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Abstract
Despite significant progress in natural language understanding, Large Language Models
(LLMs) remain error-prone when performing logical reasoning, often lacking the robust
mental representations that enable human-like comprehension. We introduce a prototype
neurosymbolic system, Embodied-LM, that grounds understanding and logical reasoning in
schematic representations based on image schemas—recurring patterns derived from senso-
rimotor experience that structure human cognition. Our system operationalizes the spatial
foundations of these cognitive structures using declarative spatial reasoning within Answer
Set Programming. Through evaluation on logical deduction problems, we demonstrate
that LLMs can be guided to interpret scenarios through embodied cognitive structures,
that these structures can be formalized as executable programs, and that the resulting
representations support effective logical reasoning with enhanced interpretability. While
our current implementation focuses on spatial primitives, it establishes the computational
foundation for incorporating more complex and dynamic representations.

1. Introduction

Despite significant progress in natural language understanding, Large Language Models
(LLMs) continue to show considerable difficulties when performing simulations of described
situations, such as tracking objects moved between containers (Tamari et al., 2020; McCoy
et al., 2023; Mahowald et al., 2024), or reasoning soundly on problems with many premises
(Callewaert et al., 2025). These limitations often stem from their lack of robust mental
representations, preventing them from comprehending situations in ways comparable to
humans.

Cognitive research revealed that humans understand natural language by relying on a
finite set of conceptual primitives (Table 1) that they combine and utilize in mental simu-
lation processes (Johnson, 1987; Mandler and Cánovas, 2014; Hedblom et al., 2024). These
conceptual primitives are derived from early sensorimotor experiences and can be ranked
by complexity into spatial, spatiotemporal, and force-dynamic categories, with the latter
involving fully abstract notions such as force application. When combined, these primitives
form what are called image schemas—the recurring patterns that gave this cognitive theory
its name.

We introduce Embodied-LM, a proof-of-concept neurosymbolic system that provides a
first computational realization of an image schema-based reasoning framework (Olivier and
Bouraoui, 2025). Its architecture consists in leveraging LLMs’ interpretive capabilities to
identify appropriate schematic structures for given scenarios, and then translate these into
formal programs processed by Clingo (Gebser et al., 2016) enhanced with the Declarative
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Table 1: Classification of conceptual primitives from (Hedblom et al., 2024). The notion
UMPH corresponds to the application of a force.

entity relational attributive

spatial OBJECT LOCATION OPEN
CONTAINER START_PATH CLOSED
PATH END_PATH EMPTY
REGION CONTACT OCCUPIED
DOWN (/UP) CONTAINED FULL

SMALLER(/LARGER)
PART_OF

spatio-temporal PERMANENCE MOTION
AT_REST
ANIMATE_MOTION

INANIMATE_MOTION

force dynamic LINK active-UMPH
passive-UMPH

Spatial Reasoning (DSR) framework (Bhatt et al., 2011) to enable spatial reasoning capa-
bilities. While the theoretical approach envisions a complete system incorporating spatial,
spatiotemporal, and force-dynamic primitives (Olivier and Bouraoui, 2025), this proof-of-
concept implementation focuses on the foundational spatial primitives, demonstrating that
even this subset enables effective reasoning across multiple tasks with performance com-
parable to state-of-the-art models. Our work not only shows how systems grounded in
human cognitive structures can effectively perform logical reasoning tasks, but also provides
a computational foundation to build upon for more sophisticated and dynamic reasoning
capabilities.

2. Related Work

Current neurosymbolic approaches for logical reasoning usually follow a common architec-
tural pattern where LLMs generate formal representations subsequently processed by sym-
bolic solvers. Logic-LM (Pan et al., 2023) employs a multi-formalism approach, translating
natural language into first-order logic, constraint satisfaction problems, or SAT encodings,
then delegating reasoning to specialized solvers. In contrast, VERUS-LM (Callewaert et al.,
2025) adopts a unified approach, using a single rich formalism (FO(·)) to handle diverse
reasoning tasks while introducing improved prompting mechanisms and knowledge-query
separation to enhance efficiency and reusability. Logic-LM++ (Kirtania et al., 2024) in-
corporates pairwise comparison techniques to evaluate symbolic formulations, addressing
cases where syntactically correct formulations remain semantically inadequate. Ishay et al.
(Ishay et al., 2023) demonstrate that LLMs can generate complex Answer Set Programming
representations from natural language descriptions of logic puzzles, though the generated
programs often contain errors requiring human correction.
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The formalization of image schemas has been explored through several approaches in
previous work (Frank and Raubal, 1999), with qualitative calculi emerging as a promi-
nent choice in recent research. Notably, Hedblom’s work (Hedblom, 2020) made significant
progress by combining various calculi such as Region Connection Calculus and Qualitative
Trajectory Calculus with Linear Temporal Logic to represent both spatial and temporal
dimensions of image schemas. Recently, Hedblom et al. proposed the Diagrammatic Image
Schema Language (DISL) (Hedblom et al., 2024), a systematic diagrammatic representation
for image schemas.

Within machine learning communities, Wachowiak et al. have explored how artificial
agents can capture implicit human intuitions underlying natural language (Wicke and Wa-
chowiak, 2024), introducing systematic methods for classifying natural language expressions
according to underlying image schema structures (Wachowiak and Gromann, 2022). This
work demonstrates growing recognition that image schemas provide important organiza-
tional principles for understanding human-AI interaction and language comprehension.

Regarding the embedding of the Declarative Spatial Reasoning framework (Bhatt et al.,
2011) in Answer Set Programming, we can cite ASPMT(QS) (Wałęga et al., 2017), ASP(ST)
(Schultz et al., 2018), and more recently Clingo2DSR (Li and Schultz, 2024). Our symbolic
module differs from these systems by providing a fully declarative framework specifically
designed for modeling schematic structures that underlie natural language comprehension.
Early work on implementing image schemas within declarative programming can be found
in (Suchan et al., 2015).

3. Reasoning Through Embodied Cognition

The field of embodied cognition emerged as a fundamental challenge to classical cognitive
science by the end of the 20th century, demonstrating that our minds are not isolated symbol-
processing computers but inextricably linked to bodily experiences. This became particu-
larly evident in how we understand and use language, as Lakoff and Johnson’s groundbreak-
ing work in ’Metaphors We Live By’ (Lakoff and Johnson, 1980) demonstrated by showing
that we comprehend abstract concepts (the target domain) by relying on our physical ex-
periences as a source domain—we understand time through location ("the future is ahead
of us"), importance through size ("this is a big deal"), emotions through spatial orientation
("I’m feeling down"), or states through containment ("being in trouble").

To bridge the gap between bodily experience and thought, Johnson (Johnson, 1987)
introduced image schemas—recurring patterns abstracted from our sensorimotor interac-
tions—and showed their pervasive role in structuring human thought across both concrete
and abstract domains. These schemas have received robust experimental confirmation across
multiple studies (Richardson et al., 2001; Mandler and Cánovas, 2014) and have proven
fruitful even in non-linguistic domains such as mathematics (Lakoff and Núñez, 2000). For
instance, the image schema of OBJECT_INTO_CONTAINER, which arises from our early
physical experiences of putting objects into containers (e.g., cups and buckets), later serves
as a source domain for understanding literal sentences like "Bill is in the house", more
abstract ones such as "Berlin is in Germany" or "to be in love", and mathematical expres-
sions such as "2 ∈ N". Over the years, researchers have decomposed image schemas into
even more fundamental constituents (Table 1) to provide finer-grained explanations of their
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compositional structure (Mandler and Cánovas, 2014; Hedblom et al., 2024). For instance,
GOING_IN can be described through the combination of OBJECT, CONTAINER, and
PATH primitives.

The key insight of image schemas lies in their productive capacity. While a primitive like
PATH exists at an abstract level—serving as a template for understanding any sequential,
directional, or ordering situation—it can generate specific spatial configurations that make
implicit relationships explicit. Consider the sentence "Alice is older than Bill, and Charles
is younger than Bill." To understand and reason about this sentence, image schema theory
claims that we activate the PATH schema to create a timeline on which we place the different
people so that temporal precedence maps to spatial positioning (Figure 1).

Time
Alice Bob Charles

Oldest Youngest

Figure 1: Temporal relationships naturally map to spatial positions on a timeline, illustrat-
ing how humans use spatial schemas to understand abstract concepts.

By placing these individuals along the timeline according to their relative ages, this
spatial arrangement immediately reveals additional temporal relationships that weren’t ex-
plicitly stated—such as Alice being older than Charles. Shimojima termed such inference a
"free ride" in diagrammatic reasoning (Shimojima, 2015; Olivier, 2022), as spatial arrange-
ments embed logical constraints in their geometric structure, making implicit relationships
immediately apparent without any calculations. Our system, Embodied-LM, operationalizes
this principle computationally.

4. Implementation

Our approach is designed for scenarios that present a context describing a situation, a
question about that context and possible answer options. We focus on reasoning tasks
within consistent contexts, though the approach can easily be extended to handle consistency
checking tasks. Embodied-LM leverages LLMs to interpret scenarios through schematic
structures that capture the underlying logical constraints and produce corresponding input
programs for an Answer Set Programming system enhanced with the Declarative Spatial
Reasoning framework, therefore creating executable representations that enable systematic
logical inference.1

4.1. Formalizing Image Schemas in the DSR framework

The Declarative Spatial Reasoning (DSR) framework (Bhatt et al., 2011) enables users
to declare arbitrary qualitative spatial relations and reason about the constraints implied
among them. It relies primarily on techniques of analytic geometry by defining objects
through parameters and relations through equations and inequalities involving these param-
eters (Preparata and Shamos, 2012).

1. Code and data available at https://github.com/fcs-olivier/embodied-lm.
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The spatial entities in Table 1 correspond to geometric shapes that can be characterized
as objects in the DSR framework and formalized through parametric functions: a simple
OBJECT entity corresponds to a point defined by two parameters (x and y coordinates),
a PATH can be formalized as a line segment defined by a start and end point (xs, ys and
xe, ye), a CONTAINER corresponds to any object with an interior—for instance, a circle
defined by a center point plus a radius parameter, or a rectangle defined by bottom-left and
top-right points.

The spatial relational primitives from Table 1 correspond to spatial relations that can be
defined in the DSR framework through equations and inequalities. Figure 2 illustrates such
formalization by detailing the inside relation between a point and a rectangle, capturing the
intuitive notion of containment.

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

0
0

b

a

inpr(a, b) ↔ xa > xmin
b ∧ xa < xmax

b ∧ ya > ymin
b ∧ ya < ymax

b

xa = 4 ya = 4
xmin
b = 2 xmax

b = 6 ymin
b = 2 ymax

b = 7

↔ 4 > 2 ∧ 4 < 6 ∧ 4 > 2 ∧ 4 < 7
↔ ⊤ ∧ ⊤ ∧ ⊤ ∧ ⊤
↔ ⊤

Figure 2: Spatial relationships are formalized in the DSR framework through coordinate
constraints. Point a is inside rectangle b when its coordinates fall strictly within
the rectangle’s boundaries on both dimensions.

Table 2 presents some of the spatial relations used in the present paper and their formal
definitions. The suffix indicates predicate types: pp for ‘point-point’, pr for ‘point-rectangle’,
ps for ‘point-segment’ and so on. All the spatial relational primitives can be characterized
in this way, with any higher abstraction level being achieved by defining unions of geomet-
ric sorts (e.g., defining CONTACT between any shapes). Once used within a declarative
programming language as detailed in what follows, these relations enable the definition of
spatial attributive primitives and more complex spatial configurations.

Table 2: Spatial relations and their logical definitions.
Relation Logical Definition
sameP lacepp(a, b) xa = xb ∧ ya = yb
leftpp(a, b) xa < xb

rightpp(a, b) xa > xb

belowpp(a, b) ya > yb
inpr(a, b) xa > xmin

b ∧ ya > ymin
b ∧ xa < xmax

b ∧ ya < ymax
b

leftrr(a, b) xmax
a ≤ xmin

b ∧ ymax
a > ymin

b ∧ ymin
a < ymax

b

overlaprr(a, b) xmin
a < xmax

b ∧ ymin
a < ymax

b ∧ xmax
a > xmin

b ∧ ymax
a > ymin

b

onps(a, b) (xa − xs
b) · (yeb − ysb)− (ya − ysb) · (xe

b − xs
b) = 0

∧min(xs
b, x

e
b) ≤ xa ≤ max(xs

b, x
e
b) ∧min(ysb , y

e
b) ≤ ya ≤ max(ysb , y

e
b)
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4.2. Embedding Declarative Spatial Reasoning in Answer Set Programming

Answer Set Programming (ASP) provides an ideal foundation for implementing image
schemas due to its declarative nature and non-monotonic reasoning capabilities that will
be useful later on for implementing temporal and dynamic primitives. The unordered dec-
laration property of ASP enables natural compositional reasoning where multiple schematic
structures can be combined without concerns about procedural ordering—essential for han-
dling real-world problems that require multiple interacting image schemas.

We extend standard ASP syntax (Calimeri et al., 2020; Kaminski et al., 2023) to include
spatial theory atoms that state spatial relationships between entities. Spatial atoms are
similar to those presented in Table 2, having the general form pg1,...,gn

(entity1, ..., entityn)
where p is the relation name, g1, ..., gn denote the geometric sorts of the entities, and
entity1, ..., entityn are the spatial objects involved in the relation. The geometry of each
spatial object is declared as a fact within the program.

The semantics of extended programs can be defined within the logic of Here-and-There
with constraints (Cabalar et al., 2020), where spatial predicates are interpreted through
denotations that map each constraint atom to the set of coordinate valuations satisfying
the corresponding geometric definitions. For instance, leftpp(a, b) is satisfied when xa < xb
in the coordinate assignment. Intuitively, the semantics relies on a two-level structure:
at the logical level, standard ASP rules determine which spatial relationships must hold
based on problem constraints, while at the spatial level, the constraints determine whether
these required relationships can be geometrically realized through coordinate assignments.
A stable model is found when the spatial relationships required by the ASP rules can be
geometrically realized through valid coordinate assignments.

The integration mechanism employs theory propagation between the ASP solver and
Z3 SMT solver through a custom propagator that maintains consistency between logical
and spatial constraints. When spatial atoms are set to true during the solving process,
the propagator tests whether adding each spatial atom would make the constraint system
inconsistent—if so, it adds nogood clauses. For atoms that maintain consistency, they are
asserted into the spatial constraint system, and the propagator examines free literals to
determine if any spatial relationships are either implied by or inconsistent with the current
spatial configuration, adding appropriate clauses or nogoods to guide the search toward
spatially realizable solutions.

4.3. LLM-Guided Schema Generation

The LLM component (GPT-4) of our system generates these ASP programs through prompt-
ing that guides interpretation of natural language scenarios using image schemas. A general
system prompt (see Appendix A) informs the LLM about available spatial predicates, their
intended semantics, and the syntactic requirements. A prompt for formalizing the context
of scenarios (see Appendix B), although currently still specific to the problem type, pro-
vides example patterns for encoding spatial relationships, enabling the LLM to generalize
these patterns to new problem instances. To ensure reliable program generation, the system
includes syntax error detection and satisfiability checking, asking the LLM to produce a
new input program in case of syntax errors or unsatisfiable constraints up to three attempts
(after which the scenario is discarded if still unsuccessful).
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Figure 3: Architecture of Embodied-LM.

Once a valid ASP program representing the context of the scenario is generated, GPT-4
is called a second time (see Appendix C) to add the question and options to the program in
accordance with the context formalization. Each option becomes an additional rule, called
an answer rule, whose purpose is to succeed when the corresponding answer option is true.
We instruct GPT-4 to use a predicate answer/1 in the heads of such rules, where the ar-
gument identifies the corresponding option, and leverages Clingo #show directives on this
predicate (combined with the --project=show option) to output only the answers. Com-
plete input programs can be seen in Appendix D. By additionally using the Clingo option
--enum-mode=cautious, which computes the cautious consequences (atoms true in all stable
models), we ensure that only options validated across all stable models are considered as
answers to the question. A witness for each answer can be generated using the assignment
provided by Z3 for the parametric variables, enabling visualization of the spatial configura-
tions that satisfy the logical constraints. The overall architecture of our approach is depicted
in Figure 3.

5. Experimental Validation

To validate our framework’s core principles, we applied Embodied-LM to different problems
requiring logical reasoning. Rather than optimizing for benchmark performance, our primary
objective was to demonstrate some fundamental capabilities: first, that LLMs can be guided
to interpret problems through embodied cognitive structures; second, that these structures
can be formalized as executable programs; and third, that the resulting representations
enable effective logical reasoning while maintaining interpretability. We focus on reasoning
tasks that activate the PATH and CONTAINER primitives.

5.1. Reasoning with PATH: LogicalDeduction Dataset

We evaluated our approach on the LogicalDeduction dataset (Srivastava et al., 2023), which
presents multiple-choice questions requiring deductive reasoning about ordered objects.
These problems naturally invoke schematic reasoning because they involve positioning enti-
ties along various dimensions such as temporal sequences, spatial arrangements, or ordinal
rankings. Figure 4 illustrates a representative problem from the dataset. The specific
prompts used to introduce the context and the question-options to the LLM are provided
in Appendix B.1 and C.1, respectively.
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Context: The following paragraphs each describe a set of five objects arranged in a fixed
order. The statements are logically consistent within each paragraph.
In an antique car show, there are five vehicles: a truck, a motorcycle, a limousine, a station
wagon, and a sedan.
The limousine is older than the truck.
The sedan is newer than the motorcycle.
The station wagon is the oldest.
The limousine is newer than the sedan.
Question: Which of the following is true?
Options: A) The truck is the second-oldest.

B) The motorcycle is the second-oldest.
C) The limousine is the second-oldest.
D) The station wagon is the second-oldest.
E) The sedan is the second-oldest.

Figure 4: Representative problem from LogicalDeduction dataset (Srivastava et al., 2023)
naturally invoking a schematic representation with the PATH primitive.

When presented with such an example, GPT-4 positions the different entities from the
context on a line representing the PATH primitive (using the onps predicate) and interprets
older/newer relationships through corresponding left/right or below/above spatial position-
ing, leading to Clingo identifying option B as the correct answer. An example of input
programs generated by the LLM for this scenario is presented in Appendix D.1. When
tested on the entire dataset, our system achieved 91% accuracy, as shown in Figure 6 along
with comparisons to other approaches on the same dataset (Callewaert et al., 2025).

5.2. Reasoning with CONTAINER: Zebra Puzzles

For more complex reasoning scenarios, we examined an instance of a Zebra puzzle involving
three houses with different colors and various attributes distributed among them (Figure
5). These problems naturally invoke the CONTAINER image schema by mapping diverse
relationships—living in, drinking, owning—to a single image schema of spatial containment
as a source domain. The reasoning process then requires determining which entities belong
within which bounded spaces while maintaining spatial relationships between the containers
themselves. The prompts used to introduce the context and question-options to the LLM
are provided in Appendices B.2 and C.2, respectively.

A generated ASP program is presented in Appendix D.2, where all problem constraints
are encoded using only three core spatial predicates—inpr, left rr and right rr—along with
commonsense knowledge such as non-overlapping houses and object sort classifications. The
system finds two possible models that differ only in whether the dog or fox lives with the
Swiss versus the Cuban, but in both models the zebra is consistently owned by the Greek,
therefore validating option C as the correct answer. Figure 6 displays witnesses for both
models, showing the spatial configurations that satisfy all constraints.
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Context: There are three houses painted in different colors: blue, red, and green.
TEA is drunk in the RED house.
The CUBAN drinks MILK.
The SWISS man lives in the first house on the left.
The GREEK lives in a house to the right of the CUBAN’s house.
BEERS are drunk in a house to the right of the FOX’s owner.
The DOG’s owner lives to the left of the house where the GREEK lives.
The ZEBRA’s owner lives in the BLUE house.
Question: What nationality is the zebra’s owner?
Options: A) The zebra’s owner is Cuban.

B) The zebra’s owner is Swiss.
C) The zebra’s owner is Greek.

Figure 5: Instance of a zebra puzzle.

System Score

SymbCoT 93.00
Our Approach 91.00
VERUS-LM 88.67
Logic-LM 87.63
GPT4-CoT 75.25
GPT4 71.33

Figure 6: Left: Performance comparison on the LogicalDeduction dataset. Results for other
systems from (Callewaert et al., 2025). Right: Witnesses of the two possible
models for the Zebra problem.

6. Results and Discussion

Our experimental results achieve the primary goal of demonstrating that AI systems can
reason using schematic structures in ways that parallel human cognitive processes. Impor-
tantly, we demonstrate that a single image schema can ground multiple types of information
across different problem domains—the PATH schema maps temporal sequences, spatial ar-
rangements, and ordinal rankings to positional relations, while the CONTAINER schema
unifies diverse relationships like ownership through spatial containment. This demonstrates
that a universal schematic language can ground diverse scenarios, constituting a promis-
ing foundation for extending the approach to any dataset where these image schemas can
be detected, while minimizing risks encountered by other neurosymbolic systems relying
on classical logic in two important ways: (i) the predicate names remain consistent across
problems, and (ii) more fundamentally, the meaning of spatial predicates is objective and
predefined, alleviating the burden on LLMs to correctly constrain predicate meanings within
input programs.
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Beyond this conceptual validation, our approach maintains competitive performance with
91% accuracy on the LogicalDeduction dataset compared to other neurosymbolic approaches
(Figure 6), although prompting remains quite specific to the task at hand. The Zebra puz-
zle resolution demonstrates similar capacity to handle complex reasoning scenarios, with the
additional advantage that our system can systematically evaluate multiple possible models
through Clingo’s cautious reasoning mode. This capability potentially addresses a limitation
where LLMs would likely struggle to consider all valid interpretations and may fail to rec-
ognize that alternative models can serve as counterexamples that invalidate certain answer
options.

The framework also provides enhanced interpretability compared to black-box neural ap-
proaches. Since the ASP program generated by the LLM is directly available for inspection,
errors in mapping or comprehension can be diagnosed and potentially corrected through
prompt refinement. Specifically, this interpretability enables insightful error analysis on the
LogicalDeduction dataset, where we found that the LLM sometimes fails to conserve the
same interpretation along the reasoning process (e.g., establishing that "newest" corresponds
to leftmost positioning but later introducing constraints assuming rightward positioning).
This suggests opportunities for improvement through additional spatial relations, such as
startsAtsp for the PATH schema, or prompting that could enforce directional consistency.
Psychological research comparing human and system-generated schematic representations
might provide further solutions to these mapping challenges while offering interesting cog-
nitive insights.

Finally, several technical directions could enhance the system’s capabilities. The neu-
ral component presents opportunities for more sophisticated prompting strategies, includ-
ing separating interpretation and program generation into distinct phases. Additionally, a
problem-specific prompt selection function could be designed based on the identified image
schemas underlying each problem’s resolution. A dedicated syntactic checker could also re-
place Clingo’s error detection to improve efficiency, though the checker’s design matters little
since we have observed that GPT-4 more often produces correct programs when starting
fresh rather than attempting to correct existing ones.

7. Conclusion

We presented Embodied-LM, a prototype neurosymbolic system that grounds logical rea-
soning in schematic representations based on image schemas. Through evaluation on logical
deduction and puzzle-solving tasks, our approach provides conceptual validation that spatial
cognitive structures can be formalized as executable programs, enabling systematic logical
inference while maintaining interpretability.

Even if our current implementation focuses on spatial primitives, it establishes the com-
putational foundation for processing more complex schematic structures. Building on this
groundwork, the framework opens pathways for incorporating more diverse reasoning sce-
narios including mathematical, syllogistic, and propositional logic problems, while future
extensions that integrate spatio-temporal and force dynamic primitives could enable resolv-
ing classic AI problems such as Tower of Hanoi, river-crossing puzzles, or Blocks World
scenarios.
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Appendix A. System Prompt

System Prompt

You are an expert at writing declarative programs that encode the interpretation of
natural language narratives through image schemas - recurring patterns derived from
sensorimotor experience that structure human cognition. Declarative programs are
written in Answer Set Programming augmented with spatial theory predicates.
It is important that the schematic representation enables reasoning on the logical
constraints stated in the narratives.

OBJECT DECLARATION:
Objects in narratives correspond to geometric objects in the program. Specify the
geometric sort of one or more objects (using pooling) by "point(obj1;obj2;...)."

BUILTIN SPATIAL PREDICATES AVAILABLE:
The suffixes "_ps", "_pp", "_p, _rr" indicate the relation type (e.g., _ps is for
point-segment) and arity (e.g., leftmost_p is of arity 1):
- on_ps(P1,S2): Point P1 is on segment S2
- samePlace_pp(P1,P2): Points P1 and P2 are at the same location
- left_pp(P1,P2) / right_pp(P1,P2): Point P1 is to the left/right of point P2
- leftmost_p(P) / rightmost_p(P): there is no point to the left/right of P
- above_pp(P1,P2) / below_pp(P1,P2): Point P1 is above/below point P2
- uppermost_p(P) / lowermost_p(P): there is no point above/below P
- overlap_rr(R1,R2): Rectangle R1 overlaps with rectangle R2
- in_pr(P1,R2): Point P1 is inside rectangle R2
- left_rr(R1,R2) / right_rr(R1,R2): Rectangle R1 is to the left/right of rectangle R2

SYNTAX RULES:
1. Use :- ... for integrity constraints that must be satisfied.
2. Anonymous variables (_) cannot be used in the head of rules but only in the
body. For instance, avoid "left_pp(tractor,_)." as a fact.
3. Variables must always be safe: they must appear in a positive literal in the
rule body to ensure it is properly bound.

GENERAL REQUIREMENTS:
1. Always maintain coherence in your spatial interpretation. For instance, if you
interpret a concept like "newer" as "to the right" in one rule,
you must consistently use this same interpretation for writing the other rules.
2. Output only the raw ASP code with no formatting. DO NOT use triple backticks (‘‘‘)
or markdown code blocks.
3. Comment any non-ASP content with % symbols.

Appendix B. Context Formalization Prompts

B.1. LogicalDeduction Dataset

Context Prompt

Generate the Clingo program with the qualitative spatial predicates available to
encode the spatial schematic interpretation of the natural language input.

EXAMPLE RULES FOR NARRATIVE INFORMATION:
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% In an antique car show, there are five vehicles: a convertible, a sedan, a
tractor, a minivan, and a limousine.
% Declare the objects and their geometric sort
point(convertible; sedan; tractor; minivan; limousine).
% Align all car points on a timeline to constrain possible solutions
on_ps(P,timeline) :- point(P).
:- samePlace_pp(_,_). % Disallow any points to be at the same place

% The apples are less expensive than the mangoes
left_pp(apple, mango).

% The kiwis are the second-cheapest (note how the variable for the counted items takes
the first argument)
:- #count{X : left_pp(X, kiwi)} != 1.

% The van is the second newest
:- #count{X : right_pp(X, van)} != 1.

% The tractor is the newest
rightmost_p(tractor).

{CONTEXT}

B.2. Zebra Puzzle

Context Prompt

Generate a Clingo-based program for solving zebra puzzle problems through image schemas.

%%%%%%%%%%% SORTS DECLARATION %%%%%%%%%%%
pet(fox;dog). % each object is associated with a classical sort
person(cuban;greek).
house(blue;green).
...

item(X):- pet(X).
item(X):- person(X).
...

point(X) :- item(X). % classical sorts are mapped to geometric sorts
rect(X) :- house(X).

isA(Pet, pet):- pet(Pet).
isA(Person, person):- person(Person).
...

%%%%%%%%%%%% CONSTRAINTS %%%%%%%%%%%
% Houses are apart from each other
:- overlap_rr(_,_).

% Every item is contained in a house
:- not in_pr(Item,_), item(Item).
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% A house only contains one person who owns one pet
:- in_pr(Item1,House), in_pr(Item2,House), Item1!=Item2, isA(Item1, Sort1),
isA(Item2, Sort2), Sort1=Sort2.

% The GREEK lives in a house to the right of the CUBAN.
right_rr(House1, House2):- in_pr(greek, House1), in_pr(cuban,House2),
house(House1), house(House2).

% The CUBAN lives in the first house on the left.
in_pr(cuban,House):- not left_rr(_,House), house(House).

{CONTEXT}

Appendix C. Question and Options Formalization Prompts

C.1. LogicalDeduction Dataset

Question and Options Prompt

Transform the natural language question into Clingo-based rules that will make the
answer available in the system’s output. These rules will extend the existing ASP
input program.

EXAMPLES OF OPTIONS AND THEIR MODELING:
answer(a):- #count{X : left_pp(X,cardinal)}=2. % A) The cardinal is the third

from the left
answer(b):- rightmost_p(apple). % B) The apple is the most expensive
answer(c):- left_pp(tractor, minivan). % C) the tractor is older than the minivan
answer(d) :- #count{X : right_pp(X, white)} = 1. % D) The white book is the second

from the right

REQUIRED OUTPUT:
- Generate ASP rules that model each answer option, so that I can simply append these
rules to the INPUT PROGRAM.
- All constants must be lowercase (e.g., ’answer(a)’, do not write ’answer(A)’).
- Add a "#show answer/1" so that only the predicate answer is shown in the output.

{CONTEXT}
{QUESTIONS AND OPTIONS}
{INPUT PROGRAM}

C.2. Zebra Puzzle

Question and Options Prompt

Transform the natural language question into Clingo-based rules that will make the
answer available in the system’s output. These rules will extend the existing ASP
input program.

EXAMPLES OF OPTIONS AND THEIR MODELING:
answer(a):- in_pr(zebra, House), in_pr(cuban, House). % A) The zebra’s owner is Cuban

16



Grounding Neurosymbolic Reasoning

REQUIRED OUTPUT:
- Generate ASP rules that model each answer option, so that I can simply append these

rules to the INPUT PROGRAM.
- All constants must be lowercase (e.g., ’answer(a)’, do not write ’answer(A)’).
- Add a "#show answer/1" so that only the predicate answer is shown in the output.

{CONTEXT}
{QUESTIONS AND OPTIONS}
{INPUT PROGRAM}

Appendix D. Examples of Generated Programs

D.1. LogicalDeduction Dataset

Example of Generated ASP Program

point(truck; motorcycle; limousine; station_wagon; sedan).

% All vehicles are aligned to reflect an order based on ’newer’ or ’older’
on_ps(V, vehicle_line) :- point(V).

% Ensure no two vehicles share the same position
:- samePlace_pp(_, _).

% The limousine is older than the truck
left_pp(limousine, truck).

% The sedan is newer than the motorcycle
right_pp(sedan, motorcycle).

% The station wagon is the oldest
leftmost_p(station_wagon).

% The limousine is newer than the sedan
right_pp(limousine, sedan).

answer(a) :- #count{X : left_pp(X, truck)} = 1.
answer(b) :- #count{X : left_pp(X, motorcycle)} = 1.
answer(c) :- #count{X : left_pp(X, limousine)} = 1.
answer(d) :- #count{X : left_pp(X, station_wagon)} = 1.
answer(e) :- #count{X : left_pp(X, sedan)} = 1.

#show answer/1.
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D.2. Zebra Puzzle

Example of Generated ASP Program

% Define objects and their classical sorts
pet(fox;dog;zebra).
person(cuban;greek;swiss).
house(blue;red;green).
drink(tea;milk;beer).

% Define items and assign items to classical sorts
item(X):- pet(X).
item(X):- person(X).
item(X):- drink(X).

% Map classical sorts to geometric sorts
point(X) :- item(X).
rect(X) :- house(X).

% Define associations for items and sorts
isA(Pet, pet):- pet(Pet).
isA(Person, person):- person(Person).
isA(Drink, drink):- drink(Drink).

%%%%%%%%%%%% CONSTRAINTS %%%%%%%%%%%%
% Houses are apart from each other
:- overlap_rr(_,_).

% Every item is contained in a house
:- not in_pr(Item,_), item(Item).

% A house only contains one person, one pet, and one drink
:- in_pr(Item1,House), in_pr(Item2,House), Item1!=Item2, isA(Item1, Sort1),
isA(Item2, Sort2), Sort1=Sort2.

% The GREEK lives in a house to the right of the CUBAN’s house
right_rr(House1, House2):- in_pr(greek, House1), in_pr(cuban, House2),
house(House1), house(House2).

% The CUBAN drinks MILK
in_pr(milk, House):- in_pr(cuban, House), house(House).

% TEA is drunk in the RED house
in_pr(tea, red).

% The SWISS lives in the first house on the left
in_pr(swiss, House):- not left_rr(_, House), house(House).

% BEERS are drunk in a house to the right of the FOX’s owner
right_rr(House1, House2):- in_pr(beer, House1), in_pr(fox, House2),
house(House1), house(House2).

% The DOG’s owner lives to the left of the house where the GREEK lives
left_rr(House1, House2):- in_pr(dog, House1), in_pr(greek, House2),
house(House1), house(House2).
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% The ZEBRA’s owner lives in the BLUE house
in_pr(zebra, blue).

% Define answer options based on the narrative’s question
answer(a):- in_pr(zebra, House), in_pr(cuban, House).
answer(b):- in_pr(zebra, House), in_pr(swiss, House).
answer(c):- in_pr(zebra, House), in_pr(greek, House).

% Show only the answer in the output
#show answer/1.

19


	Introduction
	Related Work
	Reasoning Through Embodied Cognition
	Implementation
	Formalizing Image Schemas in the DSR framework
	Embedding Declarative Spatial Reasoning in Answer Set Programming
	LLM-Guided Schema Generation

	Experimental Validation
	Reasoning with PATH: LogicalDeduction Dataset
	Reasoning with CONTAINER: Zebra Puzzles

	Results and Discussion
	Conclusion
	System Prompt
	Context Formalization Prompts
	LogicalDeduction Dataset
	Zebra Puzzle

	Question and Options Formalization Prompts
	LogicalDeduction Dataset
	Zebra Puzzle

	Examples of Generated Programs
	LogicalDeduction Dataset
	Zebra Puzzle


