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Abstract

Federated learning (FL) enables collaborative model training across multiple par-
ties without sharing raw data, with semi-asynchronous FL. (SAFL) emerging as a
balanced approach between synchronous and asynchronous FL. However, SAFL
faces significant challenges in optimizing both gradient-based (e.g., FedSGD) and
model-based (e.g., FedAvg) aggregation strategies, which exhibit distinct trade-offs
in accuracy, convergence speed, and stability. While gradient aggregation achieves
faster convergence and higher accuracy, it suffers from pronounced fluctuations,
whereas model aggregation offers greater stability but slower convergence and sub-
optimal accuracy. This paper presents FedQS, the first framework to theoretically
analyze and address these disparities in SAFL. FedQS introduces a divide-and-
conquer strategy to handle client heterogeneity by classifying clients into four
distinct types and adaptively optimizing their local training based on data distribu-
tion characteristics and available computational resources. Extensive experiments
on computer vision, natural language processing, and real-world tasks demonstrate
that FedQS achieves the highest accuracy, attains the lowest loss, and ranks among
the fastest in convergence speed, outperforming state-of-the-art baselines. Our
work bridges the gap between aggregation strategies in SAFL, offering a unified
solution for stable, accurate, and efficient federated learning. The code and datasets
are available athttps://github. com/bkjod/FedQS_.

1 Introduction

Federated learning (FL) has emerged as a promising paradigm for enabling multiple parties to
collaboratively train a shared model without sharing their raw local data [[1} 2} [3} 14, |5} |6} [7]. FL
has found widespread applications in domains such as healthcare [8, 9, 10] and finance [11} 12} [13]].
Among various FL communication modes, semi-asynchronous FL (SAFL) strikes a balance between
synchronous FL and fully asynchronous FL, offering a flexible trade-off between model consistency,
training latency, and resource utilization [[14,115,[16,[17]. In SAFL, devices operate independently with
partial coordination, for instance, through buffered updates [[16] or clustered synchronization [18]],
making it adaptable to heterogeneous network conditions and device capabilities in real-world
deployments [19} 20].
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Despite its advantages, designing an effective SAFL sys- . .
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ing an appropriate aggregation strategy. Recent empirical Bos/ - MM_
studies [21]] reveal that gradient-based aggregation (e.g., ; 30 @ o 260 %0
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convergence but suffers from severe fluctuations, whereas Figure 1: FedSGD vs. FedAvg in SAFL.
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model-based aggregation (e.g., FedAvg [[1]) offers stability at the cost of slower convergence and
reduced accuracy. Figure|l|shows the distinct performance of these strategies when training ResNet-
18 on CIFAR-10 in SAFL. While existing SAFL research has focused on straggler mitigation [22],
client drift [23]], resource heterogeneity [19], and client selection [24], the critical differences between
aggregation strategies remain understudied.

Optimizing both gradient and model aggregation in SAFL faces three key challenges: 1) Lack
of Theoretical Understanding: Current analyses of aggregation discrepancies [21]] are empirical,
lacking theoretical foundations to guide solution design. 2) Inherent Aggregation Disparity: In
neural network training, the loss function defines a mapping [25} 26] from the parameter space to the
loss space. Gradient aggregation computes first-order derivatives of this mapping, capturing both
the direction and magnitude of the local updates in the loss space. In contrast, model aggregation
operates directly on the parameter space, which hardly maintains a clear correspondence with the
loss space due to the lack of linearity or convexity conditions in loss functions—assumptions rarely
satisfied in deep neural networks. 3) Server- or Client-Centric Limitations: Existing approaches are
predominantly server-centric, relying on a single aggregation method, while client-centric methods
struggle with insufficient global information.

To address these challenges, we propose FedQS, the first framework that optimizes both gradient
and model aggregation in SAFL. Our key insight is that stale updates and data heterogeneity empir-
ically induce distinct continuity in the optimization trajectories of different aggregation strategies.
Building on this observation, we introduce a divide-and-conquer strategy that classifies clients into
four types (Fast-but-Strongly-Biased, Fast-and-Weakly-Biased, Straggling-but-Weakly-Biased, and
Straggling-and-Strongly-Biased) and adapts their training strategies dynamically. We provide a
formal convergence analysis of FedQS, proving that it achieves exponential convergence rates under
both aggregation strategies. Our theoretical results demonstrate that FedQS addresses two key limita-
tions in SAFL: the convergence instability of gradient aggregation and the suboptimal convergence
capability of model aggregation.

We evaluate FedQS on computer vision (CIFAR-10), natural language processing (Shakespeare), and
real-world data (UCI Adult) tasks. Results show that FedQS consistently outperforms state-of-the-art
baselines. Compared to the fastest-converging model aggregation and gradient aggregation baselines,
FedQS improves average accuracy by 38.98% and 5.65%, respectively, while reducing training
time by 58.85% and 3.68%. Against the highest-precision baselines, FedQS achieves 15.74% and
12.93% faster convergence (in rounds) and reduces training time by 72.63% and 48.04%, respectively.
Ablation studies validate the impact of each module, while hyperparameter and system setting
analyses demonstrate FedQS’s robustness. Our work bridges the gap between theory and practice in
SAFL, offering a principled approach to harness the strengths of both aggregation strategies.

2 Background & Motivation

Limitations in Existing SAFL Aggregation Methods. Existing studies in Semi-Asynchronous
Federated Learning (SAFL) predominantly focus on optimizing either gradient aggregation or model
aggregation, but not both. For gradient aggregation, prior work has addressed challenges such as
model convergence [27, [15]], optimal aggregation frequency [28} 29], and advanced optimization
techniques (e.g., momentum [30]]). For model aggregation, solutions target the straggler problem [31}
18, [19]. While AAFL [32] incorporates both gradients and models, it ultimately adopts model
aggregation, using gradients only as auxiliary validation signals. To our knowledge, only [21]
empirically compares gradient and model aggregations but offers no mitigation for their performance
gap. In contrast, we propose a unified optimization framework with theoretical guarantees.

Federated Learning Basics. FL involves a server S and clients C = {C1, Cs, ..., Cn }. The server S
maintains a global model wgy, while each client Cj trains a local model w; on its dataset D; (with n;
samples). The goal is to minimize the global loss: min F(wy) £ & Zfi1 F;(w;), where F;(+) is the
local objective. Clients access stochastic gradients V F; (w;; &;. j) for each data sample &; ; € D;.

Synchronous vs. Semi-Asynchronous FL. Synchronous FL is based on server-coordinated training
where only activated clients upload their local updates in one global epoch with others idling. In
contrast, clients in SAFL train autonomously and push updates asynchronously, with aggregation
triggers upon conditions (e.g., sufficient updates [[15]) at the server.



Aggregation Strategies. In Synchronous FL, for gradient aggregation, during the (¢ 4 1)-th global
epoch, the server updates wz by gradient descent via aggregated gradients from activated client set

S:witt = wh —ng s BV F;(wh), where VF;(w)) £ Zle VFi(wj . _y;D;) and e represents
local training epochs. For model aggregation, the server averages local parameters directly: wé“ =

> ics %wf However, in SAFL, staleness arises in the local updates as client C; may use an outdated

t
global model wy’ (7! < t) for local training, leading to divergent optimization trajectories.

Key Observations. Inspired by empirical re- Table 1: The average best accuracy and correspond-
sults [21], we identify two factors that cause per- ing differences between two aggregation strategies
formance gaps in SAFL: Stale Updates (Factor ynder varying influencing factors.

1) and Data Heterogeneity (Factor 2). Staleness
affects the continuity of global optimization tra-
jectories differently in gradient and model aggre-  Factor 1 Factor 2
gation. Gradient aggregation preserves continu-

Activated Factors| Average Best Acc. (%)
Gradient Model |Gap (%)
Aggregation Aggregation

ity by performing gradient descent on the latest 2 8 gggg 3(1)(5)? 8;3
global model wéfl, where stale gradients only o ° 86.79 87.29 0.50
influence the current update direction and mag- P P 82.63 71.11 11.52
nitude. In contrast, model aggregation averages “All experiments involve training ResNet-18 on CIFAR-10 across
stale parameters directly, resetting the trajectory three independent runs. O indicates the absence of a factor, while
and disrupting the optimization continuity on @ indicates its presence.

the loss landscape. However, under Independent and Identically Distributed (IID) settings, stale
updates exhibit limited divergence as all clients optimize identical local objectives derived from
the identical data distributions. Conversely, non-1ID data distributions exacerbate this issue, since
increased local training rounds amplify local-global deviation [33] and semi-asynchronous updates
bias the server toward frequent updaters [15] in such distributions. In gradient aggregation, this bias
leads to over-optimization on dominant clients’ data distribution; in model aggregation, the global
model retains more information from frequent clients, restarting optimization from a skewed initial
point. These dynamics exacerbate the performance gap between the two strategies in SAFL.

Empirical Validation. We conducted experiments training ResNet-18 on CIFAR-10 with 100 clients.
The results show that when both factors are active (i.e., SAFL + non-IID), the accuracy gap between
gradient aggregation and model aggregation surges to 11.52%. Table [T]shows detailed results.

This paper proposes FedQS, a novel framework that enables clients to select optimal local training
modes autonomously by quantifying staleness (by update speed) and heterogeneity (by update
similarity), compatible with two aggregation strategies.

3 Design of FedQS

3.1 System overview

As shown in Figure FedQﬂT_-] consists of three modules: the global aggregation estimation module
(Mod®), the local training adaptation module (Mod®), and the global model aggregation module
(Mod®). The first two modules are deployed on clients, while Mod® is deployed on a centralized
server. The goal of Mod®@ is to empower each participant to ascertain the approximate gradient update
of the global model, which is utilized to compute the gradient update similarity between the server
and the client. Since Mod® operates independently of the transmitted data required for global model
updates, it facilitates the integration of various aggregation strategies. The goal of Mod® is to adapt
each client to different training mechanisms based on its data distribution and available training
resources. This module alleviates the impact of local heterogeneity on the global model, addressing
issues such as unstable convergence and sluggish convergence speed. Meanwhile, the goal of Mod®
is to selectively weigh local updates for global aggregation through a feedback mechanism, thereby
tackling the challenge of low accuracy under the model aggregation strategy.

'QS denotes Quadrant Selection. We also use the meaning of QS rankings to refer to the self-evaluation
mechanism in FedQS.
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Figure 2: Workflow of FedQS, featuring clients with diverse resource capabilities. In FedQS, during
a global training round, Mod@ first utilizes the global model distributed by Mod® to compute pseudo-
global gradients and sends them to Mod®. Then, Mod®@ employs the information disseminated by
Mod® as input when determining a local training strategy and leverages the global model from Mod®
as the starting point for local training. Finally, Mod® uses the local update data from Mod® for global
aggregation and leverages the similarity information from Mod® to update the global state table.

3.2 Global aggregation estimation (Mod®)

Existing SAFL solutions typically leverage information (e.g., from historical local gradients [[15])
uploaded by clients to facilitate global model aggregation. A key problem within these solutions
is that they are proposed from the server’s perspective, resulting in a design tightly coupled to
a specific aggregation strategy. To address this problem, we introduce Mod® within FedQS to
ensure compatibility with both aggregation strategies. Specifically, Mod® enables each participant to
acquire global aggregation information during the local training phase from the perspective of local
clients. To do it, Mod® first stores the latest two global models locally and then adopts the existing
approach [[16}[20] to derive a pseudo-global gradient Lg(wZ) by comparing two consecutive global
t t—1

: ty —
models, i.e., Ly(w,) = wy — w,,

This pseudo-global gradient contains information about the global update within the current round.
We then compute the local-global gradient update similarity s’ on each client by comparing the latest
local update gradient and the derived pseudo-global gradient, utilizing a similarity function such as
cosine similarity. A larger s! suggests that this client’s updates in the current round are more aligned
with the global update and vice versa.

3.3 Local training adaptation (Mod®)

Mod®@ aims to orchestrate heterogeneous clients and enable each

client to adaptively train its local model, facilitating the optimization ~ [~~7~~~~~"~ Fommm e : l’pT
of global model aggregation in Mod®. A key strength of Mod®@ SWBC ! FWBC |
lies in its ability to enable clients to dynamically adjust their local - |- =_ R B s J
training strategies. There are two key benefits associated with it: SSBC | FSBC
(1) During the initialization phase, the server does not require prior < & <- i >" & <-

1

knowledge (e.g., performance distribution) of clients. This contrasts
with existing algorithms (e.g., FedAT [18] and FedMDS [19]), which
rely on such prior knowledge for hierarchical client classification. Fjgure 3: Categorization of
(2) Given that the local information is processed and shared with ¢Jients in Mod®.

the server in real-time, Mod® can handle dynamic FL environments

where the performance (e.g., available resources) of individual clients may vary during training.

=

Specifically, Mod® adopts a divide-and-conquer strategy to categorize clients into four types, cor-
responding to the four quadrants in Figure Mod® leverages the local update speed f! and the
local-global gradient update similarity s! for categorization. Besides the aforementioned two in-
dicators, the server also calculates the average value of all clients’ local speeds (f?) and gradient
update similarities (5%), respectively, which serve as the dividers. Equationsand demonstrate the
calculation formulas for these indicators.

N [n(3), ifi¢S N [sg(i), ifigS
n(i) = {n(i) +1, ities B = {st ifics’ M
. N N .
ff=zﬁ(z)(,), ftzL"lef"t, Etzw, )
i=1 "2



where n(2) is the total number of times client C; participates in the global model aggregation, s4 (1)
is the latest local-global gradient update similarity that C; shares with the server, and NV is the total
number of clients.

Below, we explain the training strategy employed for each of the four types of clients.

Fast-but-Strongly-Biased Clients (FSBC): This type of client exhibits a rapid update speed (i.e.,
11> f*) but produces biased local gradient updates that deviate from the global model (i.e., st < §%).
We attribute this phenomenon to the heterogeneous local data distribution, whose features the server
may not fully extract. Due to these biased updates, reducing the local learning rates could hinder the
global model’s ability to learn sparse features from local data. Therefore, Mod® maintains the local
learning rates of these clients unchanged. To facilitate the learning of the missing information from
local data, Mod® instructs the server to assign appropriate (typically higher) aggregation weights to
these clients through a feedback mechanism (see Mod® in Section [3.4).

Fast-and-Weakly-Biased Clients (FWBC): For such clients, the server has effectively extracted
their local information for global model aggregation. However, due to their fast local update speed
(.e., fI > f1), the global aggregation may become biased towards their local models. To mitigate this

effect, Mod® reduces the learning rate of these clients (i.e., n} = 77; ~1 — aF, where a is the change

rate and F = f;;) to slow down their update speed. A potential side effect of this operation is that it

may decrease the convergence speed of local model training. To address this issue, we introduce a
momentum term during the local training phase, as shown in Equation 3]

Momentum Term

€

w;e = wz?,efl - 77: [Z(mg)TvFi,E—T(w;efrfl) +VFZ‘7E(TU§7€71)], (3)

r=1

where m! is the momentum rate and has the relationship: m! = mg + k(é — 1), where my, k are
hyperparameters, and G = il

T
Si

Straggling-but-Weakly-Biased Clients (SWBC): Despite effectively utilizing local information
for global model aggregation (i.e., st > 5%), this type of client experiences a slow update speed (i.e.,
I < f1), suggesting limited local computational resources. Therefore, Mod@ increases its learning
rate (i.e., nf = nf ~! 4 aF) to compensate for these resource constraints. However, an excessive
increase in the learning rate may hinder the optimization of the local model. To address this issue,
Mod® employs the same momentum term used for FWBC to expedite the extraction of local data
information and facilitate model convergence.

Straggling-and-Strongly-Biased Clients (SSBC): To address the problem posed by these clients’
limited computational resources (i.e., f} < f'), Mod® increases the local learning rate (i.e., 7} =
nffl + aF). To tackle the issue of local update bias diverging from the global model update direction
(.e., sﬁ < &%), we leverage a local validation set on each of these clients to assess the running
environment. If the global model performs similarly on each label of the local validation dataset,
we consider the issue to be a straggling problem (Situation 1) and adopt a strategy akin to that
used for SWBC, enabling momentum optimization algorithms to mitigate the impact of outdated
models. Conversely, if the global model exhibits significant performance differences across labels
in the validation dataset, we consider the issue to be a dispersed distribution problem (Situation
2) and utilize a feedback mechanism similar to that employed for FSBC to alleviate the effects of
heterogeneous data distribution.

Notably, the momentum term in FedQS is not primarily a speed accelerator but a trajectory stabilizer
for clients whose updates align well with the global model (high s?). For these clients, momentum
mitigates oscillations while accelerating convergence speed (Equation [3)). In contrast, for high-
bias clients (FSBC and SSBC in Situation 2), premature momentum application could amplify the
divergence between their local updates and the global one, as their updates are not yet globally
beneficial.

3.4 Global model aggregation (Mod®)

This module aims to facilitate the central server in weighing the local models for the aggregation
of the global model. Specifically, upon receiving new local update data from client C};, the server



first calculates the average speed f*, average similarity 5%, and the local update speed f/, and then

updates the aggregation status table accordingly using Equations[Tjand [2] Then, the server will

persistently wait and start aggregation once it receives K available local updates. For each client that

has uploaded its local update data, the server assigns an initial weight parameter p; = " and then

iterates through these clients. If a client has triggered the feedback mechanism (SSBC with Situation
exp(¢—F) (1+9)2

2 or FSBC), the server updates its weight parameter viap; = —55=F— , where exp(+) is
the natural exponential function and ¢ = =; otherwise, the weights remain unchanged Next, the
server normalizes these weight parameters (1 e.,p; = Z - , Vi € §) before proceeding with the

exp(cb -7:)
2¢

global aggregation process. The term addresses the effect of outdated weights (inspired

by [34}115]), while a +Kg) accounts for the quadratic relationship between the convergence bound
and the model weight difference, as outlined in Theorem ff.2]and Theorem [4.3]

Given that FedQS optimizes both aggregation strategies, we denote the gradient aggregation strategy-
based implementation as FedQS-SGD and the model aggregation-based as FedQS-Avg in this paper.
For FedQS-SGD, Mod® incorporates the momentum term as part of the update data and calculates

the pseudo-gradient [16] 20] as AF;é =>¢_(m] ) VF, e r(w)] )+ VF;(w; ). Then,

Mod® aggregates the new global model using wg = wg 1 dics pmi Ze:l AFm. For FedQS-

1er1 zel

Avg, Mod® performs the weighted aggregation by wf] = ics Diw;

4 Convergence analysis of FedQS

In this section, we present the theoretical convergence guarantees for FedQS, demonstrating its ability
to effectively optimize both gradient and model aggregation strategies within the SAFL framework.
Complete theoretical details are provided in Appendix [A]due to space constraints.

4.1 Assumptions

We begin by stating our key assumptions, which are standard in the federated learning literature. The
following conditions hold:

(1) For Vi, the loss function Fj is L-smooth [35}[36].

(2) The expected squared norm of local stochastic gradients V F;(w?) is uniformly bounded by
G, (35, 116].

(3) The degree of heterogeneity in the training task is bounded by ¢ [3} [15].

Remark 4.1. Assumption[4.1[2) is introduced solely to simplify the interpretation of convergence
bounds by providing a deterministic upper bound for the gradient variation term W (see Theorems
and [A3] in the appendix). Crucially, it is not used in proving our core convergence theorems
(Theorems [4.2]and [4.3)), which rely only on Assumptions[4.1(1) and (3). The convergence guarantees
and heterogeneity analysis in Section[d.2]remain fully valid without this condition.

4.2 Convergence guarantees

Our convergence analysis employs the expected function value gap, E[F'(w},)] — F'*, as the primary
performance metric, following established SAFL literature [18}, [28| 37]. This choice is motivated
by its direct quantification of solution quality relative to the ideal optimum F'*, its unique ability
to reveal stability dynamics (e.g., oscillations and transient regressions under semi-asynchronous
updates that gradient norms often obscure), and its alignment with theoretical and practical SAFL
conventions for assessing convergence behavior and aggregation-strategy efficacy, thereby providing
a more comprehensive evaluation of FedQS’s performance under dual aggregation strategies. We
present our main convergence results below.

Theorem 4.2 (Gradient Aggregation Convergence). Under Assumptions let B = max; ({nf, ny}

with L 1 <B<\/3rr=3 2RK 3, where R = %W. In R’s formula, F is the maximum
local epoch, and 0 = max; ;{m'}. Let K be defined in Section then FedQS-SGD satisfies:
E[F(w})] = F* < LV'E[[|lw) — w*|[’] + U + W, )



where V = (3 — 252:11?) € (0,1) controls the convergence rate, U = O(3?) captures the data
heterogeneity, and W = O(G?) bounds gradient variations. Notice that W < [ALE? + ALRQ(t) +

2 < 2
8 LJQFBLZ)I(%Q_}E%E?;JE )] B2G?, where Q(t) denotes the maximum number of clients that execute the

momentum update at global round t.
Theorem 4.3 (Model Aggregation Convergence). Under Assumption let0<g<p; <p<l,

for \/ m <P </ QRK_F%. Let K be defined in Section then Fed(QS-Avg satisfies:
E[F(w))] — F* < (3LpK” + L)V'E[[Jw) — w*|[*] + U + W, 5)

with V.U, W having similar interpretations as in Theorem 4.2}

Remark 4.4. The exponentially decaying V! term accelerates convergence within the sublinear
regime characteristic of non-convex FL, yielding a rate strictly faster than the standard O(1/t)
while maintaining the overall O(1/t + U + W) bound. Unlike the linear convergence under strong
convexity/Polyak-Lojasiewicz conditions, this confirms that V! enhances practical performance
without altering the fundamental sublinear convergence landscape.

Remark 4.5. The U term highlights the impact of data heterogeneity (%), while W captures gradient
norm effects (GE). The non-vanishing terms U + WV reflect fundamental limitations inherent to semi-
asynchronous FL systems [28| [37], capturing unavoidable convergence errors from non-simultaneous
aggregation and irreducible data heterogeneity.

Remark 4.6. Theorem [4.2]demonstrates that FedQS-SGD limits the gradient variation amplification
in W through controlled momentum updates since the momentum term is only applied to a subset of
clients (i.e., FWBC, SWBC, and SSBC with Situation 1), thereby improving convergence stability.
Remark 4.1. Theorem[4.3|shows that FedQS-Avg achieves comparable convergence with FedQS-
SGD, with the V! term guaranteeing asymptotic convergence, alleviating the slow convergence speed
and suboptimal convergence utility inherent to model aggregation strategies in SAFL.

5 Evaluation

5.1 Experimental setup

We evaluate FedQS on three task types in SAFL: Computer Vision (CV) using ResNet-18 [38]
on CIFAR-10 [39], Natural Language Processing (NLP) with LSTM [40] on Shakespeare [[L], and
Real-World Data (RWD) using FCN on UCI Adult [41]]. Resource constraints limited our experiments
to moderate-scale models, though our approach remains model-agnostic as FL is an infrastructure
independent of models or datasets. We simulate a heterogeneous federated system with clients having
uniformly distributed computing resources (default: 100 clients, resource ratio 1:50, i.e., the fastest
client exhibiting a training speed 50 times that of the slowest). The default similarity function in
Mod® is cosine similarity.

All experiments were conducted on a Linux system (Ubuntu 22.04 LTS) using an Intel Xeon Platinum
8468 Processor and an NVIDIA H100 80GB HBM3 GPU, with system memory capped at 20 GB per
run. The software stack included Python 3.8.0, PyTorch 2.1.0, and Torchvision 0.16.0, all within a
Conda environment. Due to space constraints, comprehensive details on datasets, model architectures,
client resource distributions, hyperparameters, baseline algorithms, and additional results are provided
in Appendix D]

5.2 Performance evaluation

As the first solution optimizing both gradient and model aggregation strategies in SAFL, we compare
FedQS against four model aggregation (FedAvg [l1], SAFA [31], FedAT [18]], M-step [37]) and
four gradient aggregation (FedSGD [1]], FedBuff [[16], WKAFL [15], FedAC [20], DeFedAvg [42],
FADAS [43], CA?FL [44]]) baselines. To our best, there is no related work that supports both
strategies. We employ the same metrics as those in [21] to evaluate the performance of FedQS and
baselines: 1) Accuracy and loss performance, which reflect the prediction capabilities of the trained
global model on the test dataset. 2) Convergence speed, determined by the number of epochs (denoted
as T'y) required to achieve the target accuracy for the first time [21]. 3) Runtime, recorded as the
duration from the initiation to the completion of the T-th (T" being the maximum global training
epoch) rounds of global aggregation.



Table 2: Accuracy and convergence speed of FedQS and the baselines.

Algorithms
Metrics Tasks o dAve| SAFA Fed AT M-step I;Zdvg)s FedSGD |FedBuff WKAFL FedAC DeFedAvg FADAS CA2FL I(:seg%i
% =0.1] 5605|5615 28.15 62.17 6391| 65.71 | 6443 6466 5652 5233 6534 4229 68.88
z=0.5] 7371 |58.31 45.65 80.49 80.26| 83.87 | 80.73 85.14 82.65 83.51 822 6379 86.11

1 | 77.86 |62.16 47.58 82.46 82.74| 8542 | 81.43 86.02 8594 86.17 8421 70.16 86.79

Accuracy (%)| R = 200| 47.04 [43.65 37.13 49.38 50.43 | 48.04 | 4837 5049 5043 40.19 4683 2536 52.22
R = 600| 45.52 [40.90 36.35 48.12 50.08 | 49.64 | 47.42 50.09 51.62 4823 4895 2886 52.49
Gender | 77.10 |77.05 77.01 7820 78.94| 77.15 | 7637 7896 77.69 77.82  78.04 76.09 78.74

Ethnicity | 77.25 |77.07 77.26 78.01 78.85| 7833 | 78.71 7697 77.71 78.11 78.54  66.68 79.24
x=0.1| 304 | 362 317 329 276 281 334 277 243 307 255 272 239
r =05 295 | 344 304 276 234 264 293 255 232 257 220 256 213
r=1 154 | 272 244 163 119 144 259 257 136 155 143 200 127

C(;’;‘;;f}f;d R =200 288 | 342 357 264 231 | 234 | 278 221 243 256 220 259 188
R=600| 293 |33 375 275 249 | 251 | 303 248 277 238 254 272 216
Gender | 43 | 57 63 46 35 29 66 51 17 59 25 59 18

Ethnicity | 55 | 67 61 44 33 36 76 54 27 20 24 325 22

* In the “Tasks™ column,  represents the parameter of the Dirichlet distribution within CV tasks; R denotes the number of roles within

_ NLP tasks; Gender and Ethnicity are the data types within RWD tasks.

* The convergence accuracy is measured as the average global accuracy over the last 20 rounds. The target accuracy for convergence
speed is set to 95% of convergence accuracy in CV and NLP tasks and 98% of the convergence accuracy in RWD tasks.

Table 3: Runtime of FedQS and the baselines.

Algorithms

FedQS

FedQS|FedSGD g 156 FedBuff WKAFL Fed AC DeFedAvg FADAS CA®FL (SGD)

(Avg) | (SFL)

Tasks |[FedAvg
(SFL)
178,048 24,204 204,588 66,851 49,971 32,827| 76,592 24,184 25,654 34,862 30,329 30,776 32,380 108,097 32,784
5177,956 24,214 144,371 66,746 49,953 33,254| 76,822 23,921 25,720 35,286 28,721 31,754 32,966 109,635 33,656
z =1 [79,095 24,208 142,594 66,851 46,859 33,477| 79,816 24,108 25,513 32,707 29,152 30,280 31,471 108,756 33,400
R = 200(22,417 4,925 27,642 21,089 116,906 6,023 | 22,118 4,669 5,096 32,849 8,340 4989 5,118 36,441 5,248
R = 600|53,784 7,358 39,475 33,300 171,965 9,528 | 53,590 7,211 8,320 59,277 12,982 8,720 9,002 36,548 9,135
Gender |30,149 5,508 10,413 6,338 12,469 5,701 | 30,088 5385 6,164 13,420 5423 4,841 5476 19,650 5,523
Ethnicity | 33,275 5,513 9,127 6,437 12,389 5,665 | 32,787 5,148 6,037 14,215 5711 4,827 5299 19,370 5,465

* Shadowed columns represent evaluations under synchronous FL (SFL).

FedAvg SAFA FedAT M-step

Table |2| presents the experimental results. FedQS attains the overall highest accuracy and fastest
convergence speed across almost all tasks. Specifically, for model aggregation, FedQS’s average
accuracy is 68.88%, 1.71% higher than that of the best baseline (i.e., M-step), and for gradient
aggregation it is 72.06%, 2.51% higher than the best baseline (i.e., WKAFL). SAFA, FedAT, and
FedBuft do not perform as well as their corresponding foundational algorithms, FedAvg and FedSGD.
This is because these three algorithms sacrifice the accuracy of the global model for a more stable
training process (see Table[09]and Figure[I0|in the appendix for the analysis of convergence stability).
Figure |4| depicts the loss function curvey’| of representative tasks for both model and gradient
aggregations. This figure illustrates that FedQS achieves the minimum loss as training progresses,
implying FedQS’s capability to converge the model to its optimum.

Table [3| shows the runtime performance results. FedQS achieves comparable efficiency to the top-
performing baselines, demonstrating its feasibility for real-world deployment. For reference, we
include the runtime measurements of FedAvg and FedSGD under synchronous settings. When
compared to these synchronous baselines, FedQS-Avg and FedQS-SGD achieve average runtime
reductions of 70.34% and 70.91%, respectively, highlighting SAFL’s superior resource efficiency
over synchronous configurations. Meanwhile, as evidenced by Figures [§]and [J] (in the appendix),
FedQS maintains substantially lower time latency between global aggregation rounds than other
SAFL optimization algorithms, further validating its operational efficiency.

5.3 Effectiveness of FedQS under different system settings

In this section, we evaluate the impact of different numbers of clients and resource distributions on the
performance of FedQS. We vary the number of clients (50 or 200) and the resource distribution ratio
(1:20 or 1:100), conducting experiments with x = 0.1,0.5,1 in CV tasks under both aggregation
strategies and reporting average values. Table [d shows representative results of FedQS compared to
two foundational algorithms in SAFL (with complete results in Table[I0|in the appendix). FedQS

2WKAFL’s overfitting curve in Figureis due to the large learning rate and WKAFL’s adaptive learning
rate adjustment module.
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Figure 4: Loss of FedQS and the baselines under a representative CV task (x = 0.5), an NLP task
(R = 600), and an RWD task (gender). The left three subfigures are based on model aggregation,
while the right three are based on gradient aggregation.

Table 4: Robustness of FedQS. Table 5: Ablation study results in CV tasks.
. Metrics Metrics
Scenario| Method ——
FedAvg ACCU;S.CI}, () Con\2'.2zpeed # ObC(;]})dthl’ls Module Method Accuracy (%) C(;nevr";f;:)d # Oscillations
N=50 | FedQS-Avg 79.2 179 3.0 Avg SGD [Avg SGD [Avg SGD
(1:20) | FedSGD 77.4 193 37.0 Cosine 74.14 80.59 |[251 230 (4.0 7.6
FedQS-SGD 80.7 152 26.3 Mod® Euclidean  |75.69 79.55 (244 232 |56 113
FedAvg 49.4 277 0.0 Manhattan  |76.56 80.28 |228 221 |46 9.6
N=200 | FedQS-Avg 64.7 256 0.3 Mod® w/o momentum |73.21 78.88 [269 242 [43 9.6
(1:100) [ FedSGD 74.4 248 73 with momentum|74.14 80.59 [251 230 [4.0 7.6
FedQS-SGD 80.1 203 3.0 Mod® w/o feedback |68.35 78.83 [284 268 [0.0 5.6
* N = 50 means the task has 50 clients, and 1:20 means the with feedback |74.14 80.59 |251 230 |40 7.6
fastest client exhibits a training speed 20 times that of the slowest * Avg and SGD represent FedQS-Avg and FedQS-SGD, respectively.
one. The threshold used to calculate the number of oscillations * Each result is an average value corresponding to z = 0.1, 0.5, 1.
is set to 15. The target accuracy for convergence speed is set to The threshold used to calculate the number of oscillations is set
. 95% of convergence accuracy to 15. The target accuracy for convergence speed is set to 95% of
Each result is an average value of three experiments correspond- convergence accuracy

ingtox = 0.1,0.5,11in CV tasks.

consistently outperforms both FedAvg and FedSGD across all three metrics, aligning with the results
in Table 2

To further validate the robustness of FedQS in dynamic environments, we conduct additional CV
experiments under three scenarios where client resources vary during training: (1) Dynamic Resource
Scale (Scenario 1): the speed ratio shifts from 1:50 to 1:100 at round 200; (2) Unstable Resource
per Client (Scenario 2): each client’s resource fluctuates within [—10, +10] unit times per update,
bounded between 1 and 50 units; (3) Client Dropout (Scenario 3): 50% of clients randomly churn at
round 100. As shown in Table [0 FedQS maintains stable convergence across all dynamic scenarios.

These results demonstrate that FedQS is effective under various system settings and maintains
robustness in dynamic environments. We further discuss the scalability of FedQS in Appendix [C|

Table 6: Performance comparison of different algorithms under dynamic scenarios

Dynamic ] x=0.1 x=0.5 x=1

Scenario Algorithm Accuracy (%) g}()):evci Runtime (s) | Accuracy (%) SC;;VA Runtime (s) | Accuracy (%) g;;\; Runtime (s)

FedAvg 52.77 322 46488 77.29 288 47732 76.79 227 48003

Scenario 1 FedQS-Avg 66.47 264 53986 82.90 235 54575 83.22 201 55529

FedSGD 68.29 244 47443 85.66 211 47728 87.86 147 48280

FedQS-SGD 76.17 206 54095 88.12 177 55268 88.80 115 55257

FedAvg 53.12 310 47397 76.74 294 47156 79.90 286 47788

Scenario 2 FedQS-Avg 64.52 268 55535 83.53 241 55816 84.35 252 56253

FedSGD 65.13 268 47613 85.37 207 47096 88.63 159 47634

FedQS-SGD 69.65 223 55037 87.96 185 55201 89.14 133 55808

FedAvg 44.39 343 58993 68.44 332 59362 72.47 296 59447

Scenario 3 FedQS-Avg 53.22 297 62623 79.33 272 63308 81.08 253 63776

“| FedSGD 58.40 292 58345 81.73 288 59487 84.43 262 59732

FedQS-SGD 60.08 263 62870 83.39 245 63992 86.18 241 64703

5.4 Hyperparameter analysis

This section presents a hyperparameter analysis of FedQS. Using a grid search, we fine-tune four key

hyperparameters within the adaptive module (Mod®): the initial learning rate 19 (where 19 = 77, Vi),
the learning rate change rate a, the initial momentum my, and the momentum change speed k.
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Figure 5: Impact of different hyperparameters on FedSGD, FedAvg, and FedQS’s performance in CV
tasks. The target accuracy of convergence speed is set to 80% of convergence accuracy.

Figure [ summarizes the results for CV tasks (with detailed results provided in Appendix Tables[TT}
[14). Our findings indicate that an excessively large or small 7y leads to reduced accuracy and slower
convergence, a trend also observed in FedSGD and FedAvg. However, FedQS’s adaptive learning
strategy yields significant improvements in both metrics over these baselines. Furthermore, we
observe that overly large values of a, mg, and k can adversely affect FedQS’s performance in both
modes. Among these, a has the most pronounced impact on accuracy, while & has the least.

Crucially, FedQS exhibits robust performance across broad hyperparameter ranges (e.g., a €
[0.001,0.005] and k& € [0.001,0.2]), achieving strong results with default settings (¢ = 0.002,
mgy = 0.1, k = 0.2) as shown in our main experiments. The adaptive mechanisms in Mod® inherently
mitigate sensitivity to hyperparameter selection, while Mod® and Mod® remain hyperparameter-free.
This design substantially reduces tuning overhead and facilitates practical deployment in real-world
federated learning scenarios.

5.5 Ablation studies

In this section, we conduct ablation studies on FedQS’s modules, with the results presented in TableE}

Similarity Function (Mod®). We evaluate three similarity measures: Cosine Function (CF), Eu-
clidean Distance (ED), and Manhattan Distance (MD). While MD achieves slightly higher accuracy,
CF exhibits better stability with fewer oscillations. The comparable performance across measures
validates FedQS’s robustness to different similarity metrics.

Momentum (Mod®). Removing momentum terms degrades performance significantly, with aver-
age accuracy dropping by 4.3% and convergence requiring 6% more epochs. This demonstrates
momentum’s crucial role in both optimization efficiency and final model quality.

Feedback Mechanism (Mod®). Disabling the feedback mechanism causes substantial accuracy
degradation (7.81% for FedQS-Avg, 2.18% for FedQS-SGD), highlighting its importance for main-
taining model performance. The feedback mechanism proves particularly valuable for averaged
models, where its absence leads to more pronounced performance drops.

6 Conclusions

In this paper, we presented FedQS, a novel framework that jointly optimizes gradient and model
aggregation in SAFL. FedQS employs a divide-and-conquer strategy that dynamically categorizes
clients into four types and adaptively adjusts their local training schemes. Theoretical analysis estab-
lishes that FedQS achieves convergence under both aggregation paradigms, effectively addressing
the instability of gradient-based methods and the suboptimality of model-based ones. Experiments
across diverse settings demonstrate that FedQS achieves accurate predictions, rapid convergence,
and stable training, consistently outperforming state-of-the-art baselines. Future work will integrate
differential privacy for stronger security and evaluate under more realistic conditions (e.g., non-1ID
data and limited client-side data volumes) to further validate practical utility.
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made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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should reflect on how these assumptions might be violated in practice and what the
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided our source code in Anonymous GitHub https://github.
com/bkjod/FedQS_|

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We discuss the details in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We discuss the impact of different system settings, hyperparameters, and tasks
of FedQS in Section[5] Experiments are repeated multiple times, and we provide the average
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the experiment setting and hardware details in Section[5.1]
and Appendix [D] We further discuss the runtime performance of FedQS and baselines in
Section[5.2] with experimental results provided in Table 3]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have read and conformed to the NeurIPS Code of Ethics. We confirm that
this paper does not incorporate any ethic concerns of NeurIPS.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed the broader impact in Appendix [C]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not release any new data or models

Guidelines:
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our paper uses publicly available datasets (CIFAR-10, Shakespeare, and UCI
Adult), which are all properly cited and introduced in Appendix [D.1I] For the baseline
methods, we have give proper citations and introductions in Appendix

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provided our source code and dataset in the GitHub at https://github,
com/bkjod/FedQS_, with a documentation named “README.md” to provide details in
the repository.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Convergence analysis details

We first provide the detailed descriptions of Assumption[4.T} which are also adopted in related works.

Assumption A.1 (L-smooth [35,[36]). We assume that for Vi, the loss function F; is L-smooth, i.e.,
for all z, y as input, we have:

Fily) - Bi2) < (VE(@), (v — ) + 5y — o], ©

where L > 0 is a constant.

Assumption A.2 (Bounded Gradient [35][16]). We assume that the expected squared norm of local
stochastic gradients V F;(w!) is uniformly bounded, i.e.,

E[||VF;(w})|’] < GZ, 7

where G, > 0 is a constant.

Assumption A.3 (Bounded Heterogeneous Degree [3} [15]). We assume that the degree of hetero-
geneity in the training task is finite, i.e.,

E[||VFy(w) — VE;(w})||?] < 6%, 8)

where § > 0 is a constant and VF,(-) is the ideal global gradient, which is defined in detail in
Appendix [E] This also implies that the discrepancy between the gradients of each individual client
and the ideal global gradient is bounded.

We then give the justifications of the reasonability for these assumptions.

Justification of Assumption[A.T} Assumption[A.T]is reasonable because loss functions (e.g., sigmoid)
in neural networks are generally smooth. The L-smoothness assumption aligns with differentiable loss
function requirements, enabling gradient computation via backpropagation. The convergence analyses
of FL typically rely on this assumption to facilitate a simplified mathematical analysis. We avoided
the convexity assumption in our analysis for a more general analysis, because convexity relates to the
difficulty of optimization problems. While convexity properties hold in simpler models like logistic
regression or SVMs, deep neural networks generally operate in non-convex loss landscapes.

Justification of Assumption[A.2] Assumption[A.7]is reasonable because, in SAFL, gradient clipping
is employed to alleviate the accuracy degradation issue caused by non-IID data distribution. As
long as clients apply gradient clipping, this assumption naturally stands. Violating this assumption
implies that there exists a client whose gradient is unbounded, leading to the gradient explosion and
potentially causing the training to fail completely. This assumption also has a wide application in
FL (3511450118} 116, 23]]. Meanwhile, since gradient clipping is commonly adopted in SAFL [15], the
local gradient magnitudes during training remain bounded by the clipping threshold. Consequently,
the gradient clipping threshold can be directly utilized as the upper bound for gradients in our
theoretical assumptions. In our experiments, we set the bound G as 20.

Justification of Assumption Assumption [A.3]holds since data distribution heterogeneity is
constrained due to limited training data. The heterogeneity of data distribution is determined once
participating clients are selected for aggregation. Violating this assumption indicates either an infinite
amount of data, which is impractical, or the data distribution would be constantly changing, making
it impossible to capture its exact values and ultimately leading to training failure.

Based on these assumptions, we rewrite Theorems [4.2]and 4.3 to give the complete theoretical results.

Theorem A.4 (The convergence of FedQS-SGD). Let Assumption hold and L, 6, G be
defined therein. Let 7} be defined Section2|and K be defined in Section B = max; {n},ny}

and ,/ﬁ < B < ’/2R713<—3’ where E is the maximum local epoch, 8 = maxi,t{mf} and

_mp2_p2, pE+2 .
R = %. Then, we have the following convergence results:

E[F(w!)] — F* < LV'E[|[w) — w*|[’] + U + W, 9)

2 2
where U = 2L + 5 LD E202, Y = (3 — 258 and
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W 4LE||772 ZvFle ze I)H ]+4LE||771 ZZ vFle T( :ia r— I)H]

e=1r=1

+ZV]3LEH17 Zsze W;'eq ||]

i=0 (10)
Y VIRl S Y VI
7=0 e=1r=1
2 (B°L + L)(2RQ(t) + 3E?) . .5
< [ALE? + 4LRQ(t) + 255°R _95° 9 |67G:.

Notice that the value of V is in (0,1) and Q(t) denotes the maximum number of occasions upon
which all participating nodes execute the momentum update module at global round t.

Proof. See Appendix [E. ] O

Theorem A.5 (The convergence of FedQS-Avg). Ler Assumption[A.1|A.2JA.3|hold and L, 6, G be
defined therein. Let T} be defined Section |2| I and K be defined in Section Denoted E as the
maximum local epoch and assume the aggregation weight parameter p; sattsﬁes 0<qg<pi<p<L

/ / _mp2_p2, gE+2
Letﬂ = maxi_’t{nf,ng} and m < B < QRK'-I—%’ where R = % In
R’s formula, 6 = maxivt{mﬁ}. Then, we have the following convergence results:

E[F(w))] — F* < (3LpK” + L)V'E[[Jw) — w*|[*] + U + W, (11)

where Q(t) is defined in Theorem Vv = 3 - M) € (0,1), U = [3p®KL +

BT
8(3pK>+1)(B2L+L)1 52 12 52
552 (RTE?) 257 2}5 E45%, and

t E E
W= (3Lp°K + L)Y VE[|n;" Z[Vﬂ(wﬁ;l)m?] + p? KL(E[||n; va(w;@\ﬂ
j=1 =
||mZVF + (3Lp*K + L) ZWEW 122 wi L)1)

e=1r=1

+ 3p2 K LE[||n! Z > () VE(w!, )]

e=1r=1

(3p?K +1)(B%2L + L)(E? + RQ(t))

< [PPKL(2E* + 3RQ(t)) + 2 (R 1 B 257 2 18%2G2.
(12)
Proof. See Appendix [E.2} O

B Different communication and aggregation strategies in FL

Synchronous vs. Semi-Asynchronous FL. The primary difference between Synchronous FL
and Semi-Asynchronous FL (SAFL) is that the former is based on server-controlled coordinated
training, while the latter involves fully autonomous client execution with conditional-triggered global
aggregation. Specifically, in Synchronous FL, the server initiates each global round by selecting a
subset of clients as activated clients. These activated clients are required to complete local training
using the latest global model and submit their updates, while inactive clients remain idle until this
round concludes. The server performs aggregation through designated aggregation strategies after
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receiving all activated clients’ updates, then broadcasts the modified global model. In contrast,
SAFL eliminates centralized coordination, where the server passively awaits client updates and
triggers global aggregation immediately upon meeting specific triggering conditions (e.g., sufficient
accumulated updates [15} [16]). Each client autonomously executes local training at its own pace.
Upon completing local training, clients immediately transmit local updates to the server and verify the
availability of the new global model. If it is available, they synchronize their local models accordingly;
otherwise, they persist with existing parameters while continuing local training.

Gradient aggregation vs. Model aggregation. There are two foundational aggregation strategies in
FL: gradient aggregation and model aggregation. The key difference between these two strategies
is that the former enables the server to train the global model by aggregating gradients and then
performing gradient descent on the original one, whereas the latter allows the server to construct the
global model based on local model parameters directly.

In Synchronous FL, due to the server-enforced synchronization requirement, each activated client
is restricted to uploading a single update per global round, which is derived from training on the
latest global model. Consequently, during the (¢ + 1)-th global aggregation round, given the index set

(without duplicates) of activated clients in this round as S, each client Vi € S performs local training

t

within £ local epochs according to wj = wj, — n; SE VF;(w!,_1;D;), where w! o £ w.

Denoted 7, as the global learning rate and n = > ics i, the gradient aggregation strategy can be

shown as with = wl — 1y 3", 0 s WV F;(w!), where VF;(w}) £ Zle VFi(wj . ;D).
Remark B.1. In FedSGD [1]], the local epoch parameter F is typically set to 1. When £ > 1, this
aggregation paradigm is commonly referred to as model difference aggregation 16,37, 23], where

clients transmit parameter differences calculated through multiple local epochs as Aw! = w! — w! =

i g

7 Zle VFj(w!,_;D;). The server then performs aggregation using w)™! = w! — 37, _ ¢ ™ Aw!.
For conciseness and without loss of generality, we collectively refer to scenarios with & > 1
as the gradient aggregation strategy. This unified terminology is justified since both FedSGD
(E = 1) and model difference aggregation (F > 1) fundamentally utilize local gradient information

VF;(w D;) during global aggregation processes.

t .
i,e—19

In contrast, the model aggregation strategy requires each activated client to transmit its local model
parameters to the server instead of the local gradients. The server then uses wgﬂ =D ies Bwlto
form the new global model.

In SAFL, due to the autonomously local training across all clients, updates from clients with
constrained computational resources may exhibit parameter staleness. Specifically, during the
(t 4+ 1)-th global round, client C; might complete its local training using the global model from the

t t
t t o7 NE (D, t s, T
7;-thround as w; = wg' —n; Y .y VFi(w; ,_1;D;), where w; g = wy' .

Therefore, given the index list (possibly with duplicates) of the clients participating in aggregation as
S at the (¢ + 1)-th global round, the gradient aggregation strategy and the model aggregation strategy

t
: t+1 t _ ng 5 T t+1 __ g7
in SAFL can be denoted as  w,™ = wy — 0y ) ;cs 7V E(w;") and w,™ = 3 o Hw,,

t t
respectively, where VF;(w]* ) 2 2 VE;(w} ,_1;D;) with w! j = wg'.

C Discussion

C.1 Superiority of SAFL.

The SAFL framework introduces an asynchronous federated learning paradigm that eliminates the
necessity for synchronization among participants, enabling autonomous execution of local model
updates and seamless parameter/gradient transmission to the server. This architecture fundamen-
tally differs from conventional Synchronous FL implementations, where frequent idling occurs for
inactivated clients to await completion of all activated clients’ local training during synchronized
global epoch, as well as from Asynchronous FL'’s aggregation mechanism that processes individual
updates immediately upon reception. SAFL’s superiority emerges through its conditional aggregation
protocol, which employs dynamic triggering criteria based on predefined system conditions (e.g.,
resource availability thresholds, update quality metrics, or temporal constraints) to optimize both
computational efficiency and model convergence characteristics. The framework’s trigger-driven
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aggregation mechanism concurrently addresses Synchronous FL’s inherent resource under-utilization
during prolonged waiting periods and Asynchronous FL’s susceptibility to update volatility caused by
premature aggregations, thereby achieving enhanced training throughput while maintaining model
stability in dynamic network environments.

C.2 Scalability of FedQS.

FedQS demonstrates strong scalability to large-scale networks comprising thousands of clients, as
it introduces only minimal overhead. From the client-side perspective, each client performs only
one additional similarity calculation and two numerical comparisons compared to baseline methods,
with no inter-client communication required. Therefore, increasing the number of clients does not
compromise client-side scalability. From the communication perspective, FedQS adds a 1-bit signal
and one floating-point value to the upstream channel (client — server), and three floating-point
values to the downstream channel (server — client). These additions constitute only a small fraction
of the total transmitted data, which typically includes gradients or model parameters. Hence, the
communication overhead introduced by FedQS remains negligible. The additional metadata increases
the total communication volume by less than 1%, consisting of a 1-bit signal and one float uplink
(4 bytes), and three floats downlink (12 bytes). For a model such as ResNet-18 (~43.7 MB), this
represents an increase of only 0.000037% over FedAvg/FedSGD. This overhead requires no additional
synchronization steps and scales linearly with the number of clients, yet it is substantially outweighed
by the significant improvements in accuracy and convergence offered by FedQS. From the server-side
perspective, the server maintains only a simple state table containing two integer—float key—value
pairs compared to baseline approaches. Operations on this table execute in O(1) time, ensuring that
server-side scalability remains unaffected as the number of clients grows. Thus, even with large-scale
client participation in federated tasks, FedQS maintains efficient performance on the server side.

C.3 System Efficiency Analysis

This section details the efficiency analysis of FedQS’s each module and discusses the potential
optimizations to enhance the computational and communication efficiency.

C.3.1 Breakdown Analysis

Table [7) provides a comprehensive breakdown of the computational latency, communication overhead,
and memory footprint induced by FedQS’s core mechanisms. These measurements represent averages
over 400 global rounds, with consistent patterns observed across various experimental scenarios
and client populations. The computation overhead remains minimal, with similarity scoring and
feedback processing introducing only about 4s of additional latency per global round. In terms of
communication, each client transmits merely 4B uplink (similarity score) and 1-bit feedback, while
the server broadcasts 12B downlink (averaged thresholds). Memory footprint is also negligible:
client-side storage for scores and feedback totals under 5B, and server-side state tables require only
about 7.8KB for 100 clients.

Table 7: Computational latency, communication overhead, and memory footprint of FedQS compo-
nents (averaged over 400 global rounds).

Computational Communication Memory

Operation Cost Cost Footprint
Calculating pseudo global gradient (Mod®) 13.73s 0 42.8MB
Calculating similarity scores (Mod®) 2.23s 0 4B
Feedback signal calculation (Mod®) 1.97s 0 1 bit
Feedback signal communications (Mod@ — Mod®) 0 Uplink: 1 bit 0
Updating aggregation status table (Mod®) 0.27s 0 ~7.8KB
Status table communications 0 Uplink: ~4B 0

Downlink: ~12B

C.3.2 Computational Overhead of Divide-and-Conquer Strategy

We conducted disaggregated experiments to rigorously quantify the detailed additional runtime
introduced by FedQS’s divide-and-conquer strategy. The procedure is partitioned into three critical
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phases: pseudo-gradient computation in Mod®; client classification in Mod®; and state-table updating
in Mod®. Table [§|shows the average time consumed per global round for each step in FedQS when
training ResNet-18 on CIFAR-10, where “Average ratio for Mod®” represents the ratio of the time
spent calculating the pseudo-gradient in Mod® to the average time required to complete one global
round.

Table 8: Computational overhead breakdown of FedQS components when training ResNet-18 on
CIFAR-10 under different distributions.

# Client Data Dist. | Total Time (s) | Mod® Time (s) Mod® Ratio | Mod® Time (s) Mod® Ratio | Mod® Time (s) Mod® Ratio
x=0.1 44.98 6.69 14.87% 2.17 4.82% 0.13 0.29%
50 x=0.5 46.59 7.43 15.94% 2.89 6.20% 0.14 0.30%
x=1 43.79 7.02 16.03% 2.33 5.32% 0.09 0.21%
x=0.1 80.97 14.14 17.46% 451 5.57% 0.23 0.28%
100 x=0.5 83.41 13.93 16.70% 422 5.06% 0.26 0.31%
x=1 82.77 13.11 15.84% 3.96 4.78% 0.33 0.39%
x=0.1 165.83 22.33 13.47% 8.11 4.89% 0.49 0.30%
200 x=0.5 152.05 27.80 18.28% 9.51 6.25% 0.47 0.31%
x=1 153.93 26.69 17.34% 8.97 5.82% 0.45 0.29%
Average - - 16.21% - 5.41% - 0.30%

C.3.3 Potential Optimization

FedQS employs GPU-accelerated training with streaming aggregation to handle large models effi-
ciently. This design overlaps communication and computation, boosting throughput for resource-
constrained clients. Computationally, optimizations are available for the client-state table (caching
scores, low-rank approximations) and the primary overhead of pseudo-gradient computation. Stag-
gered client reclassification (i.e., reducing the frequency of client reclassification every 5 rounds)
reduces overhead by 63.6-72.7% (1.4-5.2% accuracy drop), while stratified sampling of clients (i.e.,
20% of clients per round re-evaluates the role) reduces it by 53.2-57.5% (2.2—4.1% performance
loss). These strategies offer configurable tradeoffs within FedQS’s modular design.

C.4 Limitations of FedQS.

Although FedQS mitigates both the instability of gradient-based methods and the suboptimal con-
vergence of model-based approaches, it introduces a few oscillations in model aggregation mode.
Meanwhile, we introduce three hyperparameters a, mg, k in SAFL to propose FedQS. Despite the
discussions in Section[5.4] this raises more difficulties in implementation and reproduction. A poten-
tial future work involves the automatic adjustment of these hyperparameters, therefore enhancing the
flexibility and accessibility of the FedQS.

Broader Impact. This work proposed FedQS, a comprehensive and versatile optimization tool that
enhances the performance of gradient aggregation and model aggregation strategies across multiple
metrics. Additionally, we conduct a theoretical analysis of FedQS to demonstrate its superiority.
We have identified no potential ethical impacts or noticeable negative social impacts associated
with this work. On the contrary, FedQS serves as a compatible framework capable of optimizing
both aggregation strategies in diverse scenarios, leading to significant performance improvements.
This contribution advances the field by offering a practical and theoretically grounded solution for
enhancing SAFL systems.

D Evaluation details & More evaluation results

D.1 Details of the dataset

CIFAR-10 [39]. CIFAR-10 is a widely used benchmark dataset for image classification tasks in
machine learning. This dataset consists of ten labeled classes of images. Each class corresponds
to 6,000 images, with 5,000 training samples and 1,000 test samples. In our FL scenario, we
pursued benchmark [46], assuming that all participant data distributions follow the Hetero-Dirichlet
distribution Dir(x) based on categories, which can be represented by Equation Each participant
will split their local dataset into training and validation sets with an 8:2 ratio.

) IR e
Diry(z) = H(NZZFE:C»)) L1 FAIY o (13)
=1 ?
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where k represents the k-th client, x is a parameter controlling the distribution, P, ; represents
the probability of having data from the i-th class and I'(x) is the Gamma-function. We primarily
considered three levels of data distribution heterogeneity in our experiments: = 0.1, 0.5, and 1.

Shakespeare [1]. The Shakespeare dataset is a text corpus used for natural language processing tasks,
comprising excerpts from The Complete Works of William Shakespeare. We embedded 80 unique
characters, consisting of 26 uppercase English letters, 26 lowercase English letters, 10 numeric digits,
and 18 special characters, into corresponding labels. Notably, we referenced benchmark [47] and
modeled the dialogues of distinct roles in various scripts within Shakespeare as a heterogeneous
distribution. Each participant was assigned data drawn from dialogue lines of different characters
across diverse scripts, and the roles used by different participants do not overlap. Each participant will
split their local dataset into training and validation sets with a 9:1 ratio. We primarily considered two
levels of data distribution heterogeneity in our experiments: each client has 2 roles (i.e., R = 200)
and 6 roles (i.e., R = 600).

UCI Adult (Census Income) [41]]. We refer to paper [41] to utilize the US Adult Income Dataset,
a real-world benchmark dataset, to evaluate the efficacy of each algorithm in a practical task. The
dataset comprises 48,842 records and 14 attributes, including age, gender, education level, marital
status, occupation, working hours, etc.. We primarily predict whether an individual’s annual income
exceeds $50,000 based on demographic attributes from the census, assuming that each participant
is associated with specific demographic characteristics (gender or ethnicity) corresponding to their
income data. The distribution of data quantity among clients with the same characteristics follows a
log-normal distribution Log — N (0, o2). Each participant will split their local dataset into training
and validation sets with an 8:2 ratio. For the heterogeneous distribution based on gender, we primarily
considered o = 1 in our experiments. For the heterogeneous distribution based on ethnicity, we
primarily considered o = 0.9 in our experiments.

D.2 Details of the models

ResNet-18 [38]]. We employ the Residual Network (ResNet) architecture, a class of neural networks
introduced by He et al. [38], which incorporates residual blocks to alleviate vanishing gradients.
Specifically, we utilize ResNet-18, a compact variant within the ResNet family, comprising 18 layers
and four residual blocks. Each residual block consists of two convolutional layers with 3x3 kernels
and a stride of 1, enabling efficient feature extraction and propagation through the network.

LSTM [40]. We employ the Long Short-Term Memory (LSTM) network architecture, a subtype
of Recurrent Neural Network (RNN) optimized for processing and learning sequential data. In our
experimental setup, we employ a straightforward LSTM model comprising an embedding layer, an
LSTM recurrent layer, and a fully connected dense layer.

FCN. We employ a Full Connection Neural Network (FCN), a canonical deep learning architecture.
The FCN utilized in this paper comprises two fully connected dense layers, each enabled by the
ReLU activation function to introduce non-linearity and improve feature extraction capabilities.
Additionally, we incorporate a dropout layer to mitigate overfitting and enhance the robustness of our
model.

D.3 Details of hyperparameters and resource distributions

To ensure reproducibility, we provide a comprehensive summary of the default hyperparameter
configurations for FedQS, which are used across most experiments in this study. The default settings
in our experiments are as follows: number of participants N = 100, initial local learning rate
1o = 0.1, learning rate bounds o = 0.001 and S = 0.2, learning rate adaptation rate a = 0.002,
initial momentum mg = 0.1, momentum adaptation parameter £ = 0.2, global epochs T" = 400,
local epochs ' = 2, minimum number of updates for aggregation K = 10, gradient clipping
threshold G, = 20, and momentum clipping threshold § = 0.9. FedQS introduces three additional
hyperparameters—a, mg, and k—which is comparable to the number used in recent state-of-the-
art methods [18} [15]. These parameters control the adaptation rate of the learning rate, the initial
momentum value, and the momentum adjustment rate, respectively. As illustrated in Figure [5}
the method demonstrates stable performance across wide ranges of these hyperparameters (a €
[0.001,0.005], mp € [0.01,0.1], & € [0.001,0.2]), substantially reducing the need for extensive
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tuning. This behavior aligns with common federated learning practices and improves the practical
usability of FedQS.

Notice that the simulation of poor communication quality and weak training performance is inde-
pendent of the dataset and model selection/size. Instead, it is governed by actual client-specific
configurations that determine resource demands and execution time. Our base experiments emulate
SAFL heterogeneity with 50x speed differentials between the fastest and slowest participants, later
extended it through additional tests under 1:20 and 1:100 resource ratios to comprehensively validate
FedQS’s robustness across diverse environments.

D.4 Details of baselines

In this section, we will introduce the details of the baseline algorithms.

FedAvg and FedSGD [1]]. These baseline algorithms are the basic aggregation algorithms im-
plemented into the Synchronous and Semi-Asynchronous FL framework, without any additional
optimization or improvement.

SAFA [31]. This baseline algorithm employs a caching mechanism to store updated models for each
client. At the beginning of each aggregation round, the server updates the cache by incorporating
the frequency of local update data uploads from each client. Subsequently, the server performs an
aggregation operation on all the cached models and updates the cache once again after completing
the aggregation process, taking into account the usage pattern of the latest local updates.

FedAT [18]. This baseline algorithm is a hierarchical SAFL framework, which synchronizes local
model parameters within each layer and asynchronously updates the global model across layers.
FedAT proposes a new weighted aggregation heuristic optimization target, where FL servers update
different tiers’ aggregation weights based on the statistics of different tiers’ model aggregation
frequencies, thereby balancing different tiers’ model parameters.

M-step-FedAsync [37]. This baseline algorithm introduces a novel metric, model deviation degree,
which is computed as the inner product between local model parameters and global model parameters.
This metric serves as a key component in the aggregation process, where it is used in conjunction
with local update frequency to determine the weights assigned to different model parameters during
aggregation.

FedBuff [16]. This baseline algorithm employs a differential aggregation method, a variant of
gradient aggregation, which assigns weights to each updated data. If the staleness of the difference
update is high, the corresponding weight becomes smaller.

WKAFL [15]. This baseline algorithm extracts effective information from outdated gradients
by leveraging recently updated gradients. It calculates the weighted aggregated parameters by
calculating the cosine value between the unbiased gradient and the locally updated gradient to
accelerate aggregation and stabilize the convergence process.

FedAC [20]. This baseline algorithm uses temporal gradient evaluation to assess client weights.
It employs proactive weighted momentum for adaptive server updates, incorporating fine-grained
gradient correction functionality designed by SCAFFOLD [3]] to address the issue of client drift
caused by heterogeneous data.

DeFedAvg [42]. In non-IID scenarios, DeFedAvg employs uniform sampling with replacement to
select clients. Each client continuously receives the latest global model from the server and overwrites
its reception buffer with the incoming model. Regardless of participation in global iterations, every
client continuously performs local training. The server accepts delayed updates without waiting for
participating clients to complete training based on the latest global model.

FADAS [43]. This algorithm treats the differences in client model updates as pseudo-gradients and
employs an Adam-like update scheme to adjust the global model. Building upon FedBuff’s local
asynchronous training mechanism, FADAS retains the design philosophy of concurrency and buffer
size to enable flexible control over the number of active clients and the frequency of global model
updates.

CA?FL [44]. This study confirms that asynchronous delay effects are amplified by highly non-IID
data distributions and addresses the resulting client drift issue by employing a server-side mechanism
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that retains the most recent updates from clients and reuses these cached updates to calibrate the
global model.

D.5 More experimental results

Table |§| shows the discrepancy (Ts — T'y) results, representing the
convergence stability. Table [I0] shows the results of FedQS and ;
two foundational algorithms, FedAvg and FedSGD, under different 40004 |
SAFL system settings. Table[IT] presents the average experimental i
results of FedSGD, FedAvg, and FedQS under various learning rates.
Tables [I2} T3] and [T4] present the average results of FedQS under
various settings of hyperparameter a, mg, and k, respectively.

Epoch (Avg)

In the RWD task (Figure ), WKAFL exhibits an extreme overfitting —= N

loss function curve, indicating poor adaptability of WKAFL to the —= Iele2 -4 Ieled
RWD task when the local learning rate is set to 0.1. The adaptive

learning rate adjustment module of WKAFL also contributes to Figure 6: The impact of learn-
the overfitting of the learning task. Figure [6]shows the experiment ing rate on WKAFL's loss in
results of WKAFL under various local learning rates. We can see an RWD task (Gender).

that when the local learning rate is reduced to 0.001, WKAFL no

longer exhibits overfitting behavior.
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Figure [7]shows the loss of FedQS and baselines under other tasks, which is a supplement of Figure 4]
Figures [§] and [9] show the comparison of the accuracy and time latency between FedQS and each
baseline within model aggregation and gradient aggregation strategies, respectively.

Oscillation is a metric to measure the occurrences when the accuracy of the global model in round ¢
is below that of the previous round ¢ — 1 by a specific threshold [2]. Figure[T0]shows the number of
total oscillations under different thresholds when using ResNet-18 to train CIFAR-10.

Figure [TT] depicts the performance comparison of FedQS between with and without momentum
terms. Figure[T2]depicts the performance comparison of FedQS between with and without feedback
mechanisms.

~== FedAvg FedAT —+— SAFA —:= M-step —— FedQS FedSGD —e— WKAFL —+— FedBuff —:= FedAC FedQS

0 200 400 0 200 400

0 200 400
Epoch (Avg) Epoch (Avg) Epoch (SGD) Epoch (SGD)
(a) CV Task (z = 0.1) (b) CV Task (x = 1) (e) CV Task (x = 0.1) (f) CV Task (x = 1)
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Yy Piyy 4.

300

PO A e
0 200 400 0 200 400 0 200 400 0 200 400
Epoch (Avg) Epoch (Avg) Epoch (SGD) Epoch (SGD)

(c) NLP Task (R = 200)  (d) Real-world Task (Ethnicity) (g) NLP Task (R = 200) (h) Real-world Task (Ethnicity)

Figure 7: Loss of FedQS and the baselines under other tasks. The left four subfigures ((a)-(d)) are
based on model aggregation, while the right four ((e)-(h)) are based on gradient aggregation.

E Proof details

We will first give some basic notations of the FL tasks. Note that in the following part, all || - ||
symbols represent Lo norms and < -, - > symbols represent inner products. In order to simplify and

save space, we have denoted that VF, . (w}, , ) £ VFy(w! ), VF; . (w!,_)) & VF;(w!,).
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Figure 8: The comparison of accuracy and time latency between FedQS-Avg and the baselines with
model aggregation strategy under CV tasks.

Table 9: Convergence stability comparisons between FedQS and baselines.

Metrics | Tasks \mqavs Feda Alioglsth]; FedSGD
(eSFLV)g (Se AF{% SAFA FedAT M-step FedQS-Avg fSFL) (g ‘AL |FedBuff WKAFL Fed AC FedQS-SGD
z=01] 43 266 | 19 5 250 227 4 279 | 66 293 310 226
=05 22 33 | 5 29 40 20 20 45 5 45 32 24
T,y F=1| 6 27 | 0o o 31 17 5 40 11 34110 14
(# epocty| B = 200 0 0 o 0 11 7 0 23 0 4 25 0
R=600 0 2 0o o 4 15 0 21 0 0 39 7
Gender | 12 51 |24 0 128 48 16 202 0 0 16 26
Ethnicity | 24 151 | 114 0 45 77 27 251 | 178 0 48 31

*“In column “Tasks”, z is the parameter of the Dirichlet distribution within CV tasks; IV is the number
of roles within NLP tasks; Gender and Ethnicity are the data types within RWD tasks.

" The target accuracy of convergence stability is set to 80% of convergence accuracy in CV and NLP
tasks and 95% of convergence accuracy in RWD tasks.
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Figure 9: The comparison of accuracy and time latency between FedQS-SGD and the baselines with
gradient aggregation strategy under CV tasks.

Table 10: Average performance of FedQS, FedAvg, and FedSGD w.r.t. the number of clients and
resource distributions.

Tasks
N =50 N =200
Metrics 1:20 1:50 1:100 1:50
Fed FedQS Fed FedQS Fed FedQS Fed FedQS

Avg SGD Avg SGD|Avg SGD Avg SGD|Avg SGD Avg SGD|Avg SGD Avg SGD
M1 (70.1 77.4 79.2 80.7 |80.6 81.1 83.7 84.8 |49.4 74.4 64.7 80.1|61.3 77.7 65.9 82.9
M2 (123 57 118 44 |108 57 102 50 [190 158 182 123|183 145 138 104
M3 (00 37.0 3.0 263|1.0 150 43 50 |00 73 03 3.0|07 40 166 3.0

* In Metrics, M1 means Accuracy (%), M2 means Conv. speed (# epochs), and M3 means #
Oscillations.

In the table, N = 200 means the task has 200 clients, and 1:50 means the fastest client exhibits a
training speed 50 times that of the slowest one. “Fed + Avg” means FedAvg. The threshold used to
calculate the number of oscillations is set to 15. The target accuracy of convergence stability is set
to 80% of convergence accuracy.

* Each result is an average value of three experiments corresponding to = 0.1, 0.5, 1 in CV tasks.

*
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Figure 10: Statistics of oscillations under various thresholds when applying the ResNet-18 model to
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Table 11: Impact of different learning rates on FedSGD, FedAvg, and FedQS’s performance in a CV
task (x = 0.5) and an NLP task (R = 600).

. . Algorithms

Metrics Task | Learning Rate I qerrs FedQS-SGgD FedAvg  FedQS-Avg

o = 0.1 839 86.1 73,7 80.3

oy | =005 84.9 85.6 72.8 77.1

70 = 0.01 81.5 82.9 58.1 67.1

Accuracy (%) 1o = 0.001 61.1 80.7 40.9 61.4

o = 0.1 49.6 525 455 50.1

NLP | 70 = 0.05 46.3 51.6 44.7 46.9

10 = 0.01 35.9 48.7 30.3 41.8

o = 0.1 86 82 144 109

oy | Mo =005 88 78 149 114

Convergence Speed 1o = 0.01 90 84 157 121

(# epoch) 1o = 0.001 131 129 161 123

0 = 0.1 67 50 99 78

NLP | 7o = 0.05 74 68 102 78

70 = 0.01 128 113 145 162

Table 12: Impact of different changing rates of the learning rate a on FedQS’s performance in CV
and NLP tasks.

Metrics
Algorithms | Tasks | Value Convergence o
Accuracy (%) Speed (# epoch) # Oscillations

0.001 7402 110 69

oy | 0002 74.14 108 7.6

0.005 73.88 113 8.2

0.01 71.65 124 10.3

FedQS-Avg 0.001 49.88 3 36
0.002 49.75 91 35

NLP 15 005 49.56 95 3.9

0.01 43.25 103 3.6

0.001 80.63 ’a i3

oy | 0002 80.59 81 40

0.005 80.44 83 47

0.01 74.83 92 63

FedQS-SGD 0.001 50.88 46 83
0.002 50.76 48 8.5

NLP 16 005 50.13 53 8.8

0.01 48.36 56 9.4

Table 13: Impact of different initial momentum mg on FedQS’s performance in CV and NLP tasks.

Metrics
Algorithms | Tasks | Value Convergence o
Accuracy (%) Speed (# epoch) # Oscillations

0.1 74.14 108 7.6

0.2 73.26 112 7.9

eVl 03 72.48 116 7.6

0.4 70.69 123 7.8

FedQS-Ave 0.1 49.75 91 35
0.2 49.44 93 3.6

NLP 03 49.03 9% 4.1

0.4 48.46 113 5.3

0.1 80.59 81 4.0

0.2 80.43 82 4.3

cv 0.3 80.34 82 4.6

0.4 80.06 86 3.8

FedQS-SGD 0.1 50.76 43 85
0.2 50.43 46 8.6

NLP 0.3 50.22 49 8.9

0.4 50.13 48 8.8
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Table 14: Impact of different changing rates of the momentum % on FedQS’s performance in CV and
NLP tasks.

Metrics
Algorithms | Tasks | Value Convergence o
Accuracy (%) Speed (# epoch) # Oscillations

0.1 74.25 108 43

0.2 74.14 108 4.0

CV ol o3 74.03 116 4.6

0.4 74.09 123 4.9

FedQS-Avg 0.1 79.65 93 36
0.2 49.75 91 35

NLP 3 49.76 100 3.4

0.4 49.66 112 3.8

0.1 80.77 83 94

0.2 80.59 81 7.6

CV ol 03 79.85 92 7.1

0.4 79.33 116 8.4

FedQS-SGD 01 50.99 46 83
0.2 50.76 48 8.5

NLP 143 50.41 53 9.1

0.4 49.87 66 9.6

Additionally, when performing theoretical analysis, we also refer to the classic paper [35] and assume
that the server uses an ideal dataset (based on balanced, independent, and identically distributed data
from all participants) to train an ideal global model (which is just used to theoretical analysis and
does not exist in reality), with the training process defined by Equation[T4]

Wy =Wy — gV Fy (@), 1), (14)

where we define w, £ wh, F satisfies Assumption and V F}; satisfies Assumption

It’s evident that we have the following relation between the ideal global model and the real global
model:

W=y, Wy =wh " (15)
Then, based on the Assumption[A.2]and[A.3] we can give the following lemma:
Lemma E.1. Let a; := VFy(w,) — VF;(w}),b; := VF;(w}). Given the Assumptionand
then any one of the following conditions is sufficient to guarantee E||V Fy(w})||> < 6. (1) Global
Optimum: VF, ({E;) = 0. (2) Local-parameter closeness: there exist constants €, > 0 and 6 > 0
such that Ellw] — w}|* < &b, E|VFy(w!) — VFi(w})|* < 6%, and the following numerical
relation holds: &2 + L2{—:12H + Gz < %. (3) Negative correlation: The cross-term satisfies E{a;, b;) <
— 3 E||b;||?, which may occur at local minima/saddle points or under extreme data heterogeneity.

Proof. Items (1) is immediate from algebra. We briefly show (2) and (3).
For (2): First use the triangle inequality

IV Fy (@) || = |V Fy (W) — VFi(@y) + VE;(Wy) — VE,(w;) + VE;(w;)]
< | VEy (@) = VE (@) + IVE (@) — VE; (wi)|| + [ VEF; (w))].-
Square both sides and apply the inequality (u + v + w)? < 3(u? + v? + w?):
IVE,@)I12 < 3(IIVE, (@) — VE(@,) 2 + [V (@) = VEw)? + [VF(w!)]2).
Take expectation over clients/data randomness and use the assumed bounds. By definition of 52 we
have B[V Fy (@) — VF;(w})||* < 6%. By L-smoothness and the bound on parameter deviation,

E|VF;(wg) — VE,(w)|I* < L* El|lwg — wi|* < L%,
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Finally use E||V F;(w!)||> < G2. Combining these yields
E||VE,(@)|* < 3(5% + L% + G2).

Thus if 62 + L2e2, + G2 < §2/3, the claimed inequality E[|VF, (@ )||> < 62 holds.
For (3): By definition,

IVE (@) |I* = llai + bill* = llal|* + [1b:]]* + 2(ai, bi)-
Taking expectation and using E||a;||?> < 62 and the assumed cross-term bound gives

E||VFy(wg)lI* < 6% + E[lb:]|* + 2 (—3E[|bs]|*) = 6.

O

Remark E.2. Condition (2) decomposes the sources that contribute to the magnitude of VF, (@;): (1)

heterogeneity at the ideal point (52), (ii) parameter drift of local models (L2e2), and (iii) the intrinsic
size of local gradients (G?). This decomposition is useful in practice for designing communication or
correction mechanisms.

E.1 Proof of Theorem[A.d]

Denoted Q(¢) as the maximum number of clients that execute the momentum update at global round
t, we begin the proof with two lemmas:

Lemma E.3 (Ideal global model difference). Given V = (3 — ?fgjﬁ ) and the ideal global model

trained in global epoch t, the difference between the optimal can be bounded by:

I o 68%(5* +1
]E[Hwé —w ||2] S VtE[ng —w ||2] + 262}22[32)2E262
t . t—1 E e t—1 t—1
+SZVJE[||17Z" ZZ(m: )" VFi(w;,_,)|I’] (16)
j=1 e=1r=1

t E
+2) VE[| Y VE (], I
j=1 e=1

Proof. By the definition of the ideal global model, we add a zero term and get:

[, — w||?
E
<yt =g Yy VEF (@) —w|?

e=1

P SRR N2
= |lwh "t —w + > pi y nt VEi(w, |
i=1 e=1

K E t—1 t—1 E
+||_Zpiznil vFi(wi:’e >_UQZVF9(’LU§,€)||2
=1 e=1 e=1

K FE K E
t t—1
F2wht —wt =y Y Y VEWL), =Y piy n VE(w
i=1 e=1

i=1e=1

E
) — g Z VFg(iUv_f;,e»
e=1

7)
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Consider the relationship between wt_1 and @t_l, we have:

t—l

[l — w|[* = [lwg" 1+?7gZVF —w +ZPzZm Fy(wiy, )

e=1

—1

K E e
S Sl >l VR @) + VE W], ]I
=1 e=1 r=1

E B E
+ ||szzm R ) +n, S VE, @)

e=1
~t—1 a = -1 ° -1 t— t 1
w2t =3 S Dl VR @)+ VE(wl, )],
=1 e=1 r=1
K E 1 1 E
Sopiyon VE(wL )4,y VE ()
=1 e=1 e=1

t—1

E K E
t—1
+20ng Y VE(@5) —w + > pi Yy nt VE(w], ),
i=1 e=1

e=1
K £ t—1 t—1 £
domiy m VE(wy, )+n,Y VE(@.).
i=1 e=1 e=1
Therefore,
||y — w*[|?
E K E | e .
<@y = Py S VE@ ) =S m Y S ml V@)
e=1 =1 e=1 r=1
t—1 t—1
+ 2w — 7ngZVF szZm Zm/’ )'VE;(w], )
r=1
st i1 = ~t 2
+\|2pi2nx VE(wi, )+ngy VE (@)l
i=1  e=1 e=1
K E E
2@yt —wh Y Y m VE(w, )+ ) VE(@y.))
i=1 e=1 e=1
£ K t—1 ¢ —1 t—1
+2<TIQZVF9(~§;1) _ZplznzL Z(m ' )TVF'L(wzle r)
e=1 =1 e=1 r=1
K E t—1 t—1 E
dopid on VE(wy, )+ng Y VEF(@,,)
=1 e=1 e=1

K E .
||nQZVF Z Z Z(m? )eri ze r>||2

] e=1 r
K
<52\|ZVF (W) ||2+\|szz7h Zm? )V W] Wie— NP
r=1
K E - t—1 t—1
— 22 ZVF Tyl ) ) piy > (mit ) VE(w], ).
e=1 i=1 e=1r=1
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Based on [35]], we have:

||ngZVF Z%Zm Zmzf )V E (w2

t—1
< B2E%62 4 E||n" ZZ Fi(w], )]
e=1r=1
€ t—1 t—1
S EVE @), S T IR )
e=1 =1 r=1
E e 1 (20)
< BB +E[In] Z Fi(w;'e,)|’]
e=1r= 1

t 1

E K e B
—QBQZZpIZ(m? [<VF(~t 1) VF( ze r))]

e=1i=1 r=1

— B2E262 + ||} ZZ VE (wl_ )|,

e=1r=1

For the 3rd term, using a variant of reversed Cauchy-Schwarz inequality [48) 49| 50] with v = 3 and

r=41 andm < 1, we have:
t—1
2<wg 1—11} angva * 1 Zplznz Z mii ) VF( ze 'r')>
e=1 e= r=1

t—1

E
t—1
= 2<w§*1 — w1, Z VFg(wf;;l)> Z P ow va Zm Z m;* ) VE(w;,_,))
e=1 r=1

E

~t—1 2 ~t 112 262R ~t—1 * |2
<l = P+l - VE@DIP - S li@y - ]
e=1
<(1- )||~t fwt ||2+||UgZVF eI
e=1
(21)
Then,
£ K £ -1 E t—1 t—1
E2(@, " —w* g Y VF (@)=Y piy n Y (m ) VE(w]_,))]
e=1 =1 e=1 r=1 (22)
QBQR ~t—1 * |12 2122

For the 4th term:
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K E E
t—1 t—1
1Y pid m VE(wi, )+ng Y V(@ )|
i=1 e=1 e=1
E

K E
st st ~
=11>_pd> n VE@w P +Ing Y VE (@) )
i=1 e=1

e=1

K B t—1 t—1 E
+ <Zpiz77f VFi(w;?, )WgZVFg(@t
=1 e=

E FE
sl t—1
1y E?||V Fy (@ H2+H§ 0 VE( wi, NP +D> B miVE W], ), V(@ ,)).
e=1r=1

(23)

Then based on [35]],

E
t—1

K E
Emzpiznﬁ VE W], )+mng Y VE(@h )
1=1 =

e=1

. K FE FE
< n2E%8% + E[||n]* ZVF O+ S BRI VE WL ), VE,(,))]

=1 e=1r=1
— B2E26° 4 E||n] ZVF I
(24)
For the 5th term, using AM-GM inequality and Cauchy-Schwarz inequality, we have:
K E t—1 t—1 E
2wy —w Y opiy o VEw, ) +g ) VE(@,))
1= =1 e=1
E t—1 t—1 E
<@g —w [P+ 1Y n VEwi, P+ llng Y VE (@)l
e=1 e=1
K E t—1 t—1 E
+ O pi Y nt VE W ),ng Z VE, () (25)
i=1 e=1
E
< lag ' = w||P || Y VE, (@) P+ T ZVF IR

e=1

K E
-1 t—1
+<Zpiz77¢i vFi(wije )777gZVFg(wé )
i=1 e=1 e=1

Then, taking expectation, we have,
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1

K E E
Pt Ti= ~
ER2(a, " —w, Y pi Y n VE(wl ) +n,)  VE (@)
i=1 e=1

e=1
—1
< B[l - wr | + BB + B ] ZVF I
(26)
K E . et )
+E[<Zpi2ni’ VFi(wife )7WQZVFg(wg I
i=1 e=1 e=1
E t—1
Ell|@} " — w*|[*] + B2E*8* + E[|| > VE(w], )IJ].
e=1
For the 6th term:
E K E . 1 E
2<ngZVF9(wZTel)aZpiznii VE;(w;/, )"'ﬁgZVFg(w,t;,e»
e=1 =1 e=1 e=1
E K E s s E E
:2<WgZVFg(wf;,_el)asz‘ n;’ vFi(wije )>+2<77gZVFg(@§;1),UgZVFg(@§ )>
e=1 i=1 e=1 e=1 e=1
E K E 1 E
<2, 33 0 S BIVE, (@) VE W], )+ 2, S VE, (@)
e=1i=1 r=0 e=1
(27)
Then, based on [|35]] we have:
E K E 1 i 1 E
E[2<77LJZVF9(@;;1)aZPiZ77? VFi(wine +ngZVFg(w§,e)>]
e=1 i=1 e=1 e=1
SR ~t—1 - - (it ! (28)
<ER2n, Y Y pi > BVF, (@), VEi(w], )>]+E2H7792VF DI
e=1i=1 r=0 e=1
§252E252.
For the 7th term:
.tfl r T-t71 K E 7_thl T-t71 E ~t
Zpiznz Z mil ) vFi(wi,[efr%ZpiZnil VFi(wi,[e )+77£]ZVF9(wg,e)>
r=1 i=1 e=1 e=1
t—1 t—1 K E t—1 t—1
ZP:Z% Z mzq )TvFi(wi,ie—r)7ZpiZnii VFi(wi,ie )>
r=1 =1 e=1
e St . -1 E »
Zplznz Z mil ) vFi(wi,lefr)’ngZVF‘Q(wéJ,e»
e= r=1 e=1
< ZszZﬂanZ TV E L), VE (@)
=1 =0 r= e=
7 ZZ Wl P+ 1nf ZVF IR
e=1r=1
(29)
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Then we have:

K E e
E[2<_szz77;l Z(m? ) VF( 16 r)
=1 e=1 r=1
K E t—1 t—1 B
szzmn VFl(w:fe )+77<]ZVF¢]([U/E76)>]
i e= e=1
< QZPzZﬂZ%Z TN VEWL_,), VE, (@) (30)
1= e=1
Bl 3o S R I+ Bl Zw P
e=1r=1
E[|[n]* ZZ Fi(w]_ )| + Ellln]* ZVF )P
e=1r=1
To sum up, we have:
E[l|ay — w*||]
E e
< B3, - P+ Bl Y Fi(wli I + BB
e=1r= 1
26°R ~¢_1 *(12 2 12 52 2 10252
+(1—ﬁ2+1) [[lwg™" —w*|["] + BZE=6" + B7E=5
E t—1
Hm ZVF w;’, )II ]+ E[l|@h " — w*||?] + B2E%0% + E[|| Y VEi(ws, )|
e=1 e=1

O+ El ZZ VE (wl_ )|,

+ 282252 + K[| Z VF(w

e=1r=1
€1y
Combining like terms:
28%R ~
— w21 < (3 — Ellat—! — w2 2252
E[||@g —w*[]*] < (3 B2+1) (llwg™" — w™|I°] + 65°E0
-1
+ 3E[|ln]* ZZ )" VEi(w; T)\|]+2EHZVF ie IP]-
e=1r=1 e=1
(32)
Take summarizing with R 7 < B < 2R 5R—3> We have:
. _ 68%(8° +1)
t (2 t 0 (12 22
Efllwy — w*|]] < V'E[[|wy — w|| ]+mE g
t—1
+ ?’ZVJE ||771 Z Z wi,ie—r)Hz] (33)
7j=1 e=1r=1

1

t E
+2) VIE(IY VE (. P,
j=1 e=1
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where V = (3 — Z‘Ef})

O

Lemma E.4 (global model one-step difference in gradient aggregation). Given the real global model
w? and its one-step nearby global model w;_l, the expected square norm of the difference can be
described below:

€

E E
llwfy = wi P < 200 Y VE@i)IP +201 )0 Y (mh) VE(w, LIPS 6
e=1

e=1 r=1

Proof. From the Equation 3] we know:

wh=wl =3 Sl (Y] ) VR @) + VR @], (35)

Therefore, we have:

w, szzm Z )V E (W] _,) + VE (w])]. (36)

r=1

Therefore, it’s easy to get the following equation since we normalize p; such that Zszl p; = 1:

t wt71|‘2

g
szzm Z VW], )+ VE W]
g t t t K E t t
=D p > m > (m ) VE(w, )+ Y pi Yy 0 VE(w])|
3 . =1 e=1
_Hzplznz VF ze HQ—’_Hzplznz Z VF( ze r)||2

[|w

zplzm z LS E zp,zm zl PYR@h)y
<|ln;* ZVF w; |\2+\|Zm Zl )"V E;(w;', LI
+zﬂ22plzpjzlzl ).VE )
< 2|ln; ZVF w;) +2|\Zm z; ) VE Wl

Then, based on the Lemma[E:3|and [E-4} we can easily proof the Theorem[A.4]as following:

Proof. Based on Assumption 1, we have:
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L
F(wy) = F* <(VF", F(uwg)) + Z[Jwg — w|]*, (38)

Since F'* is the global optima, we have V F™* = 0, therefore:

F(wh) - F*
t *[12
< St — v
L ~
< Sl = @ — (@] — w)|

I E (39
< §||w§ —wi T g > VE (@) — (@] — w")|]?

E
< 2L{|fwg —wg |1 + 2LlIng Y VF ()P + Llag — w*||*.

e=1

Then, based on Lemma and[E-4] we have:

E
E[F (w})] — F* < 2L[E[|jw, — wy ™" |I*] + 2LE(llng Y VEFy(@y )] + LE[| @} — w*||?]

e=1
< LV'E[||[wd — w*[]P]+ U + W,
(40)
where Y = [2L6% + SO LEL 15252 = (3 — 2KR) ang
W = 4LE[|[n;" ZVer wlt,_)|I?] + 4LE[| |5} ZZ ) VEiemr(wie_,_y)II°]
e=1r=1
+ZWMMn Zwuzew] (@1
7=0
thl
+ZVJ2LEH77 ZZ VFZE T( ze r— 1)” }
7=0 e=1r=1
Based on Assumption[A.2] we can further bound the gradient expectation term WV by:
W <ALBPE°G? + ALB*RQ(HG? + > VIBLB*E*G2 + Y VI2LA*RQ(t)G?
J=0 J=0 42)
2L+ L)(2RQ(t) + 3E?)
< [ALE® +4L (8 2G2.
O

E.2 Proof of Theorem[A.3

Denoted Q(t) as the maximum number of clients that execute the momentum update at global round
tand 0 < g < p; < p <1, we begin the proof by two lemmas:
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Lemma E.5 (Ideal global model difference). GivenV = 3 — % and the ideal global model
trained in global epoch t, the difference between the optimal can be bounded by:

E[||@}, — w*|]*] < V'E leo— w*||?]
+ 11_ 832 F262
+ ZW]E[IIWE‘1 Z[VFi(wf;l)]IIZ] (43)
j=1 =

+2_VElln; DRI wi LI,

e=1r=1

Proof. Based on the momentum update equation 3] we have:

E e
wl' = wly — 7 S ] ) VE W], _,) + VEFw])]
e=1 r=1
t t E € t t t E t (44)
=@y —n; Y 1> (m])VE(w], )+ VE W) +ny > V().
e=1 r=1 e=1
We add a zero term:
@, — w*||?

E
= |Jwh™ =g > VFy(@} ) —w*[|?
e=1
K
— IS paw] —anVF —w*||?
=1
K t—1
=I>_ pilig 122 )'VE(w; L,) + VFi(w )]
=1

e=1 r=1 (45)
E t—
+ngZVFg({5;f UQZVF —w*|f?
e=1
K t—1
=||Zpi(ﬂ7§" —n; 122 ) VE;(wi L)+ VE;(w; )
i e=1 r=1

_ K
+sz ng wge _TIQZVF )—Zpiw*HQ.
i=1
Therefore,
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K
:Ilzpi(@; ||2+||sz ZZ D'VE (wi L) + VE(w; ]|)°

K » K E e
—%;pi(@;” —w" Epml ZZ (wioh,) + VE;(wi )

K E E_
+||Zpi(ngZV (ge Z DII?
=1 e=1
K
+2<Zpi szngZVF wg@
=1
K _1
20> i@y —w), meg ZVFg(wE ))
i=1 i e=1
me:f LSS Y VR (L,) + VR,

elrl

E
Zpi(ngZVFg(@;fe ) _UQZVFQ(QZ )
i=1 e=1 e=1

(46)

For the 2nd term, we bound it by the AM-GM inequality:

E e

Hzpz P D) VE(wil,) + VE (wi ]I

e=1 r=1 (47)

D]

(&

E
< ity wigt P+ Nl Y[V E (wi ]I

e=1r= 1 e=1

Therefore,

E e

I\sz P D (miT ) VE(wilk,) + VE(wi ]I

e=1 r=1
e E

Ellln; ) ZH)IIHEI\W“ZVF (wiZ I

elrl

(43)

For the 3rd term, using a variant of reversed Cauchy-Schwarz inequality [48] |49, [50] with v = 8 and

r=1 andm" < 1, we have:
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o
|
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o
Il
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Il
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K K E e
— 23 gy —w), Y p SIS YV ()
1,;(1 B 1;1 ezl r=1
72<Zp2(117; fw*),mef 1ZVFZ(wt7 )
=1 =1 e=1
282R |~ et o ,2B%ER? )
§—62+1l|;pi(w91 —w)|]* = 52+1||Z Bl

2R+ E?) N~ ort
—WHZI%(U&;‘ — )|
=1

For the 4th term, using AM-GM inequality:

K E
Hzpi(ngzv wg7 %ZVF ||2

<2|\sz ngZVF e ||2+2H7792VF eI

< WRE||VE, (@ )| + 2027V Ey (@)

Therefore:

\|sz ngZ (@5 anVF I1°]

< WREPE[||VE, @y )|P) + 200 B2E(|VE,(@, )|

< 4B%E262.
For the 5th term:
K Tt—l K E Tt,—l
2(2%‘(“’97' _W*>7zpi(ngZVFg(wgfe )
i=1 i=1 e=1

1

K _
SHZZH@; H2+||sz ngz Fy(wgie )|
i=1

K
P *
<UD _pil@g  —w)I? + 205 E?||VE, (@ I

Therefore,
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K
2<Zpi(7ﬂg

K
-1
—w*), > pilng
=1
K —
<E[>_ pilig
=1
K —
<E[] Zpi(@f
i=1

S VE (e )]

e=1

— w)|[2] + 22 B[V, (g )|?]

_w*)HQ] +252E262.

The 6th term is as same as the 5th term:

K —
2E[<ZP¢(%
z;(il 7
B Y (@
&
E(lY mi(wg -
=1

For the 7th term:

sz
meg Z VE, (i )
171K e= . .
= 2= il [ (mi

17“1

e=1 r=1

K
S N D
i=1 e=1 r=1

Therefore, we can easily get:

K E
- sz‘(ng Z VFQ(@;,e)»]
i=1 e=1
—w*)[[*] + 20 B°E[||V Fy (wy . )| ]

w*)||2] + 262E262'

Fi(wi L) + VE(w; )],

E
— g ZVFg(wg )

E

> VE(

e=1

UQZVF

K
ze r)+VF( )} sz(ﬁg

)+ VE;(w

(ZGT

K E e

E[%—Zm(anZ[ (mi ) VEF(wi,L,) + VE(w Y],
s
Zpi(ﬁgZVFg wg e UgZVF =0.
=1 e=1

To sum up, we have:
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E[[|wg — w*[’]

K E
E[Ilzpi(@? —w)|[P] + E[[n " D [VF, 7]
3 e=1
E e .
Ellln ™'Y > (mi ) VE i) ]+452E252+E||sz T
e=1r=1 i=1 (57)
K t—1
R DI AR o
262(R+E2 9
PR Hzm !
Combining like terms:
- 2682(R + E> S
B, — | < (3 %)Emzpi(w; — )|+ 82 %5
E[||n} IZVF ?] + E||n} 122 wi L)L
e=1r=1
(58)

Although the sequence {E[||@}, — w*||?]}; is not monotonically increasing, the tracing process from
t to 0 is less than ¢ steps. Therefore, we can accumulate it for ¢ steps and still maintain the inequality.

Then, take summarizing with 7/ m < 6 < 4/ W step by step, we have:
~t 2
Ef||[wg — w™||"]

t E
< VE[Jw) — w2 + > ( Zp 1% 852E252+Z szw ln Y IVE, 112]
j=1 i=

j=1 =1 e=1
t K
+D O pV)E[In 122 wioL,)|[’]
7j=1 i=1 e=1r=1
1—pt : &
t 0 * |2 — 2122 j t—1 t—1 2
< VE[llwg —w*|I°] + 7 —;86°E%0 +;V’E[\Im ;[Vﬂ(wi,e NI
t ] E e
+ Y VIE[lg YD (m wi LI
Jj=1 e=1r=1
(59)
whereV—?)—%. O

Lemma E.6 (global model and ideal model difference in model aggregation). Given the real global
model w; and its ideal global model &7; at the same global epoch t, the expected square norm of the
difference can be described below:
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E(||wg — w*] < pgK(31EH|~t —w|’] + 36%E%5°

n; VF;(w 1+ El||n: VF;(w w; ',
E[|| Z I+ E[] ezl I 60)

+31Ellmzz wi o).

e=1r=1

Proof. We have that:

K K
t t t
[y = wil|? = |[@f, =Y paw] |I* = (| D pila}, —wi)| PP K@) — wi)|[>. (6]
=1 =1

Based on EquationPf_Zl, we have:

||w —w,
E e
= (@}, - @y —ngZVF g+l (D (i) VE ) + VE (w1
e=1 r=1
. E
= H@; - ﬁ; + nf ZZ(mE)TlVFi(wf,efr)‘F + ||771 ZvFl(wz P 77g ZVF U)g e ||2
e=1r=1 e=1

+2<w _wq ‘HEZZ VF ze r nZZVF ze nQZVFQ(iUV;{E»
e=1

e=1r=1 e=1

E E e
t t
< @y —w*|P + [Jag — |+ 1] =ng Y VE(@ge)|l + Ilnf YD (mh) VE(wf )|
e=1

e=1r=1
+HT}7ZVF H2+2w 7w’nlzz 1e—r)>
e=1r=1
- ~Ti_w 777222 ze 7)>
e=1r=1

E E
+2a — w*m; Y VE(w]) =1y Y VE, (i)

e=1 e=1

E E
— 2(wg' —w*,n; Z VFi(wine) — Mg Z VEy(wgle))
e=1 e=1

E e
+2nE > Y (ml)VE(w), ,).ni Y VEi(w],))
e;lr:l e:El
=20 Y Y (ml)VE(wh, )0 Y VFy(Wgke))
e=1r=1 e=1 (62)
For the 3th term:
|—ngZVF @y |2 < 22|V Fy ()| (63)
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Therefore, we have:

E[|| - n, Z VF,(@5.)|[2] < n2E*E[||VF,(F5.)|[?] < B2E*8>. (64)

For the 6th term, using AM-GM inequality and Cauchy-Schwarz inequality, we have:

E e
E[2(@), — w", Y Y (m}) VFi(w]._,))]

e=1r=1 (65)
E[l|@} — w*||] +E\|mzz W e—)I1?]:
e=1r=1
Similarly, the 8th term satisfies:
E . E
E[2(@, — w*,n; Y VE(w],) = ng ¥ VFy(ige))]
e=1 =
2 t 2 t
E[H@Z - W*||2] + E[|[n: Z VFZ(wzle) — g Z VFQ(®9§6)||2] (66)
e=1 e=1

<[, - w*|]2] + P EE[|VE (w]) - VE,(@5)| )
<[, - w*|]’] + B E25”.

For the 7th term, based on the reversed Cauchy-Schwarz inequality [48], 1491 [50] with v = g8 and

t—1

r=1 andm <1:

e

= 282R ‘
E[_ NTi —w 777;5 Z ’L e— r)>] < _WE[H{D;L - W*HQ]' (67)
e=1r= 1

Similarly, the 9th term satisfies:

E E
E[-2(iy —w",my VE,(w],) —ng Y V()]
e=1 e=1
E E .
= “2E((@} —w i Y VE( N)] + 2E((wg w*ngVFg(@fe»
e=1 e=1 (68)
2B2E2E ,.\,7-; *112 E ~7'§' *12 2E2]E F "’T; 2
S g [l|wg" —w*[|*] + E[||wg’” —w™|[*] + B [[[VFy(wgie)l|”]
262 E? 7t ()2 2 2 <2
< — — e .
< (ﬁ2+1 DE[[|wg — w*|[*] + B7E"S

For the 10th term, we use AM-GM inequality and Cauchy-Schwarz inequality to bound it:

T]ZZZ VF ze T nZX;VF ze)>]

e=1r=1

IImZZ )II]HEIImZVF )

e=1r=1 e=1

(69)
2].
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For the 11th term, based on [35]], we have:

E e

mt Z Z VF z e— r 779 Z VF wg €)>] = 0 (70)

e=1r=1 e=1

To sum up, we have:

E(||wg — wp][’]

< P KE[(||@, — w]" |2

< p° K (E[||wf, — w*|| ]+E[|I@?—w*ll2]+52E252
IImZZ ) VEF;(w; o) H]EH??ZZVF FOIP]
e=1r=1 e=1
E e (71)
Efl|@, — w*[|*] + Ellln} Y 0> "(ml)"VF;(w!, )|’ + E[|@} — w*||*] + B2E25>
e=1r=1
2ﬂ2R 1t %112 252E2 ~r} *(12 2710252
—WEHI% —w"| ]—(52+1 — DE[[|wg’ — w*[|*] + B7E"0
E
+1Ellmzz )'VE;(w! )P+ Ellln: > VE w]][*).
e=1r=1 e=1
Combining like terms, we have:
E[||w}, — w||’]
I 28%(R + E? TR E
< PREET, - ) - 5 -9l - o)+ Bt S VAWl
e=1
E e E .
+382E%6% 4+ 3E[[Inf > > (m)"VE;(w! )Pl +Ellln; Y VFi(w)|]).
e=1r=1 e=1

(72)

: 28°R
Since when ,/m < B < Wm’ we have 2 < ﬂQH < 3, therefore 0 <

2 2 st 2 2 st
AL — 9 < 1. Since ||@y — w*||? > 0, we know (Z2GHE) — 9)E[[|ag — w*[[?] > 0.

Then, we have:

E
E(||@} — wy|[*] < p* K BE[||@), — w*||*) + 38°E%6* + E[||n{ Y _ VF(wf,)|*]
E E 6621 (73)
Bl Y VE(w)|*]) +3E[|[nf Y > (md)"VFi(wl_,)[[*]-
e=1 e=1r=1
O

Then, based on Lemma|E.5|and [E-6] we can easily proof the Theorem[A.3]as following:

Proof. Based on Assumption 1, we have:
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L
F(wt)—F*S<VF*,F(w§)>+§IIwZ—w*H2- (74)

g

Since F'* is the global optima, we have VF* = 0, therefore:

F(w;) — F*
L § L I
< 2l — P < 5l — @ — (@ — )|
E
< (BLp*K + L)E[||@}, — w*|[*] + pPK L(3F*E26% + E[||n Y VFi(wl)?] T
e=1
E e E .
+3E[In ) 0> (ml) VE wh, )]+ Ellln: Y VEi(w])[’]).
e=1r=1 e=1
Then, based on Lemma [E.T} [E-3]and [E.6] we have:
E[F(wz)] — F*
E
< BLP*K + L)V'E[||wf — w*|*] + ﬁ2E252 + Z VIE|||n} " Z [V Fi(wi 2 )]II?)
j=1
t .
+> VE[lln;~ 122 wi I + p?K L(332 E6°
7j=1 e=1r=1
||mZVF P+ 3E] ||n,ZZ )" VE (wf_)I[*] + E[ HmZVF wlL)|1%))
e=1r=1 e=1
< (3LPK2 + L)Vt llwh —w* ||l +U + W,
(76)

2 2 2 2
where U = [3p* K'L + 2§§g+4;312))(ﬂ2gjf2)]ﬁ2E252’ V=_03- = B(i-:lE *)), and

tlj

E
W = (3Lp°K + L) ZWEW 1ZVF )W]+p2KL(E[||mZVwaZ;)HQ]
Jj=1 =

||777ZVF + (3Lp°K + L) ZWEIIW 122 1)
+ 3p> K LE[||n} ZZ(mﬁ)TVFi(wﬁ,e_r)HQI

e=1r=1
(17
Based on Assumption[A-2] we can further bound the gradient expectation term W by:
BPEK+D(BL+L) 5,00 2 2 2 2
<
WS s ) ol EG+ WKL EG]
BrEK+1)(BPL+L) , 2 2 2 2
KL t 78
23 (R+ B?) — 287 — 5 RQ(t)G + 3p B RQ(t)G: (78)
3p?K +1)(B%L + L)(E? + RQ(t))
< p*KL(2FE? ( 2G2.
<I[p ( +3RQ(t)) + 262(R+ E2) —2p3% — 2 18°Ge
O
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