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ABSTRACT

In-Context Learning (ICL) allows Large Language Models (LLM) to adapt to new tasks
with just a few examples, but their predictions often suffer from systematic biases, leading
to unstable performances in classification. While calibration techniques are proposed to
mitigate these biases, we show that, in the logit space, many of these methods are equivalent
to merely shifting the LLM’s decision boundary without having the ability to alter its
orientation. This proves inadequate when biases cause the LLM to be severely misdirected.
To address these limitations and provide a unifying framework, we propose Supervised
Calibration (SC), a loss-minimization based framework, which learns an optimal, per-class
affine transformation of LLM’s predictive probabilities in the logit space without requiring
external data beyond the context. By using a more expressive functional class, SC not only
subsumes many existing calibration methods in ICL as special cases but also enables the
ability of altering and even completely reversing the orientation of the LLM’s decision
boundary. Furthermore, SC’s loss-based nature facilitates the seamless integration of two
purpose-built regularization techniques, context-invariance and directional trust-region
regularizers. The former is designed to tackle the instability issue in ICL, while the latter is
to control the degree of calibration. Finally, SC delivers state-of-the-art performance over
calibration baselines in the 4-shot, 8-shot, and 16-shot settings across all nine datasets for
Mistral-7B-Instruct-v0.3, Llama-2-7B-chat, and Qwen2-7B-Instruct.

1 INTRODUCTION

State-of-the-art LLMs exhibit a striking in-context learning (ICL) capability: with only a handful of in-
put—label exemplars, they generalize to unseen queries almost as if they had been fine-tuned, thus functioning
as highly sample-efficient few-shot learners (Brown et al.|[2020; [Liu and et al., [2023)). However, a growing
body of evidence shows that ICL performance can be brittle with respect to seemingly innocent design
choices such as template wording (Min et al.}2022), verbaliser selection (Holtzman et al., 2021a)), and the
particular demonstrations given (Liu et al.,2022a). These biases and sensitivity of ICL pose a practical barrier
to developing applications that are both adaptable and robust. Motivated by this, extensive research has been
conducted to develop calibration approaches to address such a challenge for classification problems in ICL.
The majority of calibration methods fall under label-marginal-based calibration (LM). These methods first
estimate the LLM’s probability for each label given the context alone via various approaches. They then
discount the predictive probabilities of the LLM for the labels that are over-represented and boost those that
are under-represented. See detailed discussion in the later sections.

Despite the empirical success of these methods, their ability of correcting the predictive probabilities of the
LLM via its internal estimated prior is limited. Specifically, we show in Section [3.4]that the underlying idea
of these methods is equivalent to optimally shifting the decision threshold of the base LLM. Hence, they
are inherently incapable of altering or reversing the orientation of the decision boundary. This becomes
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Figure 1: Comparison of ICL prediction strategies, where the x-axis represents the LLLM’s raw logits (log-
odds). (a) Base LLM (accuracy: 30%): The model predicts class 1 when logit > 0. (b) Label Marginal
Calibration (accuracy: 50%): These methods only shift the decision boundary, limiting correction when base
LLM is systematically wrong. (¢) Supervised Calibration (accuracy: 80%): SC can shift and flip the decision
boundary of the base LLM, resulting in a significant improvement.

problematic when the base LLM performs poorly. To further illustrate this limitation, consider a binary
classification problem in Figure[l] (a), where the base LLM only achieves 30% accuracy. Since LM methods
can only shift the decision threshold, their maximum improvement over the base LLM is capped, only
achieving the level of random guessing as seen in Figure[T|(b). One may expect that such an issue becomes
more common and severe in the multiclass classification, where distinguishing among a larger number of
labels is inherently more difficult. For instance, on the SST-5 dataset, the average accuracy across three
representative LLMs is only 22%, highlighting the severity of this challenge. This limitation motivates the
need for a more principled calibration framework that is capable of correcting severely misaligned LLM
predictions when necessary (e.g., by reversing the decision direction), and that subsumes existing methods as
special cases while remaining both theoretically grounded and practically robust.

To achieve this goal, we introduce Supervised Calibration (SC), which is motivated by conceptualizing
existing approaches as learning a calibrated classifier: they take a LLM’s logits as input features and
subsequently optimize a bias term to shift these logits. However, this shift only corresponds to moving the
LLM’s decision boundary to maximize the predictive accuracy illustrated in Figure 1| (b). Therefore, to enable
more comprehensive adjustments, specifically, the ability to alter or reverse the orientation of the LLM’s
decision boundary, the proposed SC leverages the paradigm of loss-function-based classification and optimize
both the bias and the scaling factor jointly. Our approach begins by generating a surrogate dataset, removing
the necessity of external dataset beyond the given context. From this surrogate data, we extract features
in the form of logits derived from the base LLM’s output probabilities. Then we employ these features,
paired with their corresponding true labels to train a standard classifier, which learns not only an optimal
bias term but also an optimal rescaling factor. Critically, the concurrent optimization of this rescaling factor
empowers our approach to reverse the LLM’s decision boundary when advantageous (as illustrated in Figure
(c)). Moreover, the loss-minimization framework underpinning SC inherently supports the integration
of regularization techniques designed for addressing the common problems in ICL and calibration. In this
context, we propose a novel context-invariance regularizer for addressing the instability issue in ICL and
a directional trust-region regularizer for controlling the degree of calibration. From a statistical viewpoint,
these characteristics allow SC to pursue a balance regarding to the bias-variance trade-off. While SC’s
flexibility targets a reduction in approximation error over LM methods, its regularization components actively
constrain variance which is an essential consideration within the data-scarce ICL paradigm. Collectively,
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SC delivers an adaptable, stable, and theoretically grounded framework that improves LLMs’ classification
quality in few-shot settings, enabling fairer and more socially impactful applications as a result. Experimental
results demonstrate that SC consistently outperforms existing calibration methods across a broad range of
tasks, significantly enhancing the predictive performance of three distinct LLMs evaluated on nine inference
datasets. For example, the performance of SC is striking on the SST-5 dataset with the Qwen model (8-shot
setting), where it significantly outperforms baseline methods with accuracy from 25% (baselines) to 44%.
This notable boost is directly attributable to its learned negative scaling factor which re-orients the base LLM
decision boundary in this multiclass classification task. See Figure 4|for more details.

Our main contributions are summarized as follows: Firstly, we propose Supervised Calibration, which adopts
loss minimization framework from classical supervised learning and calibrates ICL via learning optimal bias
and scaling factors, enabling not only shifting but also altering the orientation of the base LLM decision
boundary; Secondly, we integrate the context-invariance and directional trust region regularizations in SC,
enhancing the stability of ICL and controlling the degree of the calibration respectively; Thirdly, we provide a
theoretical intuition behind SC and its generalization over the LM methods; Lastly, we conduct extensive
empirical studies to demonstrate the state-of-the-art performance of SC over several existing baselines

2 RELATED WORK

Diagnosing biases and calibration via Label Marginal. A seminal study by |[Zhao et al.| (2021} identified
primary in-context learning (ICL) biases—including majority-label, recency, and common-token bias—and
introduced Contextual Calibration (CC), which adjusts probabilities by normalizing against content-free
prompts. Subsequently, observing that competition for probability mass degrades performance,|Holtzman et al.
(2021b) proposed DCPMI to recalibrate logits. Recent work has uncovered further ICL instabilities, such as
feature and positional biases, with each diagnosis often paired with a lightweight calibration strategy (Si et al.}
2023, |Wang et al., [2023; |Pezeshkpour and Hruschkal 2023)). For instance, Domain-Context Calibration
(DC) corrects predictions by averaging over random in-domain strings (Fei et al.l [2023)), while the more
recent Batch Calibration (BC) uses unlabeled mini-batches to adjust each prediction (Zhou et al.| [2023)).
Although these methods show empirical improvements, they can fail when the base LLM is substantially
misaligned with the downstream task, as they cannot alter the model’s decision direction. This limitation
motivates the exploration of calibration frameworks with greater flexibility.

3 SUPERVISED CALIBRATION

3.1 BACKGROUND

Consider an n-class classification task with label verbaliser set ) = {yo, . .., yn—1} and query space X. In
few-shot in-context learning (ICL), the context C}, is constructed by concatenating k input—label exemplars
(), 4®) formatted via a template function T' such that C}, = Concat(T ("), M), ... T(x*) y*))).
Then given the context of k-shots and a testing query =z € X, the LLM predicts a label via computing
§ € argmaxycy Pum(y | ¢, Cy). While ICL offers an appealing alternative to the gradient-based fine-
tuning by allowing LLMs to adapt to new tasks via only a handful of in-prompt demonstrations, the resulting
posterior distribution Py (y | «, Ck) is often distorted by some systematic biases. Such biases inherent in
ICL often stems from context examples or their order, which makes Piim(y | «, Ck) significantly diverge
from ground-truth posterior P*(y|z). Therefore, the objective of calibration is to refine LLM’s predictive
probabilities P iy (- | , Cy) to align with P*(y|x).

! Anonymized code for reproducibility: https://anonymous.4open.science/r/ICL-5CF5
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Existing approaches are mainly focused on correcting the prior distribution of the label via estimating the
LLM’s internal prior given the context. Despite their successes, one can show that these approaches boils
down to merely shifting the LLM’s decision boundary, lacking the ability to alter an LLM’s orientation. This
limitation turns out to be essential especially in multi-class classification, where an LLM can easily make
persistent mistakes. See Figure Therefore, to further reduce the biases and align with P*(y | «) in such
cases of substantial misorientation, we develop a more principle calibration called Supervised Calibration.

3.2 OUR PROPOSAL

To begin with, we assume the k context examples (z(*), y(¥))k_ "X P*. Due to the aforementioned biases, the
LLM’s posterior Pym(y | , C)) can deviate notably from the truth P*(y | ). In particular, we measure their
deviation via the Kullback—Leibler (KL) divergence defined as E,p+ [Dkr (P*(- | ) | Pum(: | 2, Ck))]

where Dk, (P Q) = > yey Py) log gg; for some probability measures P and ). Let A™ be the

probability simplex over ). Then to correct for this, we seek a vector-valued calibration function f* : A™ —
A", chosen from a prescribed class F, such that when applied to the vector of LLM’s predictive probabilities,
it minimizes the KL-divergence, i.e.,

f*=argmin E[DkL(P*(-| ) f(PLom(-|z, Cr)))] = arg min —E[log(fy(PLLM( |z, Cx)))l, (1)
fEF a~P* feFr (zy)~

where f, is the y* h_coordinate projection of f. Note that as long as F contains the identity map, applying
f * enhances the fidelity of P y. To find f*, we highlight two key challenges. Firstly, since our method
is post-hoc, choosing an effective F operating solely on the base LLM predictive probabilities is essential.
Secondly, there is no external data sampled from P* to approximate the objective function in Equation ().

3.2.1 AFFINE-LOGIT APPROXIMATION AND LEAVE-SUBSET-OUT STRATEGY

To select an appropriate function class F, we only need to consider f defined over the log-odds of the predictive
probabilities against a reference group (class O in this paper), since the logistic function is bijective. Specif-

n—1
ically, denote the logits given by the base LLM as m(z;C}) = (mc(z; Cy) = log %) .
T c=1

Then, instead, we aim to choose the transformed function class F= { f: R — A"} for calibration. To
facilitate it, notice that

Py |z) = r (mpl*zé);; ) o« Pim(y | z, Ok)PLLI:/I(ij |yzf)0k) PLLj(y(yl)Ck) (2)
= Pum(y | 2, Cx) h(z,y, C), (3)
which implies that
Li(x) = me(@; Cy) + log <P*(I|C)PLLM(I|O’ Ck)) +log <P*(C)PLLM(O|C’€)> ©)
¢ P*(x]0)PLm(z|e, Ck) P*(0)PLim(c|Cr)

Class Conditional Shift Label Marginal Shift

log(h(z,c,Ck)/h(2,0,Ck))

where L% (x) = log(P*(c|x)/P*(0|z)) is the true logit for class c. Thus, the primary challenge of choosing F
lies in approximating the unknown correction term log (h(z, ¢, Ci)/h(z,0, C))). Since we only have access

to the LLM’s output logits m(z; C},), we propose to approximate {L(x)}"Z} via an affine transformation
of {m.(z; Cx)}7Z,. In particular, our working model L.(z; 6%) is
Le(2;05) = wEme(a;Cy) + 0, c=1,...,n—1, (5)
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where % = (bF, wk) are calibration parameters associated with class c and the context size k. This affine
structure directly targets the two primary sources of discrepancies between true and LLM logits: class-
conditional shift and label marginal shift as illustrated in Equation (d). Specifically, by rearranging Equation
@) as L.(z; 0%) = m.(z; Cr)+[(wk —1)m.(z; Ci,)+bE], we see that the term (w¥ —1)m..(x; C ) +b¥ serves
as our learned approximation to the true correction term log (h(x, ¢, Cy)/h(x,0,Cy)). Within this learned
correction, the intercept b* primarily addresses the query-independent "Label Marginal Shift" component from
Equation (@), compensating for discrepancies in label priors. The query-dependent term (w* — 1)m.(z; Cy)
targets the "Class Conditional Shift" by allowing the slope w¥ to rescale the LLM’s original logit m..(x; Cy).
Furthermore, wf enables the reorientation of the LLM’s decision boundary. For instance, a negative wlg
inverts the LLM’s initial assessment for a class relative to the reference, effectively correcting its predictive
direction as illustrated in Figures|[I|(c) and[d This is a vital capability that methods merely learning a bias (i.e.,
fixing w¥ = 1) lack. As detailed in Section our framework not only unifies but also generalizes several
recent ICL calibration techniques. Finally, it naturally encompasses the base LLM’s original predictions as a
special case when b* = 0 and w* = 1 for all c. In terms of learning the parameters, if an external calibration
dataset {(z7), y())} el is provided, we first compute the LLM’s logits m(z7); C},) for each z(). Then
based on Equation @5, we estimate the parameters via minimizing the negative log-likelihood, i.e.,

Nea
0" = argn;%n{]Lk(Bk) 2 - Z log f, & (m(z19); Cy); 6%)}, (©6)

j=1

k _ gpkin—1 G). ). g — Leeso0y exp(Le(@08))+1gc—0) . P .
where 6% = {07}7 "] and f.(m(z"); Cy); 6%) ST oxp(L (0% . This optimization problem is

equivalent to standard multi-class logistic regression using the model logits m. as input features. However,
there is no external calibration dataset available beyond C}. Therefore, we propose generating surrogate
training data directly from the demonstration context C}, via a leave-subset-out strategy. Specifically, we first
select a context size ¢ such that ¢ < k. We then construct the surrogate training dataset 7; using Algorithm|T]in
Appendix @ as illustrated in Figure|2] Finally, we estimate calibration parameters ' via minimizing LL; under
T;. Note that this method can be applied across multiple context sizes ¢, enabling ensembling extensions of
{6} ;¢ to construct a final estimator for calibration.

xm,y(l)
€8 = (@( x®,y®),7( x®,y@))
@ = (T( x(z)’y(Z))_T( x(l)_y(l))))

—s

x@, @
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Figure 2: Surrogate data generation (Algorithm for a 4-shot setting (k = 4) using a 2-shot context (i = 2).
From the full set of 4 examples, many different 2-shot contexts (blue) can be formed; the figure illustrates
two such possibilities. The remaining held-out examples (red) are used as queries with each context, and the
LLM’s logits are paired with the true labels to build a diverse surrogate dataset.
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3.2.2 CONTEXT INVARIANCE AND DIRECTIONAL TRUST REGION

In the following subsection, we fix the context size ¢+ € I and introduce some enhancement on the pro-
posed method. Note that our surrogate data generation process exposes a well-known limitation of ICL,
its sensitivity to the composition and ordering of the context. Specifically, a single query pair (z,y) is
evaluated using multiple different sub-contexts C;, yielding potentially different logits m(z; C;) and label
prediction for the same ground truth label y. In essence, an effective calibration method should mitigate
this sensitivity, leading to more stable predictions. This motivates incorporating a mechanism to encourage
context invariance in the calibrated predictions. To achieve this, we propose augmenting the standard MLE

objective (Eq. (6)) with a context-invariance regularization term. Specifically, let C’i(a) and C’i(b) be any
two distinct contexts of size ¢ drawn from C}, for evaluating the same query (z,y) in the surrogate data.
We aim for the calibrated distributions f(m(z®);C'”);6) and £(m(2); C")); 6%), to be similar. To
enforce this similarity, we utilize the symmetric cross-entropy between these two calibrated distributions as
a regularizer defined as Ly (67,2, C\”,C") = H(f(m(2; '), 0%, f(m(z0);c®); 6%)), where
H(P,Q) & — 22;01 (P.log Q. + Q.log P.). This loss term measures the divergence between the two

distributions induced by different contexts, penalizing differences in both directions. Then the overall penalty
is defined by averaging Ly over all possible pairs of contexts associated with each .

InvPenalty(6") Z Z Lym(0°, , Ci(a)a Ci(b))' Q)
T {C_(a),cﬁb)}

The full expression of InvPenalty is given in Equation of Appendix [D] On top of ensuring context-
invariance, a well-established calibration approach should also take into account the different scenarios
induced by the base LLLM’s reliability and the size of the context. In particular, strong base LL.Ms warrant
minimal adjustment, while weak ones require more aggressive correction, yet limited examples can mislead
both cases, risking overfitting or under-correction. To balance this, we regularize the calibration by introducing
a directional trust region that restricts parameter updates to remain aligned with the base LLM’s loglt.
Specifically, we constrain the average cosine similarity between each parameter vector 0 = [bi,w!]" and
the identity direction v = [0, 1], which Corresponds to the base LLM via

M

n—1

pat |91 ||2
where || - ||2 refers to £2-norm and 7 € [0, 1] modulates the trust: large 7 encourages minor scaling adjustments
(exploitation), while smaller values permit broader corrections (exploration). This mirrors trust-region
principles in policy optimization (e.g., TRPO (Schulman et al.,|2015))), adapting model updates based on the
confidence in prior predictions.

3.3 FULL ALGORITHM

The final optimization combines this constraint with the likelihood loss and a context-invariance regularizer:

n—1 ;
. ; - 1 0)Tv
min E —log f,m (m(l); 6°) + A\ipyInvPenalty(6°) » s.t. g e > T 8)
(m® yO)eT; n-1 N6l

where Aipy > 0 is a hyperparameter controlling the strength of the context-invariance penalty. To solve
this optimization problem, we used SciPy’s t rust-constr algorithm, a trust-region method designed for
constrained optimization. This optimization can be carried out independently foreachi € I £ {1,--- ,k—1},
resulting in a set of calibration models {él}ze 1, each specialized for a particular context length. Additionally,
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at inference, any sub-context C; can be used to extract logits for a given size i. This paves the way for a
two-level ensembling strategy to enhance robustness by aggregating predictions across both multiple context
lengths and diverse sub-context samples. Specifically, we train multiple affine-logit models { éi}ie 7 using
training sets with different sizes of the context. Then, at inference time, given a test query Xy, we first

draw {Ci(j )}je M, from Cy, for every i € I, where I and M, are user-defined index sets with size | M|
and |I|. Then we perform intra-size and infer-size ensembling by averaging the calibrated predictions over

{Ci(j ) }jem, and across all context sizes ¢ € I and output the predictive probability of SC for zest as
R 1 1 Ao Al
PSC(Trest) = T D it O F(m(Thes; CF); 67). )
1157 Ml JEM;
The final predicted label is Jsc € arg max,, cy[Psc].. Overall, this ensembling procedure approximates
marginalization over plausible sub-contexts and lengths, significantly improving calibration stability and
accuracy. The full algorithm of SC is summarized in Table [2]of Appendix

3.4 CONNECTIONS TO PRIOR WORK AND THEORETICAL INSIGHT

In this section, we show the connection of the proposed SC with the existing LM methods and provide a
principle approach to theoretically understand these methods from the perspective of supervised learning.
Specifically, LM methods rely on one core assumption.

Assumption 1 The correction term h(x,y, C),) o m-

Under Assumption [I] the derivation in Section [3.2.1] yields that LM methods are equivalent to assuming

Li(x) = me(z; Ck) + Be(Ch), c=1,....,n—1, (10)
where B.(C)) = —log[PLm(¢c|Ck)/PLm(0]|Cy)]. Therefore, they focus on optimally shifting the decision
threshold of the base LLM via estimating Py (y|C%), which thus gives an estimator for B..(C}). We sum-
marize the existing approaches of estimating Py (y|Cy) in Table of Appendix @ However, Assumption
[T can be easily violated in practice, causing model mis-specification error. Therefore, instead of imposing
Assumption[T] we propose to understand existing LM methods from the perspective of function approximation
in the supervised learning. In this case, LM methods basically assume a working model (I0). In contrast, the
proposed SC considers a strictly larger working model:

Le(2;0%) = wh me(z; Cy) + b, c=1,...,n—1
This offers a principle framework to compare SC with LM methods and indeed shows that SC generalizes

existing LM methods. Furthermore, within this framework, we analyze these methods via statistical learning
theory. Consider a dataset 7 = {(2/),y"))}_, of size N, and denote by f := fg, the solution minimizing

Ly (0%) under 7. Let R* denote the Bayes risk and R(f) the 0-1 risk of f. Then, under standard regularity
conditions, the excess risk of SC satisfies, with high probability:

R() - R* 5 VDl 17— Da P[P+ 2L,

excess risk approximation error
The decomposition leads to the following theoretical insight. Firstly, thanks to the strictly larger working
model, SC attains an approximation error that is guaranteed to be no worse than that of LM methods. Secondly,
SC estimates 2(n—1) parameters—one slope and one intercept per non-reference class—while LM methods
estimate only n—1 parameters. This leads to a factor of 2 increase in estimation error, which scales with the
number of parameters d as O(d). This gives LM methods an advantage. However, SC incorporates several
variance mitigation strategies to actively control estimation error and fully leverage its lower approximation
error: (i) explicit regularization through the directional trust region constraint and context invariance penalty;
and (ii) ensembling procedure in Algorithm

(1)
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4 EXPERIMENTS AND MAIN RESULTS

In this section, we validate the effectiveness of SC by evaluating its classification performance across three
LLMs and nine benchmark datasets. SC consistently outperforms all baseline calibration methods across
various settings, establishing a new state-of-the-art in ICL for classification.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on nine text classification benchmarks covering sentiment, topic, and
social media analysis: SST-2, SST-5 (Socher et al.}2013), AG News (Zhang et al.,|2015)), SUBJ (Wang and
Manning| [2012)), TREC (Li and Roth} [2002), Rotten Tomatoes (Pang and Leel [2005)), TweetEval-Emotion
(Mohammad et al., 2018)), TweetEval-Hate (Basile et al.,|2019)), and Financial PhraseBank (Malo et al.,2014).

Models and Baselines. We compare SC against the Base LLLM and three prior calibration baselines (CC,
BC, and DC) on three models: LLaMA-2-7B-Chat-HF (Touvron et al., 2023), Mistral-7B-Instruct-v0.3(Jiang
et al., 2023), and Qwen2-7B-Instruct (Yang et al.}|2024). All models are used off-the-shelf from Hugging
Face without any fine-tuning. Appendix [A]provides full implementation details for the baselines.

Evaluation. Following prior work, we report Macro-F1 in 4-shot, 8-shot, and 16-shot settings. To ensure
robustness, all results are averaged over 5 random seeds on a held-out test set of 256 examples per dataset.
Our prompt template is described in Appendix [C|

4.2 MAIN RESULTS

Figure [3|reports the Macro-F1 performance of five calibration methods across our full experimental suite
(9 datasets, 3 LLMs, 5 seeds, and 3 few-shot settings). Notably, SC consistently achieves the highest score
across all models and shot counts. In particular compared to the Base LLM, SC yields improvements of up to
+22.6% absolute in Macro-F1 (8-shot on Qwen2-7B-Instruct), and on average provides +11.1% absolute gain
across all models and shot configurations. Relative to the strongest competing calibration method (BC), SC
further improves performance by up to +13.4% (16-shot on Mistral-7B-Instruct-v0.3) and achieves an average
gain of +7.1%. Overall, these results confirm that SC offers a robust and generalizable enhancement of LM
methods in few-shot learning. In addition, our numerical results are aligned with our theory in presented in
Section[3.4] As shown in Figure 3] SC achieves the highest average score among all methods due to better
approximation error, but also exhibits increased variance in its performance. More detailed numerical results
and comparison are given in Appendix [F} Furthermore, SC delivers a striking improvement on SST-5: in

Qwen2-7B-Instruct Llama-2-7b-chat-hf Mistral-7B-Instruct-v0.3
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°
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Averaged Macro-F1 Score
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R
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o
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4-shot 8-shot 16-shot 4-shot 8-shot 16-shot 4-shot 8-shot 16-shot
Method
B9 BaselLM SN Contextual Calibration (CC) =1 Domain Calibration (DC) =3 Batch Calibration (BC) &= Supervised Calibration (SC)

Figure 3: Average Macro-F1 scores for five methods across 9 datasets and 3 LLMs in 4-, 8-, 16-shots settings.
Bars show the mean performance and standard deviation across datasets over 5 random seeds.
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the 8-shot setting with Qwen, it boosts accuracy from 24% (base LLM) and 25% (other methods) to 44%,
nearly doubling performance as shown in Figure[d This substantial gain stems from SC’s unique ability
to not just shift logits, but to reverse the decision boundary when necessary as illustrated in Figure[I] For
instance, it learns a bias of —1.29 and a weight of —0.19 for the negative class relative to very negative. This
indicates that SC effectively shifts and reorients the LLM’s decision boundary between closely related classes,
enhancing overall performance.

Qwen2-7B-Instruct

m— Accuracy
= Macro F1

Class b w
Very Negative (Ref.) 0.000 0.000

Negative -1.294  -0.188
02- Neutral 3.457 1.097
Positive 5.541 1.190
Very Positive -7.393 5.487
0.0- v

Base LM cc

Scores

Figure 4: Performance on SST-5 with Qwen2-7B-Instruct in the 8-shot setting, averaged over 5 random seeds.
The table on the right shows the average learned coefficients with respect to the very negative reference class.

Ablations. We conducted a series of ablation studies to validate the contributions of each component within
our framework. First, we analyze the per-class scaling factor by comparing the full SC model against a
variant, SC*, that only learns the bias term (i.e., the scaling factor is fixed to 1). While SC* outperforms
the baselines, which indicates estimating an optimal bias under SC framework is more effective than the
methods employed by LM approaches, the full SC model performs even better. This confirms that learning
to both shift and rescale logits is more advantageous. Second, we show that ensembling is highly effective:
performance consistently improves as we aggregate calibrators trained on more different context sizes and
average predictions over more sub-contexts at inference time. However, this performance gain comes at the
cost of computational overhead, primarily at inference. The inference time scales linearly with the number
of sampled sub-contexts, as each sample requires an additional forward pass. Furthermore, we confirm that
both the directional trust-region constraint and the context invariance penalty are crucial and complementary
components, with their combination yielding the highest performance. Finally, we validate that SC scales
effectively to larger models, consistently delivering strong performance gains on a 13B parameter model
across multiple datasets. Full results for the ablation studies are detailed in Appendix [G]

5 CONCLUSION

In this paper, we introduce Supervised Calibration (SC), a novel loss-minimization-based calibration
framework designed to improve the performance of LLMs in ICL. We design SC to learn a class-specific
affine transformation in logit space, allowing it to both shift and reorient the LLM’s decision boundary.
Thanks to its expressive functional form, we show that SC generalizes and extends the corrective capabilities
of many existing calibration methods for ICL. Looking ahead, several avenues warrant exploration. First,
performance could be improved by developing more principled approaches to context selection and weighting,
moving beyond the current random sampling strategy. Second, a more rigorous theoretical analysis of SC
is needed, particularly one that accounts for the statistical dependencies introduced by our surrogate data
generation method. Finally, extending the principles of SC to calibrate LLMs for regression tasks presents a
valuable direction for future research.
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REPRODUCIBILITY STATEMENT

We enable end to end reproducibility through: (i) an anonymized code repository with scripts to run Supervised
Calibration (SC) and all baselines, linked via a main-text footnote (“Anonymized code for reproducibility,”
Page 3); (ii) complete algorithmic specifications in the paper, including the affine-logit model and leave-
subset-out surrogate data (Section [3.2.T)), the context-invariance and directional trust-region regularizers
(Section[3.2.2), and the ensembling procedure (Section [3.3)), with step by step pseudocode in Appendix [E]
(Algorithms 1 and 2); (iii) an explicit statement of assumptions and theoretical insights in Section [3.4} (iv)
full descriptions of datasets and model baselines in Section[4.1] and the exact prompt templates and label
words in Table[T]of Appendix[C} (v) a clearly defined evaluation protocol (Macro-F1, 4/8/16 shot settings,
averaging over five random seeds on 256 held-out test examples) in Section .1} (vi) implementation and
hyperparameter details in Appendix[Al including compute resources, the invariance penalty weight (Aipy),
the schedule for 7 in the trust region, and the number of sampled sub-contexts m;; and (vii) comprehensive
numerical results and ablations, including ensembling behavior and compute and timing, in Appendices[H
and[G] Together, these materials are intended to support exact replication of all reported results.
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A IMPLEMENTATION DETAILS

Computation Resources. All large language models (LLMs) used in our experiments are based on publicly
available implementations from the Hugging Face Transformers library (Wolf et al.l 2020). We
conduct all experiments on a dedicated computing node equipped with 8§ NVIDIA A6000 Ada Generation
GPUs.

Contextual Calibration (Zhao et al.,2021)(CC) Following the original CC implementation, we compute
the label probabilities conditioned on each of the three content-free tokens—‘N/A’, ©’, and ‘[MASK] —along
with the context. We then take the mean of these probabilities and use it to normalize the LLM’s label-space
probabilities computed for the test query and the same context.

Domain-Context Calibration (Fei et al., 2023) We reproduce the DC baseline by using the test set as
the unlabeled corpus to construct a bag-of-words. From this bag, we randomly sample tokens to create
content-free and in-domain inputs with an average target length. This process is repeated 20 times, and we
compute the mean probability over these samples. Following the original implementation, we use this mean
to normalize the LLM’s label-space probabilities computed for the test query and context.

Batch Calibration (Zhou et al., 2023) (BC) BC is an inference-time calibration method that computes the
mean of label probabilities over m test samples given the context during the inference. We set m = 128 and
use this mean to normalize the LLM’s label-space probabilities given the test query and context.

Supervised Calibration (SC) We adopt an ensembling strategy for SC as outlined in Algorithm[2] For
each configuration—k = 4, k = 8, and k = 16—we set the minimum context size iy, (as defined in
Algorithm to 1, and the maximum context size 4y, to min(5, k — 1). We fix the regularization parameter
Ainy to 10 across all settings and LLMs. Additionally, the number of context to be sampled from C(7) (given
in Definition T]) for size ¢ during the prediction is set as:

. Ti
m; = min ({QJ ,24) ,

where 7; denotes the number of available samples for context size 7.

To determine the value of 7, we use the following formulation:
T = arccos(f)
We first compute the in-sample accuracy of the LLM while generating the training data through Algorithm|T]
Based on this accuracy, we set the value of 6 as follows:
207 T if accuracy > 0.9
4577 if 0.7 < accuracy < 0.9
QOﬁ if 0.5 < accuracy < 0.7
180 if accuracy < 0.5

9:
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Here, K denotes the number of distinct labels in the dataset.

While running SC with the setting & = 4, we excluded datasets containing more than four classes (i.e SST5
and TREC). This is because when the number of classes exceeds the number of context examples, some
classes are inevitably left out of the training data. This imbalance poses a challenge for training logistic
regression models across different context sizes.

B ADDITIONAL RELATED WORK

Calibration via centroids . A parallel line of work mitigates in-context biases by replacing the standard
decision rule with centroid-based classification. Han et al|(2022) proposed Prototypical Calibration, which
models output probability vectors using Gaussian mixtures and assigns labels based on cluster likelihood,
improving robustness to prompt variation and class imbalance. Similarly, Cho et al.|(2024) introduced Hidden
Calibration, which operates in the model’s latent space by computing class centroids over hidden states and
classifying based on proximity. Although these methods show empirical performance gains, they rely on
additional data beyond the in-context examples, which may not always be available or compatible with the
ICL setting.

Mechanisms and prompt Optimization for ICL  Another line of work diagnoses why LLMs succeed or
fail at ICL. The performance of a fixed prompt can swing from near random-guess to state of the art when
the order of demonstrations is permuted (Lu et al., 2022), and it correlates strongly with the pre-training
statistics of the tokens that appear in the prompt (Razeghi et al., [2022} [Shin et al.| [2022)). From a theoretical
perspective, ICL has been interpreted as implicit Bayesian inference in sequence models (Xie et al., 2022),
while empirical evidence shows that sufficiently large models can even override entrenched semantic priors to
learn arbitrary input—label mappings on the fly (Wei et al.| 2023). A complementary literature focuses on
controlling these factors. Template-search methods (Sgrensen and Sggaard, [2022; Pan et al., 2023 |Yin et al.,
2023) and example-selection algorithms (Rubin et al., 2022; |Liu et al.,2022bj;/Wan et al.,|2023) systematically
pick demonstrations that maximize mutual information or diversity, while Wan and colleagues|(2023) add
consistency and repetition checks. To make ICL more robust, researchers have proposed noisy—channel
prompting (Seongjoo Min et al.[2022), flipped learning that trains the model against label noise (Ye et al.}
2023), k-nearest-neighbour label assignment (Liangchen Xu et al.,[2023)), and lightweight decoder networks
that adapt the prompt at inference time (Cui et al., | 2023)). Together, these studies paint a converging picture:
effective ICL hinges on matching the prompt (template and examples) to the model’s pre-training biases—then
compensating for the remaining mismatches with task-specific selection or robust inference techniques.

C PROMPT TEMPLATES
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Table 1: Prompt templates and label words for various datasets.

Dataset Prompt Template Label Words

SST2 sentence: <x>\nsentiment: <y> negative, positive

SSTS sentence: <x>\nsentiment: <y> terrible, bad, neutral, good, great
Rotten T. review: <x>\nsentiment: <y> negative, positive

Financial P. sentence: <x>\nsentiment: <y> negative, neutral, positive

Subj review: <x>\ntype: <y> objective, subjective

TREC question: <x>\ntarget: <y> abbreviation, entity, description, person, location, number
AGNews news: <x>\ntopic: <y> world, sports, business, technology

TE-Emo tweet: <x>\nemotion: <y> anger, joy, optimism, sadness

TE-Hate tweet: <x>\nhate speech: <y> non-hate, hate

D ADDITIONAL NOTATION AND DETAILED FORMULATION

Let C;, = {e(l), e® ., e(k)} be the full demonstration set of k& unique input-label exemplars, where
e = (20 yO),

Definition 1 (Set of Ordered Contexts) The set C(i) is defined as:
C(i) ={(s1,82,...,8:) | s; € Cx for j=1,...,4; and s; # sp for j # p}. (12)
This set comprises all distinct ordered sequences (permutations) of i unique exemplars chosen from the full

demonstration set C},.

Definition 2 (Set of Contexts Used for Query «) Given an exemplar (z,y) € Cy, let T; be the surrogate
training dataset generated by Algorithm 1 using contexts of size i from Cy. The set C(x,1) is defined as:

C,i) = {C € Ci) | (w,y) ¢ C and (m(x;C7y) € Ti}. (13)

This set consists of all ordered contexts of size i from C(i) that do not contain the specific exemplar (x,y)
itself, and were actually used to generate a (logit, label) pair for the query x within the surrogate training
data T;.

Definition 3 (Context Invariance Regularization Penalty) The total Context Invariance Regularization
Penalty for parameters 0" is defined as:

InvPenalty(0") = Z Z Lom(6", 2, Ci(a)> Ci(b) ) (14)
w€{a|(z® yM)eCk} (¢ cMyCC(a,i),ab

This penalty aggregates the symmetric cross-entropy loss over all distinct pairs of contexts (C’i(a), Ci(b))
that were used to evaluate each unique query input x derived from the original demonstration set Cy. It
encourages the calibrated predictions for the same query x to be consistent, regardless of the specific context

Cl-(j lec (x,1) used to generate the intermediate LLM logits.
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Table 2: Summary of Label Based calibration methods. Each method adjusts the LLM prediction P v (y |
x, Cy,) via the different estimators of Py (y|Ck).

Method

Formula

Description

LLM (Prob)
Contextual Calibration (CC)
Domain-Context Calibration

(DO)
Batch Calibration (BC)

arg max Pum(y | =, Ck)

Pum(y | =, Ck)
argmax —————————————
v Pum(y | NA, Cy)

arg max — Pum(y | =, Ck)
Y ~ 27 PLLM(y | RandDomi, Ck)
Pum(y | 2, Cr)
% ZZ PLLM(y ‘ xi, Ck)

arg max
Y

Selects the label with the highest conditional probability
from the LLM.

Normalizes the prediction using a content-free input to
reduce label bias.

Uses randomly sampled domain prompts as a reference
for normalization.

Calibrates by averaging predictions over a batch of
reference inputs.
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E

FULL ALGORITHMS

Algorithm 1: Surrogate Data Generation for Calibration

Require: Demonstration set Cy = {(z"), y")}_ of size k.
Require: Target context size ¢ such that 1 < ¢ < k.
Require: LM inference function Infer(z, C;) that returns logit vector m(z; C;).

1: Initialize training set 7; < ().

2: Generate C(t), the set of all distinct ordered subsets of C}, with size i. > E.g., permutations of C}, taking first i.
3: for each context Ci(a) € C(i) do

4: Define the held-out set RZ@ — Cr\ Cf“). > Set difference based on elements.
5. for each query (z,y) in R{") do

6: Compute model logits vector: m(z; C\*) « Infer(z, C*).

7: Add to training set: T; < T; U {(m(z; C*), »)}. > Store feature vector and true label.
8: end for

9: end for
10: Output: Training set 7; consisting of pairs (model logits, true label).

Algorithm 2: SC (Full Procedure)

Require: Full demonstration set C, = {(m(”, y(l)) le; Set of context sizes I = {imin, - - ., ima= }; Regularization
Ainv > 0, 7 € [0,1]; Context samples m; > 1; Query z; Inference function Infer(z, C) returns logit vector
m(z, C).

Part 1: Training Phase
1: Initialize parameter set © < (.
2: for each context size 7 € I do
3: Generate training data 7; using Algorithm [ with C.
4: Learn parameters 6° by solving Eq. () using 75, Xino, 7.
S: Store 8" in ©.
6: end for
Part 2: Prediction Phase (for query x)
7: Initialize list Pig + [].
8: for each context size i € I do
9: Sample index set M; C {1,...,|C(¢)|} uniformly at random such that |[M;| = m;.

10: Retrieve learned parameters 6° from ©.

11: Retrieve sub-contexts {ij) }iem, from C(i) using M;.

12:  Initialize list p{’) < [].

13: for j € M do '

14: m(z, C7)) « Infer(z, C7).

15: pY(z) & fm(z,C);6°).

16: Append p (z) to p{.

17: end for

18: f)z(x) — W% ZP(I)EPIE:() p(LL‘)

19: Append p; () to Plg.

20: end for

S 1
211 Psc(®) 1 Lpayer, P(2)-
22: Olltpllt: Qsc € arg maXycgy[f)sc(m)]c.
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F DETAILED NUMERICAL RESULTS

In this section, we present detailed numerical results. For brevity, we refer to Qwen2-7B-Instruct, Llama-2-
7b-chat-hf, and Mistral-7B-Instruct-v0.3 as Qwen, Llama, and Mistral, respectively, throughout the remainder
of this section.

Table 3: Average Macro-F1 scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 4-shot setting (k = 4) over five random seeds. Values are presented as meang_ 4, with the

highest score in each column highlighted in bold and shaded gray.

Model  Method Avg AGNews FPB SST2 RT Subj TE-Emo TE-Hate
Base LLM || 53.49 62.741 56  31.229.80 8774742 8823190 33.020.81 3523153 36.260.20
CcC 60.30 8522497 51.4610.52 91.630.78 89.911.35 3854764 3507554 30.25¢.00
Qwen DC 61.30 88.680.68 52.8010.45 87.205.76 90.319.90 3697372  42.825.33 30.250.00
BC 67.71 70.142.17  73.542.75 8892577 90.181 41 7410392 4094324  36.160.00
SC 68.660 72.766.13  15.576.67 90.114.99 8939176 622311.15 41251751 49.335.08
Base LLM || 67.57 7758717 6641592 93360.44 91.161.59 40.1812.93 67.346.12  36.947 ¢4
CcC 62.31 71.013.42  81.862.72 93.171.02 92.079.96 32.360.00 35450.76¢  30.250.00
Llama DC 62.61 72.103.61 8294282 93.600.50 91.951.18 32.360.00 35.061.02  30.250.00
BC 68.69 66.062.04  84.563 75 93.530.47 91.521.28 54.153.48 3629138  51.702.00
SC 71.28 || 71.7611.31 84.024.70 9425053 91.561.19 55.7911.41 55.3510.57 46.204.31
Base LLM || 72.20 79.286.90 89.551.92 94.070.75 9247062 35.036.42 60.539 67 54.519.67
CcC 61.34 6347101 8724110 94760.70 9239075 31.550.00 32.111.24  27.899.00
Mistral DC 61.17 63.291.29 86.082.53 94.179.20 92.399.75 31.550.00 32.821.37  27.899.00
BC 68.57 62.811.11  86.662.32 94.000.60 92.630.67 48.056.53 34.082. 67 = 61.732.67
Ne© 7278 || 75.6611.50 90932 52 95.07;.15 91.532.51 59381289 5948990 37.4016.36
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Table 4: Average Macro-F1 scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 8-shot setting (kK = 8) over five random seeds. Values are presented as meang_ 4, with the
highest score in each column highlighted in bold and shaded gray.

Model  Method Avg SSTS TREC AGNews FPB SST2 RT Subj TE-Emo TE-Hate
Base LLM || 47.00 || 15.650.33 45.405.99 62.060.79 30.132.09 74.6518.64 91.002.28 31.550.00 34.552.41 38.010.00
CcC 53.91 15480.14 63.305.09 82276¢.74 35967.09 89.002.59 92301 37 32.679.96 46.295 54 27.890.00
Qwen DC 50.26 1541007 43.833.18 86.860 90 3592397 69941904 91.091 48 34.69403 46.743 32 27.890.00
BC 60.88 15.520.12  67.981 73 6536118 06687290 8643445 9195140 76.891.32 38.883.00 38.01¢.00
SC 69.59 41.065 g0 61.284 30 85.324.37 74.976.19 91.365 .75 90.645 56 70944 35 57.0919 29 53.633 26
Base LLM || 60.82 || 15.751.31 44.604 29 74.554.43 8026273 94.151.11 91.941.17 37.545.096 68.743 60 39.865.28
CcC 53.44 || 30.611.13 24.682.68 64.661.50 80972.81 9459 .75 92.400.72 31.550.00 33.641.28 27.890.00
Llama DC 53.80 30.911 25 25.523 12 65.730.68 82.441 g6 94.471 29 92.470.62 31.550.00 33.251 10 27.890.00
BC 60.52 || 23.499.80 36.221.47 63.781.27 8271305 94.091.38 92.011.03 6521420 33.561.15 53.595 51
SC 68.74 || 42.764. 23 39.7810.65 86.012 85 85.583 04 95270951 92.531.24 61.89420 66.785.65 48.053.83
Base LLM || 61.86 || 14.660.25 40.085.39 70.593.84 85.804.22 9441175 92.61p.45 37.204.35 61.82301 59.556.75
CC 53.70 || 28.221. 26 27.803.47 62291 42 84.64439 9423179 92.690.40 31.550.00 32.951.02 27.890.00
Mistral DC 54.47 31-151.38 30. 173.26 62.070_58 83.593_07 94.681_56 92.700_46 31.550_00 33-430.80 27.890_00
BC 60.16 || 24.839.54 40.264.25 61.58p.97 83.593.07 94.191.52 92.629.67 4826771 32911.05 63.252 06
SC 72.77 || 45443 01 48.573.36 86.843 4o 88.544 70 9324158 90.091.73 6691613 67.737.99 67.5311 74

Table 5: Average Macro-F1 scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 16-shot setting (k = 16) over five random seeds. Values are presented as meang 4, with the
highest score in each column highlighted in bold and shaded gray.

Model  Method Avg SSTS TREC AGNews FPB SST2 RT Subj TE-Emo TE-Hate
Base LLM || 49.75 || 14.470.20 59.685.52 63.100.85 26.720.84 87.556.49 91.561.80 31.550.00 35.150.56 38.01¢.00
CcCc 54.57 || 1441p.201 69.401.31 8530277 27.169.205 92.400.89 93.320.66 37.6924.80 43.580.71 27.890.00
Qwen DC 51.92 || 14.38p.201 4443381 88.079.78 39481478 8391982 9342105 3532441 4041150 27.89.00
BC 62.12 || 14.649.36 72.753.37 69.023.35 68.428 43 91.300.91 92.640.80 76.633.03 35.630.92 38.01¢p.00
Ne© 68.52 || 39.326.66 0991256 85.343.34 60657962 9295210 92.151.39 66.0310.62 53.636.91 50.7610.97
Base LLM || 60.72 || 14.490.64 54.935.18 75.645.72 76.745.43 9425065 92.011.17 37.004.14 69.339.55 3571264
CcCc 5342 || 31.401.16 24.024.02 63.731.20 81.602.58 9441119 9278067 31.550.00 33.371.00 27.890.00
Llama DC 54.06 || 32.091.25 25.523.12 6554068 83.803.50 94.591.19 9247062 31.550.00 32.351.10 27.890.00
BC 60.72 || 24.611.12 32.623.83 63.850.57 83.373.68 94.460.85 92.461.03 6581242 33.64128 56.264 20
SC 67.95 || 42.764. 23 6221562 87.092. 80 79.81g.37 9381p.71 91.831.46 50.6515.60 62.214.15 46.7210.59
Base LLM || 61.49 || 1442015 4548445 71.172.31 84.173.03 93.879.79 92.399.73 37.693.27 70.794.21 43.429 60
CcC 5375 || 28.961.12 28973.71 63380.91 8273258 93.93p.35 9293061 31.550.00 33.391.00 27.890.00
Mistral DC 54.80 || 32.31p.33 32.793.07 62940.85 85.172.62 94.549.80 92.150.49 31.550.00 33.811.16 27.890.00
BC 61.22 || 24.821.203 41.111.87 6341g.84 81.511.55 93.400.58 92.460.53 56.01.53 33.641.15 64.570 93
SC 7458 || 45923 o5 62.503. 97 87.42; 83 8598447 94.02188 91.072.320 67941040 64.084 31 72.343 92
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Table 6: Average Accuracy scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 4-shot setting (kK = 4) over five random seeds. Values are presented as meang_ 4, with the
highest score in each column highlighted in bold and shaded gray.

Model  Method Avg AGNews FPB SST2 RT Subj TE-Emo TE-Hate
Base LLM 68.01 75-231.61 63.362,91 87.937‘44 88.281(85 484160‘38 56.411‘52 56.680(03
cc 6434 || 8547480 50941311 9199067 89.921 35 5109415 37.58s.27  43.360.00

QWSH DC 65.87 88.910_58 52.7310_46 87.305_81 90.31()_90 50.041_74 4&443_54 43.360_00
BC 74.71 || 78.281 53 76.642 85 89.063.53 90201 41 7430384 57.85: 53 56.64¢.00
SC 70.62 || 77.343.89 74.699. 28 90.824.17 89.411.74 6582812 45.0820.38 51.176.97
Base LLM 72.86 82.584.17 78.552,59 93.630‘40 91»17158 514887‘02 72.855.23 46.333(47
CcC 71.40 || 79.302.02 85.512.17 93.48p.94 92.070.95 47.850.00 58.200.92  43.360.00

Llama DC 71.47 79.611 89 85.945 33 93.831.19 9195118 47.850.00 57.771 35 43.360.00
BC 74.05 77.191.27 86993 09 93.750.48 91.521.28 5820341 5824163 52.461 97
SC 73.78 || 78.128.67 86.292.88 9445047 91.561.18 56.4510.80 61.0514.12 48.521 .90
Base LLM 76.98 82.504. 17 90.471,99 94-220.76 92»500&‘)2 53.910,00 68.365.16 56.88172
CcC 69.56 || 75.232.33 87.341.57 94.920.70 92.420.72 46.090.00 52.272.13  38.670.00

Mistral DC 69.44 75-311.81 85.863_40 94.380_ 19 92.420_72 46.090,00 53.362_16 38.670_00
BC 73.21 74.691.57 87.192.28 94.149.70 92.660.67 48.449.55 53.131.40 62273 35
SC 7559 || 80.239.04 92.501.87 95.231.00 91.561.45 62.033.98 65231412 42.2717.35

Table 7: Average Accuracy scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 8-shot setting (K = 8) over five random seeds. Values are presented as mean 4, with the
highest score in each column highlighted in bold and shaded gray.

Model  Method Avg SSTS TREC AGNews FPB SST2 RT Subj TE-Emo TE-Hate
Base LLM || 60.32 || 24.349.16 5422721 73.160.81 62.58p.52 76.0916.30 91.022.26 46.090.00 54.062.74 61.330.00
CcCc 58.59 || 24.260.08 67.343.93 8398499 33.286.70 89.532.20 92.301.37 46.640.47 5133754 38.670.00
Qwen DC 55.94 || 24.260.08 52.8l1.70 87.270.79 33.134.34 T1.7216.75 91.091.48 47.662.05 56.883.25 38.670.00
BC 68.64 || 24.300.10 73.591.79 74.650.690 70.703.10 86.524.48 91.951 40 77.031.34 57.661.63 61.3309.00
Ne© 72.30 || 43.524.28 69.061.32 86.024.01 7633670 91.883.27 90.702.46 72.503.45 61.3320.50 59.383.81
Base LLM || 66.62 || 23.129.67 56.884.73 80.082.99 84.143.44 9430112 919517 4875330 7539359 45.005.04
CcCc 63.59 || 50.085.00 3648358 76.091.24 8273344 94.770.72 9242072 46.090.00 55.002.06 38.670.00
Llama DC 63.71 || 48.593.208 37.663.71 76.800.88 84.002.90 94.611.20 92.500.63 46.090.00 54371.86 38.670.00
BC 66.55 || 31.481.37 47.501.60 75781.6a 8344369 9422138 92.031.04 6578430 5477170 5391260
SC 71.61 || 45945 50 50.8610.44 86.562.7¢ 86.953 35 95.390.52 92.581.24 63.053.39 73.524.08 49.613 55
Base LLM || 68.27 || 23.050.25 5148531 76.881.66 85.865.64 94.531.75 92.660.46 54.841.88 7430184 60.865 49
CcC 64.42 || 54.229.52 40.863.51 7445167 84.6l5.70 9438176 92.730.40 46.090.00 53.751.69 38.670.00
Mistral DC 65.02 || 54.060.72 43.363.44 74.300.62 86.645 28 94841 51 92.730.47 46.090.00 5445125 38.670.00
BC 66.35 || 34.920.53 51.484.13 73.671.12 8391418 9430151 92.660.67 48.757.86 53.671.7¢ 63.831.86
SC 75.54 || 48.525.84 57.588.88 87.423.19 89.535.11 9359141 90.161 68 67.506.08 75.165.08 70.396.96
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Table 8: Average Accuracy scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 16-shot setting (k = 16) over five random seeds. Values are presented as meang 4, with the
highest score in each column highlighted in bold and shaded gray.

Model  Method Avg SSTS TREC AGNews FPB SST2 RT Subj TE-Emo TE-Hate
Base LLM || 62.71 || 22.81g9.19 60.163.27 75.620.04 64.060.00 87.666.53 91.561.81 46.090.00 55.080.06 61.330.00
CcC 59.08 || 22.81g.19 70.001.20 86.172.18 25.083.06 92.660.83 93.360.65 49.302.61 53.671.99 38.670.00
Qwen  DC 5747 || 22.810.19 51.023.73 88.440.72 37.0315.89 84.149.51 93441 06 48.052.37 53.591.00 38.670.00
BC 69.49 || 22.899.19 73912.07 78.051.50 72.818.05 91.4lp.92 92.660.90 76.802.87 55.550.62 61.330.00
SC 70.77 || 41.646 65 73982 67 8578338 67.1111.83 93207 .89 92.197 40 6852527 60.235 91 54.303.05
Base LLM || 66.97 || 22.500.31 65.863.44 81.092.71 81.725.00 94450.57 92.031.27 48.752.00 73.206.24 43.123.08
CcC 63.88 || 52.580.80 37.193.21 75.861.47 8234505 94.611.00 928lp.68 46.099.00 54.770.76¢ 38.670.00
Llama DC 64.11 || 50.701.84 39.144.17 76.950.86 8523470 94.771.15 92.8lp.80 46.090.00 52.661.70 38.670.00
BC 66.86 || 33.361.32 44.223.30 76250.80 83.525.10 94.6lg.83 9234112 66.642 38 54.300.35 56.484 29
SC 70.92 || 44454 58 6547460 8742390 78.8312.25 93.980.77 91.881.45 56.885.83 60.64559 52.7311.41
Base LLM || 67.65 || 22.730.16 56.884.99 78.671.92 8391373 93.989.80 92.420.72 5508144 7648362 48.67¢.38
CcC 64.57 || 54.300.55 42.664.30 75.781.05 82.033.38 94.060.38 9297061 46.090.00 54.531.74 38.670.00
Mistral DC 6541 || 54.140.72 47.114.27 7547103 8508346 94.690.80 92.190.49 46.099.00 55231.76¢ 38.670.00
BC 67.52 || 34.691.32 53.282.16 75941.01 8125214 93.52p.58 92.500.52 56.566.32 55.001.81 64.929.90
SC 76.96 || 47.272.43 73.283.01 8781181 8578580 94.301.70 91.092.34 70.867.29 68.055.05 74.221 38

G ABLATION RESULTS

We conduct ablation studies to dissect the distinct contributions of key components within our Supervised
Calibration (SC) framework.

G.1 SCALING MATTERS

First, to isolate the impact of learning the per-class scaling factor w., which underpins SC’s ability to reorient
decision boundaries, we compare the full SC model against two alternatives in Figure[5} a restricted variant,
SC* (where w, is fixed to 1, thus only learning an optimal bias term), and other baseline calibration methods.
Our experiments reveal that SC* surpasses these other baselines. This suggests that estimating an optimal bias
under SC framework is more effective than methods employed by LM methods. More critically, the full SC
model achieves higher performance than SC*, suggesting that the flexibility to learn the scaling factor—and
therefore to both shift and rescale the LLM’s logits—offers a further advantage.

The performance difference between SC and SC™ is particularly apparent on a challenging 8-shot, multi-class
classification task (SST-5) where the base model’s predictions are often poorly oriented. Specifically, TableJ]
shows that SC* method achieves a very low Macro-F1 of 0.1004, indicating its inability to correct the model’s
predictions. In stark contrast, the full SC method boosts the Macro-F1 to 0.4106 and accuracy to 0.4352,
representing a four-fold improvement. This vast performance gap confirms our hypothesis: on difficult tasks
with severe miscalibrations, only full SC, capable of both shifting and scaling the decision boundary, can
effectively correct severly misaligned LLM.

G.2 ENSEMBLING ACROSS CONTEXT SIZES (|I|) IMPROVES PERFORMANCE

Second, we investigate whether ensembling calibrators trained with different context sizes improves predictive
performance. Concretely, we train a collection of models {8} ;¢ ;, where each calibrator is fitted using training
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Figure 5: Accuracy and Macro-F1 scores of six methods on the Subjective dataset using the Mistral-7B-
Instruct-v0.3 model in (a) 4-shot and (b) 8-shot settings. Results are averaged over 5 random seeds. Bars
represent the mean performance for each metric as indicated in the legend. SC* stands for the case where
the scaling factor w, is fixed to 1 under the SC framework. Notably, SC consistently outperforms all other
methods in both settings. The improved performance of SC* over other baselines suggests that estimating an
optimal bias under SC framework is more effective than the methods employed by LM approaches, while the
full SC further demonstrates the advantage of also learning the scaling factor.

Table 9: Comparison on the 8-shot SST-5 task with the Qwen2-7B-Instruct model. SC v.s SC*.

Method Macro-F1 (mean = SE) Accuracy (mean + SE)
Base LLM 0.1565 £ 0.0033 0.2434 £+ 0.0016
SC* (scaling=1) 0.1004 + 0.0125 0.2227 +0.0168
SC 0.4106 + 0.0280 0.4352 £ 0.0428

data with ¢ in-context examples. We then ensemble these context-size-specific calibrators and evaluate the
impact of increasing the number of distinct i-shot learners in the ensemble (i.e., increasing ||). Empirically,
we observe a consistent and monotonic improvement in both Accuracy and Macro-F1 scores as |I| grows
as shown in Figure[6]and[7] This suggests that calibrators exposed to heterogeneous amounts of contextual
information offer complementary signals, enhancing the robustness and predictive accuracy of the final
calibrated output. These findings highlight a promising direction: with sufficient computational resources,
one could train and ensemble an even broader set of context-specific calibrators to capture a richer diversity
of contextual patterns, potentially unlocking further performance gains.

G.3 MACRO-F1 GAINS AS THE NUMBER OF SAMPLED SUB-CONTEXTS INCREASES

Next, we investigate the impact of the number of sampled sub-contexts (m;) used for prediction averaging
within each context-size-specific calibrator during the ensembling phase. In Figure 8] our findings reveal that
increasing m; (i.e averaging predictions over a greater number of distinct sub-contexts of size i) generally
enhances Macro-F1 scores. This suggests that more comprehensive sampling of available context variations
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Figure 6: Impact of ensembling context-size-specific models within the SC framework on the Subjective
dataset in an 8-shot setting. Results are reported for (a) Llama-2-7b-chat-hf, (b) Qwen2-7B-Instruct, and (c)
Mistral-7B-Instruct-v0.3, using Accuracy and Macro-F1 scores averaged over 5 random seeds. Each ensemble,
denoted SC-N, aggregates calibration models trained on context sizes ranging from 1 to NV (e.g., SC-2 uses
models with context sizes 1 and 2, SC-6 includes context sizes 1 through 6). The consistent improvement in
performance as N increases across all three LLMs highlights the general benefit of aggregating insights from
a more diverse set of k-shot learners.

for each i-shot learner improves the accuracy of the ensemble’s output, helping to further reduce ICL’s
sensitivity to specific context compositions.

G.4 COMPUTE AND TIMING.

In Tables [T0]and [TT] we characterize the computational footprint of sub-context (SC) ensembling by reporting
wall-clock training time 7i,;, and inference time Ty, (1) per 256 test examples, where m; is the number
of sampled sub-contexts with size ¢ used at inference for SC;. Training is a one-time cost per method. SC
rows are cumulative. Specifically, for £ = 4 we aggregate SC,—SCs, and for k = 8 we aggregate SCo—SCs,
whereas all bias-only baselines are effectively insensitive to m;.

Specifically, SC ensembling increases inference time approximately linearly with m; because each additional
sub-context entails an extra forward pass. This trend is evident at both context sizes. For k& = 4, combining
SCy and SC3 adds a modest Ty = 2.24 s and yields Tipger(1) = 22.91 s, growing to Tinger(6) = 134.96
s, while baselines remain near 10.5 s regardless of m;. For k = 8, the cumulative SCo—SCj configuration
requires Ty = 489.62 s and exhibits Tiner(1) = 42.83 s rising to Tinger(6) = 260.32 s, with baselines
staying close to 11.1 s across all settings. These measurements are consistent with the simple cost model

Tinfer(mi) ~ m; X Tbase,i + overhead,

in which Ty, ¢ is the per-example cost of a single forward pass with context size i.

Practically speaking, When computation is a limiting factor, running the most effective single SC size offers a
favorable accuracy—cost trade-off. In our experiments, SC3 for & = 4 and SC5 for k = 8 are the strongest
individual calibrators, preserving most of the ensemble’s accuracy gains while keeping inference overhead
substantially closer to baseline runtimes.
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Figure 7: Impact of ensembling context-size-specific models within the SC framework on the Subjective
dataset in an 16-shot setting. Result is reported for Llama-2-7b-chat-hf, using Accuracy and Macro-F1 scores
averaged over 5 random seeds. Each ensemble, denoted SC-N, aggregates calibration models trained on
context sizes ranging from 1 to IV (e.g., SC-2 uses models with context sizes 1 and 2, SC-11 includes context
sizes 1 through 11). The consistent improvement in performance as N increases across all three LLMs
highlights the general benefit of aggregating insights from a more diverse set of k-shot learners.
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Figure 8: Impact of the number of sampled sub-contexts (m;) used for prediction averaging within each
context-size-specific model in the SC ensemble. Results show Macro-F1 scores on the Subjective dataset
using the Llama-2-7b-chat-hf model in an 8-shot setting, averaged over 5 random seeds. The x-axis (m;)
represents the number of distinct contexts of a given size ¢ sampled to generate predictions, which are then
averaged. Performance improves as more context variations are considered in the ensemble prediction.
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Table 10: Training and inference timing (seconds) for k = 4.

Method Ttrain (S) Tinfer(l) Tinfer (2) Tinfer (3) Tinfer (4) Tinfer (5) Tinfer (6)
Baseline 0.00 10.51 10.51 10.51 10.51 10.51 10.51

CC 0.12 10.48 10.48 10.48 10.48 10.48 10.48
Domain 0.85 10.47 10.47 10.47 10.47 10.47 10.47
Batch 0.00 10.54 10.54 10.54 10.54 10.54 10.54
SCq 1.26 12.52 24.44 36.65 49.66 61.09 73.15
SCs 0.98 10.39 20.85 31.15 42.74 52.14 61.81
SC 2.24 2291 45.29 67.80 92.40 113.23 134.96

Table 11: Training and inference timing (seconds) for k = 8.

Method Ttrain (S) Tinfer(l) Tinfer (2) Tinfer (3) Tinfer (4) Tinfer (5) Tinfer (6)
Baseline 0.00 11.34 11.34 11.34 11.34 11.34 11.34

CC 0.13 11.11 11.11 11.11 11.11 11.11 11.11
Domain 0.95 11.14 11.14 11.14 11.14 11.14 11.14
Batch 0.00 11.13 11.13 11.13 11.13 11.13 11.13
SCy 16.08 11.75 24.15 36.01 47.80 59.14 71.58
SCs 66.44 10.11 21.03 31.60 41.92 52.19 63.09
SCy 201.79 10.37 20.69 31.13 41.65 52.05 61.95
SCs 205.31 10.60 21.02 32.00 42.17 52.96 63.70
SC 489.62 42.83 86.89 130.74 173.54 21634  260.32

G.5 EFFECTS OF TRUST-REGION AND INVARIANCE

To isolate the impact of the key components of our proposed method, we conduct an ablation study, with the
results presented in Table We evaluate the performance contributions of our two main components: the
directional trust-region constraint and the context invariance penalty.

The study begins with the "Uncalibrated (Baseline)" model, which achieves a Macro-F1 of 0.634. Introducing
the core calibration mechanism without our proposed constraints ("No trust-region, no invariance") already
yields a substantial improvement. When adding either the "Invariance only" or "Trust-region only" component,
performance increases further, with both contributing similarly to the overall score. However, the full model,
which combines both trust-region + invariance, achieves the highest performance across both Macro-F1
(0.746) and Accuracy (0.788). This demonstrates that both components are crucial and complementary,
working together to deliver the best calibration results.

Table 12: Ablation study on the components of SC. Results show Macro-F1 and Accuracy, reported as mean
=+ standard error.

Method Macro-F1 + SE  Accuracy + SE
Uncalibrated (Baseline) 0.634 £ 0.008 0.759 £ 0.008
No trust-region, no invariance 0.695 = 0.056 0.729 +0.047
Invariance only 0.705 + 0.063 0.741 + 0.054
Trust-region only 0.706 + 0.060 0.743 £ 0.049

Both: trust-region + invariance  0.746 + 0.041 0.788 + 0.030
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G.6 SCALING TO LARGER MODELS (LLAMA-13B)

To assess the scalability of our method, we ran additional experiments with the larger LLaMA-13B model.
Due to computational constraints, we focused this scaling analysis on three datasets, Rotten Tomatoes,
SST-2, and AGNews, where we compared its performance against the 7B variant. All experiments were
conducted under the same 4-shot setup and averaged over 5 random seeds.

The results, presented in Tables[I3] [I4] and[I5] demonstrate that our method, SC, scales effectively. Across all
three datasets, SC consistently delivers the strongest performance on the LLaMA-13B model, achieving the
highest Macro-F1 and Accuracy. Notably on AGNews, while the 7B baseline was competitive, SC provides a
substantial improvement for the 13B model, boosting accuracy from 78.12 to 88.05. This confirms that our
calibration approach remains highly effective and provides consistent benefits as the underlying language
model size increases. We plan to incorporate further evaluations on even larger models in future work.

Table 13: Performance on the Rotten Tomatoes dataset with 7B and 13B models.

Method Macro-F1(7B) = SE Accuracy (7B) = SE  Macro-F1 (13B) + SE  Accuracy (13B) + SE

Baseline 91.16 = 1.59 91.17 £ 1.58 91.87 +£0.48 91.89 +0.49
CC 92.06 + 0.96 92.07 £+ 0.95 92.33 £0.11 92.38 £0.11
DC 91.92+1.13 91.95£1.18 92.25 £0.12 92.29 £0.10
Batch 91.52 +1.25 91.52 +£1.28 91.38 £0.59 91.41 +0.57
SC 91.56 £ 1.19 91.57 £ 1.18 92.33 + 0.26 92.38 + 0.25
Table 14: Performance on the SST-2 dataset with 7B and 13B models.
Method Macro-F1 (7B) &= SE Accuracy (7B) = SE  Macro-F1 (13B) + SE  Accuracy (13B) &+ SE
Baseline 93.36 £ 0.44 93.63 £ 0.40 95.10 £ 0.56 95.21 £+ 0.56
CcC 93.17 £1.92 93.49 £ 0.91 94.81 £0.74 94.92 +0.73
DC 93.60 £+ 0.50 93.83 £1.19 95.47 +£0.09 95.61 +£0.10
Batch 93.53 £0.47 93.75 £ 0.48 95.42 £ 0.65 95.51 £+ 0.65
SC 94.25 + 0.53 94.45 + 0.47 95.65 + 0.26 95.80 + 0.25
Table 15: Performance on the AGNews dataset with 7B and 13B models.
Method Macro-F1(7B) = SE  Accuracy (7B) £ SE Macro-F1 (13B) = SE  Accuracy (13B) = SE
Baseline 77.58 +7.17 82.58 +4.17 85.74 £ 1.77 87.19 +1.27
CC 71.01 4 3.42 79.30 + 2.02 66.40 £+ 0.61 77.73 +£0.28
DC 72.10 £+ 3.61 79.61 + 1.89 66.90 £+ 1.00 77.81 £ 0.60
Batch 66.06 £+ 2.94 77.19 £ 1.27 66.32 £ 0.63 77.58 +0.29
SC 71.76 +11.31 78.12 + 8.67 87.51 +£1.13 88.05 + 0.94
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