrid strategy ensures broad visual diversity for property156

and affordance, complemented by targeted and varied constraint evaluations from multiple views.157

Data for Properties and Affordances: Diverse Real-World and Simulated Imagery. To ground our158

property and affordance assessments in varied visual data, PAC Bench aggregates images from four159

key sources (2 real, 2 simulation): the extensive OpenImages Dataset V7 and Extensions [26], novel160

real-world captures from multiple perspectives (agent and side views) of a Unitree G1 humanoid161

robot, multi-angle(24) capture of 45 unique objects from the RoboCasa framework [27], which162
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Figure 2: Distribution of annotations in PAC Bench across three dimensions: (Left) physical proper-
ties annotated in the dataset, showing the relative frequency of each property; (Center) affordance
categories, with slices below 5% omitted for clarity; (Right) constraint domains, contrasting simula-
tion (blue shades) and real-world (green shades) scenarios.

leverages the MuJoCo physics engine for structured household environments. Across these sources,163

we target 115 unique object classes (e.g., Container, Towel, Chair, Apple, Knife), selected for their164

prevalence and relevance to household manipulation. These are organized into 18 primary categories165

(e.g., Appliances, Furniture, Kitchen Items; see Appendix B.2 for full taxonomy). We utilized the166

provided human-annotated bounding boxes for annotations. This ensures precise localization for our167

subsequent PAC annotations. For the VLM evaluations detailed in this paper, we curated 977 images168

from OpenImages and our Unitree G1 captures. The RoboCasa image data (1080 unique images),169

while part of the full PAC Bench dataset release to support broader research, is not included in the170

current VLM evaluation set due to computational costs.171

Property Annotation: For each of the 977 curated images, we annotated a comprehensive suite of172

intrinsic and extrinsic physical properties. We defined a set of 12 distinct property types relevant to173

manipulation, including: Stickiness, Thickness, Density, Sealing, Contents, Capacity, Complexity of174

Parts, Consumability, Orientation, Hardness, Color, and Weight. This resulted in a total of 27,674175

property annotations across the dataset. (Detailed definitions are shown in Appendix B.1.) The176

property annotation process was designed for high quality. Each image instance, along with a specific177

property query (e.g., "What is the material of the object in the bounding box?"), was presented to178

annotators with a set of predefined, mutually exclusive answer choices. To ensure reliability, every179

image instance was independently annotated for each property by two human annotators. The final180

ground-truth label for a given property was determined by consensus, requiring agreement between181

both annotators. Disagreements were resolved by a senior annotator or discarded if no consensus182

could be reached. This rigorous process yielded a high-quality set of property labels. We utilized183

LabelBox as our annotation platform, with a team of over 10 annotators contributing to this effort184

(Appendix E.4).185

Affordance Annotation: For each of the 115 selected object classes, we also collected affordance186

labels. The process involved manually identifying and listing the top three most common action187

affordances associated with each object class, ranked in order of typicality or importance. For188

example, for the object class Chair, the annotated affordances include (1) is-sittable, (2) is-climbable,189

and (3) can-place-objects-on. This initial phase of affordance annotation was conducted by assigning190

each object class to a primary annotator. This initial phase of affordance annotation involved a191

primary annotator per object class. While this provides a foundational set of common affordances,192

we acknowledge that future work will involve expanding this with multiple annotators to establish193

inter-annotator agreement and a consensus-based label set.194

Data for Constraints: Simulated and Real-World Humanoid Scenarios. To evaluate the un-195

derstanding of physical constraints often involving complex or dynamic interactions PAC Bench196

incorporates data from both simulated environments and the real-world humanoid robot perspectives.197

This hybrid strategy allows for scalable, controlled generation of diverse constraint types in simula-198

tion, ideal for iterative VLM testing and aligning with common policy training paradigms. These199

are complemented by authentic real-world humanoid scenarios that ground evaluations in genuine200

physical complexities and robot-centric perspectives, offering a crucial testbed for sim-to-real transfer201

of constraint comprehension. (Detailed specifications for all constraint domains are in Appendix B.3).202
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Figure 3: Examples from PAC Bench. (Left 4 Images) Scenarios designed to evaluate understanding
of various physical Constraints: Impossible Placement, Occlusion, Reachabilityand Stability. (Right
4 images) Example of a Property query presented with a real-world robot view from PAC Bench.

Simulated Constraint Scenarios: We leveraged the MuJoCo physics engine [28] to generate synthetic203

scenarios depicting various constraints (Fig 3 (left)) relevant to robotic manipulation. We designed204

four primary constraint domains:205

1. Impossible Placement: Scenarios where an object cannot be stably placed on another due206

to factors like shape, size mismatch, or unstable support.207

2. Occlusion/Support Issues: Challenges related to accessing an object, such as attempting to208

pick up a target block that is currently supporting another block.209

3. Stability Constraints: Situations involving picking up an object that is itself part of an210

unstable assembly.211

4. Reachability and Access Constraints: Scenarios where an object is present but difficult or212

impossible to reach due to its position or surrounding obstacles.213

For each simulated constraint domain, we procedurally generated 10 distinct environment instantia-214

tions by introducing randomization in object positions, orientations, and/or distractor elements. Each215

instantiation was rendered from three different camera viewpoints (front, agent, and side view) to216

provide visual diversity and assess view-invariance. This resulted in a total of 120 unique simulated217

constraint scenarios.218

Real-World Humanoid Constraint Scenarios: These scenarios involve a dual-arm Unitree G1 hu-219

manoid robot attempting simple manipulation tasks in tabletop environments with everyday objects.220

For each scenario, we captured synchronized images from two camera views. A question was then221

formulated about a potential action and the physical constraints that might prevent its successful222

execution (see Appendix D.1 for an example prompts). The ground-truth answer provides an expla-223

nation of the relevant constraint(s). This real-world component currently comprises 2727 unique224

question-answer scenarios, focusing on constraints such as (Question: Can you keep the food on the225

plate? Expected Answer: No the plate is inverted.). (Appendix B.3 provides further examples.)226

4 Experimental Results and Analysis227

In this section, we present the empirical evaluation of several state-of-the-art foundation models [29,228

30, 31, 32, 33, 34, 35, 36, 37] on PAC Bench. We detail our experimental setup, followed by an229

analysis of model performance on understanding object properties, action affordances, and physical230

constraints.231

4.1 Experimental Setup232

Models Evaluated: We evaluated a diverse suite of publicly available and proprietary VLMs to233

assess their PAC understanding capabilities. For some models, we also explored different prompting234

strategies (e.g., direct querying vs. chain-of-thought prompting in Appendix D).235
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Figure 4: Comparative PAC understanding profiles of selected VLMs. The x-axis indicates nominal
model release time periods (1=earlier to 4=most recent among those shown). The diverse performance
signatures suggest varied developmental trajectories in acquiring physical common sense.

Evaluation Protocol: For each task in PAC Bench, VLMs were provided with images from a scenario236

and a textual prompt (Appendix D.1) that queries a specific property, affordability, or constraint.237

Model responses were evaluated against ground-truth annotations derived from our dataset.238

1. Property questions were multiple-choice (typically [Number, e.g., 3-5] options) targeting239

one of 12 predefined attributes for a specified object (e.g., “What is the density of the object240

in the box? A) High, B) Low...”).241

2. Affordance questions required models to provide all applicable affordances for a given object242

class (e.g., “What are the affordances of [object]? A) Can carry items, B) is-stackable...”).243

3. Constraint questions asked models to determine the feasibility of an action or identify the244

most constraining pre-condition to successfully complete a task. (e.g., “Can the robot stack245

X on Y? If no, why?”).246

Table 2: Property accuracies (%) for Open Images (PAC Bench) vs. Humanoid benchmarks. Properties
P1–P6 are: Color, Contents, Weight, Density, Sealing, Hardness.

Open Images Humanoid Avg

Model P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

Claude 3.5 Sonnet 0.0 31.9 0.0 0.0 2.7 42.3 50.2 28.9 50.7 52.7 19.4 55.2 27.8
Claude 3.7 Sonnet 20.2 23.5 32.6 36.7 66.4 37.0 47.8 30.3 48.3 55.7 13.2 55.7 38.9
Claude 3.7 Sonnet (T) 6.7 22.3 15.0 9.0 50.9 23.4 24.9 11.9 28.5 36.3 8.3 39.8 23.1

Gemini 2.0 Flash 001 19.7 35.3 40.8 58.0 56.1 43.9 55.2 39.8 40.3 46.8 38.2 54.7 44.1
Gemini 2.5 Flash P 26.9 28.8 27.1 40.1 58.9 31.1 53.2 27.9 33.8 40.3 41.8 63.2 39.4
Gemini 2.5 Pro Pre (T) 27.0 34.1 31.2 43.2 57.2 16.7 13.0 42.7 49.5 55.7 53.5 64.0 40.6

GPT-4.1 Mini 26.6 28.4 24.1 43.2 64.0 18.1 36.3 36.3 26.9 40.3 15.3 60.2 35.0
GPT-4.1 13.8 29.0 4.4 25.9 91.0 27.8 51.2 55.7 43.3 58.2 43.8 64.2 42.4
o4-mini-high (T) 17.1 0.2 4.7 26.4 72.7 26.2 20.4 36.6 31.5 52.7 43.1 63.8 33.0

Llama 3.2 90B Vision I 13.1 14.8 4.2 25.0 30.2 12.8 37.3 51.2 31.3 44.8 27.1 37.3 27.4
Llama 4 Scout 30.4 0.6 36.4 51.1 84.9 18.6 51.2 60.2 37.8 43.3 36.1 51.2 41.8
Llama 4 Maverick 36.2 34.9 37.6 47.0 90.0 14.6 43.8 77.1 59.2 57.7 40.3 54.2 49.4

Qwen 3 18.7 22.7 9.9 20.1 85.2 28.6 0.0 0.0 0.0 0.0 0.0 0.0 15.4
Qwen 2.5 VL 21.9 20.7 18.7 9.6 61.8 42.3 47.8 22.9 24.9 4.5 2.8 35.8 26.1

4.2 Analyzing Property Awareness: Do VLMs Discern Fundamental Object Features?247
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Figure 5: All affordance subset heatmap.
Full heatmap in Appendix D.3

This subsection presents a detailed evaluation of how well248

contemporary VLMs are grounded in these essential at-249

tributes. We assessed model performance across twelve250

distinct property categories critical for robotic manipu-251

lation: P1 (Capacity), P2 (Color), P3 (Complexity), P4252

(Consumability), P5 (Contents), P6 (Density), P7 (Hard-253

ness), P8 (Orientation), P9 (Sealing), P10 (Stickiness),254

P11 (Thickness), and P12 (Weight). The comprehensive255

results are detailed in Table 7.256

Overall Property Performance and Domain Sensitivity:257

Table 2 reveals considerable VLM performance disparities258

across models and, notably, between the Open Images and259

Humanoid data subsets for the six evaluated properties. No single model masters all properties260

across both domains, highlighting varied strengths and significant domain sensitivity. Many models,261
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such as ‘Claude 3.5 Sonnet’ and ‘GPT-4.1’, demonstrate decent accuracy on properties like ‘Color262

(P1)’, ‘Weight (P3)’ when evaluated on Humanoid views compared to the more varied Open Images263

data. Conversely, properties like ‘Sealing (P5)’ frequently see higher scores on Open Images (e.g.,264

‘Llama 4 Maverick’: 90.0% vs. 40.3%). Some models show extreme domain dependence; for265

instance, ‘Qwen 3’ performs reasonably on Open Images but scores 0.0% across all six properties266

on the Humanoid dataset. These findings underscore that VLM property understanding is not yet267

consistently robust across different visual contexts, even for fundamental attributes, pointing to268

challenges in generalization. For detailed results across all 12 evaluated properties from our primary269

dataset, see Appendix D.2.270

4.3 Evaluating Affordance Understanding: Can VLMs Discern Possible Interactions?271

Recognizing potential actions, or affordances, that an object offers is fundamental for goal-oriented272

manipulation. In this subsection, we assess VLM performance on identifying common affordances273

for 115 object classes, primarily grouped into 14 primary categories derived from web-scale images274

(A1-A14). Table 3 presents results for the metric of identifying at least one correct affordance, and275

importantly, also includes overall accuracies from our distinct Humanoid dataset evaluations and276

an aggregated average. The stricter metric, requiring identification of all ground-truth affordances,277

is detailed in Table 10 (further visualized in Figure 5). Additional results for multi-category and278

per-object evaluations are in Appendix D.3.279

Partial Affordance Recognition and Humanoid Insights: As shown in Table 3, VLMs exhibit280

highly varied success in recognizing at least one correct affordance. Based on the overall average281

scores (Avg), which combine web-image category and humanoid task performance, models like282

‘Llama 4 Scout’ (40.9%) and ‘Llama 4 Maverick’ (35.2%) demonstrate broader, albeit still moderate,283

capabilities. Performance peaks on specific web-image categories are notable, for instance, ‘GPT 4.1284

Mini’ and ‘Qwen 2.5 VL’ achieve 100% for A10, and several Llama models along with ‘Claude 3.7285

Sonnet’ show perfect scores for A1. However, many categories, such as A2.The Humanoid dataset286

scores (H1-H3) reveal further nuances; for example, ‘Gemini 2.0 Flash 001’ performs decent across287

H1-H3 (avg. 60%), while ‘Gemini 2.5 Pro P’ scores 0% on all Humanoid tasks despite reasonable288

performance on A1-A14. This suggests that affordance understanding from diverse web images may289

not readily transfer to specific robot-centric views or tasks without further adaptation, with models290

like ‘Qwen VP’ (0.0% Avg) struggling broadly.291

Comprehensive Affordance Recognition Remains Elusive: The capacity of VLMs to identify the292

full set of an object’s affordances is far more limited. As starkly illustrated in Table 10 (and the293

heatmap in Figure 5), when requiring models to recognize all ground-truth affordances, performance294

plummets to near-zero across almost all models and categories. The rare non-zero scores (e.g., ‘GPT295

4.1’ at 20.0% for Home Fixtures. This significant drop from the “at least one” metric highlights that296

while VLMs might identify a primary or common affordance, they generally lack the comprehensive297

functional understanding critical for versatile and truly intelligent robotic interaction.298

4.4 Assessing Constraint Comprehension: Can VLMs Understand Physical Limits?299

PAC Bench evaluates constraints by presenting VLMs with scenarios where proposed actions might300

be infeasible due to underlying physical limitations. Our evaluation spans four distinct constraint301

domains. Furthermore, we introduce a novel set of real-world constraint scenarios captured from a302

humanoid robot’s perspective, which will be analyzed subsequently. The performance of VLMs on303

the simulated constraint tasks is detailed in Table 4 (More in Appendix D.4).304

Constraint Understanding: A Profound Challenge Across Simulated and Real-World Scenarios.305

The results presented in Table 4 underscore that reasoning about physical constraints remains a306

profound challenge for current VLMs, with overall average (Avg) accuracies being exceptionally307

low for most models. Many prominent VLMs, including Claude 3.5 Sonnet (0.4% Avg), Llama 3.2308

90B Vision I (0.2% Avg), and Llama 4 Scout (1.5% Avg), register near-zero performance across309

the majority of both simulated and real-world tasks. This pervasive failure highlights a fundamental310

difficulty in inferring basic stability, support, occlusion, and reachability limits from visual input.311

In the Simulated Domains, “Impossible Placement” scenarios almost universally failed. The312

“Occlusion” domain saw slightly more success, particularly from Gemini 2.5 Pro Preview (up to313

90.0%) and GPT-4.1 (up to 70.0%). “Stability” and “Reachability” tasks in simulation also proved314
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Table 3: Affordance Accuracy (%) of VLMs on recognizing at least one correct affordance for objects
grouped by primary categories (Single-Category Mapping) in PAC Bench, plus overall accuracy in
the humanoid dataset scores H1–H3. Categories A1–A18 are: A1 (Adhesives), A2 (Appliances),
A3 (Luggage), A4 (Bathroom Items), A5 (Cleaning), A6 (Clothing), A7 (Storage), A8 (Decor), A9
(Electronics), A10 (Food & Beverage), A11 (Furniture), A12 (Home Fixtures), A13 (Kitchen Items),
A14 (Instruments), H1 (Humanoid Front View), H2 (Side View), H3 (Both Views)
Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 H1 H2 H3 Avg
Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 16.7 25.0 0.0 66.7 13.3 40.0 9.1 0.0 2.9 47.1 14.7 13.9
Claude 3.7 Sonnet 100.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 11.1 66.7 0.0 20.0 22.7 100.0 2.9 58.8 11.8 24.4
Claude 3.7 Sonnet (T) 0.0 5.6 0.0 30.0 0.0 0.0 0.0 0.0 11.1 0.0 6.7 20.0 18.2 0.0 2.9 54.4 10.3 9.4
Gemini 2.0 Flash 001 0.0 0.0 0.0 40.0 0.0 0.0 16.7 0.0 0.0 66.7 0.0 40.0 13.6 0.0 54.4 66.2 64.7 21.3
Gemini 2.5 Flash P 0.0 5.6 0.0 20.0 0.0 50.0 0.0 0.0 11.1 66.7 13.3 40.0 18.2 0.0 52.9 55.9 57.4 23.0
Gemini 2.5 Pro P 0.0 16.7 66.7 30.0 0.0 0.0 33.3 25.0 22.2 66.7 26.7 60.0 31.8 0.0 0.0 0.0 0.0 22.3
Llama 3.2 11B Vision I 100.0 22.2 0.0 30.0 0.0 50.0 33.3 0.0 22.2 66.7 0.0 0.0 13.6 0.0 20.5 27.9 25.0 24.2
Llama 3.2 90B Vision I 100.0 11.1 33.3 10.0 0.0 50.0 50.0 25.0 22.2 66.7 26.7 60.0 9.1 0.0 22.1 44.1 0.0 31.2
Llama 4 Scout 0.0 11.1 66.7 50.0 0.0 50.0 50.0 25.0 33.3 66.7 53.3 60.0 54.6 100.0 20.6 27.9 26.5 40.9
Llama 4 Maverick 0.0 22.2 33.3 50.0 0.0 100.0 50.0 0.0 33.3 66.7 26.7 100.0 31.8 0.0 20.6 39.7 23.5 35.2
GPT 4.1 Mini 0.0 5.6 0.0 30.0 0.0 0.0 50.0 25.0 0.0 100.0 13.3 60.0 36.4 0.0 20.6 57.4 25.0 24.9
GPT 4.1 0.0 5.6 0.0 20.0 0.0 0.0 16.7 25.0 0.0 0.0 6.7 60.0 18.2 0.0 48.5 67.6 45.6 18.5
o4-mini-high (T) 0.0 16.7 0.0 20.0 0.0 0.0 16.7 25.0 11.1 33.3 33.3 20.0 22.7 0.0 16.2 45.6 35.3 17.4
Qwen 2.5 VL 0.0 0.0 0.0 30.0 0.0 0.0 33.3 0.0 0.0 100.0 6.7 80.0 9.1 0.0 14.7 48.5 20.6 20.2
Qwen 3 0.0 5.5 0.0 30.0 0.0 0.0 33.3 25.0 0.0 100.0 0.0 60.0 13.6 0.0 4.4 1.4 8.8 16.6
Grok Vision Beta 0.0 5.6 0.0 10.0 0.0 0.0 0.0 0.0 11.1 0.0 13.3 20.0 4.6 0.0 8.8 8.8 7.4 5.3
Grok 2 Vision 0.0 5.6 33.3 50.0 0.0 0.0 0.0 0.0 11.1 100.0 6.7 20.0 13.6 100.0 44.1 47.1 41.2 27.8

Table 4: Constraint Accuracy (%) of VLMs on understanding physical constraints in PAC Bench
across four simulated domains, three views (F: front-view, A: agent-view, S: side-view), and a
real-world Humanoid split ( Both=A+S).

Model Simulation Real World Avg
Impossible Place (↑) Occlusion (↑) Stability (↑) Reachability (↑) Humanoid (↑)

F A S F A S F A S F A S A S Both
Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 3.7 0.4
Claude 3.7 Sonnet 0.0 0.0 0.0 40.0 10.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 1.8 5.6
Claude 3.7 Sonnet (T) 0.0 0.0 0.0 20.0 20.0 30.0 0.0 0.0 10.0 10.0 0.0 0.0 0.0 0.0 3.7 7.5
Gemini 2.0 Flash 001 0.0 0.0 0.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6 3.7 9.4 2.6
Gemini 2.5 Flash P 0.0 0.0 0.0 50.0 20.0 40.0 10.0 40.0 20.0 0.0 20.0 0.0 9.4 9.4 1.8 14.7
Gemini 2.5 Pro P 10.0 20.0 10.0 90.0 30.0 60.0 0.0 40.0 0.0 30.0 0.0 20.0 11.3 18.8 9.4 25.8
Llama 3.2 11B Vision I 20.0 10.0 0.0 30.0 30.0 20.0 20.0 20.0 20.0 10.0 30.0 0.0 0.0 1.8 0.0 17.5
Llama 3.2 90B Vision I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.2
Llama 4 Scout 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.5
Llama 4 Maverick 0.0 0.0 0.0 10.0 0.0 50.0 30.0 10.0 10.0 0.0 0.0 0.0 9.4 7.5 7.5 9.0
GPT-4.1 0.0 0.0 0.0 50.0 70.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 11.3 13.2 9.4 13.6
GPT-4.1 Mini 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.8 24.5 22.6 4.4
o4-mini-high (T) 0.0 0.0 0.0 60.0 40.0 50.0 0.0 0.0 20.0 0.0 0.0 0.0 11.3 13.2 11.3 11.3
Qwen 2.5 VL 0.0 0.0 0.0 20.0 20.0 10.0 10.0 20.0 20.0 20.0 0.0 0.0 0.0 0.0 0.0 8.0
Qwen 3 10.0 0.0 0.0 60.0 20.0 70.0 30.0 80.0 80.0 10.0 10.0 0.0 3.7 0.0 0.0 3.3
Grok Vision Beta 0.0 0.0 0.0 33.3 50.0 0.0 25.0 0.0 22.2 11.1 0.0 11.1 0.0 0.0 0.0 10.9
Grok 2 Vision 0.0 0.0 0.0 20.0 50.0 40.0 10.0 0.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 9.3

very difficult, with only sporadic, low scores from most models, though Gemini 2.5 Pro P and Llama315

3.2 11B Vision Instruct showed some capability in specific views for Reachability. Viewpoint (F,316

A, S) within simulation influenced scores inconsistently (e.g., Gemini 2.5 Pro P on Sim-Occlusion:317

F:90.0%, A:30.0%, S:60.0%), indicating a lack of robust view-invariance.318

In Real-World Humanoid scenarios performance is generally low, though some models show319

interesting divergences. GPT-4.1 Mini, despite near-zero performance in simulation, achieves com-320

paratively better scores on the Humanoid tasks (18.8% Agent, 24.5% Side, 22.6% Both), although321

its overall average remains low (4.4%). Conversely, Gemini 2.5 Pro, the strongest performer in322

simulation (25.8% Avg), shows more modest results on the Humanoid tasks (11.3% Agent, 18.8%323

Side, 9.4% Both). This suggests that performance in simulated constraint scenarios does not directly324

translate to real-world robot-centric views, pointing to a significant sim-to-real gap in constraint325

understanding. Reasoning models, as seen with “(T),” provided only marginal and inconsistent326

benefits in these highly challenging constraint tasks. The overall poor performance across con-327

straint evaluations clearly marks constraint comprehension as a critical area requiring substantial328

advancement for reliable VLM-driven robotics.329
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5 Key Findings330

Key Findings from PAC Bench

• VLMs perform moderately on object properties and basic affordances.
• They fail significantly on understanding complex affordances and physical con-

straints.
• Performance varies drastically across domains and viewpoints.

331

We expect PAC Bench to help the development of physical AI agents in the following ways:332

1. Targeted diagnosis of failure modes:333

Training large VLAs is still a largely heuristic, trial-and-error process that demands sub-334

stantial computational resources. PAC Bench helps determine whether failures arise from335

poor physical understanding in the foundation VLM itself (e.g., lack of ability to understand336

a particular constraint) vs. issues introduced during architectural choices or fine-tuning337

process.338

2. Improved robustness and transferability:339

PAC Bench exposes the sensitivity of VLMs to domain, viewpoint, and other shifts, high-340

lighting the sim-to-real and view-invariance challenges critical to real-world robotics. This341

enables more systematic adaptation of VLA systems to diverse environments, improving342

both reliability and generalization.343

3. Cognitive modular testing and verification:344

By decomposing the pre-requisites for manipulation into Properties, Affordances, and345

Constraints, PAC Bench allows each component of a robot’s reasoning pipeline to be346

individually tested and empirically verified. This cognitive modularity, inspired by the347

core knowledge systems [38] identified in developmental psychology, stands in contrast to348

traditional data-flow modularity by enabling the development of interpretable and verifiable349

manipulation policies in the era of foundation models, thereby helping ensure that learned350

behaviors align with real-world safety and reliability requirements prior to deployment.351

6 Limitations and Conclusion352

Although PAC Bench offers a significant step forward with its diverse hybrid dataset for evaluating353

VLM understanding of Properties, Affordances, and Constraints (PAC), we acknowledge current354

limitations. These include the initial single-annotator pass for affordances, the exclusion of the355

RoboCasa subset from current VLM evaluations due to cost all of which suggest avenues for future356

expansion and refinement. Despite these, we introduced PAC Bench to address the critical, often357

unverified, assumption of deep physical grounding in VLMs for robotic manipulation. Our extensive358

evaluations of state-of-the-art models starkly reveal widespread deficiencies: while partial success is359

observed in property and basic affordance recognition, VLMs profoundly struggle with comprehensive360

affordance understanding and nearly all aspects of constraint reasoning in both simulated and real-361

world tests. These findings underscore that current VLM sophistication does not yet equate to robust362

physical grounding. PAC Bench thus provides the community with a crucial diagnostic tool and a363

structured methodology to systematically measure these foundational skills, pinpoint key weaknesses364

(such as poor constraint generalization or difficulty with compositional affordances), and catalyze365

the development of more physically intelligent, reliable, and ultimately, safer VLMs for real-world366

robotic interaction.367
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NeurIPS Paper Checklist473

The checklist is designed to encourage best practices for responsible machine learning research,474

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove475

the checklist: The papers not including the checklist will be desk rejected. The checklist should476

follow the references and follow the (optional) supplemental material. The checklist does NOT count477

towards the page limit.478

Please read the checklist guidelines carefully for information on how to answer these questions. For479

each question in the checklist:480

• You should answer [Yes] , [No] , or [NA] .481

• [NA] means either that the question is Not Applicable for that particular paper or the482

relevant information is Not Available.483

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).484

The checklist answers are an integral part of your paper submission. They are visible to the485

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it486

(after eventual revisions) with the final version of your paper, and its final version will be published487

with the paper.488

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.489

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a490

proper justification is given (e.g., "error bars are not reported because it would be too computationally491

expensive" or "we were unable to find the license for the dataset we used"). In general, answering492

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we493

acknowledge that the true answer is often more nuanced, so please just use your best judgment and494

write a justification to elaborate. All supporting evidence can appear either in the main paper or the495

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification496

please point to the section(s) where related material for the question can be found.497

IMPORTANT, please:498

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",499

• Keep the checklist subsection headings, questions/answers and guidelines below.500

• Do not modify the questions and only use the provided macros for your answers.501

1. Claims502

Question: Do the main claims made in the abstract and introduction accurately reflect the503

paper’s contributions and scope?504

Answer: [Yes]505

Justification: Yes, the abstract and introduction (Section 1) accurately reflect the paper’s506

contributions and scope. We claim to introduce PAC Bench, a novel, hybrid benchmark for507

evaluating VLM understanding of physical Properties, Affordances, and Constraints (PAC)508

as prerequisites for manipulation. We also claim to provide a comprehensive evaluation suite509

and empirical insights from testing state-of-the-art VLMs. These claims are substantiated by510

the detailed description of the PAC Bench dataset (Section 3), its multi-source composition511

and annotation methodology (Section 3.1), and the presentation and analysis of experimental512

results on various VLMs (Section 4). The scope is clearly defined as assessing foundational513

physical reasoning for task executability.514

Guidelines:515

• The answer NA means that the abstract and introduction do not include the claims516

made in the paper.517

• The abstract and/or introduction should clearly state the claims made, including the518

contributions made in the paper and important assumptions and limitations. A No or519

NA answer to this question will not be perceived well by the reviewers.520

• The claims made should match theoretical and experimental results, and reflect how521

much the results can be expected to generalize to other settings.522
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals523

are not attained by the paper.524

2. Limitations525

Question: Does the paper discuss the limitations of the work performed by the authors?526

Answer: [Yes]527

Justification: Section 5 (Limitations and Conclusion) discusses current limitations and528

opportunities for future expansion.529

Guidelines:530

• The answer NA means that the paper has no limitation while the answer No means that531

the paper has limitations, but those are not discussed in the paper.532

• The authors are encouraged to create a separate "Limitations" section in their paper.533

• The paper should point out any strong assumptions and how robust the results are to534

violations of these assumptions (e.g., independence assumptions, noiseless settings,535

model well-specification, asymptotic approximations only holding locally). The authors536

should reflect on how these assumptions might be violated in practice and what the537

implications would be.538

• The authors should reflect on the scope of the claims made, e.g., if the approach was539

only tested on a few datasets or with a few runs. In general, empirical results often540

depend on implicit assumptions, which should be articulated.541

• The authors should reflect on the factors that influence the performance of the approach.542

For example, a facial recognition algorithm may perform poorly when image resolution543

is low or images are taken in low lighting. Or a speech-to-text system might not be544

used reliably to provide closed captions for online lectures because it fails to handle545

technical jargon.546

• The authors should discuss the computational efficiency of the proposed algorithms547

and how they scale with dataset size.548

• If applicable, the authors should discuss possible limitations of their approach to549

address problems of privacy and fairness.550

• While the authors might fear that complete honesty about limitations might be used by551

reviewers as grounds for rejection, a worse outcome might be that reviewers discover552

limitations that aren’t acknowledged in the paper. The authors should use their best553

judgment and recognize that individual actions in favor of transparency play an impor-554

tant role in developing norms that preserve the integrity of the community. Reviewers555

will be specifically instructed to not penalize honesty concerning limitations.556

3. Theory assumptions and proofs557

Question: For each theoretical result, does the paper provide the full set of assumptions and558

a complete (and correct) proof?559

Answer: [NA]560

Justification: This paper introduces PAC Bench, a new benchmark dataset and evaluation561

framework for VLMs. It presents empirical findings from model evaluations rather than new562

theoretical results, mathematical derivations, or formal proofs.563

Guidelines:564

• The answer NA means that the paper does not include theoretical results.565

• All the theorems, formulas, and proofs in the paper should be numbered and cross-566

referenced.567

• All assumptions should be clearly stated or referenced in the statement of any theorems.568

• The proofs can either appear in the main paper or the supplemental material, but if569

they appear in the supplemental material, the authors are encouraged to provide a short570

proof sketch to provide intuition.571

• Inversely, any informal proof provided in the core of the paper should be complemented572

by formal proofs provided in appendix or supplemental material.573

• Theorems and Lemmas that the proof relies upon should be properly referenced.574

4. Experimental result reproducibility575
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-576

perimental results of the paper to the extent that it affects the main claims and/or conclusions577

of the paper (regardless of whether the code and data are provided or not)?578

Answer: [Yes]579

Justification: Yes, We provide the dataset and github link (in Abstract) and also a experiment580

setup which can be seen in Appendix B.581

Guidelines:582

• The answer NA means that the paper does not include experiments.583

• If the paper includes experiments, a No answer to this question will not be perceived584

well by the reviewers: Making the paper reproducible is important, regardless of585

whether the code and data are provided or not.586

• If the contribution is a dataset and/or model, the authors should describe the steps taken587

to make their results reproducible or verifiable.588

• Depending on the contribution, reproducibility can be accomplished in various ways.589

For example, if the contribution is a novel architecture, describing the architecture fully590

might suffice, or if the contribution is a specific model and empirical evaluation, it may591

be necessary to either make it possible for others to replicate the model with the same592

dataset, or provide access to the model. In general. releasing code and data is often593

one good way to accomplish this, but reproducibility can also be provided via detailed594

instructions for how to replicate the results, access to a hosted model (e.g., in the case595

of a large language model), releasing of a model checkpoint, or other means that are596

appropriate to the research performed.597

• While NeurIPS does not require releasing code, the conference does require all submis-598

sions to provide some reasonable avenue for reproducibility, which may depend on the599

nature of the contribution. For example600

(a) If the contribution is primarily a new algorithm, the paper should make it clear how601

to reproduce that algorithm.602

(b) If the contribution is primarily a new model architecture, the paper should describe603

the architecture clearly and fully.604

(c) If the contribution is a new model (e.g., a large language model), then there should605

either be a way to access this model for reproducing the results or a way to reproduce606

the model (e.g., with an open-source dataset or instructions for how to construct607

the dataset).608

(d) We recognize that reproducibility may be tricky in some cases, in which case609

authors are welcome to describe the particular way they provide for reproducibility.610

In the case of closed-source models, it may be that access to the model is limited in611

some way (e.g., to registered users), but it should be possible for other researchers612

to have some path to reproducing or verifying the results.613

5. Open access to data and code614

Question: Does the paper provide open access to the data and code, with sufficient instruc-615

tions to faithfully reproduce the main experimental results, as described in supplemental616

material?617

Answer: [Yes]618

Justification: Yes, We have given open access to code.619

Guidelines:620

• The answer NA means that paper does not include experiments requiring code.621

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/622

public/guides/CodeSubmissionPolicy) for more details.623

• While we encourage the release of code and data, we understand that this might not be624

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not625

including code, unless this is central to the contribution (e.g., for a new open-source626

benchmark).627

• The instructions should contain the exact command and environment needed to run to628

reproduce the results. See the NeurIPS code and data submission guidelines (https:629

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.630
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• The authors should provide instructions on data access and preparation, including how631

to access the raw data, preprocessed data, intermediate data, and generated data, etc.632

• The authors should provide scripts to reproduce all experimental results for the new633

proposed method and baselines. If only a subset of experiments are reproducible, they634

should state which ones are omitted from the script and why.635

• At submission time, to preserve anonymity, the authors should release anonymized636

versions (if applicable).637

• Providing as much information as possible in supplemental material (appended to the638

paper) is recommended, but including URLs to data and code is permitted.639

6. Experimental setting/details640

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-641

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the642

results?643

Answer: [Yes]644

Justification: Yes we show these results in Appendix B.645

Guidelines:646

• The answer NA means that the paper does not include experiments.647

• The experimental setting should be presented in the core of the paper to a level of detail648

that is necessary to appreciate the results and make sense of them.649

• The full details can be provided either with the code, in appendix, or as supplemental650

material.651

7. Experiment statistical significance652

Question: Does the paper report error bars suitably and correctly defined or other appropriate653

information about the statistical significance of the experiments?654

Answer: [Yes]655

Justification: Yes we show these results in Appendix D.656

Guidelines:657

• The answer NA means that the paper does not include experiments.658

• The authors should answer "Yes" if the results are accompanied by error bars, confi-659

dence intervals, or statistical significance tests, at least for the experiments that support660

the main claims of the paper.661

• The factors of variability that the error bars are capturing should be clearly stated (for662

example, train/test split, initialization, random drawing of some parameter, or overall663

run with given experimental conditions).664

• The method for calculating the error bars should be explained (closed form formula,665

call to a library function, bootstrap, etc.)666

• The assumptions made should be given (e.g., Normally distributed errors).667

• It should be clear whether the error bar is the standard deviation or the standard error668

of the mean.669

• It is OK to report 1-sigma error bars, but one should state it. The authors should670

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis671

of Normality of errors is not verified.672

• For asymmetric distributions, the authors should be careful not to show in tables or673

figures symmetric error bars that would yield results that are out of range (e.g. negative674

error rates).675

• If error bars are reported in tables or plots, The authors should explain in the text how676

they were calculated and reference the corresponding figures or tables in the text.677

8. Experiments compute resources678

Question: For each experiment, does the paper provide sufficient information on the com-679

puter resources (type of compute workers, memory, time of execution) needed to reproduce680

the experiments?681

Answer: [Yes]682
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Justification: Compute resource required can be seen in Appendix B.1683

Guidelines:684

• The answer NA means that the paper does not include experiments.685

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,686

or cloud provider, including relevant memory and storage.687

• The paper should provide the amount of compute required for each of the individual688

experimental runs as well as estimate the total compute.689

• The paper should disclose whether the full research project required more compute690

than the experiments reported in the paper (e.g., preliminary or failed experiments that691

didn’t make it into the paper).692

9. Code of ethics693

Question: Does the research conducted in the paper conform, in every respect, with the694

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?695

Answer: [Yes]696

Justification: The research was conducted in accordance with the NeurIPS Code of Ethics.697

The development of PAC Bench involved using publicly available datasets (OpenImages,698

RoboCasa components), newly generated simulated data, and new real-world robotic data699

collection focused on common objects and non-sensitive scenarios. Human annotationefforts700

(detailed in Section 3.1 and Appendix E.1) were designed with ethical considerations,701

including fair practices for annotators. The benchmark aims to promote robust and grounded702

VLM development for safer robotic systems.703

Guidelines:704

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.705

• If the authors answer No, they should explain the special circumstances that require a706

deviation from the Code of Ethics.707

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-708

eration due to laws or regulations in their jurisdiction).709

10. Broader impacts710

Question: Does the paper discuss both potential positive societal impacts and negative711

societal impacts of the work performed?712

Answer: [Yes]713

Justification: Yes we provide this in Appendix A.714

Guidelines:715

• The answer NA means that there is no societal impact of the work performed.716

• If the authors answer NA or No, they should explain why their work has no societal717

impact or why the paper does not address societal impact.718

• Examples of negative societal impacts include potential malicious or unintended uses719

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations720

(e.g., deployment of technologies that could make decisions that unfairly impact specific721

groups), privacy considerations, and security considerations.722

• The conference expects that many papers will be foundational research and not tied723

to particular applications, let alone deployments. However, if there is a direct path to724

any negative applications, the authors should point it out. For example, it is legitimate725

to point out that an improvement in the quality of generative models could be used to726

generate deepfakes for disinformation. On the other hand, it is not needed to point out727

that a generic algorithm for optimizing neural networks could enable people to train728

models that generate Deepfakes faster.729

• The authors should consider possible harms that could arise when the technology is730

being used as intended and functioning correctly, harms that could arise when the731

technology is being used as intended but gives incorrect results, and harms following732

from (intentional or unintentional) misuse of the technology.733
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• If there are negative societal impacts, the authors could also discuss possible mitigation734

strategies (e.g., gated release of models, providing defenses in addition to attacks,735

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from736

feedback over time, improving the efficiency and accessibility of ML).737

11. Safeguards738

Question: Does the paper describe safeguards that have been put in place for responsible739

release of data or models that have a high risk for misuse (e.g., pretrained language models,740

image generators, or scraped datasets)?741

Answer: [NA]742

Justification: The PAC Bench dataset primarily comprises images of common objects from743

public datasets , controlled simulated environments and new robotic captures of everyday744

tabletop scenarios which do not involve sensitive personal data. We are not releasing new745

pre-trained generative models or other assets typically associated with a high risk for direct746

misuse that would necessitate specific safeguards beyond responsible dataset curation and747

intended use for research.748

Guidelines:749

• The answer NA means that the paper poses no such risks.750

• Released models that have a high risk for misuse or dual-use should be released with751

necessary safeguards to allow for controlled use of the model, for example by requiring752

that users adhere to usage guidelines or restrictions to access the model or implementing753

safety filters.754

• Datasets that have been scraped from the Internet could pose safety risks. The authors755

should describe how they avoided releasing unsafe images.756

• We recognize that providing effective safeguards is challenging, and many papers do757

not require this, but we encourage authors to take this into account and make a best758

faith effort.759

12. Licenses for existing assets760

Question: Are the creators or original owners of assets (e.g., code, data, models), used in761

the paper, properly credited and are the license and terms of use explicitly mentioned and762

properly respected?763

Answer: [Yes]764

Justification: The PAC Bench dataset and associated assets are released on Hugging Face765

under the MIT License, with proper attribution to original contributors. The repository766

includes clear documentation outlining intended research use and limitations, ensuring767

compliance with the license.768

Guidelines:769

• The answer NA means that the paper does not use existing assets.770

• The authors should cite the original paper that produced the code package or dataset.771

• The authors should state which version of the asset is used and, if possible, include a772

URL.773

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.774

• For scraped data from a particular source (e.g., website), the copyright and terms of775

service of that source should be provided.776

• If assets are released, the license, copyright information, and terms of use in the777

package should be provided. For popular datasets, paperswithcode.com/datasets778

has curated licenses for some datasets. Their licensing guide can help determine the779

license of a dataset.780

• For existing datasets that are re-packaged, both the original license and the license of781

the derived asset (if it has changed) should be provided.782

• If this information is not available online, the authors are encouraged to reach out to783

the asset’s creators.784

13. New assets785
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Question: Are new assets introduced in the paper well documented and is the documentation786

provided alongside the assets?787

Answer: [Yes]788

Justification: Yes new data collected are well documented and is provided.789

Guidelines:790

• The answer NA means that the paper does not release new assets.791

• Researchers should communicate the details of the dataset/code/model as part of their792

submissions via structured templates. This includes details about training, license,793

limitations, etc.794

• The paper should discuss whether and how consent was obtained from people whose795

asset is used.796

• At submission time, remember to anonymize your assets (if applicable). You can either797

create an anonymized URL or include an anonymized zip file.798

14. Crowdsourcing and research with human subjects799

Question: For crowdsourcing experiments and research with human subjects, does the paper800

include the full text of instructions given to participants and screenshots, if applicable, as801

well as details about compensation (if any)?802

Answer: [Yes]803

Justification: Yes we show this in Appendix E.804

Guidelines:805

• The answer NA means that the paper does not involve crowdsourcing nor research with806

human subjects.807

• Including this information in the supplemental material is fine, but if the main contribu-808

tion of the paper involves human subjects, then as much detail as possible should be809

included in the main paper.810

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,811

or other labor should be paid at least the minimum wage in the country of the data812

collector.813

15. Institutional review board (IRB) approvals or equivalent for research with human814

subjects815

Question: Does the paper describe potential risks incurred by study participants, whether816

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)817

approvals (or an equivalent approval/review based on the requirements of your country or818

institution) were obtained?819

Answer: [NA]820

Justification: This research does not involve direct experiments with human subjects in a821

way that would typically require IRB approval. The human involvement was limited to822

data annotation of common objects and scenarios by trained annotators who were fairly823

compensated (details in Appendix E.1), and data collection with robotic platforms observing824

these objects, not interacting with human participants in an experimental context. No825

sensitive personal data was collected or used.826

Guidelines:827

• The answer NA means that the paper does not involve crowdsourcing nor research with828

human subjects.829

• Depending on the country in which research is conducted, IRB approval (or equivalent)830

may be required for any human subjects research. If you obtained IRB approval, you831

should clearly state this in the paper.832

• We recognize that the procedures for this may vary significantly between institutions833

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the834

guidelines for their institution.835

• For initial submissions, do not include any information that would break anonymity (if836

applicable), such as the institution conducting the review.837
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16. Declaration of LLM usage838

Question: Does the paper describe the usage of LLMs if it is an important, original, or839

non-standard component of the core methods in this research? Note that if the LLM is used840

only for writing, editing, or formatting purposes and does not impact the core methodology,841

scientific rigorousness, or originality of the research, declaration is not required.842

Answer: [Yes]843

Justification: The core focus of this paper is the introduction of PAC Bench, a benchmark844

specifically designed to evaluate Vision-Language Models (VLMs), which inherently involve845

Large Language Model components. Furthermore, our evaluation methodology for assessing846

constraint understanding (detailed in Section 4.1 and Appendix D) utilizes an LLM-as-a-847

judge approach for evaluation.848

Guidelines:849

• The answer NA means that the core method development in this research does not850

involve LLMs as any important, original, or non-standard components.851

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)852

for what should or should not be described.853
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A Broader impacts854

The primary goal of PAC Bench is to catalyze the development of more capable, reliable, and855

physically grounded VLMs and their fine-tuned variants, often called VLAs for real-world robotic856

applications. Because VLA fine-tuning typically relies on low-level trajectory data rather than higher857

level reasoning, probing the underlying VLM’s understanding of object Properties, action Affordances,858

and physical Constraints (PAC) gives us a grounded lens into the capabilities that downstream859

robotic policies will inherit. By diagnosing PAC weaknesses in the base model, researchers can860

distinguish whether a VLA’s performance stems from genuine physical common sense or simply861

memorized motion patterns, and thus guide targeted improvements in model architectures, training862

methodologies, and dataset curation. In doing so, PAC Bench helps ensure that robotic systems863

become more predictable, less prone to errors from a lack of physical understanding, and better864

equipped for safe, effective collaboration in complex, everyday environments.865

By providing a fine-grained diagnostic tool, PAC Bench can help researchers and developers identify866

specific weaknesses in current models, thereby guiding targeted improvements in model architectures,867

training methodologies, and dataset curation. This, in turn, can lead to robotic systems that are more868

predictable, less prone to errors stemming from a lack of physical common sense, and better able to869

perform a wide range of useful tasks. The open release of our benchmark and its diverse data sources870

(including web-scale images, real-world humanoid captures, and simulated scenarios) is intended to871

foster broad community engagement and accelerate progress in this crucial area of AI.872

While any advancement in AI capabilities warrants ongoing consideration of its societal implications,873

our work focuses on enhancing the fundamental understanding and robustness of AI systems, which874

we see as a positive step towards more responsible AI development. We encourage the community875

to leverage PAC Bench to build systems that not only demonstrate impressive capabilities but also876

operate with a clear and verifiable understanding of their physical environment, ultimately contributing877

to the beneficial integration of AI into society.878

B Dataset Statistics879

Carey and Spelke, in their work on core knowledge notes that “the perceptual and action capacities of880

humans result not from one general-purpose system for perceiving or acting, but from the orchestration881

of distinct, specialized systems for perceiving different kinds of environmental properties (e.g., color,882

depth, melodies, etc.) and for engaging in different patterns of activity (e.g., reaching, grasping,883

locomoting, scanning a scene)” [38].884

In the first few months of life, infants begin by understanding basic object properties; they
then explore what actions those objects afford, and only later, through trial and error, do
they learn the physical constraints that govern whether those actions can be successfully
executed to achive a task. We test VLMs on these three distinct cognitive capabilities required
to complete a robot manipulation task.

885

B.1 Properties886

Real Robo887

The Real Robo properties subset contains 785 annotations spread across 67 unique scenario im-888

age–pairs, giving a mean of 11.7 annotated properties per scenario (the schema expects 12).889

Property–name frequency. Every property except SEALING appears exactly 67 times, correspond-890

ing to 8.54 % of all annotations each. SEALING appears 48 times (6.11 %).891

Category distribution (overall). Non-consumable 67 (8.54 %), Medium thickness 63 (8.03 %),892

Non-sticky 55 (7.01 %), Contains 50 (6.37 %), Non-containable 38 (4.84 %), Horizontal 38 (4.84 %),893

Hard 36 (4.59 %), Simple 36 (4.59 %), High-density 34 (4.33 %), Light 33 (4.20 %), Multicolored894

33 (4.20 %), Low-density 33 (4.20 %), Soft 31 (3.95 %), Multi-object 31 (3.95 %), Sealed 29 (3.69895

%), Containable 29 (3.69 %), Monochromatic 29 (3.69 %), Unsealed 19 (2.42 %), Vertical 19 (2.42896
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%), Empty 17 (2.17 %), Thick 16 (2.04 %), Thin 16 (2.04 %), Multi-directional 10 (1.27 %), Sticky 7897

(0.89 %), Heavy 6 (0.76 %), Metallic 5 (0.64 %), Variable 5 (0.64 %).898

Category distribution per property. CAPACITY: Non-containable 38 (56.7 %), Containable 29899

(43.3 %). COLOR: Multicolored 33 (49.3 %), Monochromatic 29 (43.3 %), Metallic 5 (7.5 %).900

COMPLEXITY: Simple 36 (53.7 %), Multi-object 31 (46.3 %). CONSUMABILITY: Non-consumable901

67 (100 %). CONTENTS: Contains 50 (74.6 %), Empty 17 (25.4 %). DENSITY: High-density 34902

(50.8 %), Low-density 33 (49.2 %). HARDNESS: Hard 36 (53.7 %), Soft 31 (46.3 %). ORIENTATION:903

Horizontal 38 (56.7 %), Vertical 19 (28.4 %), Multi-directional 10 (14.9 %). SEALING: Sealed 29904

(60.4 %), Unsealed 19 (39.6 %). STICKINESS: Non-sticky 55 (82.1 %), Sticky 7 (10.4 %), Variable 5905

(7.5 %). THICKNESS: Medium 35 (52.2 %), Thick 16 (23.9 %), Thin 16 (23.9 %). WEIGHT: Light 33906

(49.3 %), Medium 28 (41.8 %), Heavy 6 (9.0 %).907

Descriptor distribution (overall). Solid 74 (4.71 %); Reusable 67, Permanent 67 (4.27 % each);908

Lightweight 66 (4.20 %); Balanced 63 (4.01 %); Smooth 55, Slippery 55 (3.50 % each); Filled 50,909

Occupied 50 (3.18 % each); Dense 40 (2.55 %); Flat 38, Reclined 38, Unperforated 38 (2.42 % each);910

Rigid 36, Single-unit 36, Monolithic 36 (2.29 % each); Standard Thickness 35 (2.23 %); Compact911

34 (2.17 %); Gradient 33, Striped 33, Featherweight 33, Buoyant 33 (2.10 % each); Assembled 31,912

Interconnected 31, Plush 31, Flexible 31 (1.97 % each); Airtight 29, Watertight 29, Single Color 29,913

Neutral 29, Hollow 29, Enclosable 29 (1.85 % each); Moderate 28 (1.78 %); Bulky 22 (1.40 %);914

Upright 19, Standing 19, Open 19, Can-leak 19 (1.21 % each); Vacant 17, Void 17 (1.08 % each);915

Sturdy 16, Slim 16, Minimal Thickness 16 (1.02 % each); Rotational 10, Adjustable 10 (0.64 %916

each); Adhesive 7, Tacky 7 (0.45 % each); Glossy 5, Shiny 5, Temporary Stickiness 5, Conditional917

Adhesion 5 (0.32 % each).918

Descriptor distribution per property & category. Each category listed above is characterised by919

exactly two descriptors, each accounting for half of the annotations in that category—for example,920

Containable objects are equally annotated as Hollow and Enclosable, Metallic objects as Glossy and921

Shiny, Hard objects as Solid and Rigid, and so on across all 27 property–category pairs.922

Robocasa923

The Robocasa synthetic-properties subset comprises 424 property annotations describing 41 distinct924

household objects (≈10.3 properties per object).925

Property–name frequency. Eight properties (WEIGHT, COLOR, HARDNESS, CONSUMABILITY,926

COMPLEXITY, THICKNESS, DENSITY, STICKINESS) appear once for every object (41 annotations927

each, 9.67 % apiece). CAPACITY appears 39 times (9.20 %), CONTENTS 38 (8.96 %), and SEALING928

19 (4.48 %).929

Category distribution (overall). Medium 36 (8.49 %), Non-sticky 36 (8.49 %), Contains 33 (7.78930

%), Simple 31 (7.31 %), Non-containable 24 (5.66 %), Consumable 24 (5.66 %), Monochromatic 23931

(5.42 %), High-density 21 (4.95 %), Low-density 20 (4.72 %), Hard 20 (4.72 %), Multicolored 18932

(4.25 %), Light 18 (4.25 %), Soft 17 (4.01 %), Non-consumable 17 (4.01 %), Containable 15 (3.54933

%), Sealed 13 (3.07 %), Thick 10 (2.36 %), Multi-object 10 (2.36 %), Heavy 10 (2.36 %), Thin 8934

(1.89 %), Unsealed 6 (1.42 %), Empty 5 (1.18 %), Brittle 4 (0.94 %), Sticky 3 (0.71 %), Variable 2935

(0.47 %).936

Category distribution per property. CAPACITY: Non-containable 24 (61.5 %), Containable 15937

(38.5 %). COLOR: Monochromatic 23 (56.1 %), Multicolored 18 (43.9 %). COMPLEXITY: Simple 31938

(75.6 %), Multi-object 10 (24.4 %). CONSUMABILITY: Consumable 24 (58.5 %), Non-consumable939

17 (41.5 %). CONTENTS: Contains 33 (86.8 %), Empty 5 (13.2 %). DENSITY: High-density 21 (51.2940

%), Low-density 20 (48.8 %). HARDNESS: Hard 20 (48.8 %), Soft 17 (41.5 %), Brittle 4 (9.8 %).941

SEALING: Sealed 13 (68.4 %), Unsealed 6 (31.6 %). STICKINESS: Non-sticky 36 (87.8 %), Sticky 3942

(7.3 %), Variable 2 (4.9 %). THICKNESS: Medium 23 (56.1 %), Thick 10 (24.4 %), Thin 8 (19.5 %).943

WEIGHT: Light 18 (43.9 %), Medium 13 (31.7 %), Heavy 10 (24.4 %).944

Descriptor distribution (overall). Solid 44 (5.05 %); Lightweight 38 (4.36 %); Balanced 36,945

Smooth 36, Slippery 36 (4.13 % each); Filled 33, Occupied 33 (3.78 % each); Single-unit 31,946
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Monolithic 31, Dense 31 (3.56 % each); Edible 24, Burnable 24, Disposable 24, Unperforated 24947

(2.75 % each); Single Color 23, Neutral 23, Standard Thickness 23 (2.64 % each); Compact 21 (2.41948

%); Buoyant 20, Bulky 20, Rigid 20 (2.29 % each); Featherweight 18, Gradient 18, Striped 18 (2.06949

% each); Plush 17, Flexible 17, Reusable 17, Permanent 17 (1.95 % each); Hollow 15, Enclosable 15950

(1.72 % each); Moderate 13, Airtight 13, Watertight 13 (1.49 % each); Sturdy 10, Assembled 10,951

Interconnected 10 (1.15 % each); Slim 8, Minimal Thickness 8 (0.92 % each); Open 6, Can-leak 6952

(0.69 % each); Vacant 5, Void 5 (0.57 % each); Fragile 4, Breakable 4 (0.46 % each); Adhesive 3,953

Tacky 3 (0.34 % each); Temporary Stickiness 2, Conditional Adhesion 2 (0.23 % each).954

Descriptor distribution per property & category. The synthetic generator enforces symmetric955

pairings: every category co-occurs with exactly two descriptors that split its count evenly—for956

instance, Containable objects are half Hollow and half Enclosable; Consumable items distribute957

equally among Edible, Burnable, and Disposable; Brittle objects are evenly Fragile and Breakable;958

analogous 50 % pairings hold across all remaining property–category combinations.959

OpenImages960

The OpenImages split aggregates 10 506 property annotations covering 679 everyday-object images961

for each of the 12 properties, i.e. 8 148 image–property pairs in total. Annotator effort is uneven but962

broad: Annot.,7 contributed 2 037 labels (19.4 %), Annot.,4 — 1 928 (18.4 %), Annot.,11 — 1 821963

(17.3 %), Annot.,1 and 9 — 1 358 each (12.9 % ea.), Annot.,10 — 694 (6.6 %), Annot.,5 — 585 (5.6964

%), Annot.,3 — 319 (3.0 %), Annot.,8 — 214 (2.0 %), Annot.,6 — 192 (1.8 %).965

Capacity. All 679 images carry a CAPACITY label: Containable 321 (47.28 %), Non-containable966

317 (46.69 %), Don’t-know 35 (5.15 %), Not-applicable 6 (0.88 %). Descriptors cluster in two967

symmetrical pairs—Hollow/Enclosable (321 each, 25.16 % apiece) and Solid/Unperforated (317968

each, 24.84 %).969

Color. 818 colour judgements (often double-annotated) span the same image set. Categories:970

Multicolored 300 (36.67 %), Metallic 260 (31.78 %), Monochromatic 188 (22.98 %), Matte 59 (7.21971

%), Don’t-know 10 (1.22 %), Not-applicable 1. Descriptors: Gradient and Striped 300 each (18.59972

%), Glossy and Shiny 260 each (16.11 %), Single Color 188 (11.65 %).973

Complexity. 1 140 annotations—Multi-object 883 (77.46 %), Simple 242 (21.23 %), Don’t-know974

10, Invalid-format 5. Descriptors: Assembled / Interconnected 883 each (39.24 %), Single-unit /975

Monolithic 242 each (10.76 %).976

Consumability. Every image is labelled once: Non-consumable 633 (93.23 %), Consum-977

able 41 (6.04 %), Invalid-format 4, Not-applicable 1. Descriptors split into reusable978

pairs—Reusable/Permanent 633 each (45.57 %) versus Edible/Burnable/Disposable 41 each (2.95979

%).980

Contents. 679 labels: Contains 249 (36.67 %), Empty 149 (21.94 %), Not-applicable 149 (21.94981

%), Don’t-know 130 (19.15 %), Invalid-format 2. Descriptors: Filled/Occupied 249 each (31.28 %);982

Vacant/Void 149 each (18.72 %).983

Density. High-density 412 (60.68 %), Low-density 248 (36.52 %), Not-applicable 12, Don’t-984

know 6, Variable 1. Descriptors mirror the split—Dense/Compact 412 each (31.16 %) versus985

Lightweight/Buoyant 248 each (18.76 %); one image is uniquely Adjustable.986

Hardness. Hard 297 (43.74 %), Brittle 160 (23.56 %), Don’t-know 126 (18.56 %), Soft 86 (12.67987

%), Not-applicable 10. Descriptor pairs: Solid/Rigid 297 each (27.35 %), Fragile/Breakable 160 each988

(14.73 %), Plush 86 (7.92 %).989

Orientation. Vertical 496 (55.92 %), Horizontal 241 (27.17 %), Multi-directional 70 (7.89 %) plus990

70 identical Invalid-format rows, Don’t-know 8, Not-applicable 2. Descriptors: Upright/Standing991

496 each (30.73 %), Flat/Reclined 241 each (14.93 %), Rotational 70 (4.34 %).992
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Sealing. Unsealed 495 (56.83 %), Sealed 351 (40.30 %), Don’t-know 16 (1.84 %), Not-applicable993

5 (0.57 %), Invalid-format 4 (0.46 %). Descriptors partition cleanly: Open/Can leak 495 each (29.26994

%), Airtight/Watertight 351 each (20.74 %).995

Stickness. 1 358 labels (two annotators × all images): Non-sticky 1 097 (80.78 %), Sticky 244 (17.97996

%), Don’t-know 15, Variable 2. Descriptors: Smooth/Slippery 1 097 each (40.84 %), Adhesive/Tacky997

244 each (9.08 %), Temporary Stickiness 2 (0.07 %).998

Thickness. Thick 258 (38.00 %), Medium 220 (32.40 %), Thin 163 (24.01 %), Not-applicable999

27 (3.98 %), Don’t-know 11 (1.62 %). Descriptors: Sturdy/Bulky 258 each (20.12 %), Standard1000

Thickness/Balanced 220 each (17.16 %), Slim 163 (12.71 %).1001

Weight. Heavy 482 (35.49 %), Light 443 (32.62 %), Medium 426 (31.37 %), Not-applicable 3,1002

Don’t-know 2, Dynamic 2. Descriptors: Bulky/Dense 482 each (17.81 %), Featherweight/Lightweight1003

443 each (16.37 %), Moderate 426 (15.74 %).1004

B.2 Affordance1005

OpenImages1006

Across 116 objects every image is annotated once, giving 116 affordance rows produced by seven1007

annotators. Most images list three affordances (61 entries, 52.6 %), 50 list two (43.1 %), four list one1008

(3.5 %) and one lists none. The ten most frequent affordances are: Hold 36 (12.5 %), Holding 11 (3.81009

%), Open/Close 9 (3.1 %), Cook 9 (3.1 %), Turn on/off 8 (2.8 %), Hold items 6 (2.1 %), Pour 6 (2.11010

%), Fill 5 (1.7 %), Manipulating controls 4 (1.4 %) and Hold food 4 (1.4 %).1011

Real Robot1012

Sixty-eight scenario pairs each have one affordance row, totalling 68 sets. Half of the scenarios list1013

three affordances (34, 50 %), 29 list two (42.7 %) and five list one (7.4 %). Across all 170 recorded1014

affordance slots the most common actions are: act as weight 29 (17.6 %), Contain things 12 (7.3 %),1015

scrape things 10 (6.1 %), stick things 7 (4.2 %), add thickness 7 (4.2 %), act as cushion 7 (4.2 %),1016

followed by fifteen further affordances occurring five or six times each. Slot-wise patterns highlight1017

typical triplets such as Contain things / act as cushion / act as weight (7 cases, 10.3 %), and frequent1018

pairs like stick things / add thickness or break things / act as weight. Slot 3 is often left blank (341019

empty entries, 50 %).1020

Robocasa1021

The synthetic set covers 41 household objects. Eight objects list a single affordance (19.5 %),1022

eighteen list two (43.9 %) and fifteen list three (36.6 %), giving 89 affordance mentions overall.1023

edible dominates slot 1 (23 occurrences, 56.1 %) and is the single most frequent affordance overall1024

(24, 27 %). Other common actions are cookable 10 (11.2 %), garnish and can be used to stir things 41025

each (4.5 %), can contain things, can be used to pour things, stackable and can be contain things1026

3 each (3.4 %). All remaining 26 affordances appear once or twice (≤2.5 % each), illustrating the1027

long-tail synthetically injected diversity. The most common triplet is edible / cookable / ∅ (10 objects,1028

24.4 %), followed by edible / ∅ / ∅ (8, 19.5 %).1029

B.3 Constraints1030

Real Robo1031

This constraint Dataset contains 53 question–answer pairs, one per scenario. The nine distinct1032

questions appear with the following frequencies: “Can we keep the ball inside the penstand?” 131033

(24.53 %); “Can we keep the pen inside the penstand?” 10 (18.87 %); “Can you keep the food on the1034

plate?” 8 (15.09 %); “Can you reverse the stacking of the objects?” 8 (15.09 %); “Can you write on1035

the notepad using the marker?” 6 (11.32 %); “Can the robot stack the object near the right hand on1036

the object near the left hand?” 4 (7.55 %); “Can the robot stack the object near the left hand on the1037

object near the right hand?” 2 (3.77 %); “Can the robot stack the object away from it on the object1038

near it?” 1 (1.89 %); and the lower-case duplicate “can you keep the food on the plate?” 1 (1.89 %).1039

25



All responses are negative and distributed across nineteen phrasings: “No the cube won’t balance on1040

the pyramid.” 14 (26.42 %); “No the penstand is inverted.” 11 (20.75 %); “No the the penstand is1041

inverted.” 4 (7.55 %); “No the penstand is not upright.” 4 (7.55 %); “No the box is on the plate.” 21042

(3.77 %); “No the the penstand is not upright.” 2 (3.77 %); “No the plate is inverted.” 2 (3.77 %);1043

“No the marker is closed.” 2 (3.77 %); “No the notepad is inside the cup.” 2 (3.77 %); plus nine1044

single-occurrence answers covering cube–pyramid balance, covered openings, inverted or closed1045

objects, and misplaced items.1046

Keyword extraction highlights the chief obstacles: “penstand” 23 mentions, “inverted” 20, and the1047

instability trio “cube/balance/pyramid” 15 each, followed by “box” 9, “plate” 8, “closed” 7, “upright”1048

6, and sporadic references to notepad, cup, marker, inside, covered openings, under-placement and1049

table contact.1050

Mapping these words to constraint types shows that inverted-orientation issues account for 20 cases1051

(37.74 %); balance on a pyramid for 15 (28.30 %); object closure for 7 (13.21 %); non-upright1052

alignment for 6 (11.32 %); containment failures (“inside”, “covered”, “under”, “on table”) and other1053

special cases each represent ≤4 % of the set. Overall, tasks are blocked chiefly because penstands or1054

plates are upside-down, cubes cannot balance on pyramids, or target objects are sealed or mis-aligned.1055

Mujoco1056

The Mujoco constraint Dataset contains 4 sub domains wach with 3 camera views. For each view we1057

sample 10 different scenes configurations.1058

C Experimental Setup1059

This appendix provides further details on the experimental setup used for collecting data and for1060

evaluating VLMs on PAC Bench, complementing Section 4.1 of the main paper.1061

C.1 Models Evaluated and Access1062

The VLM evaluations reported in this paper (Section 4) encompass a diverse suite of models. All1063

models were accessed via their respective APIs available through the OpenRouter service4 between1064

April 2024 and May 2024. The specific models evaluated are detailed below, along with their1065

OpenRouter paths:1066

1. Claude 3.7 Sonnet: https://openrouter.ai/anthropic/claude-3.7-sonnet1067

2. Claude 3.7 Sonnet (T): https://openrouter.ai/anthropic/claude-3.7-sonnet:1068

thinking (This denotes Chain-of-Thought prompting applied to the Claude 3.7 Sonnet1069

model.)1070

3. Claude 3.5 Sonnet: https://openrouter.ai/anthropic/claude-3.5-sonnet1071

4. Gemini 2.0 Flash 001: https://openrouter.ai/google/gemini-2.0-flash-0011072

5. Gemini 2.5 Flash P: https://openrouter.ai/google/gemini-2.1073

5-flash-preview1074

6. Gemini 2.5 Pro P: https://openrouter.ai/google/gemini-2.1075

5-pro-preview-03-251076

7. GPT-4.1: https://openrouter.ai/openai/gpt-4.11077

8. o4-mini-high: https://openrouter.ai/openai/o4-mini-high (Note: The "(T)" for1078

this model in some tables also indicates Chain-of-Thought prompting.)1079

9. GPT-4.1 Mini: https://openrouter.ai/openai/gpt-4.1-mini1080

10. Llama 4 Maverick: https://openrouter.ai/meta-llama/llama-4-maverick1081

11. Llama 4 Scout: https://openrouter.ai/meta-llama/llama-4-scout1082

12. Llama 3.2 90B VI: https://openrouter.ai/meta-llama/llama-3.1083

2-90b-vision-instruct (VI denotes Vision Instruct. Your tables may use Llama 3.21084

90B Vision I)1085

4https://openrouter.ai/
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13. Grok 2 Vision: https://openrouter.ai/x-ai/grok-2-vision-12121086

14. Grok Vision Beta: https://openrouter.ai/x-ai/grok-vision-beta1087

15. Qwen2.5 VL: https://openrouter.ai/qwen/qwen2.5-vl-72b-instruct (VL de-1088

notes Vision Language.)1089

16. Qwen VL Plus: https://openrouter.ai/qwen/qwen-vl-plus1090

17. Qwen 3 (235B): https://openrouter.ai/qwen/qwen3-235b-a22b (This appears as1091

"Qwen 3".)1092

C.2 Simulated Constraint Scenario Generation1093

To generate a diverse and controllable set of scenarios for evaluating VLM understanding of physical1094

constraints, we developed a simulation-based pipeline using the MuJoCo physics engine. This1095

approach allows for the systematic creation of situations where specific physical limitations are the1096

primary factor determining task feasibility. Our design focused on four primary constraint domains1097

critical for robotic manipulation:1098

Figure 6: Example scenes corresponding to each constraint domain (left to right): (a) Impossible
Placement: attempting to fit the blue block into the brown box; (b) Occlusion/Support Issues: picking
up the red block beneath another; (c) Stability Constraints: lifting the unstable green block from the
top of a stack; (d) Reachability and Access Constraints: grasping a block placed at the very edge of
the workspace.

• Impossible Placement: These scenarios test the understanding of basic stability and1099

geometric fit. Examples include attempting to place a larger object into a smaller container1100

or balancing an object on an inadequately small or unstable surface. Objects with varying1101

shapes (e.g., cubes, spheres, custom meshes) and sizes were utilized.1102

Prompt: “I want to place the blue object inside the brown box, are there any1103

constraints that prevent me from doing so or is it possible?”1104

Verification Prompt: “Does the following text say that the task is impossible?1105

Answer only with ’true’ or ’false’.”1106

• Occlusion/Support Issues: These scenarios evaluate reasoning about object inter-1107

dependencies and access. A typical setup involves a target object being either partially or1108

fully occluded by another object, or where the target object is currently supporting another,1109

making its removal problematic (e.g., preventing a stack from toppling if a lower block is1110

removed).1111

Prompt: “I want to pick up the red object from the bottom of the stack, are there1112

any constraints that prevent me from doing so or is it possible?”1113

Verification Prompt: “Does the following text say that object on the top might fall1114

due to it’s placement? Answer only with ’true’ or ’false’.”1115

• Stability Constraints: These focus on the inherent stability of an object or an assembly1116

if an action is performed. Examples include attempting to pick a block from an unstable1117

stack where the act of picking itself or the removal of the object leads to the collapse of the1118

remaining structure, or attempting to place an object such that the resulting configuration is1119

unstable.1120

Prompt: “I want to pick up the green object from the top of the stack, are there1121

any constraints that prevent me from doing so or is it possible?”1122

Verification Prompt: “Does the following text say that object on the top might fall1123

due to it’s placement? Answer only with ’true’ or ’false’.”1124
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Figure 7: Samples from robocasa datapoint in PACBench

• Reachability and Access Constraints: These scenarios test understanding of spatial and1125

kinematic limitations. Objects might be placed at the edge of a workspace, behind obstacles,1126

or in orientations that make them difficult or impossible for a standard robotic gripper to1127

access without collision or exceeding plausible joint limits.1128

Prompt: “I want to pick up the red object from the edge of the stack, are there any1129

constraints that prevent me from doing so or is it possible?”1130

Verification Prompt: “Does the following text say that object is out of reach?1131

Answer only with ’true’ or ’false’.”1132

For each of these four domains, we procedurally generated 10 distinct environment instantiations.1133

Randomization was applied to object properties (e.g., slight variations in size and mass where relevant1134

for dynamics), initial positions and orientations, as well as the placement of minor distractor objects1135

to increase visual diversity while ensuring the core constraint remained salient.1136

Figure 6 provides a visual summary of one example from each sub-domain.1137

C.3 Synthetic Object-Centric Dataset from RoboCasa Assets1138

To support fine-grained object reasoning evaluations, we constructed a synthetic image dataset by1139

curating a subset of authentic 3D meshes from the RoboCasa simulation framework. While RoboCasa1140

provides a rich large-scale kitchen environment with hundreds of AI-generated and hand-modeled1141

assets, we selected only the 45 objects that had artist-modeled meshes (i.e., excluding purely AI-1142

generated models). Each object is paired with high-resolution renders, manual affordance annotations,1143

and detailed physical/property labels.1144

• Asset Selection: We chose 45 common kitchen and tabletop items, spanning food-1145

stuffs, containers, utensils, and small appliances. The full set is: apple, baguette,1146

beer, bottled_water, bowl, boxed_food, broccoli, candle, cereal,1147

cheese, chocolate, corn, croissant, cucumber, cupcake, cutting_board,1148

donut, egg, eggplant, jug, ketchup, kettle_non_electric, knife,1149

lime, liquor, milk, onion, orange, pan, peach, pot, potato, shaker,1150
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spatula, sponge, spoon, spray, sweet_potato, tangerine, teapot,1151

tomato, tray, waffle, wine, yogurt.1152

• Viewpoint Sampling: Each object was rendered from 24 distinct viewpoints by rotating1153

the camera around the object’s vertical axis (Z) at three elevations (−30◦, 0◦,+30◦) and1154

eight azimuths (0◦, 45◦, . . . , 315◦). Filenames follow the pattern:1155

elev<elevation>_azim<azimuth>.png1156

for example elev-30_azim135.png, yielding 45× 24 = 1080 high-resolution images.1157

• Affordance Annotation and Evaluation: We hand-annotated 41 of the 45 objects with1158

one or more affordances (e.g., edible, pourable, stackable). To probe model understanding,1159

we used the prompt:1160

List all the possible affordances of a <object_name>.1161

An affordance is what an object can be used for or what1162

actions can be performed with it. List them in a clear,1163

comma-separated format.1164

We then computed two strict metrics:1165

1. All-correct: Does the LLM output contain all ground-truth affordances?1166

2. At-least-one: Does the LLM output contain at least one ground-truth affordance?1167

Verification prompts were:1168

Given the following ground truth affordances for a1169

<object_name>: <list>1170

And the following LLM response: <llm_response>1171

Does the LLM response contain all the ground truth1172

affordances? Answer only with ’true’ or ’false’.1173

Given the following ground truth affordances for a1174

<object_name>: <list>1175

And the following LLM response: <llm_response>1176

Does the LLM response contain at least one of the ground1177

truth affordances? Answer only with ’true’ or ’false’.1178

• Property Annotation and Evaluation: We manually labeled each object with up to1179

11 physical and functional properties: COLOR, COMPLEXITY, CONSUMABILITY, DENSITY,1180

HARDNESS, STICKINESS, THICKNESS, WEIGHT, CAPACITY, CONTENTS, and SEALING. Ta-1181

ble 5 summarizes the number of objects annotated per property. For example, yogurt was1182

annotated as:1183

yogurt|WEIGHT|Medium|Moderate, Balanced1184

yogurt|COLOR|Multicolored|Gradient, Striped1185

yogurt|HARDNESS|Hard|Solid, Rigid1186

. . .1187

Each property uses a predefined set of discrete options and synonyms. We defined:1188

WEIGHT_options = """1189

Light: Featherweight, Lightweight1190

Medium: Moderate, Balanced1191

Heavy: Bulky, Dense1192

Dynamic: Fluctuating, Variable1193

"""1194

1195

COLOR_options = """1196

Monochromatic: Single Color, Neutral1197

Multicolored: Gradient, Striped1198

Metallic: Glossy, Shiny1199

Matte: Flat, Dull1200

"""1201

1202

HARDNESS_options = """1203
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Hard: Solid, Rigid1204

Soft: Plush, Flexible1205

Brittle: Fragile, Breakable1206

"""1207

1208

ORIENTATION_options = """1209

Vertical: Upright, Standing1210

Horizontal: Flat, Reclined1211

Multi-directional: Rotational, Adjustable1212

"""1213

1214

CONSUMABILITY_options = """1215

Consumable: Edible, Burnable, Disposable1216

Non-consumable: Reusable, Permanent1217

"""1218

1219

COMPLEXITY_options = """1220

Simple: Single-unit, Monolithic1221

Multi-object: Assembled, Interconnected1222

"""1223

1224

CAPACITY_options = """1225

Containable: Hollow, Enclosable1226

Non-containable: Solid, Unperforated1227

"""1228

1229

CONTENTS_options = """1230

Contains: Filled, Occupied1231

Empty: Vacant, Void1232

"""1233

1234

SEALING_options = """1235

Sealed: Airtight, Watertight1236

Unsealed: Open, can leak1237

"""1238

1239

DENSITY_options = """1240

High-density: Dense, Compact1241

Low-density: Lightweight, Buoyant1242

Variable: Adjustable, Fluid1243

"""1244

1245

THICKNESS_options = """1246

Thin: Slim, Minimal Thickness1247

Medium: Standard Thickness, Balanced1248

Thick: Sturdy, Bulky1249

"""1250

1251

STICKINESS_options = """1252

Sticky: Adhesive, Tacky1253

Non-sticky: Smooth, Slippery1254

Variable: Temporary Stickiness, Conditional Adhesion1255

"""1256

1257

Models were queried with the following template:1258

Evaluate the {property} of the object(s) enclosed within the1259

red bounding box in the image.1260

Respond with only one of the following options:1261

30



{options}1262

Provide no additional text, explanations, or numbers.1263

Property # Objects Annotated
COLOR 41
COMPLEXITY 41
CONSUMABILITY 41
DENSITY 41
HARDNESS 41
STICKINESS 41
THICKNESS 41
WEIGHT 41
CAPACITY 39
CONTENTS 38
SEALING 19

Table 5: Number of objects annotated per property.

Overall, this dataset comprises 1080 images of 45 objects, enriched with manual affordance and prop-1264

erty labels, enabling comprehensive evaluation of VLM performance on view-invariant recognition,1265

affordance inference, and property classification tasks.1266

C.4 Open Images V7 Subset for Object-Centric Affordance and Property Evaluation1267

Open Images V7 is a comprehensive, real-world image corpus of approximately 1.9 million im-1268

ages spanning 600 object classes, annotated with image-level labels, bounding boxes, segmenta-1269

tion masks, visual relationships, and localized narratives. From this large-scale dataset, we se-1270

lected 116 object classes for which single-instance examples could be clearly isolated and anno-1271

tated. For each class, we sampled between four and eight representative images, yielding a total1272

of 679 unique frames. Filenames conform to the pattern <object_id>_<image_id>.jpg (e.g.1273

012w5l_226957c99fab6ddf.jpg), where the first token denotes the Open Images class identifier1274

and the second is the image hash. In every image, exactly one instance of the target object is marked1275

with a yellow bounding box (see Fig. 8).1276

To probe visual-language models’ understanding of object affordances, we gathered human1277

annotations at the class level, specifying between one and three affordances per object (for1278

example, “Sit”, “Pour”, or “Cut”). These annotations were recorded in CSV form as1279

object,affordance1,affordance2,affordance3, resulting in over 300 total affordance en-1280

tries across the 116 classes. Model outputs are evaluated under two strict criteria: (1) whether1281

all ground-truth affordances appear in the response (“all-correct”), and (2) whether at least one1282

ground-truth affordance appears (“at-least-one”). Verification is automated via prompts that present1283

the ground-truth list alongside the model’s response and request a single answer of “true” or “false.”1284

In addition to affordances, we annotated each image for up to 15 physical and functional properties1285

(COLOR, COMPLEXITY, CONSUMABILITY, DENSITY, HARDNESS, STICKINESS, THICK-1286

NESS, WEIGHT, CAPACITY, CONTENTS, SEALING, ORIENTATION, plus four domain-specific1287

traits). Over 12,421 annotation entries were collected, corresponding to 10,506 unique (image,1288

property) pairs—some images received multiple annotations for the same property. The distribution1289

of annotations per property file is summarized below:1290
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Figure 8: Example from our Open Images subset: a single object annotated with a red bounding box.

Property File Lines
property_CAPACITY_.csv 679
property_COLOR_.csv 818
property_COMPLEXITY_.csv 1140
property_CONSUMABILITY_.csv 679
property_CONTENTS_.csv 679
property_DENSITY_.csv 679
property_HARDNESS_.csv 679
property_ORIENTATION_.csv 887
property_SEALING_.csv 871
property_STICKINESS_.csv 1358
property_THICKNESS_.csv 679
property_WEIGHT_.csv 1358

1291

Models are queried with the template:1292

Evaluate the {property} of the object(s) enclosed within the1293

red bounding box in the image.1294

Respond with only one of the following options: {options}1295

Provide no additional text, explanations, or numbers.1296

Because Open Images V7 comprises 600 classes and nearly two million images, this protocol can1297

be extended seamlessly to new categories and additional examples. Once class-level affordance and1298

property labels are established, any further images sampled under the same class identifier inherit1299

those annotations, enabling scalable evaluation of view-invariant recognition, affordance inference,1300

and physical attribute classification.1301

C.5 Embodied Robot Capture: Unitree G1 Dual-Arm Dataset1302

To complement our web-sourced and simulated resources with truly embodied visual data, we1303

collected a fresh corpus of interactions using a dual-arm Unitree G1 humanoid operating in an indoor1304

laboratory. The robot was tele-operated or executed short, pre-programmed primitives at a standing1305

workstation filled with diverse household objects that were not present in either our RoboCasa or1306

Open-Images subsets, thereby increasing inter-dataset heterogeneity. Each scene was photographed1307

simultaneously from two calibrated perspectives: an egocentric camera rigidly attached to the robot’s1308

head (1280× 720 at 30 Hz) and a side-mounted static camera that offered a wider allocentric view of1309

the workspace. The resulting paired images allow Vision–Language Models (VLMs) to be probed1310

under both first- and third-person viewpoints—conditions that often lead to markedly different1311

perceptual challenges in robotics.1312
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Figure 9: Samples from Unitree G1 humanoid from PacBench

Property annotations. For every object-centric tabletop configuration we recorded up to twelve1313

physical and functional properties using the controlled vocabulary introduced in previous sections1314

(e.g., WEIGHT, COLOR, SEALING). A total of 785 property rows were produced across 67 unique image1315

pairs, giving an average of roughly twelve properties per scenario. All properties except SEALING1316

are exhaustively annotated for every scene; SEALING appears in 48 of the 67 cases, reflecting either1317

inapplicability or annotator uncertainty for the remaining scenes. Distributions are well balanced:1318

for example, the WEIGHT axis splits into Light (49 %), Medium (42 %), and Heavy (9 %), while1319

COLOR is almost evenly divided between Monochromatic and Multicolored with a small metallic tail.1320

Descriptor-level statistics show that every categorical choice is accompanied by its canonical pair of1321

synonyms (e.g., Dense, Compact whenever High-density is selected), a consequence of the structured1322

drop-down interface used during labelling.1323

Affordance annotations. Sixty-eight scenarios were further enriched with up to three free-form1324

affordances per object, resulting in 181 individual affordance strings. Half of the scenes list a full1325

triplet, roughly 43 % include two entries, and only seven per cent contain a single affordance. The1326

vocabulary is intentionally open; nevertheless several patterns emerge—“act as weight” accounts for1327

18 % of all mentions, followed by “contain things” and “scrape things.” Frequent combinations such as1328

(contain things, act as cushion, act as weight) illustrate that annotators naturally link physical support,1329

compliance, and mass when reasoning about everyday artefacts. Evaluation uses the same strict1330

“all-correct” and “at-least-one” metrics adopted for our other datasets, coupled with the verification1331

prompts described earlier.1332

Constraint annotations. Finally, 53 of the scenarios include a natural-language question about the1333

feasibility of a specific robot action together with a short justification when the answer is negative.1334

These queries test spatial reasoning (e.g., balancing a cube on a pyramid), containment under1335

orientation changes (placing items inside an inverted pen-stand), and accessibility issues (writing1336

when a marker cap is closed). Recurrent keywords such as inverted, balance, upright, and closed1337

reveal the dominant failure modes considered. Although the majority of responses start with a terse1338

“No,” the accompanying explanations provide fine-grained cues that are invaluable for evaluating1339

whether a VLM can pinpoint the exact limiting factor.1340

Cross-modal linking and usage. Because every record—whether property, affordance, or con-1341

straint—references the same cam0_file / cam1_file pair, researchers can seamlessly join the three1342

ground-truth tables to obtain a fully articulated description of each physical scene. This makes it1343

possible to explore, for instance, how an object’s annotated orientation (Vertical, Horizontal,1344

Multi-directional) influences both its perceived affordances and the constraints imposed on1345

manipulation tasks. The corpus therefore serves as a high-fidelity test-bed for embodied VLM1346

evaluation, filling the gap between purely synthetic renders and images scraped from the web. In total,1347

the Unitree G1 set delivers 67–68 richly annotated scenarios, amounting to hundreds of individual1348

labels that capture the intertwined facets of Properties, Affordances, and Constraints from a truly1349

robot-centric vantage point.1350
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D Additional Model Evaluation Results1351

D.1 Prompt Design1352

Notations like "(T)" or "CoT" in the result tables (e.g., for Claude 3.7 Sonnet (T), o4-mini-high (T))1353

indicate the application of a Chain-of-Thought prompting strategy, where models were explicitly1354

instructed to "think step by step" or provide reasoning before their final answer. The syntax for1355

prompts are shown in Section C.2 C.3 C.41356

D.2 Properties Evaluations1357

Beyond direct querying, we investigated the influence of prompting strategies, specifically Chain-of-1358

Thought (CoT), on the performance of VLMs in understanding object properties. Table 8 presents1359

the accuracies for various models when employing CoT prompting, which can be compared against1360

their direct query performance shown in Table 7 (our main property results table with new data).1361

Table 6: Properties accuracy (%) of leading VLMs across twelve distinct object property categories
Model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Claude 3.5 Sonnet 17.8 0.0 0.4 0.3 31.9 0.0 42.3 15.8 2.7 0.0 52.0 0.0
Claude 3.7 Sonnet 88.1 20.2 34.0 91.4 23.5 36.7 37.0 48.7 66.4 96.6 59.2 32.6
Claude 3.7 Sonnet (T) 81.3 6.7 38.4 93.8 22.3 9.0 23.4 24.0 50.9 73.8 46.2 15.0

Gemini 2.0 Flash 001 59.4 19.7 84.8 7.0 35.3 58.0 43.9 57.6 56.1 38.2 24.3 40.8
Gemini 2.5 Flash P 54.9 26.9 47.3 11.0 28.8 40.1 31.1 41.1 58.9 74.5 29.2 27.1
Gemini 2.5 Pro P** 48.9 27.0 47.4 23.7 34.1 43.2 16.7 33.1 57.2 23.2 32.6 31.2

Llama 3.2 90B Vision I 35.6 13.1 33.3 1.3 14.8 25.0 12.8 47.5 30.2 23.1 26.8 4.2
Llama 4 Maverick 53.0 36.2 52.5 69.6 34.9 47.0 14.6 53.9 90.0 93.6 37.9 37.6
Llama 4 Scout 43.3 30.4 12.6 0.2 0.6 51.1 18.6 31.7 84.9 9.5 28.3 36.4

GPT-4.1 Mini 70.1 26.6 85.0 59.9 28.4 43.2 18.1 45.6 64.0 91.9 52.3 24.1
GPT-4.1 10.9 13.8 38.1 5.3 29.0 25.9 27.8 42.3 91.0 35.3 37.0 4.4
o4-mini-high (T) 1.2 17.1 62.7 15.6 0.2 26.4 26.2 35.2 72.7 60.6 23.6 4.7

Qwen VL Plus 50.0 25.0 66.7 0.0 0.0 50.0 0.0 0.0 50.0 0.0 0.0 66.7
Qwen2.5 VL 53.2 21.9 34.2 9.0 20.7 9.6 42.3 57.1 61.8 70.7 66.6 18.7

Chain-of-Thought Efficacy: A Mixed Bag for Property Recognition. Our analysis reveals that the1362

impact of CoT prompting on property recognition is model-dependent and not uniformly beneficial1363

across all properties or models. For instance, ‘Claude 3.7 Sonnet‘ shows a notable improvement with1364

CoT on ‘Sealing (P9)‘ (from 13.2% direct to 69.8% CoT) and ‘Stickiness (P10)‘ (from 79.1% direct1365

to 100.0% CoT). However, for the same model, CoT appears to slightly decrease performance on1366

‘Density (P6)‘ (from 55.7% direct to 41.5% CoT). Its ‘(T)‘ variant in Table 8 (which is its CoT run)1367

also shows improvements in some areas like ‘Complexity (P3)‘.1368

D.3 Affordance Evaluations1369

Following Table 12 shows Accuracy (%) of VLMs on recognizing atleast one affordances for objects1370

using Single-Category Mapping in PAC Bench. For the object classes ’Adhesive tape’, ’Backpack’,1371

’Band-aid’, ’Bathroom accessory’, ’Bathroom cabinet’, ’Bathtub’, ’Blender’, ’Book’, ’Bookcase’,1372

’Bottle’, ’Bowl’, ’Box’, ’Cabinetry’, ’Can opener’, ’Cart’, ’Chair’, ’Chest of drawers’, ’Closet’,1373

’Clothing’, ’Coffeemaker’, ’Container’, ’Cooking spray’, ’Countertop’, ’Cupboard’, ’Cutting board’,1374

’Desk’, ’Diaper’, ’Dishwasher’, ’Door’, ’Door handle’, ’Drawer’, ’Drill (Tool)’, ’Egg (Food)’,1375

’Filing cabinet’, ’Flashlight’, ’Flowerpot’, ’Food processor’, ’Fork’, ’Frying pan’, ’Furniture’, ’Gas1376

stove’, ’Glove’, ’Grinder’, ’Hammer’, ’Home appliance’, ’Infant bed’, ’Jug’, ’Kettle’, ’Kitchen &1377

dining room table’, ’Kitchen appliance’, ’Kitchen knife’, ’Kitchen utensil’, ’Knife’, ’Ladder’, ’Ladle’,1378

’Laptop’, ’Lavender (Plant)’, ’Light bulb’, ’Light switch’, ’Measuring cup’, ’Microwave oven’, ’Milk’,1379

’Mirror’, ’Mixer’, ’Mixing bowl’, ’Mobile phone’, ’Mug’, ’Organ (Musical Instrument)’, ’Oven’,1380

’Paper towel’, ’Pen’, ’Pitcher (Container)’, ’Plant’, ’Plastic bag’, ’Plate’, ’Plumbing fixture’, ’Power1381

plugs and sockets’, ’Pressure cooker’, ’Refrigerator’, ’Remote control’, ’Scissors’, ’Screwdriver’,1382

’Serving tray’, ’Shelf’, ’Shower’, ’Sink’, ’Slow cooker’, ’Soap dispenser’, ’Spatula’, ’Spice rack’,1383

’Spoon’, ’Stairs’, ’Stool’, ’Table’, ’Tablet computer’, ’Tableware’, ’Tap’, ’Toaster’, ’Toilet’, ’Toilet1384
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Table 7: Properties Accuracy for Humanoid dataset
Model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Claude 3.7 Sonnet 74.6 47.8 47.3 93.0 30.3 55.7 55.7 59.7 13.2 79.1 39.3 48.3
Claude 3.5 Sonnet 83.6 50.2 48.8 89.6 28.9 52.7 55.2 58.7 19.4 83.6 42.8 50.7

Gemini 2.0 Flash 001 76.6 55.2 49.3 63.2 39.8 46.8 54.7 41.3 38.2 66.7 53.2 40.3
Gemini 2.5 Flash P 71.6 53.2 56.2 74.1 27.9 40.3 63.2 65.2 37.5 41.8 42.3 33.8

GPT-4.1* 76.1 51.2 52.7 66.7 55.7 58.2 64.2 60.7 43.8 81.6 41.8 43.3
GPT-4.1 Mini 55.2 36.3 47.3 75.1 36.3 40.3 60.2 58.7 15.3 49.3 38.8 26.9

Llama 4 Maverick 82.1 43.8 46.3 82.6 77.1 57.7 54.2 47.8 40.3 62.7 40.8 59.2
Llama 4 Scout 81.6 51.2 45.8 62.2 60.2 43.3 51.2 54.2 36.1 73.6 44.3 37.8
Llama 3.2 90B VI* 59.7 37.3 36.3 39.3 51.2 44.8 37.3 39.8 27.1 56.7 16.9 31.3

Qwen2.5 VL 31.3 47.8 46.3 27.9 22.9 4.5 35.8 34.3 2.8 5.0 15.4 24.9
Qwen VL Plus* 25.4 15.4 28.4 22.9 20.4 39.3 34.3 29.4 31.3 12.4 14.4 5.5

Grok 2 Vision 69.7 49.3 45.8 53.7 82.6 40.3 56.7 55.2 11.1 78.6 37.3 31.8
Grok Vision Beta* 7.5 4.5 4.5 8.0 1.5 5.0 4.5 3.0 1.4 7.0 3.5 1.0

Table 8: Properties accuracy using chain-of-thought (COT) prompting. (**) Subset of properties
evaluated.
Model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Claude 3.5 Sonnet 21.5 2.6 4.4 4.2 35.2 1.2 43.2 20.0 6.4 3.5 52.2 4.9
Claude 3.7 Sonnet 89.9 21.3 36.8 94.6 24.6 41.5 41.7 50.2 69.8 100.0 63.3 35.1
Claude 3.7 Sonnet (T) 84.5 9.9 41.0 94.2 25.9 10.9 28.2 24.8 54.4 78.3 48.0 16.6

Gemini 2.0 Flash 001 62.5 20.6 86.0 7.8 36.5 62.5 48.5 60.3 57.9 39.9 24.9 44.8
Gemini 2.5 Flash P 57.6 30.3 47.8 15.5 30.4 43.2 32.9 45.8 60.3 76.4 31.8 28.4
Gemini 2.5 Pro P** – 28.9 – – – 20.7 – – – – 35.0 –

Llama 3.2 90B Vision I 36.1 17.8 37.8 4.4 18.5 27.6 12.9 51.0 34.3 23.5 27.9 6.4
Llama 4 Maverick 57.2 36.8 57.0 69.7 38.1 49.9 19.2 56.7 94.1 96.5 41.0 38.0
Llama 4 Scout 44.9 32.1 15.7 0.7 4.8 53.6 20.7 32.2 89.2 9.6 28.7 36.5

GPT-4.1 Mini 71.0 27.1 86.7 63.2 31.6 44.1 22.9 48.7 68.6 94.2 52.5 28.9
GPT-4.1 11.1 18.4 39.8 5.4 31.8 29.5 32.7 47.2 93.5 38.0 39.6 8.6
o4-mini-high 4.1 21.5 66.3 16.4 0.6 27.8 30.5 35.9 75.2 62.0 26.3 8.1

Qwen VL Plus 53.4 26.3 71.2 2.7 1.8 50.1 1.5 2.6 54.0 3.0 3.2 68.7
Qwen2.5 VL 53.3 25.2 38.6 12.5 22.0 12.8 44.2 61.4 65.1 70.9 70.2 19.5

paper’, ’Tool’, ’Toothbrush’, ’Torch’, ’Towel’, ’Toy’, ’Waffle iron’, ’Wardrobe’, ’Washing machine’,1385

’Waste container’, ’Whisk’, ’Window blind’, ’Wok’, ’Wood-burning stove’, ’Wrench’, ’Zucchini’.1386
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Adhesive Tape 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Backpack 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Band-Aid 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bathroom Accessory 0.0 0.0 0.0 0.0 100.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0
Bathroom Cabinet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bathtub 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Blender 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Book 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bookcase 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bottle 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bowl 0.0 0.0 0.0 0.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0 0.0
Box 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0

(continued on next page)
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Cabinetry 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Can Opener 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cart 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chair 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Chest Of Drawers 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Closet 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0
Clothing 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Coffeemaker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Container 100.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0
Cooking Spray 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Countertop 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cupboard 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Cutting Board 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Desk 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 100.0
Diaper 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dishwasher 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Door 100.0 100.0 100.0 0.0 0.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
Door Handle 100.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0
Drawer 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Drill (Tool) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Egg (Food) 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0
Filing Cabinet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Flashlight 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Flowerpot 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Food Processor 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fork 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Frying Pan 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Furniture 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Gas Stove 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Glove 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Grinder 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Hammer 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Home Appliance 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Infant Bed 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jug 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Kettle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Kitchen Appliance 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen Knife 0.0 100.0 100.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
Kitchen Utensil 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
Knife 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Ladder 100.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0
Ladle 0.0 0.0 100.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Laptop 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lavender (Plant) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Light Bulb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Light Switch 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 100.0
Measuring Cup 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Microwave Oven 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Milk 100.0 0.0 0.0 0.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0
Mirror 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0
Mixer 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing Bowl 100.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0
Mobile Phone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Organ (Musical Instrument) 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Oven 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Paper Towel 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pen 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Pitcher (Container) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0
Plant 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plastic Bag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plate 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plumbing Fixture 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0
Power Plugs And Sockets 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pressure Cooker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Refrigerator 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
Remote Control 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Scissors 100.0 0.0 0.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
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Screwdriver 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0
Serving Tray 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shelf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shower 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sink 0.0 100.0 0.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0
Slow Cooker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Soap Dispenser 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0 0.0
Spatula 100.0 100.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0
Spice Rack 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Spoon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stairs 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 0.0 100.0
Stool 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Table 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Tablet Computer 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tableware 0.0 100.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
Toaster 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toilet 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Toilet Paper 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Tool 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Toothbrush 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Torch 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Towel 0.0 100.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0 100.0 0.0
Toy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Waffle Iron 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wardrobe 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Washing Machine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0
Waste Container 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Whisk 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
Window Blind 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wok 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Wood-Burning Stove 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wrench 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 100.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 100.0
Zucchini 0.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0 100.0 0.0 100.0 0.0 100.0 100.0 0.0

Following Table 14 shows Accuracy (%) of VLMs on recognizing all correct affordances for objects1387

using Single-Category Mapping in PAC Bench.1388
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Adhesive Tape 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Backpack 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Band-Aid 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bathroom Accessory 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bathroom Cabinet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bathtub 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Blender 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Book 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bookcase 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bottle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bowl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Box 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cabinetry 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Can Opener 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cart 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chair 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chest Of Drawers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(continued on next page)
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Closet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Clothing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Coffeemaker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Container 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cooking Spray 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Countertop 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cupboard 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cutting Board 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Desk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Diaper 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dishwasher 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Door 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Door Handle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Drawer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Drill (Tool) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Egg (Food) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Filing Cabinet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Flashlight 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Flowerpot 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Food Processor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fork 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Frying Pan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Furniture 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gas Stove 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Glove 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Grinder 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hammer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Home Appliance 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Infant Bed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kettle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen Appliance 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen Knife 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kitchen Utensil 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Knife 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ladder 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ladle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Laptop 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lavender (Plant) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Light Bulb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Light Switch 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Measuring Cup 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Microwave Oven 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mirror 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixing Bowl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mobile Phone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Organ (Musical Instrument) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Oven 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Paper Towel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pitcher (Container) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plant 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plastic Bag 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plumbing Fixture 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Power Plugs And Sockets 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pressure Cooker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Refrigerator 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Remote Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Scissors 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Screwdriver 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Serving Tray 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shelf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shower 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sink 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Slow Cooker 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Soap Dispenser 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Spatula 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Spice Rack 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Spoon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stairs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
Stool 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Table 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tablet Computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tableware 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toaster 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toilet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toilet Paper 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tool 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toothbrush 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Torch 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Towel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Waffle Iron 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wardrobe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Washing Machine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Waste Container 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Whisk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Window Blind 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wok 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wood-Burning Stove 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wrench 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Zucchini 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

D.4 Constraint Evaluations1389

E Human Survey1390

This section describes how we gathered and filtered the human–annotated labels that accompany1391

our three image collections: (i) a single–image subset of OpenImages, (ii) the Real-Robo dual-1392

view humanoid dataset, and (iii) the RoboCasa synthetic renders. Across all datasets we collected1393

categorical judgements for 15 physical-property ontologies (e.g. Weight, Hardness, Capacity)1394

together with free-form affordances and, where relevant, environment constraints. The same label1395

set, category order, and keyboard shortcuts were used everywhere to ensure a uniform annotation1396

experience (see Figures 11–15).1397
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Figure 10: Performance of best models from each family
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Table 9: Affordance Accuracy (%) of VLMs on recognizing at least one correct affordance for
objects grouped by primary categories (Single-Category Mapping)
Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 H1 H2 H3
Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 16.7 25.0 0.0 66.7 13.3 40.0 9.1 0.0 0.0 0.0 44.4 0.0 2.9 47.1 14.7
Claude 3.7 Sonnet (T) 0.0 5.6 0.0 30.0 0.0 0.0 0.0 0.0 11.1 0.0 6.7 20.0 18.2 0.0 0.0 0.0 0.0 0.0 2.9 54.4 10.3
Claude 3.7 Sonnet 100.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 11.1 66.7 0.0 20.0 22.7 100.0 0.0 0.0 33.3 0.0 2.9 58.8 11.8

Gemini 2.0 Flash 001 0.0 0.0 0.0 40.0 0.0 0.0 16.7 0.0 0.0 66.7 0.0 40.0 13.6 0.0 0.0 0.0 11.1 0.0 54.4 66.2 64.7
Gemini 2.5 Flash P 0.0 5.6 0.0 20.0 0.0 50.0 0.0 0.0 11.1 66.7 13.3 40.0 18.2 0.0 50.0 0.0 22.2 0.0 52.9 55.9 57.4
Gemini 2.5 Pro P 0.0 16.7 66.7 30.0 0.0 0.0 33.3 25.0 22.2 66.7 26.7 60.0 31.8 0.0 0.0 33.3 11.1 0.0 0.0 0.0 0.0

Llama 3.2 11B Vision I 100.0 22.2 0.0 30.0 0.0 50.0 33.3 0.0 22.2 66.7 0.0 0.0 13.6 0.0 50.0 33.3 33.3 0.0 20.5 27.9 25.0
Llama 3.2 90B Vision I 100.0 11.1 33.3 10.0 0.0 50.0 50.0 25.0 22.2 66.7 26.7 60.0 9.1 0.0 0.0 0.0 22.2 0.0 22.1 44.1 0.0
Llama 4 Maverick 0.0 22.2 33.3 50.0 0.0 100.0 50.0 0.0 33.3 66.7 26.7 100.0 31.8 0.0 0.0 33.3 11.1 100.0 20.6 39.7 23.5
Llama 4 Scout 0.0 11.1 66.7 50.0 0.0 50.0 50.0 25.0 33.3 66.7 53.3 60.0 54.6 100.0 50.0 0.0 33.3 0.0 20.6 27.9 26.5

GPT 4.1 Mini 0.0 5.6 0.0 30.0 0.0 0.0 50.0 25.0 0.0 100.0 13.3 60.0 36.4 0.0 0.0 0.0 55.6 0.0 20.6 57.4 25.0
GPT 4.1 0.0 5.6 0.0 20.0 0.0 0.0 16.7 25.0 0.0 0.0 6.7 60.0 18.2 0.0 0.0 0.0 33.3 0.0 48.5 67.6 45.6
o4-mini-high (T) 0.0 16.7 0.0 20.0 0.0 0.0 16.7 25.0 11.1 33.3 33.3 20.0 22.7 0.0 0.0 0.0 11.1 0.0 16.2 45.6 35.3

Qwen 2.5 VL 0.0 0.0 0.0 30.0 0.0 0.0 33.3 0.0 0.0 100.0 6.7 80.0 9.1 0.0 0.0 0.0 11.1 0.0 14.7 48.5 20.6
Qwen 3 0.0 5.5 0.0 30.0 0.0 0.0 33.3 25.0 0.0 100.0 0.0 60.0 13.6 0.0 0.0 0.0 44.4 0.0 4.4 1.4 8.8

Grok 2 Vision 0.0 5.6 33.3 50.0 0.0 0.0 0.0 0.0 11.1 100.0 6.7 20.0 13.6 100.0 50.0 0.0 0.0 0.0 44.1 47.1 41.2
Grok 2 Beta 0.0 5.6 0.0 10.0 0.0 0.0 0.0 0.0 11.1 0.0 13.3 20.0 4.6 0.0 0.0 0.0 33.3 100.0 8.8 8.8 7.4

Table 10: Accuracy (%) of VLMs on recognizing all correct affordances for objects grouped by
primary categories (Single-Category Mapping) in PAC Bench. Categories C1-C18 are as defined in
Table 3
Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18
Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Claude 3.7 Sonnet (T) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Claude 3.7 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Gemini 2.0 Flash 001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gemini 2.5 Flash P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gemini 2.5 Pro P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Llama 3.2 11B Vision I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 3.2 90B Vision I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 4 Maverick 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 4 Scout 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0

GPT 4.1 Mini 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GPT 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0
o4-mini-high (T) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Qwen VP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen 2.5 VL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 0.0

Grok 2 Vision 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Grok 2 Beta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 11: Accuracy (%) of VLMs on recognizing at least one correct affordance for objects using
Multi-Category Mapping in PAC Bench.
Model A1 A2 A3 A4 A5 C6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18
Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 18.2 20.0 0.0 50.0 18.8 14.3 5.3 0.0 14.3 0.0 35.7 0.0
Claude 3.7 Sonnet (T) 0.0 5.6 0.0 27.3 0.0 0.0 0.0 0.0 9.1 0.0 12.5 14.3 10.5 0.0 0.0 12.5 7.1 0.0
Claude 3.7 Sonnet 100.0 0.0 0.0 18.2 0.0 0.0 0.0 0.0 9.1 50.0 6.2 14.3 13.2 100.0 14.3 12.5 35.7 0.0
Gemini 2.0 Flash 001 0.0 0.0 0.0 36.4 0.0 0.0 9.1 0.0 0.0 50.0 0.0 21.4 7.9 0.0 14.3 25.0 7.1 0.0
Gemini 2.5 Flash P 0.0 5.6 0.0 27.3 0.0 33.3 9.1 0.0 9.1 50.0 12.5 21.4 13.2 0.0 28.6 12.5 14.3 0.0
Gemini 2.5 Pro P 0.0 16.7 66.7 36.4 0.0 33.3 36.4 20.0 27.3 50.0 31.2 57.1 26.3 0.0 14.3 37.5 28.6 0.0
Llama 3.2 11B VI 100.0 22.2 0.0 27.3 0.0 33.3 18.2 20.0 18.2 50.0 0.0 7.1 18.4 0.0 42.9 50.0 28.6 0.0
Llama 3.2 90B VI 100.0 11.1 33.3 18.2 0.0 33.3 45.5 20.0 18.2 50.0 31.2 42.9 10.5 0.0 28.6 25.0 14.3 0.0
Llama 4 Maverick 0.0 22.2 33.3 54.5 0.0 66.7 36.4 0.0 36.4 50.0 31.2 57.1 23.7 0.0 28.6 62.5 21.4 100.0
Llama 4 Scout 0.0 11.1 66.7 54.5 0.0 33.3 54.5 40.0 27.3 50.0 56.2 35.7 36.8 100.0 42.9 50.0 42.9 0.0
GPT 4.1 Mini 0.0 5.6 0.0 36.4 0.0 0.0 27.3 20.0 0.0 75.0 12.5 42.9 23.7 0.0 28.6 25.0 50.0 0.0
GPT 4.1 0.0 5.6 0.0 27.3 0.0 0.0 9.1 20.0 0.0 0.0 12.5 35.7 13.2 0.0 28.6 12.5 35.7 0.0
o4-mini-high (T) 0.0 16.7 0.0 18.2 0.0 0.0 9.1 20.0 18.2 25.0 31.2 21.4 18.4 0.0 14.3 12.5 21.4 0.0
Qwen VP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen 2.5 VL 0.0 0.0 0.0 36.4 0.0 0.0 18.2 0.0 0.0 75.0 12.5 35.7 5.3 0.0 14.3 25.0 7.1 0.0
Grok 2 Vision 0.0 5.6 33.3 45.5 0.0 0.0 0.0 0.0 18.2 75.0 6.2 28.6 7.9 100.0 14.3 37.5 7.1 0.0
Grok Vision Beta 0.0 5.6 0.0 9.1 0.0 0.0 0.0 0.0 9.1 0.0 12.5 14.3 5.3 0.0 14.3 0.0 21.4 100.0
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Table 12: Accuracy (%) of VLMs on recognizing all correct affordances for objects using Multi-
Category Mapping in PAC Bench.
Model C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

Claude 3.5 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Claude 3.7 Sonnet (T) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Claude 3.7 Sonnet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Gemini 2.0 Flash 001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gemini 2.5 Flash P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gemini 2.5 Pro P 0.0 0.0 0.0 0.0 0.0 0.0 9.1 0.0 0.0 0.0 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Llama 3.2 11B VI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 3.2 90B VI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 4 Maverick 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 4 Scout 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0

GPT 4.1 Mini 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GPT 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0
o4-mini-high (T) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Qwen VP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen 2.5 VL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.3 0.0 7.1 0.0

Grok 2 Vision 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Grok Vision Beta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 15: Examples of Real-World Humanoid Constraint Scenarios from PAC Bench. Each scenario
includes a question posed about a potential action and the ground-truth constraint explanation.
Scenarios are captured using synchronized Agent View (from robot’s perspective) and Side View
cameras.

Views Provided Question Posed Ground-Truth Constraint Explana-
tion

Agent View (cam_0)
Side View (cam_1)

Can the robot stack the object near the
right hand on the object near the left
hand?

No the cube won’t balance on the pyra-
mid.

Agent View (cam_0)
Side View (cam_1)

Can we keep the ball inside the pen-
stand?

No the the penstand is inverted.

Agent View (cam_0)
Side View (cam_1)

Can we keep the ball inside the pen-
stand?

No the the opening of the penstand is
covered by the hand.

Agent View (cam_0)
Side View (cam_1)

Can you keep the food on the plate? No the box is closed.

Agent View (cam_0)
Side View (cam_1)

Can you write on the notepad using the
marker?

No the marker is closed.

Agent View (cam_0)
Side View (cam_1)

Can you keep the food on the plate? No the box is on the plate.

E.1 Annotation Pipelines1398

Single-image (OpenImages). We created one Label Studio5 project per property. Each task presents1399

a pre-cropped object (bounding box supplied) and radio-button choices covering the ontology plus1400

Don’t Apply and Don’t Know. Annotators select exactly one option that best reflects the object’s1401

current visual state (e.g. a sauce-coated spoon is marked Sticky); an example interface is shown1402

in Figure 15. Hot-keys (1–4 to pick a category, Ctrl/Cmd+\Enter to advance) support rapid,1403

fatigue-free labelling. The per-property job dashboard is illustrated in Figure 14. Open-vocabulary1404

affordances could not be captured with fixed radio buttons, so they were instead filled into a shared1405

Google Sheet (≤3 verbs per image ID).1406

Dual-view (Real-Robo & RoboCasa). Label Studio does not support paired views, so we developed1407

a lightweight Python/Tkinter GUI that shows the left/right camera frames side-by-side (Figures 121408

and 13). The GUI mirrors the exact ontologies, category ordering, and hot-keys of the single-image1409

pipeline and appends three affordance text boxes plus a drop-down for task-level constraints. For1410

5https://labelstud.io
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completeness, the corresponding single-image TkInter variant used for synthetic objects is depicted1411

in Figure 11.1412

E.2 Annotation Schedule and Effort1413

Each property job comprises ∼680 items and takes ≈40 minutes per annotator after a brief tutorial.1414

All properties were labelled by at least two annotators to enable later consensus filtering (see below);1415

several critical properties were triple-annotated when calendar time allowed. The total annotation1416

effort is roughly 15 properties × 2.2 annotators × 40 min ≈ 22 person-hours for OpenImages and 71417

person-hours for the dual-view collections.1418

E.3 Quality Control1419

We employ a strict unanimity filter: for every image (or view-pair) the final label is retained only if1420

all assigned annotators agreed. Disagreements are discarded from the main release (and provided1421

as a separate “disagreement split”) to guarantee that the benchmark set reflects high-confidence,1422

noise-free supervision.1423

E.4 Annotators1424

All annotations were performed by members of the LENS Lab (2024).6 We thank the lab for their1425

contributions and support.1426

Figure 11: TkInter single-image property annotator (synthetic objects).

6https://ransml.github.io/lens-lab/
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Figure 12: TkInter dual-view affordance annotator.

Figure 13: TkInter dual-view property annotator (Real-Robo / RoboCasa).
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Figure 14: Label Studio project dashboard with 15 property jobs.

Figure 15: Label Studio image view with bounding box and radio-button options.
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