
ChartCoder: Advancing Multimodal Large Language Model for
Chart-to-Code Generation

Anonymous ACL submission

Abstract

Multimodal Large Language Models (MLLMs)001
have demonstrated remarkable capabilities in002
chart understanding tasks. However, interpret-003
ing charts with textual descriptions often leads004
to information loss, as it fails to fully capture005
the dense information embedded in charts. In006
contrast, parsing charts into code provides loss-007
less representations that can effectively con-008
tain all critical details. Although existing open-009
source MLLMs have achieved success in chart010
understanding tasks, they still face two ma-011
jor challenges when applied to chart-to-code012
tasks: (1) Low executability and poor restora-013
tion of chart details in the generated code and014
(2) Lack of large-scale and diverse training015
data. To address these challenges, we propose016
ChartCoder, the first dedicated chart-to-code017
MLLM, which leverages Code LLMs as the018
language backbone to enhance the executabil-019
ity of the generated code. Furthermore, we020
introduce Chart2Code-160k, the first large-021
scale and diverse dataset for chart-to-code gen-022
eration, and propose the Snippet-of-Thought023
(SoT) method, which transforms direct chart-024
to-code generation data into step-by-step gen-025
eration. Experiments demonstrate that Chart-026
Coder, with only 7B parameters, surpasses ex-027
isting open-source MLLMs on chart-to-code028
benchmarks, achieving superior chart restora-029
tion and code excitability.030

1 Introduction031

Recently, Multimodal Large Language Models032

(MLLMs) have demonstrated remarkable capabil-033

ities in addressing a wide range of visual tasks,034

such as captioning and question answering (Zhang035

et al., 2024c; Wang et al., 2024b). However, current036

models still face significant challenges in under-037

standing and analyzing the dense visual informa-038

tion present in complex and informative images. As039

a significant form of information-intensive images,040

charts contain complex information such as data041

Create the figure and axis
fig, ax = plt.subplots(figsize=(8.0, 6.0))
Plot the bars
ax.bar(labels, performance_gap)
Set the y-axis tick labels
ax.set_yticks(range(-10, 70, 10))
ax.set_yticklabels(['-10', '-5', '0', '5’, '10’, '20’,

'30’, '40', '50', '60'])

Open-source
MLLMs

Input InternVL2-8B Output

Create the figure and subplots
fig, ax = plt.subplots(figsize=(8.0, 6.0))
Plot box plots for each dataset
for i, (title, dataset) in enumerate(data.items()):

ax.boxplot(dataset, positions=[i],
patch_artist=True, boxprops=dict(facecolor=colors[i]))
Set the y-axis labels
ax.set_yticklabels(np.arange(-10, 71, 10), fontsize=12)

✅

❌

ChartCoder

“You are an expert
Python developer who
specializes in writing
matplotlib code based
on a given
picture. ... Now,
please give me the
matplotlib code that
reproduces the picture
below.” Size mismatch

Wrong Chart Type

ChartCoder Output

Figure 1: Comparison of existing MLLMs performance
on ChartQA and ChartMimic benchmarks. In the chart-
to-code task, open-source MLLMs struggle with mis-
matches in chart types and sizes, whereas ChartCoder
generates accurate code.

and structures, playing a pivotal role in effectively 042

presenting details. The automation of chart com- 043

prehension and summarization has garnered signif- 044

icant attention from the research community. To 045

advance chart understanding tasks, current studies 046

leverage existing MLLMs and perform supervised 047

fine-tuning (SFT) on various large-scale datasets, 048

such as chart question answering (Methani et al., 049

2020) and chart-to-text generation (Kantharaj et al., 050

2022), achieving state-of-the-art performance on 051

existing chart understanding benchmarks. 052

However, existing works generally treat charts as 053

natural images and fine-tune models by generating 054

natural language descriptions (Zhang et al., 2024b; 055

Han et al., 2023; Meng et al., 2024). This inevitably 056

overlooks the dense information embedded within 057

the charts, resulting in inefficiencies in analysis and 058

comprehension. On the other hand, parsing a chart 059

1

into code offers a lossless representation, providing060

a more efficient and comprehensive approach to un-061

derstanding the chart by accurately capturing and062

summarizing all its information. Recent works (Shi063

et al., 2024; Wu et al., 2024; Xia et al., 2024) have064

proposed various chart-to-code benchmarks, aim-065

ing to evaluate the chart reasoning abilities through066

code. However, current open-source MLLMs are067

not well-aligned with code generation tasks (Zhang068

et al., 2024a), resulting in poor performance in069

parsing charts into corresponding code and limited070

execution rate of the generated code. As shown071

in Figure 1, the InternVL2-8B suffers from chart072

type errors and coordinate size mismatches when073

converting boxplots to code.074

To overcome the above challenges in chart-to-075

code generation, we first conduct an exploratory076

attempt by leveraging Code LLMs as the language077

backbone of the MLLMs and propose ChartCoder,078

the first dedicated chart-to-code MLLM, which in-079

corporates a two-stage training paradigm that con-080

tains chart-to-text alignment and chart-to-code in-081

struction tuning. However, compared to chart-to-082

text, the available chart-to-code dataset is signifi-083

cantly smaller in scale, making it insufficient to sup-084

port effectively supervised fine-tuning. Therefore,085

to address the scarcity of data for the chart-to-code086

domain and train our proposed ChartCoder, we pro-087

pose the first large-scale diverse and high-quality088

chart-to-code dataset named Chart2Code-160k089

along with the model, which contains 160k diverse090

chart-code pairs with 27 chart types. To enhance091

the model’s capacity to capture critical information,092

such as chart types and data values, and strengthen093

its reasoning ability, we propose the Snippet-of-094

Thought (SoT) method, which emphasizes crit-095

ical information and optimizes the chart-to-code096

reasoning process. Specifically, we sample 50k097

chart-code pairs from the Chart2Code-160k, then098

utilize Chain-of-Thought (CoT) (Wei et al., 2022)099

methods to extend direct generation to step-by-step100

generation, which aims to emphasize critical in-101

formation in each step. Experimental results show102

that by utilizing our proposed Chart2Code-160k103

with the SoT method, ChartCoder, which, with104

only 7B parameters, outperforms all open-source105

MLLMs across various chart-to-code benchmarks.106

As shown in Figure 1, ChartCoder demonstrates a107

significantly higher ability to generate correct and108

executable code.109

In summary, the main contributions of this work110

are as follows:111

• We propose ChartCoder, the first chart-to- 112

code MLLM, which leverages Code LLMs as 113

language backbones. With only 7B parame- 114

ters, ChartCoder outperforms existing open- 115

source MLLMs on chart-to-code benchmarks. 116

• We introduce Chart2Code-160k, the first 117

large-scale and diverse chart-to-code dataset, 118

consisting of 160k chart-code pairs across 27 119

chart types. 120

• We propose Snippet-of-Thought (SoT), 121

transforming direct generation to step-by-step 122

generation to emphasize critical information 123

and enhance reasoning capabilities. 124

2 Related Works 125

2.1 Chart Understanding 126

Chart understanding is a crucial area of research 127

that encompasses both low-level and high-level 128

tasks. Previous approaches (Singh et al., 2019; 129

Methani et al., 2020) have typically relied on 130

pipeline-based methods. However, these pipeline 131

approaches often struggle with error accumulation 132

across different stages, which limits their overall 133

effectiveness and flexibility. Recent works have led 134

to the development of end-to-end MLLMs (Liu 135

et al., 2023b,c) specifically designed for chart- 136

related tasks. Trained on extensive chart-specific 137

datasets, these chart-domain MLLMs (Xia et al., 138

2024; Zhang et al., 2024b) have achieved supe- 139

rior performance across various chart-related tasks. 140

However, existing studies typically describe charts 141

in natural language, which inevitably overlooks the 142

dense information embedded within them, leading 143

to inefficiencies in analysis and understanding. In 144

contrast, code serves as a lossless representation 145

of charts, offering a more effective and expressive 146

approach to capturing chart information, thereby fa- 147

cilitating the solution of various chart-related tasks. 148

2.2 MLLMs For Code 149

Multimodal code generation has recently garnered 150

much more attention. Several works, such as MM- 151

Code (Li et al., 2024b) and HumanEval-V (Zhang 152

et al., 2024a), have been developed to evaluate the 153

capability of MLLMs in solving code problems 154

that incorporate visual elements. Design2Code 155

(Si et al., 2024) and Web2Code (Yun et al., 2024) 156

evaluate the performance of MLLMs by focusing 157

on code generation for HTML web page creation. 158

2

Among the emerging tasks in this domain, chart-159

to-code generation has attracted significant interest160

as the visual elements of charts are more complex.161

This task challenges MLLMs to generate code that162

accurately reproduces a given chart or visual repre-163

sentation. Recent works like ChartMimic (Shi et al.,164

2024) evaluate the reasoning ability of MLLMs in165

this context. Similarly, Plot2Code (Wu et al., 2024)166

and ChartX (Xia et al., 2024) also evaluate MLLMs167

code generation ability, especially for text and data168

reproducibility. To the best of our knowledge, no169

dedicated research has focused on solving the chart-170

to-code generation problem. Our work is the first171

to attempt to address this challenge.172

3 Chart2Code-160k Dataset173

3.1 Direct Chart-to-code Generation174

Despite the availability of many chart reasoning175

instruction-tuning datasets, there is a notable lack176

of datasets specifically for chart-to-code tasks.177

Compared to chart reasoning data, chart-to-code178

data have the following distinct characteristics:179

(1) One-to-One Mapping: Unlike chart reasoning180

datasets, which could derive multiple question-181

answer pairs from a single chart, chart-to-code182

datasets require a one-to-one correspondence, de-183

manding a large number of chart images for train-184

ing. (2) Diversity Reflect on Charts: Unlike the185

diversity of chart reasoning data, which can be186

reflected in instructions, the diversity of chart-to-187

code data primarily lies in the variety of chart types188

and structures. (3) Syntax Constraints: Unlike the189

flexible natural language answers in chart reason-190

ing tasks, the output code must strictly adhere to191

programming syntax to ensure executability.192

Therefore, collecting a large number of chart-193

code pairs that meet the above requirements is chal-194

lenging. Recent studies have demonstrated the fea-195

sibility of generating code with LLMs (Xu et al.,196

2023; Zhang et al., 2024c). Leveraging the one-197

to-one mapping property of chart-to-code data, we198

generate code first and execute it to produce the199

corresponding charts. In this way, we construct the200

first large-scale and diverse chart-to-code dataset,201

named Chart2Code-160k.202

Specifically, we generate chart-to-code data203

through the following steps: First, we prompt the204

LLM to generate keywords within a specific do-205

main and guide it to generate simulated data re-206

lated to these keywords. Then, to ensure the diver-207

sity of chart types, we identify 27 commonly used208

Dataset Train/Eval Chart Type Number

ChartX Eval 18 6k
Plot2Code Eval 6 132
ChartMimic Eval 22 2.4k
ChartLlama Train 10 7.8k

Chart2Code-160k Train 27 160k

Table 1: Comparisons of existing chart-to-code datasets.

chart types and manually write 79 template codes 209

for each as in-context demonstrations. These tem- 210

plate codes contain almost all common chart for- 211

mats. We further provide available functions such 212

as plt.text() and parameters such as hatch=’/’ 213

to encourage the generation of more diverse func- 214

tions and parameters, resulting in the chart struc- 215

tures more diversely. To enhance the generality 216

of generated code, LLMs are encouraged to use 217

standard libraries such as Matplotlib and Seaborn. 218

Additionally, we explicitly define all parameters 219

within the code itself, eliminating the need for ex- 220

ternal files such as CSVs. This ensures that the 221

code can be executed directly and accurately to 222

represent the chart details. The final step involved 223

executing the generated code to produce the cor- 224

responding chart. We utilize the above process to 225

yield 200k code snippets for charts. After execut- 226

ing the code and filtering out problematic charts, 227

such as those with excessive pixels or ticks, we 228

construct a high-quality dataset of 160k diverse 229

chart-to-code pairs. These pairs are formatted as 230

multimodal instruction-tuning samples in the uni- 231

fied structure of <chart, instruction, code>. 232

3.2 Step-by-step Chart-to-code Generation 233

Although the dataset described above includes var- 234

ious chart types and structures, most of the gen- 235

erated code follows a similar template, with only 236

certain details (such as colors and values) providing 237

the essential distinguishing information. This can 238

cause chart-to-code generation models to overlook 239

these critical details and thus produce incomplete 240

or incorrect results. To address the above chal- 241

lenge and further improve the reasoning ability of 242

MLLMs, we propose the Snippet-of-Thought (SoT) 243

method to expand direct chart-to-code generation 244

into step-by-step generation formats, which has 245

demonstrated effectiveness in text-to-code genera- 246

tion tasks (Zheng et al., 2023; Luo et al., 2024). 247

Specifically, we adopt the SoT to imitate the 248

human reasoning process, deriving the final code 249

step by step. This process is divided into four 250

steps: Step 1: Generate the chart type and lay- 251

3

89 seed code with
27 chart types

Available functions
and parameters

Keywords and data

Generated code

Keywords: model performance,
NLU benchmarks

Data: Model, SQuAD, GLUE, MNLI
GPT-4, 93.2%, 90.1%, 89.5%
BERT, 88.5%, 80.4%, 83.2%

import matplotlib.pyplot as plt
……
Data
categories = ['GPT-4', 'BERT’]
……
plt.title('Performance Comparison on
Different Benchmarks’)
……
Display the plot
plt.show()

Generate entity terms that are
related to NLU and models,

and then create data
associated with these terms.

Instructions

Execute and filter High-quality code

Chart2Code-160k

160k <chart image, input instruction, output code>

Step 1: Generate
Keywords and Data

Step 2: Generate Code

Step 3: Execution and Filter

Sample 50k code

Assume you need to generate the
following code from a chart. Please
break it down into three steps.

Add the sampled code as the Step 4

Downsample

Pre-defined Aspect Ratio

```python\nimport matplotlib.pyplot\n…\nplt.show()```
Stage-2:  Chart2Code Instruction Tuning 

Vison-language Connector

Code LLM

🔥

Visual Encoder

Please describe the
details of the chart.

Stage-1:  Chart/Image Text Alignment

Downsample
384×384 

The chart appears to be a line graph representing 
some performance or measurement values …

❄

❄

Direct Chart2Code Generation

Step-by-step Chart2Code Generation

Vison-language Connector

Code LLM

Visual Encoder

Please redraw the 
chart image using 
Python code.

🔥

384×384 

Any Resolution

🔥

🔥

Please redraw the chart 
image using Python code.

Snippet of Thought

Step 1: Overall layout and type analysis. 
The figure contains a single pie chart. 
plt.pie()
Step 2: Data text and color analysis.
The figure contains four type of data.
data = ['deployment', 'development', 'support', 
'training']
Step 3: Detail modification and style optimization.
explode = (0.1, 0, 0, 0)
plt.pie(sizes, explode=explode, labels=labels, 
autopct='%1.1f%%', shadow=True, startangle=90)

```python 
Import matplotlib.pyplot as
plt\n……
Display the plot
\nplt.show()
```

(a) Data generation pipelines (b) Model training stages

Chart2Code-160k

Steps 1-3 code snippets

Figure 2: Illustration of Chat2Code dataset generation process and the ChartCoder training process. The dataset
generation process is divided into two stages: direct generation and step-by-step generation. In the step-by-step
generation, the code processed by the Snippet-of-Thought method is sampled from the Chart2Code-160k generated
in the direct generation process. The training process of the ChartCoder also consists of two stages: alignment and
instruction tuning.

out, such as plt.bar() and plt.subplot(). Step252

2: Generate the data and corresponding colors253

used in the chart, such as data=[10, 15] and254

colors=[’#FF0000’,’#00FF00’]. Step 3: Gen-255

erate critical details of the chart, such as hatch=’/’256

and loc=’upper left’. Step 4: Generate the com-257

plete and final code. Different from CoT and PoT,258

we incorporate textual explanations and code snip-259

pets for each step to emphasize key information260

enhance the reasoning process and produce com-261

prehensive outputs.262

However, directly instructing the LLM to gen-263

erate step-by-step code may lead to hallucinations,264

causing inconsistencies between intermediate code265

snippets and the final executable code. To maintain266

consistency among code snippets, we reformulated267

the step-by-step code data generation into a two-268

step process involving code generation and decom-269

position. We sample 50k chart-code pairs from the270

previously generated 160k data pairs and encour-271

age the LLM to decompose the original code into272

the required textual explanations and code snippets273

of Steps 1–3, then concatenate the complete code274

in Step 4. To further mitigate hallucinations, such 275

as undefined values or parameters in Steps 1 and 2, 276

we used placeholder or default parameters during 277

code decomposition to ensure the construction of 278

consistent and reliable step-by-step code. 279

3.3 Dataset Analysis 280

Chart2Code-160k dataset provides three key ad- 281

vantages: (1) The First Large-Scale Dataset: It 282

contains 160k data pairs for instruction tuning, sig- 283

nificantly surpassing the size of previous datasets. 284

(2) Diverse Chart Structures and Types: It includes 285

27 different chart types, with diverse structures 286

enabled by a wide variety of functions and param- 287

eters in the code. (3) Syntactically Correct and 288

Executable Code: All corresponding code is syn- 289

tactically correct and executable, with explicitly 290

defined parameters that ensure precise alignment 291

between chart structures and code representations. 292

The comparisons of Chart2Code-160k with rele- 293

vant chart-to-code datasets are listed in Table 1. To 294

ensure data quality, we randomly sample around 295

1k instances and evaluate the quality of the chart 296

4



Dataset Source Chart Quality

Mean µ SD σ

Chart2Code-160k sample Generated 77.32 16.34
ChartMimic testmini Real-world 78.96 13.66

Table 2: Quantitative evaluation of the chart quality,
comparing with real-world charts. SD is the abbrevia-
tion version for standard deviation.

images manually during the dataset construction297

period. Given the strong generation capabilities of298

LLM, we reckon the generated charts are suitable299

for training purposes. Furthermore, to quantita-300

tively evaluate the chart quality, we also sample 8k301

data pairs (5% of the total) from Chart2Code-160k302

and utilize gpt-4o-2024-08-06 to evaluate them303

on four criteria: Aesthetics, Readability, Repro-304

ducibility, and Data Presentation Simplicity. The305

results in Table 2 show that the overall scores are306

broadly the same as real-world charts in Chart-307

Mimic. The detailed prompt is in the Figure 8. Our308

proposed Chart2Code-160k fills the gap between309

chart and code, equipping the model with advanced310

capabilities for downstream chart tasks.311

4 ChartCoder Model312

After constructing the Chart2Code-160k, we aimed313

to leverage the data to enhance the capacities of314

MLLMs to generate code from charts. Unlike pre-315

vious methods that rely on general LLMs with a316

low proportion of code in their training corpus, we317

pioneer the use of Code LLMs to enhance the cod-318

ing abilities of MLLMs from scratch.319

4.1 Model Architecture320

Following the standard architecture of MLLMs,321

ChartCoder consists of three modules: a pre-322

trained vision encoder (SigLIP-384 (Zhai et al.,323

2023a)), a vision-language connector (two-layer324

MLP) and a Code LLM backbone (DeepSeek325

Coder 6.7B (Guo et al., 2024)). The vision en-326

coder extracts the input image into visual features,327

and the connector projects it into the word embed-328

ding space. LLM backbone then combines visual329

and textual features to generate responses.330

Previous works emphasize the importance of331

high-resolution input for chart understanding (Liu332

et al., 2024; Guo et al., 2025), as details like textual333

words may lost in low-resolution images. How-334

ever, vision transformers (ViTs) like CLIP (Rad-335

ford et al., 2021) and SigLIP (Zhai et al., 2023b)336

are constrained to resolutions of 2242 and 3842 re-337

spectively, which limits their capacities to encode338

chart images with sufficient detail. To address this, 339

we utilize the Any Resolution strategy (Liu et al., 340

2024) to resize and patchify chart images to en- 341

sure ChartCoder processes high-resolution chart 342

images effectively. Specifically, the input chart im- 343

age is first resized to a pre-defined optimal aspect 344

ratio, whose height and width are integer multi- 345

ples of the image resolution. The resized image is 346

then divided into patches of standard resolution and 347

concatenated with a directly downsampled version 348

of the image. This approach preserves both gen- 349

eral and detailed information without requiring the 350

original high-resolution image to be resized into a 351

standard square, thereby avoiding the loss of fine 352

details. Details are shown in Figure 2. 353

4.2 Model Training 354

Since we propose to use Code LLMs as the lan- 355

guage backbone to enhance the code abilities of 356

MLLMs, existing models do not meet our require- 357

ments as their backbones are general LLMs. Thus, 358

to align charts with text and perform supervised 359

fine-tuning for chart-to-code tasks, we adopt the 360

following two-stage training process. 361

Chart-to-text Alignment. The alignment pro- 362

cess aims to endow the model with chart structure 363

perception capability. In this stage, we freeze the 364

language and vision encoder models and pre-train 365

the vision-language connector (Liu et al., 2023c). 366

We collect and filter public chart corpora for align- 367

ment, which contains multiple tasks like chart cap- 368

tion and chart-to-table. Specifically, we use the fol- 369

lowing corpora: (1) UniChart (Masry et al., 2023), 370

(2) Chart-to-Text (Kantharaj et al., 2022), (3) Sc- 371

iCap (Hsu et al., 2021), and (4) SciCap+ (Yang 372

et al., 2024). Additionally, we incorporate the 373

LLaVA pre-training dataset (Liu et al., 2023c) and 374

our proposed Chart2Code-160k to achieve a more 375

balanced coverage of concepts. 376

Chart-to-code Instruction-tuning. The second 377

stage focuses on enhancing the model’s capabili- 378

ties in chart-to-code tasks. In this stage, all three 379

modules are jointly fine-tuned with our proposed 380

Chart2Code-160k, and additional code-related data, 381

such as ChartQA PoT (Zhang et al., 2024b) and 382

ChartLlama chart-to-chart (Han et al., 2023). 383

5 Experiments 384

5.1 Baselines and Benchmarks 385

We compare ChartCoder with existing models 386

in three setups (1) General-domain open-source 387

5



Model Params ChartMimic Plot2Code ChartX

Exec.Rate Low-Level High-Level Pass Rate Text-Match Rating GPT-score

Full score - 100 100 100 100 100 10 5

Proprietary

GeminiProVision - 68.2 53.8 53.3 68.2 53.6 3.69 -
Claude-3-opus - 83.3 60.5 60.1 84.1 57.5 3.80 -
GPT-4V - 91.2 76.4 78.9 84.1 57.7 5.58 2.63
GPT-4o - 93.2 79.0 83.5 88.6 56.3 5.71 -

Open-Source General-Domain

DeepSeek-VL-7B 7.3B 41.3 19.0 17.6 64.4 32.6 2.26 -
LLaVA-Next-Mistral-7B 7.6B 59.7 20.7 21.3 72.0 38.7 2.87 -
Qwen2-VL-7B 7.0B 67.0 32.9 35.0 68.2 33.8 3.10 1.50
InternVL2-4B 4.2B 66.2 33.8 38.4 66.3 33.4 2.52 1.57
InternVL2-8B 8.1B 61.8 34.4 38.9 77.3 37.1 2.78 1.63
MiniCPM-Llama3-V2.5 8.4B 80.3 36.6 42.1 76.3 37.3 2.61 1.66
InternVL2-26B 26.0B 69.3 41.4 47.4 81.3 43.1 3.42 1.70
Qwen2-VL-72B 72.0B 73.3 54.4 50.9 72.0 53.4 4.26 1.69
InternVL2-Llama3-76B 76.0B 83.2 54.8 62.2 85.6 46.6 3.89 1.74

Open-Source Chart-Domain

ChartLlama 13B 57.5 24.8 28.1 58.4 40.3 2.32 0.94
ChartAssisstant 13B - - - - - - 0.82
TinyChart 3B 42.5 26.3 25.9 43.2 44.6 2.19 1.89
ChartVLM-L 14.3B 19.5 15.8 13.9 - - - 1.58
ChartCoder (Ours) 7.0B 91.4 77.4 74.0 87.9 54.5 4.50 2.09

Table 3: Evaluation results of various baseline models. Unless otherwise specified, we directly use the results in the
relevant benchmarks. We evaluate models that are not reported in those benchmarks. The best performances of
open-source MLLMs are indicated in bold.

Model Chart Types Layout Text Content Data Style Clarity

Full score 20 10 20 20 20 10

GPT-4o 18.96 9.59 17.16 15.68 14.66 8.84

InternVL2-Llama3-76B 13.06 8.44 12.59 10.51 8.74 7.87
Qwen2-VL-72B 10.45 7.83 9.92 8.14 7.10 7.47
InternVL2-8B 7.20 6.82 8.81 5.74 5.42 6.64

TinyChart 4.16 5.06 5.22 2.74 3.21 5.58
ChartVLM-L 0.97 3.53 2.48 0.81 0.90 5.25
ChartCoder (Ours) 16.83 9.13 14.77 12.41 12.68 8.29

Table 4: Detailed results of high-level scores on ChartMimic Direct Mimic task. All the subscores of ChartCoder
are close to GPT-4o.

MLLMs including InternVL2(4B, 8B, 26B, 76B)388

(Chen et al., 2024), Qwen2-VL(7B, 72B) (Wang389

et al., 2024a), DeepSeek-VL-7B (Lu et al., 2024),390

LLaVA-Next(7B) (Li et al., 2024a) and MiniCPM-391

Llama3-V2.5 (Yao et al., 2024). (2) Proprietary392

models include GeminiProVision (Team et al.,393

2023), Claude-3-opus (Anthropic, 2024), GPT-4V394

(OpenAI, 2023), and GPT-4o (OpenAI, 2024). (3)395

Chart-domain MLLMs including ChartLlama (Han396

et al., 2023), ChartAssisstant (Meng et al., 2024),397

Tinychart (Zhang et al., 2024b) and ChartVLM398

(Xia et al., 2024). All the methods are evalu-399

ated on the benchmarks ChartMimic (Shi et al.,400

2024), Plot2Code (Wu et al., 2024) and ChartX401

(Xia et al., 2024). We revise the Rating calcula-402

tion in Plot2Code. The original evaluation only403

considers charts corresponding to executable code,404

which leads to higher ratings for only generating 405

simple charts. We calculate all the results, which 406

better reflect the impact of complex charts. For all 407

methods, the zero-shot setting was adopted during 408

the evaluation. Details about these benchmarks are 409

shown in the Appendix A.2. 410

5.2 Main Results 411

As indicated in Table 3 ChartCoder achieves the 412

best performance among open-source MLLMs 413

in all the chart-to-code tasks and even better 414

than some proprietary models. Notably, on the 415

most challenging ChartMimic task, ChartCoder 416

surpasses leading small-scale general-domain 417

MLLMs (<20B) such as MiniCPM-Llama3-V2.5 418

and InternVL2-8B with average scores of 26.7 and 419

34.6 respectively. The improvement achieved by 420

6



Model Text Layout Type Color

Full score 100 100 100 100

GPT-4o 81.5 89.8 77.3 67.2

InternVL2-Llama3-76B 54.1 74.5 49.2 41.5
Qwen2-VL-72B 43.2 80.5 54.6 39.4
InternVL2-8B 31.5 51.1 28.6 26.2

TinyChart 9.8 48.2 32.9 14.2
ChartVLM-L 7.7 33.7 17.6 5.2
ChartCoder (Ours) 67.2 95.0 78.5 69.0

Table 5: Detailed results of low-level scores on Chart-
Mimic Direct Mimic task. Three out of four subscores
of ChartCoder are even higher than GPT-4o.

ChartCoder highlights the effectiveness of our pro-421

posed Code LLM as the language backbone, com-422

bined with the Chart2Code-160k dataset, in en-423

abling MLLMs to excel in chart understanding and424

code generation tasks. In addition, ChartCoder also425

performs better than existing state-of-the-art large-426

scale MLLMs such as InternVL2-Llama3-76B and427

chart-domain MLLMs such as TinyChart.428

We further illustrate the detailed high-level and429

low-level scores for the ChartMimic benchmark.430

The high-level score utilizes GPT-4o to evaluate431

the detailed similarity between the ground truth and432

generated chart images in six aspects: chart types,433

layout, text content, data, style, and clarity. The434

low-level score is calculated based on a comparison435

between the ground truth and the generated code,436

focusing on the code similarities in four aspects:437

text, layout, type, and color.438

Table 4 denotes the high-level results. Chart-439

Coder is the model most comparable to GPT-4o,440

as the evaluations were conducted by GPT-4o it-441

self, suggesting the actual performance gap may442

not be as pronounced as it appears. Notably, Chart-443

Coder shows the largest gap with GPT-4o in the444

data category, which highlights the complexity of445

extracting numerical values from charts, aligning446

with conclusions from existing chart understanding447

benchmarks: current MLLMs struggle to directly448

and accurately extract complete data from complex449

charts (Wang et al., 2024c; Zhang et al., 2024b).450

Table 5 shows the low-level results. ChartCoder451

even slightly outperforms GPT-4o in layout, type452

and color, highlighting the diversity of our pro-453

posed Chart2Code-160k dataset. However, the454

text score of the ChartCoder is lower than GPT-4o,455

which is similar to the results of high-level scores.456

We believe this is due to the lack of specialized457

chart OCR-oriented training for our model. Nev-458

ertheless, our text accuracy still surpasses that of459

Methods
ChartMimic

Exec.Rate Low-Level High-Level

ChartCoder 91.4 77.4 74.0

Code LLM → General LLM

DeepSeek LLM 80.6 61.4 63.4
△ -10.8 -16.0 -10.6

Different Visual Encoders

CLIP-336 91.6 77.3 70.3
△ +0.2 -0.1 -3.7

Without Step-by-step Generation

w/o SoT 89.2 70.1 65.4
△ -2.2 -7.3 -8.6

Open-source MLLM Finetund on Chart2Code-160k

Qwen2-VL-7B 67.0 32.9 35.0

Finetuned Model 83.6 73.4 68.2
△ +16.7 +40.5 +33.2

Table 6: The ablation studies on model architecture
and data. The results show that the effectiveness of our
proposed code LLM backbone and dataset.

open-source models, indicating the effectiveness of 460

our proposed ChartCoder model and Chart2Code- 461

160k dataset. We further present some case studies 462

on ChartMimic and compare ChartCoder with ex- 463

isting MLLMs. The results are shown in Figure 3, 464

the outputs of ChartCoder are much more similar 465

to the ground truth chart than open-source models. 466

5.3 Ablation Study 467

We perform extensive ablation experiments to vali- 468

date the effectiveness of our proposed model and 469

dataset. We divide the ablation study into three 470

parts, and the results are shown in Table 6. (1) 471

Code or general LLMs. To investigate whether 472

employing Code LLMs as language backbone pro- 473

vides specific advantages in chart-to-code tasks 474

and identify the nature of these potential benefits, 475

we replace the Code LLM, DeepSeek Coder 6.7B, 476

with general LLM, DeepSeek LLM 7B (Bi et al., 477

2024), maintaining the same two-stage training 478

procedures. The result shows that compared with 479

general LLM, utilizing code LLM as the language 480

backbone could significantly improve the execu- 481

tion rate, as well as the low-level and high-level 482

scores. We further analyze the types of errors in 483

the code that failed to execute and find that uti- 484

lizing code LLMs significantly reduces syntax er- 485

rors like missing closing quotation marks and type 486

errors like incorrect argument type. (2) Resolu- 487

tion of vision encoders. Previous studies have in- 488

dicated that performance on chart understanding 489

tasks is resolution-dependent, with lower resolu- 490

7



InternVL2-76BChartCoder InternVL2-8BGround Truth GPT-4o

import matplotlib.pyplot as plt
import numpy as np
# Data points
data = {
'universe': 0.8,
'fairy tale': 0.6,
'country': 0.4,
special place': 0.2,
'cultural event': 0.1,
'landscape': 0.05,
'city': 0.03,
movie‘: 0.02,
'general': 0.01,
'mythology': 0.005,
'novel': 0.003,
'video game': 0.002,
'programming world': 0.001
}

SyntaxError: Invalid Syntax

❌

Figure 3: Generated charts of different model outputs after code execution. Our proposed ChartCoder performs
significantly better than InternVL2-8B of a similar model scale.

Model Image Image+Code △

MiniCPM-Llama3-V2.5 0.76 0.81 6.5%
InternVL2-8B 0.79 0.82 3.8%

Table 7: Comparison of the impact of using code as
auxiliary contexts on the MMC True/False task.

tions negatively impacting model performance (Liu491

et al., 2024). To verify whether resolution affects492

chart-to-code tasks, we replace SigLIP-384 with493

CLIP-336 and maintain the other setting. The re-494

sult shows that the resolution of the vision encoder495

generally does not affect the output code execution496

rate but slightly influences the high-level chart simi-497

larity. Through our analysis, we find that, similar to498

the challenges in chart understanding, this issue is499

caused by the negative impact of low resolution on500

the recognition of text and special symbols. How-501

ever, as we utilize the Any Resolution strategy, this502

impact has been reduced significantly.503

(3) Dataset effectiveness. We design two sce-504

narios to illustrate our proposed Chart2Code-160k505

dataset. Firstly, to evaluate our proposed SoT506

method to emphasize the critical information in507

the chart, we remove the 50k step-by-step genera-508

tion data and train the model using only the direct509

generation data. The result shows it influences the510

low-level and high-level scores notably, especially511

in text content and data, which shows the role of512

emphasising critical information. Secondly, we se-513

lect Qwen2-VL-7B as the baseline of open-source514

MLLM and directly fine-tune it on our proposed 515

Chart2Code-160k datasets. The result illustrates 516

that after fine-tuning, the performance improves 517

significantly on all the metrics, demonstrating the 518

effectiveness of Chart2Code-160k. 519

5.4 Analysis 520

We further evaluate the role of code in the chart un- 521

derstanding task. We use two MLLMs to evaluate 522

two input forms, Image only and Image with Code, 523

on the MMC True/False benchmark (Liu et al., 524

2023a). The result in Table 7 shows that using code 525

helps the model better understand chart details, es- 526

pecially the chart types and the data they contain. 527

A case study is shown in Figure 5. Also, we uti- 528

lize LLM to evaluate the readability of ChartCoder 529

output code, and details are in the Appendix A.4. 530

6 Conclusion 531

This work aims to tackle the challenge of chart- 532

to-code tasks with MLLMs. First, we propose the 533

ChartCoder, which utilizes Code LLM as the lan- 534

guage backbone dedicated to chart-to-code tasks. 535

Second, to solve the scarcity of chart-to-code data, 536

we present the first large-scale and diverse chart-to- 537

code dataset, Chart2Code-160k. Finally, to empha- 538

size the key information, we propose the Snippet- 539

of-Thought (SoT) method to generate step-by-step 540

data. Experiments show that ChartCoder outper- 541

forms existing open-source MLLMs. 542

8



Limitation543

Our study is comprehensive but has certain limita-544

tions that we aim to address in future research. Due545

to constraints in computational resources, we only546

trained ChartCoder with 7B parameters, which has547

demonstrated sufficiently good results for now. A548

larger model could potentially achieve even better549

performance. Future work may focus on exploring550

more complex and diverse charts and codes while551

also experimenting with other image types, such as552

HTML, to develop a comprehensive multi-modal553

code large language model.554

Ethical Statement555

Our research employs publicly available models556

and datasets with proper citations. This approach557

minimizes the risk of generating toxic content,558

leveraging the widely used and non-toxic nature of559

our datasets and prompts.560

References561

Anthropic. 2024. Introducing the next generation of562
claude.563

DeepSeek-AI Xiao Bi, Deli Chen, Guanting Chen, Shan-564
huang Chen, Damai Dai, Chengqi Deng, Honghui565
Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao,566
Kaige Gao, Wenjun Gao, Ruiqi Ge, Kang Guan, Daya567
Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao,568
Ying He, Wen-Hui Hu, Panpan Huang, Erhang Li,569
Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng570
Liang, Fangyun Lin, Aixin Liu, Bo Liu (Benjamin571
Liu), Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu,572
Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, Xi-573
aotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu,574
Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli575
Sha, Zhihong Shao, Jun-Mei Song, Xuecheng Su,576
Jingxiang Sun, Yaofeng Sun, Min Tang, Bing-Li577
Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang,578
Yongji Wang, Tong Wu, Yu Wu, Xin Xie, Zhenda579
Xie, Ziwei Xie, Yi Xiong, Hanwei Xu, Ronald X Xu,580
Yanhong Xu, Dejian Yang, Yu mei You, Shuiping581
Yu, Xin yuan Yu, Bo Zhang, Haowei Zhang, Lecong582
Zhang, Liyue Zhang, Mingchuan Zhang, Minghu583
Zhang, Wentao Zhang, Yichao Zhang, Chenggang584
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou,585
Qihao Zhu, and Yuheng Zou. 2024. Deepseek llm:586
Scaling open-source language models with longter-587
mism. ArXiv, abs/2401.02954.588

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo589
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,590
Xizhou Zhu, Lewei Lu, et al. 2024. Internvl: Scal-591
ing up vision foundation models and aligning for592
generic visual-linguistic tasks. In Proceedings of593
the IEEE/CVF Conference on Computer Vision and594
Pattern Recognition, pages 24185–24198.595

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 596
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 597
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder: 598
When the large language model meets programming– 599
the rise of code intelligence. arXiv preprint 600
arXiv:2401.14196. 601

Zonghao Guo, Ruyi Xu, Yuan Yao, Junbo Cui, Zan- 602
lin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan Liu, 603
and Gao Huang. 2025. Llava-uhd: an lmm perceiv- 604
ing any aspect ratio and high-resolution images. In 605
European Conference on Computer Vision, pages 606
390–406. Springer. 607

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, 608
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang 609
Zhang. 2023. Chartllama: A multimodal llm for 610
chart understanding and generation. arXiv preprint 611
arXiv:2311.16483. 612

Ting-Yao Hsu, C Lee Giles, and Ting-Hao’Kenneth’ 613
Huang. 2021. Scicap: Generating captions for scien- 614
tific figures. arXiv preprint arXiv:2110.11624. 615

Shankar Kantharaj, Rixie Tiffany Ko Leong, Xiang 616
Lin, Ahmed Masry, Megh Thakkar, Enamul Hoque, 617
and Shafiq Joty. 2022. Chart-to-text: A large-scale 618
benchmark for chart summarization. arXiv preprint 619
arXiv:2203.06486. 620

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, 621
Bo Li, Wei Li, Zejun Ma, and Chunyuan Li. 2024a. 622
Llava-next-interleave: Tackling multi-image, video, 623
and 3d in large multimodal models. arXiv preprint 624
arXiv:2407.07895. 625

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiy- 626
ong Huang, and Jing Ma. 2024b. Mmcode: Bench- 627
marking multimodal large language models for code 628
generation with visually rich programming problems. 629
In Findings of the Association for Computational 630
Linguistics: EMNLP 2024, pages 736–783. 631

Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen, 632
Kaiqiang Song, Sangwoo Cho, Yaser Yacoob, and 633
Dong Yu. 2023a. Mmc: Advancing multimodal 634
chart understanding with large-scale instruction tun- 635
ing. arXiv preprint arXiv:2311.10774. 636

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae 637
Lee. 2023b. Improved baselines with visual instruc- 638
tion tuning. 639

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan 640
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava- 641
next: Improved reasoning, ocr, and world knowledge. 642

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 643
Lee. 2023c. Visual instruction tuning. 644

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai 645
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu- 646
oshu Li, Hao Yang, et al. 2024. Deepseek-vl: towards 647
real-world vision-language understanding. arXiv 648
preprint arXiv:2403.05525. 649

9

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://api.semanticscholar.org/CorpusID:266818336
https://api.semanticscholar.org/CorpusID:266818336
https://api.semanticscholar.org/CorpusID:266818336
https://api.semanticscholar.org/CorpusID:266818336
https://api.semanticscholar.org/CorpusID:266818336
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


Xianzhen Luo, Qingfu Zhu, Zhiming Zhang, Libo650
Qin, Xuanyu Zhang, Qing Yang, Dongliang Xu, and651
Wanxiang Che. 2024. Python is not always the best652
choice: Embracing multilingual program of thoughts.653
In Proceedings of the 2024 Conference on Empiri-654
cal Methods in Natural Language Processing, pages655
7185–7212.656

Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do,657
Enamul Hoque, and Shafiq Joty. 2023. Unichart:658
A universal vision-language pretrained model for659
chart comprehension and reasoning. arXiv preprint660
arXiv:2305.14761.661

Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao,662
Kaipeng Zhang, Yu Qiao, and Ping Luo. 2024. Char-663
tassisstant: A universal chart multimodal language664
model via chart-to-table pre-training and multitask665
instruction tuning. arXiv preprint arXiv:2401.02384.666

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and667
Pratyush Kumar. 2020. Plotqa: Reasoning over sci-668
entific plots. In Proceedings of the IEEE/CVF Win-669
ter Conference on Applications of Computer Vision,670
pages 1527–1536.671

OpenAI. 2023. Gpt-4v(ision) system card.672

OpenAI. 2024. Gpt-4o. Accessed: 2024-05-13.673

Qwen Team. 2024. Qwen2.5: A party of foundation674
models.675

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya676
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-677
try, Amanda Askell, Pamela Mishkin, Jack Clark,678
et al. 2021. Learning transferable visual models from679
natural language supervision. In International confer-680
ence on machine learning, pages 8748–8763. PMLR.681

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie682
Wang, Mohan Jing, Linran Xu, Xinyu Zhu, Siheng Li,683
Yuxiang Zhang, et al. 2024. Chartmimic: Evaluating684
lmm’s cross-modal reasoning capability via chart-to-685
code generation. arXiv preprint arXiv:2406.09961.686

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo687
Liu, and Diyi Yang. 2024. Design2code: How far are688
we from automating front-end engineering? arXiv689
preprint arXiv:2403.03163.690

Amanpreet Singh, Vivek Natarajan, Meet Shah,691
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,692
and Marcus Rohrbach. 2019. Towards vqa models693
that can read. In Proceedings of the IEEE/CVF con-694
ference on computer vision and pattern recognition,695
pages 8317–8326.696

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-697
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan698
Schalkwyk, Andrew M Dai, Anja Hauth, Katie699
Millican, et al. 2023. Gemini: a family of700
highly capable multimodal models. arXiv preprint701
arXiv:2312.11805.702

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi- 703
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin 704
Wang, Wenbin Ge, et al. 2024a. Qwen2-vl: Enhanc- 705
ing vision-language model’s perception of the world 706
at any resolution. arXiv preprint arXiv:2409.12191. 707

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, 708
Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu, Jie 709
Zhou, Yu Qiao, et al. 2024b. Visionllm: Large 710
language model is also an open-ended decoder for 711
vision-centric tasks. Advances in Neural Information 712
Processing Systems, 36. 713

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, 714
Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu, 715
Haotian Liu, Sadhika Malladi, et al. 2024c. Charxiv: 716
Charting gaps in realistic chart understanding in mul- 717
timodal llms. arXiv preprint arXiv:2406.18521. 718

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 719
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 720
et al. 2022. Chain-of-thought prompting elicits rea- 721
soning in large language models. Advances in neural 722
information processing systems, 35:24824–24837. 723

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, 724
Zhixuan Liang, Zeyu Lu, Ying Shan, and Ping Luo. 725
2024. Plot2code: A comprehensive benchmark for 726
evaluating multi-modal large language models in 727
code generation from scientific plots. arXiv preprint 728
arXiv:2405.07990. 729

Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao 730
Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Min 731
Dou, Botian Shi, Junchi Yan, et al. 2024. Chartx 732
& chartvlm: A versatile benchmark and founda- 733
tion model for complicated chart reasoning. arXiv 734
preprint arXiv:2402.12185. 735

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 736
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 737
Jiang. 2023. Wizardlm: Empowering large lan- 738
guage models to follow complex instructions. arXiv 739
preprint arXiv:2304.12244. 740

Zhishen Yang, Raj Dabre, Hideki Tanaka, and Naoaki 741
Okazaki. 2024. Scicap+: A knowledge augmented 742
dataset to study the challenges of scientific figure 743
captioning. Journal of Natural Language Processing, 744
31(3):1140–1165. 745

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, 746
Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, 747
Weilin Zhao, Zhihui He, et al. 2024. Minicpm-v: 748
A gpt-4v level mllm on your phone. arXiv preprint 749
arXiv:2408.01800. 750

Sukmin Yun, Haokun Lin, Rusiru Thushara, Moham- 751
mad Qazim Bhat, Yongxin Wang, Zutao Jiang, 752
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo 753
Li, et al. 2024. Web2code: A large-scale webpage- 754
to-code dataset and evaluation framework for multi- 755
modal llms. arXiv preprint arXiv:2406.20098. 756

10

https://openai.com/index/gpt-4v-system-card/
https://openai.com/index/hello-gpt-4o
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,757
and Lucas Beyer. 2023a. Sigmoid loss for lan-758
guage image pre-training. 2023 IEEE/CVF Interna-759
tional Conference on Computer Vision (ICCV), pages760
11941–11952.761

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,762
and Lucas Beyer. 2023b. Sigmoid loss for language763
image pre-training. In Proceedings of the IEEE/CVF764
International Conference on Computer Vision, pages765
11975–11986.766

Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin,767
Xiao Li, Xiao Yu, Yue Wang, Bei Chen, and Jacky768
Keung. 2024a. Humaneval-v: Evaluating visual un-769
derstanding and reasoning abilities of large multi-770
modal models through coding tasks. arXiv preprint771
arXiv:2410.12381.772

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan,773
Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang. 2024b.774
Tinychart: Efficient chart understanding with visual775
token merging and program-of-thoughts learning.776
arXiv preprint arXiv:2404.16635.777

Wenqi Zhang, Zhenglin Cheng, Yuanyu He, Mengna778
Wang, Yongliang Shen, Zeqi Tan, Guiyang Hou,779
Mingqian He, Yanna Ma, Weiming Lu, et al. 2024c.780
Multimodal self-instruct: Synthetic abstract image781
and visual reasoning instruction using language782
model. arXiv preprint arXiv:2407.07053.783

Wenqing Zheng, S P Sharan, Ajay Jaiswal, Kevin Wang,784
Yihan Xi, Dejia Xu, and Zhangyang Wang. 2023.785
Outline, then details: Syntactically guided coarse-to-786
fine code generation. In International Conference on787
Machine Learning.788

11

https://api.semanticscholar.org/CorpusID:257767223
https://api.semanticscholar.org/CorpusID:257767223
https://api.semanticscholar.org/CorpusID:257767223
https://api.semanticscholar.org/CorpusID:258426713
https://api.semanticscholar.org/CorpusID:258426713
https://api.semanticscholar.org/CorpusID:258426713


A Appendix789

A.1 Implementation Details790

In the data generation stage, we utilize791

gpt-4o-2024-08-06 as the LLM for both792

direct and step-by-step generation processes.793

In the training stage, ChartCoder is initialized794

with SigLIP-384 (Radford et al., 2021) as the vi-795

sion encoder and DeepSeek Coder 6.7B (Guo et al.,796

2024) as the large language model. The whole797

training process is divided into alignment and in-798

struction tuning. During the alignment stage, we799

only train the vision-language connector with the800

chart-to-text alignment data. The learning rate is801

set to 1e-3. In the instruction tuning stage, we train802

the entire model for 1 epoch with a batchsize of803

128. The learning rate of SigLIP and other modules804

are 5e-6 and 1e-5 respectively, with a warmup at805

the beginning of 3%, then decays to 0 at the end806

of training. The alignment and instruction tuning807

processes cost 12 and 5 hours on 32 Tesla A100808

GPUs with 80 GB VRAMs.809

A.2 Benchmark Details810

ChartMimic (Shi et al., 2024) focuses on evalu-811

ating the ability of MLLMs to redraw charts from812

ArXiv papers, emphasizing the preservation of the813

original style and appearance. It consists of two814

subsets: testmini and test. Following the settings in815

the original paper, we adopt the Direct Mimic task816

on the testmini subset as the default evaluation stan-817

dard, reporting execution success rates alongside818

low-level and high-level scores.819

Plot2Code (Wu et al., 2024) aims to evaluate820

models’ abilities to generate code corresponding to821

charts from the available Matplotlib galleries, with822

a focus on textual similarity. We evaluate models823

on its Direct Asking task using three metrics: Pass824

Rate, Text-Match, and Rating.825

ChartX (Xia et al., 2024) contains various tasks826

with synthesis chart images, including Question827

Answering, Summarization, Description and Re-828

drawing. We choose the Redrawing task and report829

the GPT score as the metrics in ChartX.830

A.3 More Ablation Studies831

We also perform more ablation studies on the lan-832

guage backbone and further choose Qwen2.5-7B833

and Qwen2.5 Coder-7B (Qwen Team, 2024) for834

comparison. The results also show that using Code835

LLM as the language backbone is better than us-836

ing general LLM. However, we find that using the837

Methods
ChartMimic

Exec.Rate Low-Level High-Level

ChartCoder 91.4 77.4 74.0

Replace Language Backbone

Qwen2.5 88.1 73.4 67.9
△ -3.3 -4.0 -6.1

Qwen2.5 Coder 90.3 76.8 69.7
△ -1.1 -0.6 -4.3

Table 8: The ablation studies on model architecture
and data. The results show that the effectiveness of our
proposed model architecture and dataset.

Dataset Source Chart Quality

Mean µ SD σ
Qwen2-VL-7B Output Model generated 82.48 6.81
ChartCoder Output Model generated 85.22 6.78
ChartMimic Source Human written 87.66 4.30

Table 9: Performance Comparison of model outputs and
human-written sources. SD is the abbreviation version
for standard deviation.

Qwen2.5 Coder as the backbone does not perform 838

as well as using the DeepSeek Coder. This obser- 839

vation seems counterintuitive, as the official evalua- 840

tion suggests that the performance of the Qwen2.5 841

Coder is better than the DeepSeek Coder. We an- 842

alyze experimental results and find that the code 843

generated by Qwen2.5 is more standardized. For 844

instance, the DeepSeek Coder backbone tends to 845

use ax[0], ax[1], while the Qwen2.5 Coder back- 846

bone prefers a more standardized approach, such 847

as using for i in range(2): ax[i]. However, 848

in some complex scenarios, using a for loop may 849

lead to errors, such as ax[0] and ax[1] do not 850

have same number of bars. 851

A.4 Output Code Analysis 852

To evaluate the output code readability, we 853

conduct an ablation experiment, utilizing 854

gpt-4o-2024-08-06 to evaluate the output code 855

readability. We evaluate four aspects of the gener- 856

ated code, including Naming Conventions, Code 857

Structure, Comments, and Logical Clarity, with a 858

total score of 100. We choose the generated code 859

from the ChartMimic task (ChartCoder output) 860

and the ground truth code (human-annotated) in 861

the ChartMimic dataset. The results are as shown 862

in Table 9. We also evaluate the error types on 863

ChartMimic direct generation tasks with code and 864

general LLMs as the language backbone. The 865

results are shown in Figure 4. 866

12



Figure 4: Comparison of error types on ChartMimic
direct generation tasks with code and general LLMs as
language backbone, respectively.

Type pie line bar bar_num

Percent 8.0% 9.7% 8.3% 3.3%

Type 3d area box bubble

Percent 5.6% 3.9% 4.4% 2.8%

Type candlestick funnel heatmap multi-axes

Percent 2.8% 2.7% 3.9% 3.8%

Type rader ring pie rose

Percent 3.8% 2.7% 2.8% 3.9%

Type treemap violin scatter quiver

Percent 3.9% 3.9% 3.8% 5.2%

Type inset histogram graph error bar

Percent 1.2% 1.2% 1.2% 1.6%

Type error point density Combination Total

Percent 1.6% 1.2% 2.8% 100%

Table 10: Type distributions of the Chart2Code-160k
instruction-tuning dataset.

A.5 Chart2Code-160k Analysis867

We count the proportion of different charts in the868

Chart2Code-160k dataset in Table 10. Also, we869

utilize gpt-4o-2024-08-06 to evaluate the quality870

of the charts in the Chart2Code-160k and compare871

them with the real-world chart. The prompts are872

shown in Figure 8.873

13



" <Original Instruction > " :
" '{  \"title\": \"Ten most popular F.C. Internazionale Milano players on Instagram as of May 29 , 2020 (in million 
followers)\",  \"players\": [    {      \"name\": \"Lukaku\",      \"followers\": 5.3    },    {      \"name\": \"Young\",      
\"followers\": 2.49    },    {      \"name\": \"Godín\",      \"followers\": 1.81    },    {      \"name\": \"Martínez\",      
\"followers\": 1.75    },    {      \"name\": \"Asamoah\",      \"followers\": 0.93    },    {      \"name\": \"Brozovic\",     
\"followers\": 0.83    },    {      \"name\": \"Skriniar\",      \"followers\": 0.65    },    {      \"name\": \"D'Ambrosio\",  
\"followers\": 0.57    },    {      \"name\": \"De Vrij\",      \"followers\": 0.49    },    {      \"name\": \"Barella\",      
\"followers\": 0.46    }  ]}'. It's a correct json file transferred from the image. Please answer whether it's true or false." 
" < Label > " :
" False " 
MiniCPM-Lllama3-V2.5 Output
" < Original Response > " :
"True" ❌

" < Instruction with Code> ":
"< Code >\nYou can use the above code as the reference to solve the problem, but focus on extracting information 
from the image to answer the following problem.\n< Original Instruction >" 
MiniCPM-Lllama3-V2.5 Output
“< Response with Code > ":
“ The provided JSON data is not related to the original image or the bar chart displayed in the code. It represents a 
different set of data concerning the per capita real GDP of Massachusetts from 2000 to 2019, measured in chained 
2012 U.S. dollars. The data in the JSON file does not correspond to the content of the bar chart, which displays 
Instagram followers for soccer players from Interazionale Milano as of May 29, 2020. Therefore, the statement that 
this is a correct JSON file transferred from the image is false.”✅

ChartCoder Output
" < Code > "
" ```python\nimport matplotlib.pyplot as 
plt\nimport os\n\n# Data\nplayers = [‘Ashley 
Young’, ‘Danilo Ambrosio’, ‘Diego Godinho’, 
‘Kwadwo Asamoah’, ‘Laurento Brozovic’, 
‘Marcelo Brozovic’, ‘Milan Skriniar’,
Brozovic’ ‘Nicolo Barrella’, ‘Romelu Lukaku’, 
‘Stefan De Vrij’]\nfollowers = [2.5, 0.7, 1.8, 
0.9, 1.9, 0.8, 0.6, 0.4, 5.4, 0.5] ……``` "

Figure 5: A case study comparing the outputs of utilizing image and image+code as the inputs

import matplotlib.pyplot as plt
import numpy as np
# Data
models = ['GPT4', 'GPT-few-shot', 'GPT3.5', 'StarCoder', 'Code Llama', 'NCL']
accuracy = [3.5, 3.0, 2.5, 3.0, 3.5, 2.0]
completeness = [3.0, 2.5, 2.0, 2.5, 3.0, 1.5]
conciseness = [2.5, 2.0, 1.5, 2.0, 2.5, 1.0]
readability = [3.0, 2.5, 2.0, 2.5, 3.0, 1.5]
barWidth = 0.2
r1 = np.arange(len(models))
r2 = [x + barWidth for x in r1]
r3 = [x + barWidth for x in r2]
r4 = [x + barWidth for x in r3]
# Create the figure and the axes
fig, ax = plt.subplots(figsize=(10.0, 5.0))
# Plot the bars
ax.bar(r1, accuracy, color='#4682b4', width=barWidth, label='Accuracy')
ax.bar(r2, completeness, color='#ff7f0e', width=barWidth, label='Completeness')
ax.bar(r3, conciseness, color='#d62728', width=barWidth, label='Conciseness')
ax.bar(r4, readability, color='#5f9ea0', width=barWidth, label='Readability')
# Add xticks on the middle of the group bars
ax.set_xlabel('Language Models', fontweight='medium')
ax.set_ylabel('Ratings', fontweight='medium')
ax.set_title('Ratings of Language Models on a Scale from 1-4', fontweight='medium')
ax.set_xticks([r + barWidth for r in range(len(models))])
ax.set_xticklabels(models)
# Create legend & Show graphic
ax.legend(loc='upper right', fontsize='large')
plt.tight_layout()

import matplotlib.pyplot as plt
import numpy as np
# Data
models = ['GPT4', 'GPT-few-shot', 'GPT3.5', 'StarCoder', 'Code Llama', 'NCL']
accuracy = [3.5, 3.0, 3.0, 3.0, 3.5, 2.5]
completeness = [3.0, 2.5, 2.5, 2.5, 3.0, 2.0]
conciseness = [2.5, 2.0, 2.0, 2.0, 2.5, 1.5]
readability = [3.0, 3.0, 2.5, 3.0, 3.0, 2.5]
x = np.arange(len(models)) # the label locations
width = 0.2 # the width of the bars
# Plot
fig, ax = plt.subplots(figsize=(9.0, 5.0))
rects1 = ax.bar(x - 1.5*width, accuracy, width, label='Accuracy', color='#4f81bd')
rects2 = ax.bar(x - 0.5*width, completeness, width, label='Completeness', color='#f79646')
rects3 = ax.bar(x + 0.5*width, conciseness, width, label='Conciseness', color='#c0504d')
rects4 = ax.bar(x + 1.5*width, readability, width, label='Readability', color='#9bbb59')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_xlabel('Language Models')
ax.set_ylabel('Ratings')
ax.set_title('Ratings of Language Models on a Scale from 1-4')
ax.set_xticks(x)
ax.set_xticklabels(models)
ax.legend()
fig.tight_layout()

import matplotlib.pyplot as plt

# Data for the bar chart
ratings = {
'GPT4': {'Accuracy': 3.5, 'Completeness': 3.0, 'Consensus': 2.5, 'Readability': 3.0},
'GPT-few-shot': {'Accuracy': 3.0, 'Completeness': 2.5, 'Consensus': 2.0, 'Readability': 2.5},
'GPT3.5': {'Accuracy': 2.5, 'Completeness': 2.0, 'Consensus': 1.5, 'Readability': 2.0},
'StarCoder': {'Accuracy': 3.0, 'Completeness': 2.5, 'Consensus': 2.0, 'Readability': 2.5},
'Code Llama': {'Accuracy': 3.5, 'Completeness': 3.0, 'Consensus': 2.5, 'Readability': 3.0},
'NCL': {'Accuracy': 2.0, 'Completeness': 1.5, 'Consensus': 1.0, 'Readability': 1.5}
}
# Set up the figure and axes
fig, ax = plt.subplots(figsize=(9.0, 5.0))
# Plot the bars
for model, ratings in ratings.items():
    accuracy = ratings['Accuracy’]
    completeness = ratings['Completeness’]
    consensus = ratings['Consensus’]
    readability = ratings['Readability’]
    ax.bar(model, [accuracy, completeness, consensus, readability])
# Set the x and y tick labels
ax.set_xticks(['Accuracy', 'Completeness', 'Consensus', 'Readability'])
ax.set_yticks(range(1, 4))
# Set the x tick labels
ax.set_xticklabels(['Accuracy', 'Completeness', 'Consensus', 'Readability'])
# Set the y tick labels
ax.set_yticklabels(['1', '2', '3', '4'])
# Set the title
ax.set_title('Ratings of Language Models on a Scale from 1-4')

import matplotlib.pyplot as plt
import numpy as np

# Data
models = ['GPT4', 'GPT-few-shot', 'GPT3.5', 'StarCoder', 'Code Llama', 'NCL']
accuracy = [3.5, 3.0, 2.5, 3.0, 3.5, 2.0]
completeness = [3.0, 2.5, 2.0, 2.5, 3.0, 1.5]
conciseness = [2.5, 2.0, 1.5, 2.0, 2.5, 1.0]
readability = [3.0, 2.5, 2.0, 2.5, 3.0, 1.5]

# Plotting
fig, ax = plt.subplots(figsize=(9.0, 5.0))

x = np.arange(len(models))
width = 0.2

ax.bar(x - 1.5*width, accuracy, width, label='Accuracy', color='blue')
ax.bar(x - 0.5*width, completeness, width, label='Completeness', color='orange')
ax.bar(x + 0.5*width, conciseness, width, label='Conciseness', color='red')
ax.bar(x + 1.5*width, readability, width, label='Readability', color='green')

ax.set_ylabel('Ratings')
ax.set_title('Ratings of Language Models on a Scale from 1-4')
ax.set_xticks(x)
ax.set_xticklabels(models)
ax.legend()

InternVL2-Llama3-76B Output

ChartCoder OutputGPT-4o Output

InternVL2-B Output

You are an expert Python developer who specializes in 
writing matplotlib code based on a given picture. I 
found a very nice picture in a STEM paper, but there is 
no corresponding source code available. I need your 
help to generate the Python code that can reproduce the 
picture based on the picture I provide. Note that it is 
necessary to use figsize=(9.0, 5.0) to set the image 
size to match the original size. Now, please give me 
the matplotlib code that reproduces the picture below.

Instruction

Figure 6: A example of comparing the code corresponding to the bar chart generated by different models.

14



Prompt for Code Readability Evaluation

Please score the code’s readability based on the following four aspects. Each aspect is worth 25
points, for a total of 100 points.
Naming Conventions (25 points)
Score: [X]/25
Explanation: [Provide a brief explanation of how well the variable, function, and class names
convey their purpose and whether the naming style is consistent across the codebase.]
Code Structure (25 points)
Score: [X]/25
Explanation: [Explain whether functions are concise, whether the code uses indentation and blank
lines appropriately, and whether the code is modularized effectively.]
Comments (25 points)
Score: [X]/25
Explanation: [Discuss the clarity and appropriateness of the comments, and whether func-
tions/methods have proper documentation comments explaining inputs, outputs, and functionality.]
Logical Clarity (25 points)
Score: [X]/25
Explanation: [Evaluate the intuitiveness of the code, whether it’s easy to understand, and whether
the control flow is simple and avoids unnecessary complexity.]
Total Score: [X]/100
Summary: [Provide a brief overall assessment of the code’s readability, pointing out strengths and
potential areas for improvement.]

Figure 7: Prompt for dataset quality evaluation.

15



Prompt for Code Readability Evaluation

You are a professional chart analyser. Please evaluate the image based on the following four
criteria: aesthetics, readability, reproducibility, and data presentation simplicity. Provide a score
for each criterion and include an overall score along with a brief evaluation.
Scoring Criteria and Requirements:
Aesthetics (25 points)
Requirements:
The chart design should be simple and clear, avoiding complex decorations, and should effectively
communicate information.
Colors should be harmonious and have high contrast, making it easy to differentiate between
different data groups.
Legends and labels should be clear, with appropriately sized fonts, avoiding visual clutter.
Scoring: [X]/25
Readability (30 points)
Requirements:
The chart should have clear titles, axis labels, and legends, enabling quick communication of the
main message.
Data curves or point annotations should avoid being overly dense or overlapping, maintaining
good readability.
The overall layout should follow a logical structure without any confusing elements.
Scoring: [X]/30
Reproducibility (30 points)
Requirements:
The chart design should be easy to replicate using common tools.
Data availability is critical: even if the design is simple, missing context or data should result in
point deductions.
Data should be provided with clear sampling methods, units, and formats, enabling others to
recreate the chart from scratch.
The presentation of data should align logically with the chart design, avoiding overly customized
or complex elements.
Scoring: [X]/30
Data Presentation Simplicity (15 points)
Requirements:
Data presentation should be concise, avoiding redundant information.
Data should be displayed in an intuitive way, without excessive curves, points, or annotations.
High-scoring charts should focus on the main data being presented, avoiding decorative or unrelated
information.
Scoring: [X]/15

Figure 8: Prompt for dataset quality evaluation.

16


	Introduction
	Related Works
	Chart Understanding
	MLLMs For Code

	Chart2Code-160k Dataset
	Direct Chart-to-code Generation
	Step-by-step Chart-to-code Generation
	Dataset Analysis

	ChartCoder Model
	Model Architecture
	Model Training

	Experiments
	Baselines and Benchmarks
	Main Results
	Ablation Study
	Analysis

	Conclusion
	Appendix
	Implementation Details
	Benchmark Details
	More Ablation Studies
	Output Code Analysis
	Chart2Code-160k Analysis


