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ABSTRACT

In-Context Learning (ICL) allows Large Language Models (LLM) to adapt to new tasks
with just a few examples, but their predictions often suffer from systematic biases, leading
to unstable performances in classification. While calibration techniques are proposed to
mitigate these biases, we show that, in the logit space, many of these methods are equivalent
to merely shifting the LLM’s decision boundary without having the ability to alter its
orientation. This proves inadequate when biases cause the LLM to be severely misdirected.
To address these limitations and provide a unifying framework, we propose Supervised
Calibration (SC), a loss-minimization based framework, which learns an optimal, per-class
affine transformation of LLM’s predictive probabilities in the logit space without requiring
external data beyond the context. By using a more expressive functional class, SC not only
subsumes many existing calibration methods in ICL as special cases but also enables the
ability of altering and even completely reversing the orientation of the LLM’s decision
boundary. Furthermore, SC’s loss-based nature facilitates the seamless integration of two
purpose-built regularization techniques, context-invariance and directional trust-region
regularizers. The former is designed to tackle the instability issue in ICL, while the latter is
to control the degree of calibration. Finally, SC delivers state-of-the-art performance over
calibration baselines in the 4-shot, 8-shot, and 16-shot settings across all nine datasets for
Mistral-7B-Instruct-v0.3, Llama-2-7B-chat, and Qwen2-7B-Instruct.

1 INTRODUCTION

State-of-the-art LLMs exhibit a striking in-context learning (ICL) capability: with only a handful of in-
put–label exemplars, they generalize to unseen queries almost as if they had been fine-tuned, thus functioning
as highly sample-efficient few-shot learners (Brown et al., 2020; Liu and et al., 2023). However, a growing
body of evidence shows that ICL performance can be brittle with respect to seemingly innocent design
choices such as template wording (Min et al., 2022), verbaliser selection (Holtzman et al., 2021a), and the
particular demonstrations given (Liu et al., 2022a). These biases and sensitivity of ICL pose a practical barrier
to developing applications that are both adaptable and robust. Motivated by this, extensive research has been
conducted to develop calibration approaches to address such a challenge for classification problems in ICL.
The majority of calibration methods fall under label-marginal-based calibration (LM). These methods first
estimate the LLM’s probability for each label given the context alone via various approaches. They then
discount the predictive probabilities of the LLM for the labels that are over-represented and boost those that
are under-represented. See detailed discussion in the later sections.

Despite the empirical success of these methods, their ability of correcting the predictive probabilities of the
LLM via its internal estimated prior is limited. Specifically, we show in Section 3.4 that the underlying idea
of these methods is equivalent to optimally shifting the decision threshold of the base LLM. Hence, they
are inherently incapable of altering or reversing the orientation of the decision boundary. This becomes

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Figure 1: Comparison of ICL prediction strategies, where the x-axis represents the LLM’s raw logits (log-
odds). (a) Base LLM (accuracy: 30%): The model predicts class 1 when logit > 0. (b) Label Marginal
Calibration (accuracy: 50%): These methods only shift the decision boundary, limiting correction when base
LLM is systematically wrong. (c) Supervised Calibration (accuracy: 80%): SC can shift and flip the decision
boundary of the base LLM, resulting in a significant improvement.

problematic when the base LLM performs poorly. To further illustrate this limitation, consider a binary
classification problem in Figure 1 (a), where the base LLM only achieves 30% accuracy. Since LM methods
can only shift the decision threshold, their maximum improvement over the base LLM is capped, only
achieving the level of random guessing as seen in Figure 1 (b). One may expect that such an issue becomes
more common and severe in the multiclass classification, where distinguishing among a larger number of
labels is inherently more difficult. For instance, on the SST-5 dataset, the average accuracy across three
representative LLMs is only 22%, highlighting the severity of this challenge. This limitation motivates the
need for a more principled calibration framework that is capable of correcting severely misaligned LLM
predictions when necessary (e.g., by reversing the decision direction), and that subsumes existing methods as
special cases while remaining both theoretically grounded and practically robust.

To achieve this goal, we introduce Supervised Calibration (SC), which is motivated by conceptualizing
existing approaches as learning a calibrated classifier: they take a LLM’s logits as input features and
subsequently optimize a bias term to shift these logits. However, this shift only corresponds to moving the
LLM’s decision boundary to maximize the predictive accuracy illustrated in Figure 1 (b). Therefore, to enable
more comprehensive adjustments, specifically, the ability to alter or reverse the orientation of the LLM’s
decision boundary, the proposed SC leverages the paradigm of loss-function-based classification and optimize
both the bias and the scaling factor jointly. Our approach begins by generating a surrogate dataset, removing
the necessity of external dataset beyond the given context. From this surrogate data, we extract features
in the form of logits derived from the base LLM’s output probabilities. Then we employ these features,
paired with their corresponding true labels to train a standard classifier, which learns not only an optimal
bias term but also an optimal rescaling factor. Critically, the concurrent optimization of this rescaling factor
empowers our approach to reverse the LLM’s decision boundary when advantageous (as illustrated in Figure
1 (c)). Moreover, the loss-minimization framework underpinning SC inherently supports the integration
of regularization techniques designed for addressing the common problems in ICL and calibration. In this
context, we propose a novel context-invariance regularizer for addressing the instability issue in ICL and
a directional trust-region regularizer for controlling the degree of calibration. From a statistical viewpoint,
these characteristics allow SC to pursue a balance regarding to the bias-variance trade-off. While SC’s
flexibility targets a reduction in approximation error over LM methods, its regularization components actively
constrain variance which is an essential consideration within the data-scarce ICL paradigm. Collectively,
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SC delivers an adaptable, stable, and theoretically grounded framework that improves LLMs’ classification
quality in few-shot settings, enabling fairer and more socially impactful applications as a result. Experimental
results demonstrate that SC consistently outperforms existing calibration methods across a broad range of
tasks, significantly enhancing the predictive performance of three distinct LLMs evaluated on nine inference
datasets. For example, the performance of SC is striking on the SST-5 dataset with the Qwen model (8-shot
setting), where it significantly outperforms baseline methods with accuracy from 25% (baselines) to 44%.
This notable boost is directly attributable to its learned negative scaling factor which re-orients the base LLM
decision boundary in this multiclass classification task. See Figure 4 for more details.

Our main contributions are summarized as follows: Firstly, we propose Supervised Calibration, which adopts
loss minimization framework from classical supervised learning and calibrates ICL via learning optimal bias
and scaling factors, enabling not only shifting but also altering the orientation of the base LLM decision
boundary; Secondly, we integrate the context-invariance and directional trust region regularizations in SC,
enhancing the stability of ICL and controlling the degree of the calibration respectively; Thirdly, we provide a
theoretical intuition behind SC and its generalization over the LM methods; Lastly, we conduct extensive
empirical studies to demonstrate the state-of-the-art performance of SC over several existing baselines.1

2 RELATED WORK

Diagnosing biases and calibration via Label Marginal. A seminal study by Zhao et al. (2021) identified
primary in-context learning (ICL) biases—including majority-label, recency, and common-token bias—and
introduced Contextual Calibration (CC), which adjusts probabilities by normalizing against content-free
prompts. Subsequently, observing that competition for probability mass degrades performance, Holtzman et al.
(2021b) proposed DCPMI to recalibrate logits. Recent work has uncovered further ICL instabilities, such as
feature and positional biases, with each diagnosis often paired with a lightweight calibration strategy (Si et al.,
2023; Wang et al., 2023; Pezeshkpour and Hruschka, 2023). For instance, Domain-Context Calibration
(DC) corrects predictions by averaging over random in-domain strings (Fei et al., 2023), while the more
recent Batch Calibration (BC) uses unlabeled mini-batches to adjust each prediction (Zhou et al., 2023).
Although these methods show empirical improvements, they can fail when the base LLM is substantially
misaligned with the downstream task, as they cannot alter the model’s decision direction. This limitation
motivates the exploration of calibration frameworks with greater flexibility.

3 SUPERVISED CALIBRATION

3.1 BACKGROUND

Consider an n-class classification task with label verbaliser set Y = {y0, . . . , yn−1} and query space X . In
few-shot in-context learning (ICL), the context Ck is constructed by concatenating k input–label exemplars
(x(i), y(i)) formatted via a template function T such that Ck = Concat(T (x(1), y(1)), . . . , T (x(k), y(k))).
Then given the context of k-shots and a testing query x ∈ X , the LLM predicts a label via computing
ŷ ∈ argmaxy∈Y PLLM(y | x,Ck). While ICL offers an appealing alternative to the gradient-based fine-
tuning by allowing LLMs to adapt to new tasks via only a handful of in-prompt demonstrations, the resulting
posterior distribution PLLM(y | x,Ck) is often distorted by some systematic biases. Such biases inherent in
ICL often stems from context examples or their order, which makes PLLM(y | x,Ck) significantly diverge
from ground-truth posterior P ∗(y|x). Therefore, the objective of calibration is to refine LLM’s predictive
probabilities PLLM(· | x,Ck) to align with P ∗(y|x).

1Anonymized code for reproducibility: https://anonymous.4open.science/r/ICL-5CF5
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Existing approaches are mainly focused on correcting the prior distribution of the label via estimating the
LLM’s internal prior given the context. Despite their successes, one can show that these approaches boils
down to merely shifting the LLM’s decision boundary, lacking the ability to alter an LLM’s orientation. This
limitation turns out to be essential especially in multi-class classification, where an LLM can easily make
persistent mistakes. See Figure 1. Therefore, to further reduce the biases and align with P ∗(y | x) in such
cases of substantial misorientation, we develop a more principle calibration called Supervised Calibration.

3.2 OUR PROPOSAL

To begin with, we assume the k context examples (x(i), y(i))ki=1
i.i.d.∼ P ∗. Due to the aforementioned biases, the

LLM’s posterior PLLM(y | x,Ck) can deviate notably from the truth P ⋆(y | x). In particular, we measure their
deviation via the Kullback–Leibler (KL) divergence defined as Ex∼P⋆

[
DKL

(
P ⋆(· | x) ∥PLLM(· | x,Ck)

)]
,

where DKL

(
P ∥Q

)
=

∑
y∈Y P (y) log P (y)

Q(y) for some probability measures P and Q. Let ∆n be the
probability simplex over Y . Then to correct for this, we seek a vector-valued calibration function f∗ : ∆n →
∆n, chosen from a prescribed class F , such that when applied to the vector of LLM’s predictive probabilities,
it minimizes the KL-divergence, i.e.,

f∗ = argmin
f∈F

E
x∼P⋆

[DKL(P
⋆(· | x) ∥ f(PLLM(·|x,Ck)))] = argmin

f∈F
− E

(x,y)∼P⋆
[log(fy(PLLM(·|x,Ck)))], (1)

where fy is the yth-coordinate projection of f . Note that as long as F contains the identity map, applying
f∗ enhances the fidelity of PLLM. To find f∗, we highlight two key challenges. Firstly, since our method
is post-hoc, choosing an effective F operating solely on the base LLM predictive probabilities is essential.
Secondly, there is no external data sampled from P ∗ to approximate the objective function in Equation (1).

3.2.1 AFFINE-LOGIT APPROXIMATION AND LEAVE-SUBSET-OUT STRATEGY

To select an appropriate function class F , we only need to consider f defined over the log-odds of the predictive
probabilities against a reference group (class 0 in this paper), since the logistic function is bijective. Specif-

ically, denote the logits given by the base LLM as m(x;Ck) =
(
mc(x;Ck) ≜ log PLLM(y=c|x,Ck)

PLLM(y=0|x,Ck)

)n−1

c=1
.

Then, instead, we aim to choose the transformed function class F̃ =
{
f : Rn−1 → ∆n

}
for calibration. To

facilitate it, notice that

P ⋆(y | x) = P ⋆(x | y)P ⋆(y)

P ⋆(x)
∝ PLLM(y | x,Ck)

P ⋆(x | y)
PLLM(x | y, Ck)

P ⋆(y)

PLLM(y | Ck)
(2)

≜ PLLM(y | x,Ck)h(x, y, Ck), (3)

which implies that

L⋆
c(x) = mc(x;Ck) + log

(
P ⋆(x|c)PLLM(x|0, Ck)

P ⋆(x|0)PLLM(x|c, Ck)

)
︸ ︷︷ ︸

Class Conditional Shift

+ log

(
P ⋆(c)PLLM(0|Ck)

P ⋆(0)PLLM(c|Ck)

)
︸ ︷︷ ︸

Label Marginal Shift︸ ︷︷ ︸
log(h(x,c,Ck)/h(x,0,Ck))

, (4)

where L⋆
c(x) = log(P ∗(c|x)/P ∗(0|x)) is the true logit for class c. Thus, the primary challenge of choosing F

lies in approximating the unknown correction term log (h(x, c, Ck)/h(x, 0, Ck)). Since we only have access
to the LLM’s output logits m(x;Ck), we propose to approximate {L⋆

c(x)}n−1
c=1 via an affine transformation

of {mc(x;Ck)}n−1
c=1 . In particular, our working model Lc(x;θ

k
c ) is

Lc(x;θ
k
c ) = wk

c mc(x;Ck) + bkc , c = 1, . . . , n− 1, (5)
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where θk
c = (bkc , w

k
c ) are calibration parameters associated with class c and the context size k. This affine

structure directly targets the two primary sources of discrepancies between true and LLM logits: class-
conditional shift and label marginal shift as illustrated in Equation (4). Specifically, by rearranging Equation
(5) as Lc(x;θ

k
c ) = mc(x;Ck)+[(wk

c−1)mc(x;Ck)+bkc ], we see that the term (wk
c−1)mc(x;Ck)+bkc serves

as our learned approximation to the true correction term log (h(x, c, Ck)/h(x, 0, Ck)). Within this learned
correction, the intercept bkc primarily addresses the query-independent "Label Marginal Shift" component from
Equation (4), compensating for discrepancies in label priors. The query-dependent term (wk

c − 1)mc(x;Ck)
targets the "Class Conditional Shift" by allowing the slope wk

c to rescale the LLM’s original logit mc(x;Ck).

Furthermore, wk
c enables the reorientation of the LLM’s decision boundary. For instance, a negative wk

c
inverts the LLM’s initial assessment for a class relative to the reference, effectively correcting its predictive
direction as illustrated in Figures 1 (c) and 4. This is a vital capability that methods merely learning a bias (i.e.,
fixing wk

c = 1) lack. As detailed in Section 3.4, our framework not only unifies but also generalizes several
recent ICL calibration techniques. Finally, it naturally encompasses the base LLM’s original predictions as a
special case when bkc = 0 and wk

c = 1 for all c. In terms of learning the parameters, if an external calibration
dataset {(x(j), y(j))}Ncal

j=1 is provided, we first compute the LLM’s logits m(x(j);Ck) for each x(j). Then
based on Equation (1), we estimate the parameters via minimizing the negative log-likelihood, i.e.,

θ̂k = argmin
θk

{Lk(θ
k) ≜ −

Ncal∑
j=1

log fy(j)(m(x(j);Ck);θ
k)}, (6)

where θk = {θk
c }n−1

c=1 and fc(m(x(j);Ck);θ
k) =

1{c>0} exp(Lc(x;θ
k
c ))+1{c=0}

1+
∑n−1

i=1 exp(Li(x;θk
i ))

. This optimization problem is
equivalent to standard multi-class logistic regression using the model logits mc as input features. However,
there is no external calibration dataset available beyond Ck. Therefore, we propose generating surrogate
training data directly from the demonstration context Ck via a leave-subset-out strategy. Specifically, we first
select a context size i such that i < k. We then construct the surrogate training dataset Ti using Algorithm 1 in
Appendix E, as illustrated in Figure 2. Finally, we estimate calibration parameters θ̂i via minimizing Li under
Ti. Note that this method can be applied across multiple context sizes i, enabling ensembling extensions of
{θ̂i}i∈I to construct a final estimator for calibration.

Figure 2: Surrogate data generation (Algorithm 1) for a 4-shot setting (k = 4) using a 2-shot context (i = 2).
From the full set of 4 examples, many different 2-shot contexts (blue) can be formed; the figure illustrates
two such possibilities. The remaining held-out examples (red) are used as queries with each context, and the
LLM’s logits are paired with the true labels to build a diverse surrogate dataset.
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3.2.2 CONTEXT INVARIANCE AND DIRECTIONAL TRUST REGION

In the following subsection, we fix the context size i ∈ I and introduce some enhancement on the pro-
posed method. Note that our surrogate data generation process exposes a well-known limitation of ICL,
its sensitivity to the composition and ordering of the context. Specifically, a single query pair (x, y) is
evaluated using multiple different sub-contexts Ci, yielding potentially different logits m(x;Ci) and label
prediction for the same ground truth label y. In essence, an effective calibration method should mitigate
this sensitivity, leading to more stable predictions. This motivates incorporating a mechanism to encourage
context invariance in the calibrated predictions. To achieve this, we propose augmenting the standard MLE
objective (Eq. (6)) with a context-invariance regularization term. Specifically, let C(a)

i and C
(b)
i be any

two distinct contexts of size i drawn from Ck for evaluating the same query (x, y) in the surrogate data.
We aim for the calibrated distributions f(m(x(j);C

(a)
i );θi) and f(m(x(j);C

(b)
i );θi), to be similar. To

enforce this similarity, we utilize the symmetric cross-entropy between these two calibrated distributions as
a regularizer defined as Lsym(θ

i, x, C
(a)
i , C

(b)
i ) = H

(
f(m(x(j);C

(a)
i );θi), f(m(x(j);C

(b)
i );θi)

)
, where

H(P,Q) ≜ −
∑n−1

c=0 (Pc logQc + Qc logPc). This loss term measures the divergence between the two
distributions induced by different contexts, penalizing differences in both directions. Then the overall penalty
is defined by averaging Lsym over all possible pairs of contexts associated with each x.

InvPenalty(θi) =
∑
x

∑
{C(a)

i ,C
(b)
i }

Lsym(θ
i, x, C

(a)
i , C

(b)
i ). (7)

The full expression of InvPenalty is given in Equation (14) of Appendix D. On top of ensuring context-
invariance, a well-established calibration approach should also take into account the different scenarios
induced by the base LLM’s reliability and the size of the context. In particular, strong base LLMs warrant
minimal adjustment, while weak ones require more aggressive correction, yet limited examples can mislead
both cases, risking overfitting or under-correction. To balance this, we regularize the calibration by introducing
a directional trust region that restricts parameter updates to remain aligned with the base LLM’s logit.
Specifically, we constrain the average cosine similarity between each parameter vector θi

c = [bic, w
i
c]
⊤ and

the identity direction v = [0, 1]⊤, which corresponds to the base LLM via

1

n− 1

n−1∑
c=1

(θi
c)

⊤v

∥θi
c∥2

≥ τ,

where ∥·∥2 refers to ℓ2-norm and τ ∈ [0, 1] modulates the trust: large τ encourages minor scaling adjustments
(exploitation), while smaller values permit broader corrections (exploration). This mirrors trust-region
principles in policy optimization (e.g., TRPO (Schulman et al., 2015)), adapting model updates based on the
confidence in prior predictions.

3.3 FULL ALGORITHM

The final optimization combines this constraint with the likelihood loss and a context-invariance regularizer:

min
θi

 ∑
(m(l),y(l))∈Ti

− log fy(l)(m(l);θi) + λinvInvPenalty(θi)

 s.t.
1

n− 1

n−1∑
c=1

(θi
c)

⊤v

∥θi
c∥2

≥ τ. (8)

where λinv > 0 is a hyperparameter controlling the strength of the context-invariance penalty. To solve
this optimization problem, we used SciPy’s trust-constr algorithm, a trust-region method designed for
constrained optimization. This optimization can be carried out independently for each i ∈ I ≜ {1, · · · , k−1},
resulting in a set of calibration models {θ̂i}i∈I , each specialized for a particular context length. Additionally,

6
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at inference, any sub-context Ci can be used to extract logits for a given size i. This paves the way for a
two-level ensembling strategy to enhance robustness by aggregating predictions across both multiple context
lengths and diverse sub-context samples. Specifically, we train multiple affine-logit models {θ̂i}i∈I using
training sets with different sizes of the context. Then, at inference time, given a test query xtest, we first
draw {C(j)

i }j∈Mi from Ck for every i ∈ I , where I and Mi are user-defined index sets with size |Mi|
and |I|. Then we perform intra-size and inter-size ensembling by averaging the calibrated predictions over
{C(j)

i }j∈Mi and across all context sizes i ∈ I and output the predictive probability of SC for xtest as

p̂SC(xtest) =
1

|I|
∑
i∈I

1

|Mi|
∑

j∈Mi

f
(
m(xtest;C

(j)
i ); θ̂i

)
. (9)

The final predicted label is ŷSC ∈ argmaxyc∈Y [p̂SC]c. Overall, this ensembling procedure approximates
marginalization over plausible sub-contexts and lengths, significantly improving calibration stability and
accuracy. The full algorithm of SC is summarized in Table 2 of Appendix E.

3.4 CONNECTIONS TO PRIOR WORK AND THEORETICAL INSIGHT

In this section, we show the connection of the proposed SC with the existing LM methods and provide a
principle approach to theoretically understand these methods from the perspective of supervised learning.
Specifically, LM methods rely on one core assumption.

Assumption 1 The correction term h(x, y, Ck) ∝ 1
PLLM(y|Ck)

.

Under Assumption 1, the derivation in Section 3.2.1 yields that LM methods are equivalent to assuming
L∗
c(x) = mc(x;Ck) +Bc(Ck), c = 1, . . . , n− 1, (10)

where Bc(Ck) = − log[PLLM(c|Ck)/PLLM(0|Ck)]. Therefore, they focus on optimally shifting the decision
threshold of the base LLM via estimating PLLM(y|Ck), which thus gives an estimator for Bc(Ck). We sum-
marize the existing approaches of estimating PLLM(y|Ck) in Table 2 of Appendix D. However, Assumption
1 can be easily violated in practice, causing model mis-specification error. Therefore, instead of imposing
Assumption 1, we propose to understand existing LM methods from the perspective of function approximation
in the supervised learning. In this case, LM methods basically assume a working model (10). In contrast, the
proposed SC considers a strictly larger working model:

Lc(x;θ
k
c ) = wk

c mc(x;Ck) + bkc , c = 1, . . . , n− 1.

This offers a principle framework to compare SC with LM methods and indeed shows that SC generalizes
existing LM methods. Furthermore, within this framework, we analyze these methods via statistical learning
theory. Consider a dataset T = {(x(j), y(j))}Nj=1 of size N , and denote by f̂ := fθ̂k the solution minimizing
Lk(θ

k) under T . Let R∗ denote the Bayes risk and R(f̂) the 0-1 risk of f̂ . Then, under standard regularity
conditions, the excess risk of SC satisfies, with high probability:

R(f̂)−R∗︸ ︷︷ ︸
excess risk

≲
√
DKL(P ∗ ∥ f∗)−DKL(P ∗ ∥P ∗)︸ ︷︷ ︸

approximation error

+

√
2(n− 1)

N
. (11)

The decomposition leads to the following theoretical insight. Firstly, thanks to the strictly larger working
model, SC attains an approximation error that is guaranteed to be no worse than that of LM methods. Secondly,
SC estimates 2(n−1) parameters—one slope and one intercept per non-reference class—while LM methods
estimate only n−1 parameters. This leads to a factor of 2 increase in estimation error, which scales with the
number of parameters d as O(d). This gives LM methods an advantage. However, SC incorporates several
variance mitigation strategies to actively control estimation error and fully leverage its lower approximation
error: (i) explicit regularization through the directional trust region constraint and context invariance penalty;
and (ii) ensembling procedure in Algorithm 2.

7
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4 EXPERIMENTS AND MAIN RESULTS

In this section, we validate the effectiveness of SC by evaluating its classification performance across three
LLMs and nine benchmark datasets. SC consistently outperforms all baseline calibration methods across
various settings, establishing a new state-of-the-art in ICL for classification.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on nine text classification benchmarks covering sentiment, topic, and
social media analysis: SST-2, SST-5 (Socher et al., 2013), AG News (Zhang et al., 2015), SUBJ (Wang and
Manning, 2012), TREC (Li and Roth, 2002), Rotten Tomatoes (Pang and Lee, 2005), TweetEval-Emotion
(Mohammad et al., 2018), TweetEval-Hate (Basile et al., 2019), and Financial PhraseBank (Malo et al., 2014).

Models and Baselines. We compare SC against the Base LLM and three prior calibration baselines (CC,
BC, and DC) on three models: LLaMA-2-7B-Chat-HF (Touvron et al., 2023), Mistral-7B-Instruct-v0.3(Jiang
et al., 2023), and Qwen2-7B-Instruct (Yang et al., 2024). All models are used off-the-shelf from Hugging
Face without any fine-tuning. Appendix A provides full implementation details for the baselines.

Evaluation. Following prior work, we report Macro-F1 in 4-shot, 8-shot, and 16-shot settings. To ensure
robustness, all results are averaged over 5 random seeds on a held-out test set of 256 examples per dataset.
Our prompt template is described in Appendix C.

4.2 MAIN RESULTS

Figure 3 reports the Macro-F1 performance of five calibration methods across our full experimental suite
(9 datasets, 3 LLMs, 5 seeds, and 3 few-shot settings). Notably, SC consistently achieves the highest score
across all models and shot counts. In particular compared to the Base LLM, SC yields improvements of up to
+22.6% absolute in Macro-F1 (8-shot on Qwen2-7B-Instruct), and on average provides +11.1% absolute gain
across all models and shot configurations. Relative to the strongest competing calibration method (BC), SC
further improves performance by up to +13.4% (16-shot on Mistral-7B-Instruct-v0.3) and achieves an average
gain of +7.1%. Overall, these results confirm that SC offers a robust and generalizable enhancement of LM
methods in few-shot learning. In addition, our numerical results are aligned with our theory in presented in
Section 3.4. As shown in Figure 3, SC achieves the highest average score among all methods due to better
approximation error, but also exhibits increased variance in its performance. More detailed numerical results
and comparison are given in Appendix F. Furthermore, SC delivers a striking improvement on SST-5: in

Figure 3: Average Macro-F1 scores for five methods across 9 datasets and 3 LLMs in 4-, 8-, 16-shots settings.
Bars show the mean performance and standard deviation across datasets over 5 random seeds.
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the 8-shot setting with Qwen, it boosts accuracy from 24% (base LLM) and 25% (other methods) to 44%,
nearly doubling performance as shown in Figure 4. This substantial gain stems from SC’s unique ability
to not just shift logits, but to reverse the decision boundary when necessary as illustrated in Figure 1. For
instance, it learns a bias of −1.29 and a weight of −0.19 for the negative class relative to very negative. This
indicates that SC effectively shifts and reorients the LLM’s decision boundary between closely related classes,
enhancing overall performance.

Class b w

Very Negative (Ref.) 0.000 0.000
Negative -1.294 -0.188
Neutral 3.457 1.097
Positive 5.541 1.190

Very Positive -7.393 5.487

Figure 4: Performance on SST-5 with Qwen2-7B-Instruct in the 8-shot setting, averaged over 5 random seeds.
The table on the right shows the average learned coefficients with respect to the very negative reference class.

Ablations. We conducted a series of ablation studies to validate the contributions of each component within
our framework. First, we analyze the per-class scaling factor by comparing the full SC model against a
variant, SC∗, that only learns the bias term (i.e., the scaling factor is fixed to 1). While SC∗ outperforms
the baselines, which indicates estimating an optimal bias under SC framework is more effective than the
methods employed by LM approaches, the full SC model performs even better. This confirms that learning
to both shift and rescale logits is more advantageous. Second, we show that ensembling is highly effective:
performance consistently improves as we aggregate calibrators trained on more different context sizes and
average predictions over more sub-contexts at inference time. However, this performance gain comes at the
cost of computational overhead, primarily at inference. The inference time scales linearly with the number
of sampled sub-contexts, as each sample requires an additional forward pass. Furthermore, we confirm that
both the directional trust-region constraint and the context invariance penalty are crucial and complementary
components, with their combination yielding the highest performance. Finally, we validate that SC scales
effectively to larger models, consistently delivering strong performance gains on a 13B parameter model
across multiple datasets. Full results for the ablation studies are detailed in Appendix G.

5 CONCLUSION

In this paper, we introduce Supervised Calibration (SC), a novel loss-minimization-based calibration
framework designed to improve the performance of LLMs in ICL. We design SC to learn a class-specific
affine transformation in logit space, allowing it to both shift and reorient the LLM’s decision boundary.
Thanks to its expressive functional form, we show that SC generalizes and extends the corrective capabilities
of many existing calibration methods for ICL. Looking ahead, several avenues warrant exploration. First,
performance could be improved by developing more principled approaches to context selection and weighting,
moving beyond the current random sampling strategy. Second, a more rigorous theoretical analysis of SC
is needed, particularly one that accounts for the statistical dependencies introduced by our surrogate data
generation method. Finally, extending the principles of SC to calibrate LLMs for regression tasks presents a
valuable direction for future research.
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REPRODUCIBILITY STATEMENT

We enable end to end reproducibility through: (i) an anonymized code repository with scripts to run Supervised
Calibration (SC) and all baselines, linked via a main-text footnote (“Anonymized code for reproducibility,”
Page 3); (ii) complete algorithmic specifications in the paper, including the affine-logit model and leave-
subset-out surrogate data (Section 3.2.1), the context-invariance and directional trust-region regularizers
(Section 3.2.2), and the ensembling procedure (Section 3.3), with step by step pseudocode in Appendix E
(Algorithms 1 and 2); (iii) an explicit statement of assumptions and theoretical insights in Section 3.4; (iv)
full descriptions of datasets and model baselines in Section 4.1, and the exact prompt templates and label
words in Table 1 of Appendix C; (v) a clearly defined evaluation protocol (Macro-F1, 4/8/16 shot settings,
averaging over five random seeds on 256 held-out test examples) in Section 4.1; (vi) implementation and
hyperparameter details in Appendix A, including compute resources, the invariance penalty weight (λinv),
the schedule for τ in the trust region, and the number of sampled sub-contexts mi; and (vii) comprehensive
numerical results and ablations, including ensembling behavior and compute and timing, in Appendices F
and G. Together, these materials are intended to support exact replication of all reported results.
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A IMPLEMENTATION DETAILS

Computation Resources. All large language models (LLMs) used in our experiments are based on publicly
available implementations from the Hugging Face Transformers library (Wolf et al., 2020). We
conduct all experiments on a dedicated computing node equipped with 8 NVIDIA A6000 Ada Generation
GPUs.

Contextual Calibration (Zhao et al., 2021)(CC) Following the original CC implementation, we compute
the label probabilities conditioned on each of the three content-free tokens—‘N/A’, ‘’, and ‘[MASK]’—along
with the context. We then take the mean of these probabilities and use it to normalize the LLM’s label-space
probabilities computed for the test query and the same context.

Domain-Context Calibration (Fei et al., 2023) We reproduce the DC baseline by using the test set as
the unlabeled corpus to construct a bag-of-words. From this bag, we randomly sample tokens to create
content-free and in-domain inputs with an average target length. This process is repeated 20 times, and we
compute the mean probability over these samples. Following the original implementation, we use this mean
to normalize the LLM’s label-space probabilities computed for the test query and context.

Batch Calibration (Zhou et al., 2023) (BC) BC is an inference-time calibration method that computes the
mean of label probabilities over m test samples given the context during the inference. We set m = 128 and
use this mean to normalize the LLM’s label-space probabilities given the test query and context.

Supervised Calibration (SC) We adopt an ensembling strategy for SC as outlined in Algorithm 2. For
each configuration—k = 4, k = 8, and k = 16—we set the minimum context size imin (as defined in
Algorithm 2) to 1, and the maximum context size imax to min(5, k − 1). We fix the regularization parameter
λinv to 10 across all settings and LLMs. Additionally, the number of context to be sampled from C(i) (given
in Definition 1) for size i during the prediction is set as:

mi = min

(⌊
Ti
2

⌋
, 24

)
,

where Ti denotes the number of available samples for context size i.

To determine the value of τ , we use the following formulation:
τ = arccos(θ)

We first compute the in-sample accuracy of the LLM while generating the training data through Algorithm 1.
Based on this accuracy, we set the value of θ as follows:

θ =


20

1
K−1 if accuracy ≥ 0.9

45
1

K−1 if 0.7 ≤ accuracy < 0.9

90
1

K−1 if 0.5 ≤ accuracy < 0.7

180 if accuracy < 0.5
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Here, K denotes the number of distinct labels in the dataset.

While running SC with the setting k = 4, we excluded datasets containing more than four classes (i.e SST5
and TREC). This is because when the number of classes exceeds the number of context examples, some
classes are inevitably left out of the training data. This imbalance poses a challenge for training logistic
regression models across different context sizes.

B ADDITIONAL RELATED WORK

Calibration via centroids . A parallel line of work mitigates in-context biases by replacing the standard
decision rule with centroid-based classification. Han et al. (2022) proposed Prototypical Calibration, which
models output probability vectors using Gaussian mixtures and assigns labels based on cluster likelihood,
improving robustness to prompt variation and class imbalance. Similarly, Cho et al. (2024) introduced Hidden
Calibration, which operates in the model’s latent space by computing class centroids over hidden states and
classifying based on proximity. Although these methods show empirical performance gains, they rely on
additional data beyond the in-context examples, which may not always be available or compatible with the
ICL setting.

Mechanisms and prompt Optimization for ICL Another line of work diagnoses why LLMs succeed or
fail at ICL. The performance of a fixed prompt can swing from near random-guess to state of the art when
the order of demonstrations is permuted (Lu et al., 2022), and it correlates strongly with the pre-training
statistics of the tokens that appear in the prompt (Razeghi et al., 2022; Shin et al., 2022). From a theoretical
perspective, ICL has been interpreted as implicit Bayesian inference in sequence models (Xie et al., 2022),
while empirical evidence shows that sufficiently large models can even override entrenched semantic priors to
learn arbitrary input–label mappings on the fly (Wei et al., 2023). A complementary literature focuses on
controlling these factors. Template-search methods (Sørensen and Søgaard, 2022; Pan et al., 2023; Yin et al.,
2023) and example-selection algorithms (Rubin et al., 2022; Liu et al., 2022b; Wan et al., 2023) systematically
pick demonstrations that maximize mutual information or diversity, while Wan and colleagues (2023) add
consistency and repetition checks. To make ICL more robust, researchers have proposed noisy–channel
prompting (Seongjoo Min et al., 2022), flipped learning that trains the model against label noise (Ye et al.,
2023), k-nearest-neighbour label assignment (Liangchen Xu et al., 2023), and lightweight decoder networks
that adapt the prompt at inference time (Cui et al., 2023). Together, these studies paint a converging picture:
effective ICL hinges on matching the prompt (template and examples) to the model’s pre-training biases—then
compensating for the remaining mismatches with task-specific selection or robust inference techniques.

C PROMPT TEMPLATES
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Table 1: Prompt templates and label words for various datasets.

Dataset Prompt Template Label Words
SST2 sentence: <x>\nsentiment: <y> negative, positive

SST5 sentence: <x>\nsentiment: <y> terrible, bad, neutral, good, great

Rotten T. review: <x>\nsentiment: <y> negative, positive

Financial P. sentence: <x>\nsentiment: <y> negative, neutral, positive

Subj review: <x>\ntype: <y> objective, subjective

TREC question: <x>\ntarget: <y> abbreviation, entity, description, person, location, number

AGNews news: <x>\ntopic: <y> world, sports, business, technology

TE-Emo tweet: <x>\nemotion: <y> anger, joy, optimism, sadness

TE-Hate tweet: <x>\nhate speech: <y> non-hate, hate

D ADDITIONAL NOTATION AND DETAILED FORMULATION

Let Ck = {e(1), e(2), . . . , e(k)} be the full demonstration set of k unique input-label exemplars, where
e(l) = (x(l), y(l)).

Definition 1 (Set of Ordered Contexts) The set C(i) is defined as:

C(i) = {(s1, s2, . . . , si) | sj ∈ Ck for j = 1, . . . , i; and sj ̸= sp for j ̸= p}. (12)

This set comprises all distinct ordered sequences (permutations) of i unique exemplars chosen from the full
demonstration set Ck.

Definition 2 (Set of Contexts Used for Query x) Given an exemplar (x, y) ∈ Ck, let Ti be the surrogate
training dataset generated by Algorithm 1 using contexts of size i from Ck. The set C(x, i) is defined as:

C(x, i) = {C(j)
i ∈ C(i) | (x, y) /∈ C

(j)
i and (m(x;C

(j)
i , y) ∈ Ti}. (13)

This set consists of all ordered contexts of size i from C(i) that do not contain the specific exemplar (x, y)
itself, and were actually used to generate a (logit, label) pair for the query x within the surrogate training
data Ti.

Definition 3 (Context Invariance Regularization Penalty) The total Context Invariance Regularization
Penalty for parameters θi is defined as:

InvPenalty(θi) =
∑

x∈{xl|(x(l),y(l))∈Ck}

∑
{C(a)

i ,C
(b)
i }⊆C(x,i),a̸=b

Lsym(θ
i, x, C

(a)
i , C

(b)
i ). (14)

This penalty aggregates the symmetric cross-entropy loss over all distinct pairs of contexts (C
(a)
i , C

(b)
i )

that were used to evaluate each unique query input x derived from the original demonstration set Ck. It
encourages the calibrated predictions for the same query x to be consistent, regardless of the specific context
C

(j)
i ∈ C(x, i) used to generate the intermediate LLM logits.
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Table 2: Summary of Label Based calibration methods. Each method adjusts the LLM prediction PLLM(y |
x,Ck) via the different estimators of PLLM(y|Ck).

Method Formula Description

LLM (Prob) argmax
y

PLLM(y | x,Ck) Selects the label with the highest conditional probability
from the LLM.

Contextual Calibration (CC) argmax
y

PLLM(y | x,Ck)

PLLM(y | NA, Ck)
Normalizes the prediction using a content-free input to
reduce label bias.

Domain-Context Calibration
(DC)

argmax
y

PLLM(y | x,Ck)
1
N

∑
i PLLM(y | RandDomi, Ck)

Uses randomly sampled domain prompts as a reference
for normalization.

Batch Calibration (BC) argmax
y

PLLM(y | x,Ck)
1
N

∑
i PLLM(y | xi, Ck)

Calibrates by averaging predictions over a batch of
reference inputs.
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E FULL ALGORITHMS

Algorithm 1: Surrogate Data Generation for Calibration

Require: Demonstration set Ck = {(x(l), y(l))}kl=1 of size k.
Require: Target context size i such that 1 ≤ i < k.
Require: LM inference function Infer(x,Ci) that returns logit vector m(x;Ci).
1: Initialize training set Ti ← ∅.
2: Generate C(i), the set of all distinct ordered subsets of Ck with size i. ▷ E.g., permutations of Ck, taking first i.
3: for each context C(a)

i ∈ C(i) do
4: Define the held-out set R(a)

i ← Ck \ C(a)
i . ▷ Set difference based on elements.

5: for each query (x, y) in R
(a)
i do

6: Compute model logits vector: m(x;C
(a)
i )← Infer(x,C(a)

i ).
7: Add to training set: Ti ← Ti ∪ {(m(x;C

(a)
i ), y)}. ▷ Store feature vector and true label.

8: end for
9: end for

10: Output: Training set Ti consisting of pairs (model logits, true label).

Algorithm 2: SC (Full Procedure)

Require: Full demonstration set Ck = {(x(l), y(l))}kl=1; Set of context sizes I = {imin, . . . , imax}; Regularization
λinv ≥ 0, τ ∈ [0, 1]; Context samples mi ≥ 1; Query x; Inference function Infer(x,C) returns logit vector
m(x,C).
Part 1: Training Phase

1: Initialize parameter set Θ← ∅.
2: for each context size i ∈ I do
3: Generate training data Ti using Algorithm 1 with Ck.
4: Learn parameters θ̂i by solving Eq. (8) using Ti, λinv , τ .
5: Store θ̂i in Θ.
6: end for

Part 2: Prediction Phase (for query x)
7: Initialize list Plist ← [].
8: for each context size i ∈ I do
9: Sample index setMi ⊆ {1, . . . , |C(i)|} uniformly at random such that |Mi| = mi.

10: Retrieve learned parameters θ̂i from Θ.
11: Retrieve sub-contexts {C(j)

i }j∈Mi from C(i) usingMi.
12: Initialize list p(i)list ← [].
13: for j ∈Mi do
14: m(x,C

(j)
i )← Infer(x,C(j)

i ).
15: p(j)(x)← f(m(x,C

(j)
i ); θ̂i).

16: Append p(j)(x) to p
(i)
list .

17: end for
18: p̂i(x)← 1

mi

∑
p(x)∈p

(i)
list

p(x).

19: Append p̂i(x) to Plist.
20: end for
21: p̂SC(x)← 1

|I|
∑

p(x)∈Plist
p(x).

22: Output: ŷSC ∈ argmaxyc∈Y [p̂SC(x)]c.
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F DETAILED NUMERICAL RESULTS

In this section, we present detailed numerical results. For brevity, we refer to Qwen2-7B-Instruct, Llama-2-
7b-chat-hf, and Mistral-7B-Instruct-v0.3 as Qwen, Llama, and Mistral, respectively, throughout the remainder
of this section.

Table 3: Average Macro-F1 scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 4-shot setting (k = 4) over five random seeds. Values are presented as means.d, with the
highest score in each column highlighted in bold and shaded gray.

Model Method Avg AGNews FPB SST2 RT Subj TE-Emo TE-Hate

Base LLM 53.49 62.741.56 31.229.82 87.747.42 88.231.90 33.020.81 35.231.53 36.260.20

CC 60.30 85.224.97 51.4610.52 91.630.78 89.911.35 38.547.64 35.075.54 30.250.00

Qwen DC 61.30 88.680.68 52.8610.45 87.205.76 90.310.90 36.973.72 42.822.33 30.250.00

BC 67.71 70.142.17 73.542.75 88.925.77 90.181.41 74.103.92 40.943.24 36.160.00

SC 68.66 72.766.13 75.576.67 90.114.99 89.391.76 62.2311.15 41.2517.51 49.338.08

Base LLM 67.57 77.587.17 66.415.92 93.360.44 91.161.59 40.1812.93 67.346.12 36.947.64

CC 62.31 71.013.42 81.862.72 93.171.02 92.070.96 32.360.00 35.450.76 30.250.00

Llama DC 62.61 72.103.61 82.942.82 93.600.50 91.951.18 32.360.00 35.061.02 30.250.00

BC 68.69 66.062.04 84.563.75 93.530.47 91.521.28 54.153.48 36.291.38 51.702.00
SC 71.28 71.7611.31 84.024.70 94.250.53 91.561.19 55.7911.41 55.3510.57 46.204.31

Base LLM 72.20 79.286.90 89.551.92 94.070.75 92.470.62 35.036.42 60.539.67 54.519.67

CC 61.34 63.471.91 87.241.10 94.760.70 92.390.75 31.550.00 32.111.24 27.890.00

Mistral DC 61.17 63.291.29 86.082.53 94.170.20 92.390.75 31.550.00 32.821.37 27.890.00

BC 68.57 62.811.11 86.662.32 94.000.69 92.630.67 48.056.53 34.082.67 61.732.67
SC 72.78 75.6611.50 90.932.52 95.071.15 91.532.51 59.3812.89 59.489.90 37.4016.36
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Table 4: Average Macro-F1 scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 8-shot setting (k = 8) over five random seeds. Values are presented as means.d, with the
highest score in each column highlighted in bold and shaded gray.

Model Method Avg SST5 TREC AGNews FPB SST2 RT Subj TE-Emo TE-Hate

Base LLM 47.00 15.650.33 45.405.99 62.060.79 30.132.09 74.6518.64 91.002.28 31.550.00 34.552.41 38.010.00
CC 53.91 15.480.14 63.305.09 82.276.74 35.967.09 89.002.59 92.301.37 32.670.96 46.295.54 27.890.00

Qwen DC 50.26 15.410.07 43.833.18 86.860.90 35.923.97 69.9419.04 91.091.48 34.694.03 46.743.82 27.890.00
BC 60.88 15.520.12 67.981.73 65.361.18 66.872.90 86.434.45 91.951.40 76.891.32 38.883.00 38.010.00
SC 69.59 41.062.80 61.284.30 85.324.37 74.976.19 91.363.75 90.642.56 70.944.35 57.0919.29 53.633.26

Base LLM 60.82 15.751.31 44.604.29 74.554.43 80.262.73 94.151.11 91.941.17 37.545.96 68.743.60 39.868.28
CC 53.44 30.611.13 24.682.68 64.661.50 80.972.81 94.590.75 92.400.72 31.550.00 33.641.28 27.890.00

Llama DC 53.80 30.911.25 25.523.12 65.730.68 82.441.86 94.471.29 92.470.62 31.550.00 33.251.10 27.890.00
BC 60.52 23.490.80 36.221.47 63.781.27 82.713.05 94.091.38 92.011.03 65.214.20 33.561.15 53.592.51
SC 68.74 42.764.23 39.7810.65 86.012.85 85.582.04 95.270.51 92.531.24 61.894.20 66.785.65 48.053.83

Base LLM 61.86 14.660.25 40.085.39 70.593.84 85.804.22 94.411.75 92.610.45 37.204.35 61.823.01 59.556.75
CC 53.70 28.221.26 27.803.47 62.291.42 84.644.39 94.231.79 92.690.40 31.550.00 32.951.02 27.890.00

Mistral DC 54.47 31.151.38 30.173.26 62.070.58 83.593.07 94.681.56 92.700.46 31.550.00 33.430.80 27.890.00
BC 60.16 24.830.54 40.264.25 61.580.97 83.593.07 94.191.52 92.620.67 48.267.71 32.911.05 63.252.06
SC 72.77 45.443.01 48.578.36 86.843.42 88.544.70 93.241.58 90.091.73 66.916.13 67.737.99 67.5311.74

Table 5: Average Macro-F1 scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 16-shot setting (k = 16) over five random seeds. Values are presented as means.d, with the
highest score in each column highlighted in bold and shaded gray.

Model Method Avg SST5 TREC AGNews FPB SST2 RT Subj TE-Emo TE-Hate

Base LLM 49.75 14.470.29 59.685.52 63.100.85 26.720.84 87.556.49 91.561.80 31.550.00 35.150.56 38.010.00
CC 54.57 14.410.21 69.401.31 85.302.77 27.169.25 92.400.89 93.320.66 37.694.80 43.580.71 27.890.00

Qwen DC 51.92 14.380.21 44.433.81 88.070.78 39.4814.78 83.919.82 93.421.05 35.324.41 40.411.50 27.890.00
BC 62.12 14.640.36 72.753.37 69.023.35 68.428.43 91.300.91 92.640.89 76.633.03 35.630.92 38.010.00
SC 68.52 39.326.66 69.912.56 85.343.34 66.579.62 92.952.10 92.151.39 66.0310.62 53.636.91 50.7610.97

Base LLM 60.72 14.490.64 54.935.18 75.645.72 76.745.43 94.250.65 92.011.17 37.004.14 69.339.55 35.712.64
CC 53.42 31.401.16 24.024.02 63.731.29 81.602.58 94.411.19 92.780.67 31.550.00 33.371.09 27.890.00

Llama DC 54.06 32.091.25 25.523.12 65.540.68 83.803.50 94.591.19 92.470.62 31.550.00 32.351.10 27.890.00
BC 60.72 24.611.12 32.623.83 63.850.57 83.373.68 94.460.85 92.461.03 65.812.42 33.641.28 56.264.20
SC 67.95 42.764.23 62.215.62 87.092.82 79.818.37 93.810.71 91.831.46 50.6515.60 62.214.15 46.7210.59

Base LLM 61.49 14.420.15 45.484.45 71.172.31 84.173.03 93.870.79 92.390.73 37.693.27 70.794.21 43.429.60
CC 53.75 28.961.12 28.973.71 63.380.91 82.732.58 93.930.35 92.930.61 31.550.00 33.391.09 27.890.00

Mistral DC 54.80 32.310.33 32.793.07 62.940.85 85.172.62 94.540.80 92.150.49 31.550.00 33.811.16 27.890.00
BC 61.22 24.821.23 41.111.87 63.410.84 81.511.55 93.400.58 92.460.53 56.016.53 33.641.15 64.570.98
SC 74.58 45.923.25 62.503.97 87.421.83 85.984.47 94.021.88 91.072.32 67.9410.40 64.084.31 72.342.92
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Table 6: Average Accuracy scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 4-shot setting (k = 4) over five random seeds. Values are presented as means.d, with the
highest score in each column highlighted in bold and shaded gray.

Model Method Avg AGNews FPB SST2 RT Subj TE-Emo TE-Hate

Base LLM 68.01 75.231.61 63.362.91 87.937.44 88.281.85 48.160.38 56.411.52 56.680.08
CC 64.34 85.474.80 50.9413.11 91.990.67 89.921.35 51.094.15 37.588.27 43.360.00

Qwen DC 65.87 88.910.58 52.7310.46 87.305.81 90.310.90 50.041.74 48.443.54 43.360.00
BC 74.71 78.281.53 76.642.85 89.063.53 90.201.41 74.303.84 57.851.53 56.640.00
SC 70.62 77.343.89 74.699.28 90.824.17 89.411.74 65.828.12 45.0820.38 51.176.97

Base LLM 72.86 82.584.17 78.552.69 93.630.40 91.171.58 51.887.02 72.855.23 46.333.47
CC 71.40 79.302.02 85.512.17 93.480.94 92.070.95 47.850.00 58.200.92 43.360.00

Llama DC 71.47 79.611.89 85.942.33 93.831.19 91.951.18 47.850.00 57.771.35 43.360.00
BC 74.05 77.191.27 86.993.09 93.750.48 91.521.28 58.203.41 58.241.68 52.461.97
SC 73.78 78.128.67 86.292.88 94.450.47 91.561.18 56.4510.80 61.0514.12 48.521.90

Base LLM 76.98 82.504.17 90.471.99 94.220.76 92.500.62 53.910.00 68.365.16 56.887.72
CC 69.56 75.232.33 87.341.57 94.920.70 92.420.72 46.090.00 52.272.13 38.670.00

Mistral DC 69.44 75.311.81 85.863.40 94.380.19 92.420.72 46.090.00 53.362.16 38.670.00
BC 73.21 74.691.57 87.192.28 94.140.70 92.660.67 48.449.55 53.131.40 62.272.35
SC 75.59 80.239.04 92.501.87 95.231.09 91.561.45 62.038.98 65.2314.12 42.2717.35

Table 7: Average Accuracy scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 8-shot setting (k = 8) over five random seeds. Values are presented as means.d, with the
highest score in each column highlighted in bold and shaded gray.

Model Method Avg SST5 TREC AGNews FPB SST2 RT Subj TE-Emo TE-Hate

Base LLM 60.32 24.340.16 54.227.21 73.160.81 62.580.52 76.0916.30 91.022.26 46.090.00 54.062.74 61.330.00
CC 58.59 24.260.08 67.343.93 83.984.99 33.286.70 89.532.29 92.301.37 46.640.47 51.337.54 38.670.00

Qwen DC 55.94 24.260.08 52.811.70 87.270.79 33.134.34 71.7216.75 91.091.48 47.662.05 56.883.25 38.670.00
BC 68.64 24.300.10 73.591.79 74.650.69 70.703.10 86.524.48 91.951.40 77.031.34 57.661.63 61.330.00
SC 72.30 43.524.28 69.061.32 86.024.01 76.336.70 91.883.27 90.702.46 72.503.45 61.3320.50 59.383.81

Base LLM 66.62 23.120.67 56.884.73 80.082.99 84.143.44 94.301.12 91.951.17 48.753.30 75.393.59 45.005.04
CC 63.59 50.083.00 36.483.58 76.091.24 82.733.44 94.770.72 92.420.72 46.090.00 55.002.06 38.670.00

Llama DC 63.71 48.593.28 37.663.71 76.800.88 84.062.90 94.611.29 92.500.63 46.090.00 54.371.86 38.670.00
BC 66.55 31.481.37 47.501.69 75.781.64 83.443.69 94.221.38 92.031.04 65.784.30 54.771.70 53.912.60
SC 71.61 45.945.52 50.8610.44 86.562.76 86.952.35 95.390.52 92.581.24 63.053.39 73.524.08 49.613.55

Base LLM 68.27 23.050.25 51.485.31 76.881.66 85.865.64 94.531.75 92.660.46 54.841.88 74.301.84 60.865.49
CC 64.42 54.220.52 40.863.51 74.451.67 84.615.70 94.381.76 92.730.40 46.090.00 53.751.69 38.670.00

Mistral DC 65.02 54.060.72 43.363.44 74.300.62 86.645.28 94.841.51 92.730.47 46.090.00 54.451.25 38.670.00
BC 66.35 34.920.53 51.484.13 73.671.12 83.914.18 94.301.51 92.660.67 48.757.86 53.671.76 63.831.86
SC 75.54 48.525.84 57.588.88 87.423.19 89.535.11 93.591.41 90.161.68 67.506.08 75.165.08 70.396.96
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Table 8: Average Accuracy scores (%) for various calibration methods on selected datasets, evaluated for
each LLM in the 16-shot setting (k = 16) over five random seeds. Values are presented as means.d, with the
highest score in each column highlighted in bold and shaded gray.

Model Method Avg SST5 TREC AGNews FPB SST2 RT Subj TE-Emo TE-Hate

Base LLM 62.71 22.810.19 60.163.27 75.620.94 64.060.00 87.666.53 91.561.81 46.090.00 55.080.96 61.330.00
CC 59.08 22.810.19 70.001.29 86.172.18 25.088.06 92.660.83 93.360.65 49.302.61 53.671.99 38.670.00

Qwen DC 57.47 22.810.19 51.023.73 88.440.72 37.0315.89 84.149.51 93.441.06 48.052.37 53.591.09 38.670.00
BC 69.49 22.890.19 73.912.07 78.051.59 72.818.05 91.410.92 92.660.90 76.802.87 55.550.62 61.330.00
SC 70.77 41.646.65 73.982.67 85.783.38 67.1111.83 93.201.89 92.191.42 68.528.27 60.235.91 54.308.05

Base LLM 66.97 22.500.31 65.863.44 81.092.71 81.725.09 94.450.57 92.031.27 48.752.09 73.206.24 43.123.08
CC 63.88 52.580.80 37.193.21 75.861.47 82.345.05 94.611.09 92.810.68 46.090.00 54.770.76 38.670.00

Llama DC 64.11 50.701.84 39.144.17 76.950.86 85.234.79 94.771.15 92.810.80 46.090.00 52.661.70 38.670.00
BC 66.86 33.361.32 44.223.30 76.250.80 83.525.10 94.610.83 92.341.12 66.642.38 54.300.35 56.484.29
SC 70.92 44.454.58 65.474.60 87.422.90 78.8312.25 93.980.77 91.881.45 56.888.83 66.645.59 52.7311.41

Base LLM 67.65 22.730.16 56.884.99 78.671.92 83.913.73 93.980.80 92.420.72 55.081.44 76.483.62 48.676.38
CC 64.57 54.300.55 42.664.30 75.781.05 82.033.38 94.060.38 92.970.61 46.090.00 54.531.74 38.670.00

Mistral DC 65.41 54.140.72 47.114.27 75.471.03 85.083.46 94.690.80 92.190.49 46.090.00 55.231.76 38.670.00
BC 67.52 34.691.32 53.282.16 75.941.01 81.252.14 93.520.58 92.500.52 56.566.32 55.001.81 64.920.90
SC 76.96 47.272.43 73.283.01 87.811.81 85.786.80 94.301.70 91.092.34 70.867.29 68.055.05 74.221.38

G ABLATION RESULTS

We conduct ablation studies to dissect the distinct contributions of key components within our Supervised
Calibration (SC) framework.

G.1 SCALING MATTERS

First, to isolate the impact of learning the per-class scaling factor wc, which underpins SC’s ability to reorient
decision boundaries, we compare the full SC model against two alternatives in Figure 5: a restricted variant,
SC∗ (where wc is fixed to 1, thus only learning an optimal bias term), and other baseline calibration methods.
Our experiments reveal that SC∗ surpasses these other baselines. This suggests that estimating an optimal bias
under SC framework is more effective than methods employed by LM methods. More critically, the full SC
model achieves higher performance than SC∗, suggesting that the flexibility to learn the scaling factor—and
therefore to both shift and rescale the LLM’s logits—offers a further advantage.

The performance difference between SC and SC∗ is particularly apparent on a challenging 8-shot, multi-class
classification task (SST-5) where the base model’s predictions are often poorly oriented. Specifically, Table 9
shows that SC∗ method achieves a very low Macro-F1 of 0.1004, indicating its inability to correct the model’s
predictions. In stark contrast, the full SC method boosts the Macro-F1 to 0.4106 and accuracy to 0.4352,
representing a four-fold improvement. This vast performance gap confirms our hypothesis: on difficult tasks
with severe miscalibrations, only full SC, capable of both shifting and scaling the decision boundary, can
effectively correct severly misaligned LLM.

G.2 ENSEMBLING ACROSS CONTEXT SIZES (|I|) IMPROVES PERFORMANCE

Second, we investigate whether ensembling calibrators trained with different context sizes improves predictive
performance. Concretely, we train a collection of models {θ̂i}i∈I , where each calibrator is fitted using training
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Figure 5: Accuracy and Macro-F1 scores of six methods on the Subjective dataset using the Mistral-7B-
Instruct-v0.3 model in (a) 4-shot and (b) 8-shot settings. Results are averaged over 5 random seeds. Bars
represent the mean performance for each metric as indicated in the legend. SC∗ stands for the case where
the scaling factor wc is fixed to 1 under the SC framework. Notably, SC consistently outperforms all other
methods in both settings. The improved performance of SC∗ over other baselines suggests that estimating an
optimal bias under SC framework is more effective than the methods employed by LM approaches, while the
full SC further demonstrates the advantage of also learning the scaling factor.

Table 9: Comparison on the 8-shot SST-5 task with the Qwen2-7B-Instruct model. SC v.s SC*.

Method Macro-F1 (mean ± SE) Accuracy (mean ± SE)
Base LLM 0.1565± 0.0033 0.2434± 0.0016
SC* (scaling=1) 0.1004± 0.0125 0.2227± 0.0168
SC 0.4106± 0.0280 0.4352± 0.0428

data with i in-context examples. We then ensemble these context-size-specific calibrators and evaluate the
impact of increasing the number of distinct i-shot learners in the ensemble (i.e., increasing |I|). Empirically,
we observe a consistent and monotonic improvement in both Accuracy and Macro-F1 scores as |I| grows
as shown in Figure 6 and 7. This suggests that calibrators exposed to heterogeneous amounts of contextual
information offer complementary signals, enhancing the robustness and predictive accuracy of the final
calibrated output. These findings highlight a promising direction: with sufficient computational resources,
one could train and ensemble an even broader set of context-specific calibrators to capture a richer diversity
of contextual patterns, potentially unlocking further performance gains.

G.3 MACRO-F1 GAINS AS THE NUMBER OF SAMPLED SUB-CONTEXTS INCREASES

Next, we investigate the impact of the number of sampled sub-contexts (mi) used for prediction averaging
within each context-size-specific calibrator during the ensembling phase. In Figure 8, our findings reveal that
increasing mi (i.e averaging predictions over a greater number of distinct sub-contexts of size i) generally
enhances Macro-F1 scores. This suggests that more comprehensive sampling of available context variations
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Figure 6: Impact of ensembling context-size-specific models within the SC framework on the Subjective
dataset in an 8-shot setting. Results are reported for (a) Llama-2-7b-chat-hf, (b) Qwen2-7B-Instruct, and (c)
Mistral-7B-Instruct-v0.3, using Accuracy and Macro-F1 scores averaged over 5 random seeds. Each ensemble,
denoted SC-N, aggregates calibration models trained on context sizes ranging from 1 to N (e.g., SC-2 uses
models with context sizes 1 and 2, SC-6 includes context sizes 1 through 6). The consistent improvement in
performance as N increases across all three LLMs highlights the general benefit of aggregating insights from
a more diverse set of k-shot learners.

for each i-shot learner improves the accuracy of the ensemble’s output, helping to further reduce ICL’s
sensitivity to specific context compositions.

G.4 COMPUTE AND TIMING.

In Tables 10 and 11, we characterize the computational footprint of sub-context (SC) ensembling by reporting
wall-clock training time Ttrain and inference time Tinfer(mi) per 256 test examples, where mi is the number
of sampled sub-contexts with size i used at inference for SCi. Training is a one-time cost per method. SC
rows are cumulative. Specifically, for k = 4 we aggregate SC2–SC3, and for k = 8 we aggregate SC2–SC5,
whereas all bias-only baselines are effectively insensitive to mi.

Specifically, SC ensembling increases inference time approximately linearly with mi because each additional
sub-context entails an extra forward pass. This trend is evident at both context sizes. For k = 4, combining
SC2 and SC3 adds a modest Ttrain = 2.24 s and yields Tinfer(1) = 22.91 s, growing to Tinfer(6) = 134.96
s, while baselines remain near 10.5 s regardless of mi. For k = 8, the cumulative SC2–SC5 configuration
requires Ttrain = 489.62 s and exhibits Tinfer(1) = 42.83 s rising to Tinfer(6) = 260.32 s, with baselines
staying close to 11.1 s across all settings. These measurements are consistent with the simple cost model

Tinfer(mi) ≈ mi × Tbase,i + overhead,

in which Tbase, i is the per-example cost of a single forward pass with context size i.

Practically speaking, When computation is a limiting factor, running the most effective single SC size offers a
favorable accuracy–cost trade-off. In our experiments, SC3 for k = 4 and SC5 for k = 8 are the strongest
individual calibrators, preserving most of the ensemble’s accuracy gains while keeping inference overhead
substantially closer to baseline runtimes.
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Figure 7: Impact of ensembling context-size-specific models within the SC framework on the Subjective
dataset in an 16-shot setting. Result is reported for Llama-2-7b-chat-hf, using Accuracy and Macro-F1 scores
averaged over 5 random seeds. Each ensemble, denoted SC-N, aggregates calibration models trained on
context sizes ranging from 1 to N (e.g., SC-2 uses models with context sizes 1 and 2, SC-11 includes context
sizes 1 through 11). The consistent improvement in performance as N increases across all three LLMs
highlights the general benefit of aggregating insights from a more diverse set of k-shot learners.

Figure 8: Impact of the number of sampled sub-contexts (mi) used for prediction averaging within each
context-size-specific model in the SC ensemble. Results show Macro-F1 scores on the Subjective dataset
using the Llama-2-7b-chat-hf model in an 8-shot setting, averaged over 5 random seeds. The x-axis (mi)
represents the number of distinct contexts of a given size i sampled to generate predictions, which are then
averaged. Performance improves as more context variations are considered in the ensemble prediction.
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Table 10: Training and inference timing (seconds) for k = 4.

Method Ttrain(s) Tinfer(1) Tinfer(2) Tinfer(3) Tinfer(4) Tinfer(5) Tinfer(6)
Baseline 0.00 10.51 10.51 10.51 10.51 10.51 10.51
CC 0.12 10.48 10.48 10.48 10.48 10.48 10.48
Domain 0.85 10.47 10.47 10.47 10.47 10.47 10.47
Batch 0.00 10.54 10.54 10.54 10.54 10.54 10.54
SC2 1.26 12.52 24.44 36.65 49.66 61.09 73.15
SC3 0.98 10.39 20.85 31.15 42.74 52.14 61.81
SC 2.24 22.91 45.29 67.80 92.40 113.23 134.96

Table 11: Training and inference timing (seconds) for k = 8.

Method Ttrain(s) Tinfer(1) Tinfer(2) Tinfer(3) Tinfer(4) Tinfer(5) Tinfer(6)
Baseline 0.00 11.34 11.34 11.34 11.34 11.34 11.34
CC 0.13 11.11 11.11 11.11 11.11 11.11 11.11
Domain 0.95 11.14 11.14 11.14 11.14 11.14 11.14
Batch 0.00 11.13 11.13 11.13 11.13 11.13 11.13
SC2 16.08 11.75 24.15 36.01 47.80 59.14 71.58
SC3 66.44 10.11 21.03 31.60 41.92 52.19 63.09
SC4 201.79 10.37 20.69 31.13 41.65 52.05 61.95
SC5 205.31 10.60 21.02 32.00 42.17 52.96 63.70
SC 489.62 42.83 86.89 130.74 173.54 216.34 260.32

G.5 EFFECTS OF TRUST-REGION AND INVARIANCE

To isolate the impact of the key components of our proposed method, we conduct an ablation study, with the
results presented in Table 12. We evaluate the performance contributions of our two main components: the
directional trust-region constraint and the context invariance penalty.

The study begins with the "Uncalibrated (Baseline)" model, which achieves a Macro-F1 of 0.634. Introducing
the core calibration mechanism without our proposed constraints ("No trust-region, no invariance") already
yields a substantial improvement. When adding either the "Invariance only" or "Trust-region only" component,
performance increases further, with both contributing similarly to the overall score. However, the full model,
which combines both trust-region + invariance, achieves the highest performance across both Macro-F1
(0.746) and Accuracy (0.788). This demonstrates that both components are crucial and complementary,
working together to deliver the best calibration results.

Table 12: Ablation study on the components of SC. Results show Macro-F1 and Accuracy, reported as mean
± standard error.

Method Macro-F1 ± SE Accuracy ± SE
Uncalibrated (Baseline) 0.634± 0.008 0.759± 0.008
No trust-region, no invariance 0.695± 0.056 0.729± 0.047
Invariance only 0.705± 0.063 0.741± 0.054
Trust-region only 0.706± 0.060 0.743± 0.049
Both: trust-region + invariance 0.746 ± 0.041 0.788 ± 0.030
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G.6 SCALING TO LARGER MODELS (LLAMA-13B)

To assess the scalability of our method, we ran additional experiments with the larger LLaMA-13B model.
Due to computational constraints, we focused this scaling analysis on three datasets, Rotten Tomatoes,
SST-2, and AGNews, where we compared its performance against the 7B variant. All experiments were
conducted under the same 4-shot setup and averaged over 5 random seeds.

The results, presented in Tables 13, 14, and 15, demonstrate that our method, SC, scales effectively. Across all
three datasets, SC consistently delivers the strongest performance on the LLaMA-13B model, achieving the
highest Macro-F1 and Accuracy. Notably on AGNews, while the 7B baseline was competitive, SC provides a
substantial improvement for the 13B model, boosting accuracy from 78.12 to 88.05. This confirms that our
calibration approach remains highly effective and provides consistent benefits as the underlying language
model size increases. We plan to incorporate further evaluations on even larger models in future work.

Table 13: Performance on the Rotten Tomatoes dataset with 7B and 13B models.

Method Macro-F1 (7B) ± SE Accuracy (7B) ± SE Macro-F1 (13B) ± SE Accuracy (13B) ± SE
Baseline 91.16± 1.59 91.17± 1.58 91.87± 0.48 91.89± 0.49
CC 92.06 ± 0.96 92.07 ± 0.95 92.33± 0.11 92.38± 0.11
DC 91.92± 1.13 91.95± 1.18 92.25± 0.12 92.29± 0.10
Batch 91.52± 1.25 91.52± 1.28 91.38± 0.59 91.41± 0.57
SC 91.56± 1.19 91.57± 1.18 92.33 ± 0.26 92.38 ± 0.25

Table 14: Performance on the SST-2 dataset with 7B and 13B models.

Method Macro-F1 (7B) ± SE Accuracy (7B) ± SE Macro-F1 (13B) ± SE Accuracy (13B) ± SE
Baseline 93.36± 0.44 93.63± 0.40 95.10± 0.56 95.21± 0.56
CC 93.17± 1.92 93.49± 0.91 94.81± 0.74 94.92± 0.73
DC 93.60± 0.50 93.83± 1.19 95.47± 0.09 95.61± 0.10
Batch 93.53± 0.47 93.75± 0.48 95.42± 0.65 95.51± 0.65
SC 94.25 ± 0.53 94.45 ± 0.47 95.65 ± 0.26 95.80 ± 0.25

Table 15: Performance on the AGNews dataset with 7B and 13B models.

Method Macro-F1 (7B) ± SE Accuracy (7B) ± SE Macro-F1 (13B) ± SE Accuracy (13B) ± SE
Baseline 77.58 ± 7.17 82.58 ± 4.17 85.74± 1.77 87.19± 1.27
CC 71.01± 3.42 79.30± 2.02 66.40± 0.61 77.73± 0.28
DC 72.10± 3.61 79.61± 1.89 66.90± 1.00 77.81± 0.60
Batch 66.06± 2.94 77.19± 1.27 66.32± 0.63 77.58± 0.29
SC 71.76± 11.31 78.12± 8.67 87.51 ± 1.13 88.05 ± 0.94
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