
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DPA-SGG: DUAL PROMPT LEARNING WITH PSEUDO-
VISUAL AUGMENTATION FOR OPEN-VOCABULARY
SCENE GRAPH GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Open Vocabulary Scene Graph Generation (OVSGG) aims to recognize previ-
ously unseen relationships between objects in images, which is essential for ro-
bust visual understanding in dynamic real-world scenarios. Recent methods lever-
age prompt tuning to transfer the rich visual–semantic knowledge of pretrained
Vision-Language Models (VLMs), thereby enhancing the recognition ability of
unseen predicates. Typically, these methods rely solely on subject and object
bounding boxes from seen relationships to extract visual features for guiding vi-
sual–semantic alignment during prompt learning. However, this paradigm may
lead to two major limitation: 1) Contextual Blindness, which means models may
overlook broader contextual cues by focusing only on object regions while exclud-
ing union regions, making it difficult to distinguish triplets that are visually similar
but semantically distinct; 2) Limited Visual Generalization, which means mod-
els may struggle to transfer effectively to unseen predicates since the training is
only restricted to annotated visual regions. To address these limitations, we pro-
pose a novel OVSGG framework, termed DPA-SGG, consisting of two key com-
ponents: Dual Prompt Learning (DLP), which introduces two complementary
prompts to jointly capture localized object cues and global scene context to bet-
ter distinguish visually similar relationships; and Pseudo-Visual Augmentation
(PVA), which enriches visual diversity by generating a corpus of textual scenes
in place of costly visual annotations. Extensive experiments and ablation studies
demonstrate the effectiveness of the proposed framework.

1 INTRODUCTION

Scene Graph Generation (SGG) (Xu et al., 2017; Rotondi et al., 2025), a fundamental scene un-
derstanding task, aims to parse an image into a structured semantic representation, typically as a
set of visual relation triplets in the form of <subject, predicate, object>. Despite being
powerful, traditional SGG approaches are limited to a predefined set of object and relationship cat-
egories. Open Vocabulary Scene Graph Generation (OVSGG) (He et al., 2022; Yu et al., 2023; Li
et al., 2023b) emerges to identify unseen relationships between pairwise objects, better suited for
the dynamic real-world applications.

Leveraging the advancement in Vision-Language Models (VLMs) (Radford et al., 2021; Li et al.,
2022a), existing OVSGG methods typically compare similarity between visual embeddings of the
subject and object regions and text embeddings of the class-contained prompts (e.g., “a photo of
[relation class]”) to achieve OV capability (He et al., 2022; Yu et al., 2023). However, such a set of
fixed, context-agnostic text prompts struggles to grasp the rich visual information that defines the
specific semantics of a scene. To address this, some works (Li et al., 2023b; Lei et al., 2024; Chen
et al., 2024) leverage Large Language Models (LLMs) to generate more discriminative descriptions
among relationships. Generally, these methods can be divided into: 1) Part-level Description,
which decomposes relation detection into several separate components (e.g., subject, object, and
spatial) (Li et al., 2023b; Lei et al., 2024), and then leverages LLMs to generate detailed and in-
formative descriptions for each component. 2) Scene-level Description, which prompts LLMs to
play different roles (e.g., biologist and engineer) to generate comprehensive and diverse descriptions
oriented to the scene from different views (Chen et al., 2024).
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(a) Contextual Blindness (b) Limited Visual Generalization 
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Figure 1: The limitation of methods typically relies on subject and object regions. (a) Contextual Blind-
ness: Locally similar relation predictions “holding” is mistakenly identified as “playing”. (b) Limited Visual
Generalization: Blue bars show the sparse predicate distribution in the original VG dataset, and orange bars
represent the distribution after pseudo-visual augmentation.

Despite considerable progress, existing OVSGG methods typically rely on subject and object regions
to achieve OVSGG capability. However, the current paradigm suffers from the following two limi-
tations: 1) Contextual Blindness: Due to the computational bottleneck of union box (the bounding
box encompassing both subject and object) clipping, current methods (Li et al., 2023b; Chen et al.,
2024; Gao et al., 2023; Menon & Vondrick, 2023) extract solely visual features of the subject and
object bounding boxes. Thereby, these models cannot utilize rich context cues, e.g., surrounding ob-
jects and the broader interaction region. This narrow focus makes it difficult to disambiguate triplets
that are locally similar but semantically distinct. As shown in Figure 1(a), models with a limited
focus on localized visual features struggle to distinguish between “man holding wheel” and “man
playing wheel”, as both actions exhibit minimal visual differences. However, the presence of a tele-
vision in the background of the whole image provides strong evidence that the predicate is “playing”
rather than “holding”. 2) Limited Visual Generalization. The training of class-contained prompts
typically relies on cross-modal alignment with visual features of corresponding image regions (Rad-
ford et al., 2021; He et al., 2023; Yu et al., 2023). However, current methods are restricted to an-
notated visual data, which serves as the sole source of visual knowledge. As shown in Figure 1(b),
most predicates in SGG datasets suffer from very limited visual annotations, making it challenging
to effectively transfer visual-semantic knowledge to these rare categories. Moreover, relying only
on such in-domain annotations inevitably constrains the model’s capacity to generalize to unseen
predicates in open-vocabulary scenarios. Since annotating visual regions for SGG is highly labor-
intensive (Teng & Wang, 2022; Li et al., 2023a), it is therefore desirable to devise a more efficient
strategy to augment such visual data.

To this end, we propose DPA-SGG, an OVSGG framework that leverages Dual Prompt learning
with pseudo-visual Augmentation. Specifically, the Dual Prompt Learning (DPL) is designed to
resolve contextual blindness via two complementary prompts: a local prompt focuses on the fine-
grained visual evidence within the specific subject-object region, while a global prompt concurrently
analyzes the entire image to capture the panoramic scene context. In contrast to the high overhead
of union box clipping, our global prompt efficiently integrates a holistic scene context by operat-
ing directly on the full image features, enabling our model to distinguish among visually similar
relationships. To alleviate the limited visual generalization and the high cost of visual annotation,
we devise a Pseudo-Visual Augmentation (PVA) strategy. This strategy leverages the generative
power of LLMs to create a diverse corpus of textual scene descriptions, specifically targeting rare
predicates. From this generated text, we extract a rich set of relational triplets. The key insight
lies in capitalizing on the tightly aligned embedding space of VLMs. Within this space, the textual
embedding of a triplet can serve as a high-fidelity proxy for the visual features of its correspond-
ing scene. As shown in Figure 1(b), our augmentation strategy substantially enriches the predicate
distribution with large-scale “pseudo-visual” data. By fine-tuning the model on these augmented
datas, DPA-SGG effectively enhances its semantic understanding of rare relationships, building a
more robust and generalizable model without requiring any additional annotated images.

To verify the effectiveness of our DPA-SGG, we conduct extensive experiments and ablation studies
on the widely used benchmark, Visual Genome (VG) (Krishna et al., 2017). Experimental results
show that DPA-SGG outperforms existing OVSGG methods by a large margin.
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In summary, we made three main contributions in this paper. i) We identify two weaknesses in
current OVSGG methods: contextual blindness stemming from reliance on isolated subject and
object visual regions, and limited visual generalization for rare visual triplets. ii) We propose the
DPA-SGG framework that introduces dual prompt learning to efficiently integrate global context
and pseudo-visual augmentation to enrich data diversity in a labor-efficient manner. iii) Extensive
experiments and ablation analysis on the VG benchmark validate our approach, which establishes a
new state-of-the-art by a significant margin.

2 RELATED WORK

Scene Graph Generation. Scene Graph Generation (SGG) has attracted increasing attention as a
fundamental task for structured visual understanding, aiming to detect objects in an image and pre-
dict their pairwise relationships. Early studies primarily emphasized modeling high-quality visual
context (Tang et al., 2019), incorporating techniques such as graph neural networks (Yang et al.,
2018) and linguistic priors (Zellers et al., 2018) to refine relational reasoning. However, subsequent
research observed that SGG models often suffer from the long-tailed distribution of predicates in
prevalent datasets, leading to poor recognition of rare annotated predicates. To address this issue, a
variety of strategies have been explored, including feature augmentation (Li et al., 2023a) and label
knowledge distillation (Li et al., 2023c). Moreover, since annotating SGG datasets requires exces-
sive human labeling efforts, recent works begin to focus on more economical approaches, such as
weakly-supervised learning (Li et al., 2022b) and few-shot learning (Li et al., 2024). By leverag-
ing powerful VLMs, these methods can effectively transfer the rich knowledge of visual-language
alignment into SGG models, reducing the reliance on expensive manual annotations.

Open Vocabulary Learning. Traditional visual recognition models are typically trained under a
closed-set assumption, where they can only recognize predefined categories during training, limit-
ing their adaptability to open-world scenarios. Early efforts addressed this issue through zero-shot
learning, which typically leveraged semantic embedding spaces of words (e.g., Word2Vec (Gold-
berg & Levy, 2014), GloVe (Pennington et al., 2014)) to bridge the gap between seen and unseen
categories. However, the limited representational power of these embeddings constrained their scal-
ability. The development of large-scale VLMs, such as CLIP (Radford et al., 2021; Li et al., 2022a),
has significantly advanced this area by offering powerful cross-modal representations that support
robust knowledge transfer from language to vision. These models have achieved remarkable success
in open-vocabulary tasks including image segmentation (Qin et al., 2023) and object detection (Min-
derer et al., 2022). Building on these advances, recent studies (Chen et al., 2024; Li et al., 2023b)
have introduced open-vocabulary paradigms into the SGG task, enabling models to recognize unseen
visual relationships and thereby enhancing their scalability to real-world scenarios.

Foundation Models. In recent years, large-scale VLMs have emerged as a powerful paradigm
for learning cross-modal representations from massive image–text datasets. Representative models
such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) leverage contrastive learning
to align visual and textual embeddings within a shared semantic space, enabling robust zero-shot
transfer across a wide range of downstream tasks (Li et al., 2023b; Chen et al., 2024). A key factor
behind the success of VLMs is their ability to match images with corresponding descriptions while
distinguishing mismatched pairs, which enhances their cross-modal understanding. To further adapt
VLMs to specific tasks, prompt learning has emerged as a flexible mechanism, providing context or
guidance on how the model should apply its knowledge. Beyond hand-crafted prompts or learnable
prompts, recent work (Menon & Vondrick, 2022) explores using Large Language Models (LLMs) to
automatically generate rich, detailed prompts as inputs to the VLM text encoder. This combination
of VLMs and LLMs has shown effectiveness across numerous domains.

3 METHODOLOGY

Formulation. Given an image I , SGG aims to transform it into a structured representation,
G = {(s, r, o)|s, o ∈ O, r ∈ R}, where O represents the set of object categories with bounding
boxes and R denotes the set of predicate categories that describe pairwise relationships between ob-
jects. Following the prior works (Li et al., 2023b; Chen et al., 2024), we also focus on the predicate
classification task, which predicts the predicate category r ∈ R for a given pair of objects (s, o).
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{ woman - riding - horse }   { woman - wearing- jacket} 
{ hair - flowing in - wind}   { dog - looks at - woman }
{ dog - wagging - tail }       { tail - on - dog }   ... ...

Triplet Parsing

Please describe the visual features of the subject and object in scene graph.

{woman - riding - horse}
-Subject Visual Features: Confident posture, determined 
expression, black jacket, tied-back long hair.
-Object Visual Features: Powerful animal, white coat, with saddle 
and bridle, hooves kicking up dust.

Entity Descriptions

{dog - watching - woman}
-Subject Visual Features: Loyal golden retriever, curious 
expression, wagging tail, body low to the ground, focused gaze.
-Object Visual Features:  Wearing black jacket, peaceful 
expression, head slightly turned, hands gently holding reins.

Local Prompt

Gaug

G̃aug

rxL...x2x1

xo
1 xo

2 ... xo
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xs
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Figure 2: The framework of DPA-SGG. 1) Local Prompt Learning: extracts fine-grained features for precise
relation prediction. 2) Global Prompt Learning: captures coarse-grained features for holistic contextual
understanding. 3) Pseudo Visual Augmentation: generates scene descriptions and entity descriptions that
augment global and local visual features respectively.

Our research addresses the challenge of extending SGG from a traditional closed-set setting to an
open-vocabulary paradigm. This transition enables models to recognize previously unseen predi-
cate categories (i.e., novel split) by leveraging knowledge learned from a limited set of observed
predicates (i.e., base split) during training.

Baseline for OVSGG. Following the standard zero-shot SGG pipeline of previous works (He et al.,
2022), a straightforward solution for OVSGG is to obtain visual embeddings for both the subject
and object, and then compute the similarity between these visual features and their corresponding
text embeddings. The visual embeddings vs and vo are typically extracted from the image encoder
of a pretrained CLIP (Radford et al., 2021) model, respectively. Similarly, the text embeddings ts
and to can be obtained from either a simple class-contained prompt or from some more detailed
description-based prompt. The final prediction score for a relation is calculated by summing the
cosine similarities between the subject’s visual and text embeddings and the object’s visual and text
embeddings. The relation with the highest score is then selected as the final classification result.

To address the mentioned contextual blindness and limited visual generalization (§1) overlooked by
prior works, we propose a novel framework, termed as DPA-SGG, for OVSGG. As illustrated in
Figure 2, our method comprises two key components: Dual Prompt Learning (DPL, §3.1) and
Pseudo-Visual Augmentation (PVA, §3.2). These two components work synergistically to enable
a context-aware and strong generalization OVSGG.

3.1 DUAL PROMPT LEARNING

Compared with prior context-unaware methods, our DPL module introduces a global-local prompt
learning framework to enhance contextual perception of models. Specifically, DPL consists of
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two branches: global prompt learning (§3.1.1) for coarse-grained image-level prediction, and lo-
cal prompt learning (§3.1.2) for fine-grained triplet-level prediction. The final predicate prediction
incorporates both the high-level contextual cues from the global prompt and the specific evidence
from the local prompt, yielding a contextually grounded and more accurate classification.

3.1.1 GLOBAL PROMPT LEARNING

This branch is designed to capture context-aware, panoramic scene information. Rather than relying
on the computationally expensive union box cropping strategy, we efficiently leverage the global
representation of the entire image to provide panoramic contextual cues. Specifically, we introduce
a learnable soft global prompt whose text embedding is aligned with the global visual features of
the entire image, enabling the model to adaptively extract richer contextual information and thereby
recognize feasible relations within the given scene. Inspired by (Zhou et al., 2022; He et al., 2022),
we replace hand-crafted text prompts with a set of learnable context vectors that enable dynamically
adapting the text embeddings for our OVSGG task, formulated as:

P global
r = [x1,x2, ...,xL, r], (1)

where [x1,x2, ...,xL] is the prefix L context vectors for global prompt, r denotes the class token
embedding vector of relation category r. This prompt set is then fed into the CLIP text encoder
Ent(·) to obtain the global text embedding as follows:

tglobalr = Ent(P
global
r ). (2)

Then, we calculate the prediction score of the relation ri for the global prompt learning branch:

pglobalri =
exp(ϕ(vglobal

r , tglobalri )/τ)∑|R|
k=1 exp(ϕ(v

global
r , tglobalrk )/τ)

, (3)

where vglobal
r is the global visual embeddings of the whole image I , extracted by the image encoder

Env(·) of the CLIP, ϕ(·, ·) represents the cosine similarity between visual embeddings and text
embeddings, and τ is a temperature parameter.

3.1.2 LOCAL PROMPT LEARNING

This branch is designed to capture fine-grained details within the specific subject–object region (Li
et al., 2023b; Chen et al., 2024). Following a similar strategy as in the global branch, we utilize two
learnable soft prompts, one for the subject and the other for the object, formulated as:

P loacl
s = [xs

1,x
s
2, ...,x

s
L, s, r, sth],

P local
o = [xo

1,x
o
2, ...,x

o
L, sth, r,o],

(4)

where [xs
1,x

s
2, ...,x

s
L] and [xo

1,x
o
2, ...,x

o
L] represent the learnable local prefix context vectors for the

subject and object prompts, respectively, s and o are the class token embedding vectors of subject
and object, and sth is the token embedding vector of the word “something”. Different from the
global branch, the final local prediction score is calculated by summing the cosine similarities of
text embedding and their corresponding visual features for both subjects and objects:

plocalri =
exp(ϕ(vlocal

s , tlocalsi )/τ)∑|R|
k=1 exp(ϕ(v

loacl
s , tlocalsk

)/τ)
+

exp(ϕ(vlocal
o , tlocaloi )/τ)∑|R|

k=1 exp(ϕ(v
loacl
o , tlocalok

)/τ)
, (5)

where vlocal
s and vlocal

o are the local visual features of the cropped subject and object bounding
boxes, extracted by the image encoder Env(·) of the CLIP.

Relation Classification. To ensure predictions are consistent with both fine-grained details and the
broader scene context, we fuse the local and global scores via a geometric mean. The key advantage
of this multiplicative fusion is its ability to suppress unfeasible predictions: if either the global or
local context assigns a probability of zero to a predicate, the fused prediction score will also be zero,
effectively eliminating that predicate from consideration. The fusion process can be formulated as:

pri = (plocalri )λ · (pglobalri )1−λ, (6)

where the hyperparameter λ controls the influence of the local versus the global score. The final
predicted relation is the class with the highest fused score.

5
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3.2 PSEUDO-VISUAL AUGMENTATION

This module aims to address the challenge of limited visual generalization caused by the lack of
annotated visual data. Considering the high cost and limited availability of annotated visual data, we
leverage the fact that visual and text encoders of a pretrained VLM operate within a tightly aligned
semantic space. This allows us to generate a diverse corpus of textual descriptions as “pseudo-
visual” data to replace the real images (Guo et al., 2023).

Specifically, we generate scene descriptions and entity descriptions to respectively replace the global
visual features of the entire image and the local visual features of the subject and object regions.

Scene Descriptions. We introduce a scene description generation prompt to make LLMs generate
comprehensive and panoramic scene descriptions Dscene for each given visual relationship triplet
(s, r, o) ∈ G. The generation process of Dscene can be expressed as:

Dscene = LLM(in-context examples, (s, r, o), instruction︸ ︷︷ ︸
prompt input

), (7)

where LLM(·) is the decoder of the LLMs, in-context examples provide some examples of the
desired generation results to make the LLM generate analogous results, (s, r, o) is the specific triplet
class to be included in the scene description. The instruction is the sentence used to command the
LLM to generate the description, e.g., “Please describe a scene with the visual relation ‘person-
riding-horse’, and you can add other visual relation triplets.”

Subsequently, the global prompt learning branch is further trained based on pseudo-visual data gen-
erated from scene descriptions. The prediction score can calculated as:

p̃globalri =
exp(ϕ(ṽglobal

r , tglobalri )/τ)∑|R|
k=1 exp(ϕ(ṽ

global
r , tglobalrk )/τ)

, (8)

where ṽglobal
r = Ent(Dscene) is the global “visual” embeddings of the generated scene descriptions,

extracted by the text encoder Ent(·) of the CLIP.

To mitigate the severe learning bias induced by the long-tail distribution (Tang et al., 2020) of SGG
datasets, we adopt a dynamic generation strategy where the number of generated triplets is set in-
versely proportional to their frequency in the original dataset. Formally, it is defined as:

Ngen(s, r, o) =
γ

f(s, r, o)
, (9)

where Ngen is the number of new generated descriptions for a given triplet (s, r, o), f(s, r, o) is its
frequency in the original dataset, and γ is a scaling hyperparameter.

Triplet Parsing. Noting that the generated scene description contains not only the given input triplet
but also a variety of other possibly co-occurring triplets, we can parse them from the scene descrip-
tion to obtain extra trplet samples. With the help of LLMs, these triplets can be extracted effectively.
However, since the elements (i.e., subject, predicate, object) in the extracted triplets may not always
correspond directly to the predefined categories in the dataset, an alignment operation is necessary
to map them to an appropriate existing categories before they can be utilized for model training. The
whole parsing process consists of two steps: 1) Extraction: We design a triplet extraction prompt to
extract all meaningful relationship triplets from scene descriptions as follows:

Gaug = LLM(in-context examples,Dscene, instruction︸ ︷︷ ︸
prompt input

). (10)

Similarly, in-context examples are analogous examples, the instruction sentences are designed to
enable LLM to generate all possible relationship triplets in the scene, e.g.,“Please translate this de-
scription into a scene graph with visual triplets in the format subject-predicate-object”. The second
step is 2) Alignment: For each element (saug , oaug , raug) in the extracted triplets Gaug , we compute
its semantic distance from the predefined categories using WordNet (Miller, 1995) and select the
closest one as the pre-alignment result. We further introduce a maximum distance threshold δ to ob-
tain the alignment result. If the minimum semantic distance for any component of the pre-alignment
triplet exceeds this threshold, this triplet will be discarded in the final alignment result.

s̃aug = argmin
s∈S

dist(saug, s), r̃aug = argmin
r∈R

dist(raug, r), õaug = argmin
o∈O

dist(oaug, o), (11)
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where dist(·, ·) is a semantic distance function Then we can obtain the final parsed triplets G̃aug =
{(s̃aug, r̃aug, õaug) | dist(saug, s̃aug) < δ & dist(raug, r̃aug) < δ & dist(oaug, õaug) < δ} in the
scene description, which serves as training targets for prompt learning.

Entity Descriptions. To generate entity descriptions that can serve as substitutes for local visual
features, we adopt a scene-specific entity (i.e., subject and object) description generation prompt,
guiding LLM to produce descriptions Dentity that reflect the fine-grained context of each scene for
each entity class:

Dentity = LLM(in-context examples,Dscene, (s, o, r), instruction︸ ︷︷ ︸
prompt input

). (12)

We utilize instruction like “Please describe the visual features of the subject and object in scene
graph”. Then the prediction score can be calculated as:

p̃localri =
exp(ϕ(ṽlocal

s , tlocalsi )/τ)∑|R|
k=1 exp(ϕ(ṽ

loacl
s , tlocalsk

)/τ)
+

exp(ϕ(ṽlocal
o , tlocaloi )/τ)∑|R|

k=1 exp(ϕ(ṽ
loacl
o , tlocalok

)/τ)
, (13)

where ṽlocal
s and ṽlocal

o are the local “pseudo-visual” embeddings of the generated subject and object
descriptions, extracted by the text encoder Ent(·) of the CLIP.

3.3 TRAINING OBJECTIVE

In the training stage, we train each component in DPA-SGG separately, including both global prompt
learning and local prompt learning.

Training Objective of Global Prompt Learning. To train the global prompt learning branch, we
adopt a powerful ranking loss to encourage the model to predict high scores of positive categories
and low scores of negative categories. Our training process consists of two stages. In the first stage,
the model is trained on the original dataset, which can be defined as:

Lglobal =
1

|B|
∑

(rpos,rneg)

max(1 + pglobalrneg
− pglobalrpos

, 0), (14)

where (rpos, rneg) ∈ B is a pair of positive and negative predicate category for each triplet sample
in the batch B, |B| is the number of triplets in the batch, and pglobalrpos

is the classification score of
positive predicate category. During training, the global prompt learns to align the text embeddings
of multi-label base categories for each image by minimizing Lglobal. In the second stage, we use the
same training strategy on the pseudo-visual data.

Training Objective of Local Prompt Learning. Similar to the global prompt training, we also use
a two-stage training process, leveraging both visual and pseudo-visual data with a consistent training
strategy. This component utilizes a cross-entropy loss, calculated in the first stage as:

Llocal = − 1

|B|
∑
B

log
exp(plocalrGT

)∑|R|
k=1 exp(p

local
rk

)
, (15)

where |B| is the number of triplets in the batch B, rGT is the ground-truth relation category. In
the second stage, we train with the same loss function on the pseudo-visual data generated by our
pseudo-visual augmentation module.

Total Loss. The total training objective is the sum of these two loss:

L = Lglobal + Llocal. (16)

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datesets. We evaluated our method on the challenging and widely-used benchmark VG (Krishna
et al., 2017): which consists of 50 predicate classes and 150 object classes. Following previous

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative results (§4.2) on VG base and novel.

Method Split R@20↑ R@50↑ R@100↑ mR@20↑ mR@50↑ mR@100↑
CLS[ICML21]

base
2.1 3.2 3.9 7.0 9.0 10.9

Epic[ICCV23] - 22.6 27.2 - - -
SDSGG[NIPS24] 18.7 26.5 31.6 9.2 12.4 14.8

Ours 42.42 53.63 59.03 10.53 15.00 17.73
CLS[ICML21]

novel
13.2 18.1 22.2 11.5 17.9 23.8

Epic[ICCV23] - 7.4 9.7 - - -
SDSGG[NIPS24] 18.4 25.4 29.6 17.1 25.2 31.2

Ours 25.25 32.86 36.75 24.48 31.47 35.44

Table 2: Effectiveness of each component.

Local Global PVA Split R@20↑ R@50↑ R@100↑ mR@20↑ mR@50↑ mR@100↑
✓ 38.36 48.75 54.36 6.12 10.26 12.92
✓ ✓ base 40.05 50.87 57.94 7.31 11.97 14.42
✓ ✓ ✓ 42.42 53.63 59.03 10.53 15.00 17.73
✓ 21.59 26.04 28.16 21.22 26.13 28.35
✓ ✓ novel 23.05 28.13 30.96 22.82 27.45 29.87
✓ ✓ ✓ 26.53 31.77 34.70 25.94 30.78 33.58

OVSGG work (Yu et al., 2023; Chen et al., 2024), the VG dataset is divided into a base and a novel
split. The base split comprises 35 relation categories, which account for 70% of the total categories
used for training. The novel split comprises 15 relation categories, which contain the remaining 30%
of categories unseen during training.

Evaluation Metrics. We evaluated our method on the standard predicate classification (PredCls)
task. The evaluation metrics used are Recall@K (R@K) and mean Recall@K (mR@K).

Baselines. We compared our proposed method DPA-SGG with three strong baselines: 1) CLS (Rad-
ford et al., 2021), which only uses the category name as prompts to compute the similarity between
image and text. 2) Epic (Yu et al., 2023), which introduces an entangled cross-modal prompt and
leverages contrastive learning. 3) SDSGG (Chen et al., 2024), which leverages scene-specific de-
scriptions as text embedding.

4.2 QUANTITATIVE COMPARISON RESULT.

In this work, we evaluated the performance on both the base and novel splits of the VG (Krishna
et al., 2017) dataset. As shown in Table 1, we have the following observations: 1) The CLS baseline,
which relies on simple class-based prompts, demonstrated inferior performance, particularly on the
base split. This is because the base split has a larger number of categories (35 vs. 15) for the novel
split and prepositions (i.e., “on”, “of”, and “at”) in base split that inherently lack specific visual
semantics, making them difficult to distinguish by CLIP. 2) The Epic baseline achieves performance
gain on the base split (i.e., 22.6% R@50 and 27.2% R@100), demonstrating the effectiveness of its
entangled cross-modal prompt on base data. However, its performance dramatically drops to 7.4%
R@50 and 9.7% R@100 on the novel split, indicating a severe overfitting problem. 3) SDSGG
achieves a light performance gain on both splits due to its scene-specific prompts strategy. 4) The
proposed DPA-SGG exhibits significant performance gains across all metrics compared to all base-
line models, e.g., 31.6 → 59.03% R@100 on base split and 31.2% → 35.44% mR@100 on novel
split. This indicates the effectiveness of DPA-SGG framework in OVSGG.

4.3 ABLATION STUDIES.

We conducted a series of ablation studies on VG (Krishna et al., 2017) to thoroughly evaluate our
proposed components.

Key Component Analysis. We analyzed the influence of three major components for DPA-SGG:
1) Global, which denotes the global prompt learning part in GPL (§3.1.1); 2) Local, which denotes
the local prompt learning part in GPL (§3.1.2); 3) PVA, which denotes leverages pseudo-visual
augmentation module (§3.2). From the results in Table 2, we have the following conclusions: 1)
By adding the global prompt learning to capture the panoramic scene information, it reached a clear

8
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Table 3: Effectiveness of hyper-parameter λ.

λ Split R@20↑ R@50↑ R@100↑ mR@20↑ mR@50↑ mR@100↑
0.0 26.73 37.45 43.48 5.75 9.29 11.93
0.3 36.89 47.58 52.86 8.13 11.76 14.28
0.5 base 40.82 51.99 57.28 9.43 13.50 16.11
0.8 42.42 53.63 59.03 10.53 15.00 17.73
1.0 26.73 37.45 43.47 5.75 9.29 11.93
0.0 24.85 30.68 34.32 23.65 29.56 33.09
0.3 25.25 32.86 36.75 24.48 31.47 35.44
0.5 novel 25.76 31.78 35.63 25.16 30.68 34.56
0.8 26.53 31.77 34.70 25.94 30.78 33.58
1.0 27.12 32.07 34.77 25.64 30.77 33.33

player - walking  on - street

standing on
  walking on

              on

CLIP

walking on

standing on
               on

46.3%
37.8%

13.5%

41.4%
28.6%

26.8.3%

DPA-SGG

boy - playing - rackket

holding

  playing

          with

CLIP

playing
holding

               with

58.9%
29.3%

9.7%

24.4%

63.6%

6.1%

DPA-SGG

Figure 3: Visual result (§4.4) on VG (Krishna et al., 2017).

performance improvement, e.g., increases from 10.26% to 11.97% mR@50 on the base split, and
from 26.13% to 27.45% mR@50 on the novel split; 2) The introduction of the PVA component led
to a further performance gain, e.g., 29.85% → 33.58% mR@100 on novel split; 3) By integrating
all the key component, DPA-SGG delivered the best performance across all metrics.

Analysis of Hyperparameters. Table 3 shows the results of varying values of λ in Eq.6 (§3.1.2),
which controls the influence of the local score relative to the global score. On the base split, our
framework achieved its best performance with a λ = 0.8. This suggests that a higher weight on
the fine-grained local scores is beneficial for the base split. However, on the novel split, the highest
scores for R@20 and mR@20 are achieved at λ = 0.8 (26.53% and 25.94%, respectively), but the
best scores for R@50, R@100, mR@50, and mR@100 are obtained with λ = 0.3. This indicates
that fine-grained information is highly effective for making high-confidence predictions.

4.4 QUALITATIVE COMPARISON RESULT

As depicted in Figure 3, we visualized qualitative comparisons of DPA-SGG against CLIP (Radford
et al., 2021), which relies solely on subject and object visual features extracted from their bounding
boxes on VG (Krishna et al., 2017). We can observe that CLIP incorrectly predicts an ambiguous
relation “standing on”, whereas DPA-SGG accurately identifies “walking on”. This demonstrated
that DPA-SGG is an effective framework for OVSGG, even in challenging scenarios where relations
are difficult to disambiguate.

5 CONCLUSION

In this paper, we focused on two overlooked limitations of current OVSGG methods: contextual
blindness and limited visual generalization. To overcome these issues, we proposed a novel frame-
work, DPA-SGG, which leverages a dual prompt learning strategy to capture both local and global
context and a pseudo-visual augmentation module to enhance semantic comprehension of rare re-
lationships, thereby creating a more robust and generalizable model without relying on additional
annotated images. Extensive experiments on the VG dataset demonstrated the effectiveness of our
proposed DPA-SGG. We believe the introduction of our DPA-SGG framework will not only set a
new benchmark for OVSGG but also encourage the community to explore the potential of integrat-
ing context-aware and data-efficient paradigms for other vision-language tasks.
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APPENDIX

This appendix is organized as follows:

• §A elaborates the implementation details of DPA-SGG.
• §B presents the reproducibility satatement.
• §C covers the large language model usage statement.

A IMPLIMENTATION DETAILS

For the CLIP model backbone, we utilized ViT- B/32 (Radford et al., 2021) as both the visual
and text encoder, setting the dimension C to 512, and we use the default logits scale τ (Eq. 8 and
Eq.13) with the same pretrained CLIP. Our implementation of DPA-SGG is based on PyTorch and
two NVIDIA GTX 3090 GPUs. we used the Adam optimizer (Loshchilov & Hutter, 2017) with a
learning rate of 1e-2 and a batch size of 24 as default. In the DPL module, we set prefix length
L = 12 ( Eq.1 and Eq.4), and hyperparameter λ = 0.8 (Eq.6) as default. In PVA module, we set
the scaling hyperparameter γ = 200 (Eq.9), and distance threshold δ = 0.5 (§3.2) .

B REPRODUCIBILITY STATEMENT

In the spirit of open science and to facilitate future research, the source code for the DPA-SGG
framework will be made publicly available upon acceptance of this paper for full verification and
extension. The implementation details of our model architecture, training procedures, and hyperpa-
rameters are provided in Appendix §A.

C LARGE LANGUAGE MODEL USAGE STATEMENT

We utilized the Gemini-2.5 Pro (Comanici et al., 2025) as an LLM to use as a writing assistant
to polish the language of the manuscript. Additionally, we use GPT-3.5-trubo (Floridi & Chiriatti,
2020) as an LLM to generate descriptions in PVA module (§3.2).
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