DigiRL: Training In-The-Wild Device-Control Agents with
Autonomous Reinforcement Learning

Abstract

Pre-trained vision language models (VLMs),
though powerful, typically lack training on
decision-centric data, rendering them sub-optimal
for decision-making tasks such as in-the-wild de-
vice control through Graphical User Interfaces
(GUIs) when used off-the-shelf. While train-
ing with static demonstrations has shown some
promise, we show that such methods fall short
when controlling real GUIs due to their failure to
deal with real world stochasticity and dynamism
not captured in static observational data. This pa-
per introduces a novel autonomous RL approach,
called DigiRL, for training in-the-wild device con-
trol agents through fine-tuning a pre-trained VLM
in two stages: offline and offline-to-online RL.
We first build a scalable and parallelizable An-
droid learning environment equipped with a VLM-
based general-purpose evaluator and then identify
the key design choices for simple and effective RL
in this domain. We demonstrate the effectiveness
of DigiRL using the Android-in-the-Wild (AitW)
dataset, where our 1.5B VLM trained with RL
achieves a 49.5% absolute improvement — from
17.7 to 67.2% success rate — over supervised fine-
tuning with static human demonstration data. It is
worth noting that such improvement is achieved
without any additional supervision or demonstra-
tion data. These results significantly surpass not
only the prior best agents, including AppAgent
with GPT-4V (8.3% success rate) and the 17B
CogAgent trained with AitW data (14.4%), but
also our implementation of prior best autonomous
RL approach based on filtered behavior cloning
(57.8%), thereby establishing a new state-of-the-
art for digital agents for in-the-wild device con-
trol.

1. Introduction

Advances in vision-language models (VLMs), especially
in regards to their remarkable common-sense, reasoning,
and generalization abilities imply that realizing a fully au-
tonomous digital Al assistant, that can simplify human life

by automating day-to-day activities on computer devices
via natural language interfaces, is no longer a distant as-
piration (Koh et al., 2024; Yan et al., 2023; Zhou et al.,
2023). An effective device control Al assistant should be
able to complete tasks in-the-wild through Graphical User
Interfaces (GUISs) on digital devices: make travel plans; ex-
periment with presentation designs; and operate a mobile
device autonomously, all while running amidst stochasticity
and distractors on the device, the Internet, and the tools it
interacts with. However, enhanced reasoning or common-
sense abilities do not directly transfer to intelligent assistant
behavior: ultimately we want Al assistants to accomplish
tasks, exhibit rational behavior, and recover from their mis-
takes as opposed to simply producing a plausible completion
to a given observation based on the data seen during pre-
training. This implies that a mechanism to channel abilities
from pre-training into a deployable AI “agent” is lacking.

Even the strongest proprietary VLMs, such as GPT-4V (Ope-
nAl Team, 2023) and Gemini 1.5 Pro (Gemini Team, 2024b),
still struggle to produce the right actions when completing
tasks on devices. While general-purpose vision-language
abilities help these models still make meaningful abstract
deductions about novel scenes when deployed, these deduc-
tions do not transfer to accurate reasoning for control (Yang
et al., 2023; Yan et al., 2023; Zheng et al., 2024; Xie
et al., 2024). As a result, most prior work for building
device agents construct complex wrappers around propri-
etary VLMs, combining them with prompting, search, or
tool use (Yang et al., 2023; Xie et al., 2024; Zhang et al.,
2024bsa; Yan et al., 2023). While building prompting or
retrieval wrappers to improve decision-making performance
of existing VLMs provides a “stop-gap” solution in the short
run, without updating the weights, the effectiveness of re-
sulting agents is inherently limited by the capabilities of
the base model (Zeng et al., 2023; Chen et al., 2023). For
example, we found that off-the-shelf VLMs make reasoning
failures that derail the agent (e.g., Figure | and Figure 11),
and these are a direct consequence of the base model. A dif-
ferent solution is to fine-tune the model on demonstrations
via imitation learning. However, the dynamic nature of the
web and device means that models trained to mimic actions
in stale data can result in sub-optimalilty as the eco-system
changes (Pan et al., 2024). Additionally, agents trained in
this way struggle to recover from out-of-distribution states



resulting from the agents’ own mistakes (Ghosh et al., 2021;
Jiang et al., 2024).

If we can instead build an interactive approach to train a
VLM to directly adapt and learn from its own experience on
the device and the Internet, that can be used to build a robust
and reliable device-control agent, without needing wrappers
on top of proprietary models. However, this learning-based
approach must satisfy some desiderata. First, it must use
online interaction data since static demonstration data would
not be representative of the task when the model is deployed:
for instance, even in the setting of web navigation alone,
dynamic nature of in-the-wild websites means that the agent
will frequently encounter website versions that differ sig-
nificantly from the scenarios seen during training and will
need to behave reliably despite changes in visual appear-
ance and distractions. Second, learning on-the-fly means the
approach must learn from multi-turn interaction data from
the model itself, a large of chunk of which would consist of
failures. Proper mechanisms must be designed to automati-
cally pick out the correct actions while filtering the wrong
ones.

We evaluate our agent trained with DigiRL in carry-
ing out diverse instructions from Android in the Wild
dataset (Rawles et al., 2023) on real Android device emula-
tors and find that our agent can achieve a 49.5% improve-
ment over the existing state-of-the-art agents (from 17.7%
to 67.2% success rate) AutoUI (Zhang and Zhang, 2023)
and CogAgent (Hong et al., 2023), and over 9% improve-
ment over our implementation of the prior best autonomous
learning approach based on Filtered Behavior Cloning. The
performance of our agent also significantly surpasses wrap-
pers on top of state-of-the-art proprietary VLMs such as
GPT-4V (OpenAl Team, 2023) and Gemini 1.5 Pro (Gem-
ini Team, 2024b) (17.7% success rate), despite using a sig-
nificantly smaller model (with 1.5B parameters). To our
knowledge, this is the first work to successfully build an
autonomous offline-to-online RL approach to enable state-
of-the-art performance on device-control problems.

2. DigiRL: autonomous RL for building a
strong device control agent

‘We now present our autonomous RL framework for train-
ing device agents. We pose the device control problem as
a partially-observed Markov decision process (POMDP)
and develop RL methods for this POMDP. The core of our
approach is based on a simple and scalable off-policy RL
method, advantage-weighted regression (AWR) (Peng et al.,
2019), but we make crucial modifications to handle stochas-
ticity and highly-variable task difficulty, through the use
of value functions trained with appropriate losses, and an
automatic curriculum, induced by an instruction-level value
function to maximize learning.

Definitions & notation. To explain our approach in detail,

we include several standard definitions used in reinforce-
ment learning (RL). The Q function for a policy 7 repre-
sents the expected long-term return from taking a specific
action at the current step and then following policy 7 there-

after: Q7 (sp,an,c) = B [Zih r(st,at,c)] The value

function V™ (sy,, ¢) is calculated by averaging the Q-value,
Q™ (sh, ap, ¢), over actions ay, drawn from the policy 7. The
advantage A™ (s, ap, ¢) for a state-action pair is computed
by subtracting the state’s value under the policy from its
Q-value: A™(sp, an,c) = Q7 (Sp, an,c) — V™ (sp, c).

2.1. Backbone of our approach: off-policy RL via
advantage-weighted regression

A starting point for our approach is the advantage-weighted
regression (AWR) algorithm (Peng et al., 2019), which says
that we can improve the policy reliably by regressing the
policy towards exponentiated advantages induced by the
reward function, as a proxy for optimizing the policy gradi-
ent while staying close to the previous policy (Kakade and
Langford, 2002; Schulman et al., 2017; 2015):

argmax, E, [logm(als,c) -exp (A(s,a,c)/B)], (2.1)
for some positive parameter 3 and the distribution of past
experience v, and A(s,a,c) denotes the advantage of a
state-action pair (s, a) given a context ¢. To avoid tuning the
hyperparameter /3, we consider an alternative that does “hard
filtering” on the advantages instead of computing exp(A),
similar to prior works (Nair et al., 2020; Wang et al., 2021).
This leads to the following loss function for fine-tuning the
model:

L(7) = —Efyer() [log w(als, c)]. (2.2)

Typically, these advantages are computed by running Monte-
Carlo (MC) rollouts in the environment to estimate the value
of a given state-action pair, and subtracting from it an esti-
mate of the value of the state alone given by a learned value
estimator. However, this approach is likely to produce high-
variance advantages given the stochasticity of the device
eco-system that affects MC rollouts.

2.2. Obtaining reliable advantage estimates from
doubly-robust estimators
To reliably identify advantageous actions given significant
environment stochasticity, we construct a per-step advantage
estimator, inspired by doubly-robust estimators (van Hasselt
et al., 2015; Schulman et al., 2018):
ASP(sp, ap, ¢) =NE (s ap, €) + VIP(sp41, €)

+ T(S}H Qp, C) - VSISP(Sh’ C)7 (23)
where \ is a weighting hyper-parameter. This construc-
tion of the advantage estimator is a simplified version
of Generalized Advantage Estimation (GAE) (Schulman
et al., 2018), and balances an advantage estimator with
higher variance Monte-Carlo estimates A2 ~"r(sy, ay, c)
(due to stochasticity) and an estimator with higher bias
VS (811, ¢) + r(sh, an, c) — VSP(sy, ¢) (due to imper-
fect fitting of the value function). We observed that com-
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Figure 1: Qualitative comparison between DigiRL and other approaches. AutoUI trained from static human demonstrations can
easily get stuck in out-of-distribution states while GPT-4V often get on a wrong goal (searched “logitech g933bestbuy.com logitech g933”
in Google instead of bestbuy.com). In contrast, DigiRL can recover from such states and complete complex instruction as requested.

bining both high-variance and high-bias estimators gave us
a sweet-spot in terms of performance. To implement the
step-level hard filtering, we simply threshold this doubly
robust estimator as A% (s, ap, ¢) > 1/H to decide which
actions progress towards the goal.

2.3. Automatic curriculum using an instruction-level
value function

While the AWR update (Equation 2.1) coupled with a robust
advantage estimator (Equation 2.3) is likely sufficient on
standard RL tasks, we did not find it to be effective enough
for device control in preliminary experiments. Often this
was the case because the task set presents tasks with highly-
variable difficulties that collecting more data on tasks that
the agent was already proficient at affected sample efficieny
negatively. In contrast, maximal learning signal can be
derived by experiencing the most informative tasks for the
agent during training. To this end, we design an instruction-
level value function V"(¢) to evaluate if a given rollout
can provide an effective learning signal:

Ainstruct(sh7a’h7c) — Zflzhr(shahc) _ Vinstrucl(c)
=r(su,am,c) — V=), (2.4)

where Zfl: wT(s¢,a¢,¢) is a Monte-Carlo estimator of
Q(sp, an, c). The equality holds because the POMDP for-
mulation only provides rewards at the end of a rollout. Intu-
itively, if a rollout attains a high value of A" (s, ay, c),
it means the value function V™" ig small. Therefore,
this rollout represents a valuable experience of the agent ac-
complishing a difficult task, and thus should be prioritized,
akin to ideas pertaining to prioritized experience (Schaul
et al., 2016) or level replay (Jiang et al., 2020). When train-
ing the actor with a buffer of historical off-policy data, we
first perform a filtering step to identify the top-p datapoints
with highest A™™(s;, ay,, c). Then, we use it for AWR

(Equation 2.1) with the doubly-robust advantage estimator
(Equation 2.3).

Implementation details. Inspired by the findings in some
recent works (Farebrother et al., 2024; Kumar et al., 2023)
that modern deep learning architectures like transform-
ers (Vaswani et al., 2023) are better trained with cross-
entropy losses instead of mean-squared losses, we utilize
a cross-entropy objective based on the Monte-Carlo esti-
mate of the trajectory reward for training both of our value
functions:

E(Vtmj) =—E,[r(sg,an,c)log V“aj(c)
+ (1 —r(sm,am,c))log(l — V™(c))] (2.5)
L(VIP) = —F,[r(sy,an,c)log V' (sy, an,c)

(1= r(smam, ¢) log(L — V'(sy, ap, )
2.6)

3. Experimental evaluation

The goal of our experiments is to evaluate the performance
of DigiRL on challenging Android device control prob-
lems. Specifically, we are interested in understanding if
DigiRL can produce agents that can effectively learn from
autonomous interaction, while still being able to utilize
offline data for learning. To this end, we perform a compar-
ative analysis of DigiRL against several prior approaches,
including state-of-the-art agents in Section 3.1. We also per-
form several ablation experiments to understand the neces-
sity and sufficiency of various components of our approach
in Section B.

3.1. Main results

Our main results are summarized in Table 1 and Figure 3.
we find that in both AitW General and AitW Web Shop-



AitW General AitW Web Shopping
Train Test Train Test
L 50
SET-OF-MARKS GPT-4V 5.2 13.5 3.1 8.3
P . Gemini 1.5 Pro 32.3 16.7 6.3 11.5
rompting - - - — - — — — — — - — — T - - - - T o
GPT-4V 13.5 17.7 12.5 8.3
APPAGENT . .
Gemini 1.5 Pro 14.6 16.7 5.2 8.3
SUPERVISED CogAgent 7.8 7.8 8.6 14.4
__ TRAINING AwoUL 125 M6 16 17T
Learning OFFLINE Filtered BC 51.7+54  50.7+1.8 447+16 458409
,,,,,,,,,,,, Ours 46956 628+1.0 393500 458466
OFF-TO-ON Filtered BC 3.5 408  61.5+1.1 53.6+47 H7.8+26
Ours 63.5+00 T71.9+1.1 68.2+6.8 67.2+1.5

Table 1: Main comparisons of different agents across various settings. Each offline experiment is repeated three times and the mean
and standard deviation are reported. Each online experiment is repeated two times. Results are evaluated with our autonomous evaluator

with the first 96 instructions in the train and test set.

ping subsets, our agent trained via DigiRL significantly
outperforms prior state-of-the-art methods based on prompt-
ing and retrieval (AppAgent + GPT-4V/Gemini 1.5 Pro) or
training on static demonstrations (CogAgent and AutoU]),
by a large margin with more than 49.5% absolute improve-
ment (from 17.7% to 71.9% on the General subset and from
17.7% to 67.2% on the Web Shopping subset). Notably, this
improvement from DigiRL is realized fully autonomously
without making use of human supervision (e.g. manually
labeled demonstrations or hand-written verifiers).

Are inference-time prompting and retrieval techniques
or supervised training enough for device control? Delv-
ing into Table 1, we observe that off-the-shelf proprietary
VLMs, even when supplemented with the set-of-marks
mechanism, do not attain satisfactory performance: both
GPT-4V and Gemini 1.5 Pro achieve success rates under
20%. One possible cause could be the under-representation
of Android device data in the pre-training data. More-
over, inference-time adaptation strategies such as AppA-
gent (Yang et al., 2023) show minimal improvement, with
gains not exceeding 5% for either model, suggesting a lim-
ited scope for improvement without fine-tuning of some
sort. As illustrated in Figure 4, the primary failures of
these VLMs stem from hallucinatory reasoning that lead
the VLMs to land on a relevant but wrong page. This sug-
gests that while state-of-the-art VLMs excel at high-level
reasoning in code or math problems, their reliability of
reasoning in less familiar domains, such as device control,
remains inadequate. For example, for the instruction “Go
to newegg.com, search for ’alienware area 51°, and select
the first entry”, a GPT-4V based agent erroneously searched
“alien area 51 ebay” in Google.com and decided that it had
made progress towards the task (Figure 11).

Training on domain-specific human demonstrations, how-
ever, does boost performance, allowing the smaller, special-
ized VLM, AutoUI, to match or surpass the larger, generalist
VLMs like GPT-4V and Gemini 1.5 Pro. Nonetheless, this

supervised imitation learning approach still fall short, with
success rates on both subsets remaining below 20%. This
shortcoming is not addressed via enhancements in model
scale or architecture, as evidenced by CogAgent (Hong
et al., 2023), with 17 billion parameters still achieving simi-
lar performance to AutoUI (Zhang and Zhang, 2023), which
has only 1.5 billion parameters. As depicted in Figure 4,
a predominant failure mode for these agents is an inability
to rectify their own errors. An example trajectory that we
observed is that for the instruction “what’s on the menu of
In-n-Out”, the agent accidentally activated the voice input
button, and failed to quit that page until the step limit. In
contrast, DigiRL is able to recover from the errors more
efficiently( Appendix D.2).

Comparison of different RL approaches. In Table 1 and
Figure 3, we present a comparative analysis of various RL
approaches. Notably, both offline and offline-to-online con-
figurations demonstrate that our RL approach, when aug-
mented with a continuous stream of autonomous interaction
data and reward feedback, substantially improves perfor-
mance. This improvement is evident from an increase in the
success rate from under 20% to over 40%, as the agent learns
to adapt to stochastic and non-stationary device interfaces.
Moreover, although the total sample sizes for offline and
offline-to-online settings are equivalent, the top-performing
offline-to-online algorithm markedly surpasses its offline
counterpart (75% versus 62.8% on the General subset). This
highlights the critical role and efficacy of autonomous envi-
ronment interaction, and establishes the efficacy of DigiRL
in learning from such uncurated, sub-optimal data. Lastly,
DigiRL consistently outperforms the state-of-the-art alter-
native, Filtered BC, across both the General and Web Shop-
ping subsets, improving from 61.5% to 71.9% and 57.8%
to 61.4%, respectively, highlighting DigiRL’s performance
and efficiency.
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Appendices

A. Problem setup and preliminaries

Problem formulation. We are interested in pixel-based interaction with virtual devices. We scope our study in the control of
Android devices: this is already significantly more challenging and more general than previous learning-based environments
that focus solely on web navigation (Koh et al., 2024; Zhou et al., 2023; Drouin et al., 2024), where the web browser itself is
merely one application within our broader environment, and link-based device controls (Yang et al., 2023; Zhang et al.,
2024a) are inadequate for tasks like games that do not support link inputs.

Each episode begins with the emulator initialized to the home screen. Subsequently, a task is selected from a predefined set
of language instructions, some examples of which are shown in Appendix C.1. An agent is then tasked with manipulating the
emulator to fulfill this instruction. At each time step, the agent receives a screenshot of the current screen as the observation.
Following the action space in prior literature (Rawles et al., 2023), the available actions include tapping and sliding based on
normalized (x, y) coordinates (ranging from 0 to 1 relative to the screen dimensions), typing text strings of variable length,
and pressing special buttons such as HOME, BACK, and ENTER, as illustrated in Figure 2. Our train and test instructions
comes from General and Web Shopping subsets in AitW (Rawles et al., 2023). These tasks consist of information-gathering
tasks like “What’s on the menu of In-n-Out?”, and shopping tasks on the web like “Go to newegg.com, search for razer
kraken, and select the first entry”.

Challenges of stochasticity. Real-world device contrl presents unique challenges of stochasticity absent in simulated
environments (Zhou et al., 2023; Shi et al., 2017) such as: (1) the dynamic nature of websites and applications, which
undergo frequent updates, causing the online observations to be different from stale offline data, (2) various unpredictable
distractors such as pop-up advertisements, login requests, and the stochastic order of search results. (3) technical challenges
and glitches such as incomplete webpage loading or temporary access restrictions to certain sites. Examples of scenarios with
such stochasticity from our experiments are shown in Figure 2. We observe that these stochastic elements pose significant
challenges for pre-trained VLMs, including even those fine-tuned on device control data.

Setup for reliable and scalable online RL. As autonomous RL interleaves data collection and training, to maximize
learning amidst stochasticity, it is crucial to have a real-time data collection pipeline to collect enough experience for
gradient updates. While this is not possible in single-thread Android emulator environments (Pan et al., 2024; Toyama et al.,
2021) due to latency, we parallelize our Android emulator using appropriate error handling as discussed in Appendix C.1. In
addition, the environment must provide a reward signal by judging whether the current observation indicates the agent has
successfully completed the task. To generalize our evaluator to support a wide range of tasks, we extend Pan et al. (2024)’s
end-to-end autonomous evaluator that does not require accessing the internal states of the emulator or human-written rules
for each task. This contrasts previous works that manually write execution functions to verify the functional completeness of
each task (Koh et al., 2024; Yao et al., 2023; Shi et al., 2017; Xie et al., 2024). We adopt Gemini 1.5 Pro (Gemini Team,
2024a;b) as the backbone of the autonomous evaluator. We seed this model with few-shot rollouts and the associated
human-labeled success indicators to guide evaluation of novel queries. This pipeline enables a single evaluator that can
evaluate all AiTW tasks. The evaluator is highly aligned with human annotations (average error rate 2.8%), validated in
Figure 5.

Baselines and comparisons. We compare DigiRL with: (a) state-of-the-art agents built around proprietary VLMs, with
the use of several prompting and retrieval-style techniques; (b) running imitation learning on static human demonstrations
with the same instruction distribution, and (c)a filtered BC approach (Pan et al., 2024). For proprietary VLMs, we evaluate
GPT-4V (OpenAl Team, 2023) and Gemini 1.5 Pro (Gemini Team, 2024b) both zero-shot and when augmented with
carefully-designed prompts. For the zero-shot setting, we use the prompt from Yang et al. (2023) and augment the observation
with Set-of-Marks (Zheng et al., 2024). Set-of-Marks overlays a number for each interactable element over the screenshot, so
that a VLM can directly output the number of the element to interact with in plain text instead of attempting to calculate pixel
coordinates, which is typically significantly harder. We also compare with AppAgent (Yang et al., 2023), which first prompts
the VLM to explore the environment, and appends the experience collected to the test-time prompt. We also compare with
two state-of-the-art fine-tuning methods for Android device control: AutoUI (specifically AutoUI-Base (Zhang and Zhang,
2023)) and CogAgent (Hong et al., 2023). AutoUI-Base uses an LM with 200M parameters, and a a vision encoder with
1.1B parameters. CogAgent has 11B parameters for its vision encoder and 7B for its LM. The supervised training corpus for
both AutoUI-Base and CogAgent contains AitW, including the instruction set and the emulator configuration we use.

Base VLM and offline dataset. Both Filtered BC and DigiRL use trained AutoUI-Base checkpoints with the image
encoder frozen. The instruction and step-level value functions for DigiRL employ this same frozen image encoder. The



action space dynamics

JTaod 4 -8-Q

click slide type home back enter real-world agent open-ended
environment model evaluator

(@= Human?

=

non-stationary website ~ pop-up ads unpredictable order load identity

Figure 2: Environment details. Top: actions space and dynamics of the environment. Botfom: examples of the read-world non-
stationarity and dynamism of the environment.

=== Filtered BC-1 == Filtered BC-2 DigiRL-1 DigiRL-2 GPT-4V
0.8 0.8
0.7 0.7
o
5 0.6 - 0.6 S
o ‘
n 0.5 0.5 s
0 0.4 0.4
O
E 0.3 / 0.3
0.2 0.2
/
0.1 0.1
0 320 640 960 0 320 640 960
#Trajectories #Trajectories

Figure 3: Offline-to-online training curves for Filtered BC and DigiRL. Curves are smoothed with exponential weighted averaging to
start from the performance of supervised trained policy. Two runs for each model are started on two different dates with at least two
days apart. Observe that DigiRL is able to improve faster with a fewer number of samples. Since the data collection frequency is the
bottleneck, these performance trends directly reflect performance trends against wall-clock time as well.

visual features output from the encoder are concatenated with instruction features derived from RoBERTa (Liu et al., 2019).
A two-layer MLP is then used to predict the value function. In the offline phase, the offline dataset is collected by rolling out
the initial AutoUI-Base supervised trained checkpoint as policy. For fair comparisons, we keep the number of offline data
collected in the pure offline training roughly the same as the total number of data collected in the offline-to-online training.
Due to the dynamic nature of the Internet-device eco-system, our offline data was stale by the time we were able to run our
offline-to-online experiments, and this presented additional challenge in offline-to-online learning. In both General and
Web Shopping subsets, offline experiments make use of around 1500 trajectories while offline-to-online experiments start
with around 500 offline trajectories and update with another 1000 online trajectories. In the offline phase, DigiRL skips
instruction-level filtering and instead trains the actor with all successful trajectories to make full use of the offline data. See
a detailed breakdown of our dataset in Appendix C.1.

B. Discussions

Failure mode analysis. While all the types of failure modes benefit from offline and offline-to-online RL training as shown
in Figure 4, the most consistent and significant reduction is probably for the failure mode of failing to recover from mistakes.
This is because while pre-trained models, generating plausible future tokens, can get distracted by the dynamic nature of
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Figure 4: Failure modes for each approach on both the AiTW General and Web Shopping subsets. We found that the failure mode RL
training is most effective at reducing compared to model supervised trained on human data is “Fail to recover from mistakes”. A more
fine-grained decomposition can be found in Appendix E.

the environment and, as a result, encounter at never-before-seen states. With no clue of how to escape such states, these
methods are unable to recover and fail to solve the task. In contrast, by training on autonomously-collected rollouts, our
agent DigiRL is able to learn from its own mistakes and reduces failures to recover over training.

Ablation study of each component in DigiRL. We conduct an ablation study on different components of DigiRL in
Figure 6 (right). We find that all the components used by our approach are necessary: (1) using cross-entropy for training the
value functions boosts performance by around 12% (compare Ours and Ours w/ Regression); (2) using step-level advantages
improves efficiency by 12% (comparing Ours and Ours w/o step-level advantage); (3) the use of automatic curriculum
improves the speed of learning by around 25% (comparing Ours w/o step-level advantage and Filtered BC); (4) Ours
outperforms vanilla AWR that does not employ a doubly-robust advantage estimator or curriculum.

Additionally, we also observe no degradation in performance as a result of “hard-filtering”, as show by nearly comparable
performance of our approach and the best run of exponential filtering obtained via an extensive tuning of the temperature
hyperparameter 7 in naive AWR (comparing Ours and Ours w/ vanilla AWR reweighting), despite simplicity of implementa-
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Figure 5: Correlation between our autonomous evaluator and human judgements for all policy models on General and Web
Shopping subsets. For repeated offline and online runs, we report the correlation results for the run with the highest autonomous evaluation
success rate.



= Qurs Vanilla AWR
= Ours w/ regression Ours w/ AWR reweighting
=== Qurs w/o step-level advantage === Filtered BC

0.65 A
0.60
0.55 |
0.50
0.45
0.40

Success Rate

0.35 A
0.30
0.25 A

0.20 1 - - - - - -
0 100 200 300 400 500 600
#Trajectories

Figure 6: Ablation study results on the AitW Web Shopping subset.

tion in the hard filtering approach. Putting together, these choices result in a new state-of-the-art RL approach for device
control.

Evaluation of our autonomous evaluator. In Figure 5, we present the findings from a user study aimed at assessing
the accuracy of our autonomous evaluator. Our results indicate that the success rates reported by our automatic evaluator
are remarkably consistent with those assessed by human evaluators across almost all models, with differences less than
3%. Furthermore, we observed that evaluations on the Web Shopping subset are more precise compared to those on the
General subset. This increased accuracy likely stems from the fact that tasks in the General subset are formulated in
free-form language, which can introduce ambiguity, whereas the Web Shopping subset features a narrower range of language
expressions, reducing potential variability.

C. Environment details
C.1. Post-processing of AitW

The Android in the Wild (AiTW) task set is a large-scale dataset for android device control, containing five subsets:
GoogleApps, Install, Web Shopping, General, and Single, where we select the General and Web Shopping subsets. Single
subset is not considered here because all tasks in Single can be completed within one step and thus this subset fails to
examine the multi-step challenges that we are interested in this paper. Install and GoogleApps are not considered due to
security reasons as those tasks require an active Google account and parallel emulations can flag security concerns.

General. The General set focuses on searching for information and basic application usage. For example, it contains
searching for latest news in Chile, search for flights from NYC to Sydney, opening Gmail, etc. We use all 545 tasks in the
training set for training and the first 96 tasks in the test set for testing due to computational and budget constraints. The
maximum allowed number of steps for this subset is 10. Offline data is collected by rolling our the initial AutoUI policy
with tasks from the training set. The offline data used for the offline-to-online setting contains 608 trajectories while the
offline data used for the offline setting contains 1552 trajectories. Some task examples are shown in Table 3.

Web Shopping. The Web Shopping subset comprises search instructions on various shopping websites, like searching for
razer blader on ebay. As some websites (e.g. Amazon) and operations (e.g. adding items to cart) frequently require captcha
verifications, we post-process the Web Shopping subset to exclude such operations and websites and also make the task
easy to evaluate for our autonomous evaluator. The resulting task set involves navigating through five websites (costco.com,
bestbuy.com, target.com, walmart.com, newegg.com) and three basic operations (go to website, search in the website, and
select items from the searched results). Our post-processed training set contains 438 tasks and our testing set contains 96
tasks. Example tasks after post-processing can be found in Table 3. The maximum allowed number of steps for this subset is
20. Offline data is collected by rolling our the initial AutoUI policy with tasks from the training set. The offline data used
for the offline-to-online setting contains 528 trajectories while the offline data used for the offline setting contains 1296
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Figure 7: DigiRL overview. DigiRL is built upon a VLM that has been pre-trained on extensive web data to develop fundamental
skills such as common knowledge, reasoning, and visual grounding. Initially, we employ offline RL to fine-tune the VLM using stale
task-specific data, which helps in eliciting goal-oriented behaviors. Subsequently, our agent engages with real-world graphical user
interfaces, continuously enhancing its performance through online RL and autonomous performance evaluations.

Task Example

How do I get to the nearest Verizon Store?

How much does a 2 bedroom apartment rent for in Denver?
Search for flights from Barcelona to Boston

What’s a good restaurant in New York?

What’s on the menu at Burger King?

Table 2: Examples of task descriptions in the AiTW General task set.
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trajectories.

Difficulty Task Example

Go to costco.com

: Go to walmart.com
> Go to costco.com, search for "bose soundsport free"
Go to walmart.com, search for "logitech g910"
3 Go to costco.com, search for "bose soundsport free" and select the first entry

Go to walmart.com, search for "logitech g910" and select the first entry

Table 3: Examples of task descriptions in the AiTW Webshopping task set.

D. Qualitative examples
D.1. Random sample of trajectories for different agents

In Figures 8 and 9, we provide trajectories of DigiRL, AutoUI, and GPT-4V randomly sampled from our test set to offer
a qualitative understanding of the agents’ performance. As shown in these examples, DigiRLcan efficiently carry out
in-the-wild device control tasks and less likely to get stuck or get to a wrong page compared to AutoUI and GPT-4V.

D.2. Error Recovery

We observe that DigiRL is able to recover from its own mistakes. As shown in Figure 10, we find that DigiRL explores
ways to get back to the original screen in order to perform a search. As a comparison, AutoUI fails to reset to the original
screen and gets stuck at the diverged screen. Under the hood, we find DigiRL trying to maximize the state value, which
usually induces it to reset to the original screen (that has a large value to success).

D.3. Reasoning failure of GPT-4V

The performance of GPT-4V failed on AiTW tasks predominantly due to not being able to carry out control actions as it
plans on a high level, and then not being able to recover from these mistakes. Moreover, one of the main reasons why it
is not able to recover from a mistake is that it might hallucinate and make itself believe that it is a wrong app or website.
Indeed, GPT-4V constructs a plan of further actions when provided a task from either Web Shopping or General dataset of
AiTW. Then, when it makes a misclick and fails to successfully proceed in an intermediate step, it might think that it actually
solved that intermediate step and is in the correct app or website to execute further actions, causing the overall trajectory to
fail. An example of this is provided in Figure 11. Here, we ask the model to search for an item in a webshopping website, in
particular in “newegg.com”. However, the model fails to proceed to that website due to not being able to precisely locating
the search button. Then, instead of trying to go to that website again, the model thinks it is already in that webshopping
website, and mistakes the search bar of Google with the search bar of “newegg.com”. Hence, the rest of the trajectory also
fails. Another slightly different phenomenon is illustrated in Figure 12. Here, the model is able to proceed to the correct
website and search for an item, but this time it fails to tap on the search button on the website and clicks to an advertisement
instead. Consequently, the model fools itself to think it successfully searched the item, and scrolls the page hoping to find
that item, but it cannot do so because in reality it views the results of the advertisement. The primary reason of these failures
is the challenge of grounding the control actions in GUI interfaces to realize the intermediary goals laid out by GPT-4V
model’s thoughts. As an example, we provide an illustration of trying to set up an alarm task in Figure 13. Here, in the
last frame, it fails to execute the precise movements in the necessary amount of rounds to correctly set up the alarm to the
desired time, and in the last frame we see that the action taken does not align with the thought process of the model.

E. Fine-grained failure modes

In Figure 14, we present a more fine-grained breakdown for all six failure modes provided in the user study. Those failure
modes include:

e Failure to recover from mistakes refers to the scenario where the agent made a mistake that led it to states from which it
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Figure 11: Failure of GPT-4V, with its thoughts and link-based actions given. A typical cause of failure is that it cannot tap
on the correct “search” button after entering a query and mistakenly tapped onto the “x” symbol in the search bar as the
“search” button. Here the goal is: Go to newegg.com, search for “alienware area 51 and select the first entry. As seen in red
emboldened actions, it fails to press search button and deletes the query instead. Also, as seen in red highlighted parts in
thoughts, it thinks it is in “newegg.com” website even though it is not.
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Figure 12: Failure of GPT-4V, with its thoughts and link-based actions given. This time the reason for failure is misclick
on the wrong button. The task is “Go to costco.com, search for “acer predator”, and select the first entry”. Notice that up
until the fourth frame in this Figure, the trajectory goes correct. But then it clicks on the generic advertisements on the
Costco.com website, and it cannot recover back. It continues to scroll the page and takes wrong actions thereafter.
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Figure 13: Failure of GPT-4V, with an example task on the AiTW general test set. The task is “Set an alarm for 4pm”. Here,
GPT-4V is able to successfully navigate to the clock app, and the alarm settings of that app. However, it cannot take the
correct precise actions to set the alarm quickly enough, and it fails due to maximum rounds reached. In the last round, notice
that the action of tap(1) contradict with its own thought process of setting minutes to “00”.

General

Set-Of-Marks Set-Of-Marks AppAgent AppAgent Filtered BC
GPT4V  Gemini-1.5-Pro  GPT4V ~ Gemini-1.5-Pro  AutoUl CogAgent Offline
Web Shopping
Set-Of-Marks Set-Of-Marks AppAgent AppAgent Filtered BC
GPT4V ~ Gemini-1.5-Pro  GPT4V ~ Gemini-1.5-Pro  AutoUl CogAgent Offline

DigiRL Filtered BC
Offline Online
DigiRL Filtered BC
Offline Online

DigiRL
Online
Fail to recover from mistakes
Fail to click on the right link or fail to type
Fail to take reasonable attempts at all
Quit or press HOME early
Stops at wrong but relevant page
Technical issues
DigiRL Task success
Online

Figure 14: Failure modes decomposition for each policy model for both General and Web Shopping subsets.
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failed to quickly recover and resume the task, such as a wrong google search page.

e Failure to click on the right link or failure to click refers to the failure mode where the agent either fails to locate the
element that it tries to click on and keeps clicking on the nearby region, or fails to start typing in the string when it is
supposed to do so.

e Failure to take reasonable attempts at all refers to the failure mode where there is no clear reason that the agent fails to
complete the task and does not seem to be on the right track throughout the trajectory.

* Quit or press HOME early refers to the failure mode where the agent decided to finish the task or press HOME to start
over before the task is actually finished.

 Stops at wrong but relevant page refers to the failure mode where the agent arrives at a wrong page and mistakenly
thinks that it had completed the task. For example, the agent finds a macbook on costco.com while the instruction
asked it to find a macbook on ebay.com.

e Technical issues refer to the failure mode that either the task is impossible (e.g. the tasks asks to open Amazon app but
this app is not installed) or the agent is temporarily blocked from a certain website due to frequent visits.

The translation between fine-grained failure modes and coarse-grained failure modes is presented in Table 4.

Fine-Grained Failure Coarse-Grained Failure

Fail to recover from mistakes Fail to recover from mistakes

Fail to click on the right link or fail to type = Get stuck midway

Fail to take reasonable attempts at all Get stuck midway
Quit or Press HOME early Arrive at wrong goal
Stops at wrong but relevant page Arrive at wrong goal
Technical Issues None

Table 4: Examples of task descriptions in the AiTW Webshopping task set.

F. Experiment machines

Our main experiments are conducted on VM instances from Google Cloud Platform. Each VM instance comes with 1x
Tesla T4 GPU and 16x Intel(R) Xeon(R) CPU.

G. Setup for parallel environment

Running multiple emulators in parallel can be challenging due to the inefficiency in thread synchronization and frequent
fault propagation when one emulator runs into an unknown error. To address this challenge, we set up a server-client system
where all emulator processes are running in independent server processes. Each emulator process communicates with the
main training process through different UlAutomotor servers. The main training process sends high-level instructions to
UIAutomotor servers (such as reset and step), while UITAutomotor servers parse high-level instructions into low-level Ul
commands (such as typing a character and tapping at a coordinate) and such Ul commands are executed by the emulator
processes. When an exception is thrown in the emulator, the UTAutomotor examines if it is recoverable (e.g. an Ul command
takes too long to execute in the emulator) and reset the emulator process if it is not. When an exception is thrown in the
UIAutomotor server, the main training process stops and resets the UTAutomotor server to ensure data correctness.

This design can easily be scaled up to a multi-machine setting. As illustrated in Figure 15, one host machine equipped with
GPU accelerator has a local copy of the current policy 7, and distributes the policy to all worker machines equipped with
only one GPU and multiple CPUs. Each worker machine will then collect trajectories of different tasks using ;. After all
collection processes are synchronized, the host machine gathers all the trajectories together to update the policy to 74 ;.
This process keeps iterating until the policy converges.

The performance boost with respect to the number of worker machines is nearly linear, as demonstrated in Figure 16,
where we conduct experiments that examine the scaling performance of our parallel emulator. Our distributed emulator
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Figure 15: Multi-machine parallel emulator execution. The host machine is equipped with GPU accelerators and the worker
machines are equipped only with CPUs. The policy update is executed on the worker machine and the trajectory collections
are executed distributedly on the worker machines and aggregated by the host machine.
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Figure 16: Emulation speed w.r.t number of CPUs used. The upper bound can only achieved when there is no communication and
error handling cost. Our design of distributed emulator can significantly improve the efficiency of emulation compaared to the vanilla
method of running all emulations over the same instance.

that runs emulations across multiple servers can reliably collect data with up to 64 parallel emulators on 128 CPUs with
near-linear speedup. In contrast, a naive baseline that runs all parallel emulations on the same server achieves much inferior
performance (0.74 compared to 1.74 trajs/min using 64 CPUs).

H. Autonomous evaluator details

Our autonomous evaluator gives a reward to each observation we get. The observation is composed of the current screenshot
of device and the task. The evaluator gives a reward of 1 if the screenshot shows a completion of the task, and will terminate
the POMDP as a result result.

The optimized prompt is shown in Figure 17 and Figure 18 for General and Web Shopping subsets respectively.
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Prompt

You're an expert in evaluating whether the Screenshot successfully completes the Task.

Examples
Screenshot: {train_1.png}
Task: Open the settings.
Q: What should I expect to see on the screenshot if I've opened the settings?
A: Ishould expect to see I'm in the settings app. The screenshot shows the home screen of a mobile device, with
various app icons displayed, including the settings app icon, but the settings app is not opened.
Status: failure

Screenshot: {train_2.png}

Task: Find hotels in washington dc

Q: What should I expect to see on the screenshot if I've searched for hotels in Washington, DC?

A:1should expect to see I'm in a search results page for hotels in Washington, DC. The screenshot shows a Google
search page with the search field populated with the query "hotels in washington dc" and a list of suggested searches
related to hotels in Washington, DC, but it does not show any search results for hotels in Washington, DC.

Status: failure

Screenshot: {train_3.png}

Task: What's a good restaurant in Portland?

Q: What should I expect to see on the screenshot if I've searched for a good restaurant in Portland?

A: I should expect to see I'm in a search results page for a good restaurant in Portland. The screenshot shows a
Google search page with a search input field for "good restaurant in portland" and a map results preview showing
business locations near Portland, like "Li Pigeon", "Portland City Grill", and "Higgins",

Status: success

... (more cases)

Screenshot: {test.png}

Task: {task_this_traj}

Respond in this format:

Q: What should I expect to see on the screenshot if I've <repeat the task>?
A:1should expect to see <first expectation, then what's in the given screenshot.>
Status: success or failure (don't return anything else)

Start with "Q:".

Response

Q: What should I expect to see on the screenshot if I've searched for the price of a 12' ladder at Home Depot?

A: I should expect to see the price of a 12' ladder at Home Depot; the screenshot shows a search result page for the p
rice of a 12' ladder, with some product advertisements showing prices from Home Depot.

Status: success
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Figure 17: Prompt for our autonomous é/hluator for tasks in AitW General subset.




Prompt

You're an expert in evaluating whether the Screenshot successfully completes the Task.

Screenshot: {train_1.png}

Task: Go to bestbuy.com

Q: What should I expect to see on the screenshot if I've gone to bestbuy.com?

A: Ishould expect to see I'm in the Best Buy website, which usually shows the best buy logo with some featured prod
ucts and categories. The screenshot shows I'm searching for "bestbuy.com" in the Google search (with some search s
uggestions) instead of being in the Best Buy website.

Status: failure

Screenshot: {train_2.png}

Task: Go to ebay.com, search for "corsair k70"

Q: What should I expect to see on the screenshot if I've gone to ebay.com AND searched for "corsair k70"?

A: Ishould expect to see I'm in the eBay website and search results for "corsair k70". The screenshot shows I'm in the
eBay ebay website with some search suggestions for "corsair k70" but it does not show search results of the product,
which usually includes price and the product details.

Status: failure

Screenshot: {train_3.png}

Task: Go to ebay.com, search for "lenovo thinkpad"

Q: What should I expect to see on the screenshot if I've gone to ebay.com AND searched for "lenovo thinkpad"?

A: Ishould expect to see I'm in the eBay website and search results for "lenovo thinkpad". The screenshot shows I'm
in the eBay website and have several search results for "lenovo thinkpad".

Status: success

... (more cases)

'Your Tur
Screenshot: {test.png}
Task: {task_this_traj}
Respond in this format:
Q: What should I expect to see on the screenshot if I've <repeat the task>?
A: I should expect to see <first expectation, then what's in the given screenshot.>
Status: success or failure (don't return anything else)
Start with "Q:".

Response

Q: What should I expect to see on the screenshot if I've searched for the price of a 12' ladder at Home Depot?

A: I should expect to see the price of a 12' ladder at Home Depot; the screenshot shows a search result page for the p
rice of a 12' ladder, with some product advertisements showing prices from Home Depot.

Status: success
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Figure 18: Prompt for our autonomous evalgator for tasks in AitW Web Shopping subset.




1. Zero-shot Baseline Details

Figure 19 shows the prompt that we used for testing the Set-of-Marks performance for GPT-4V and Gemini 1.5 Pro. This
prompt is directly taken from Yang et al. (2023).

Prompt

"You are an agent that is trained to perform some basic tasks on a smartphone. You will be given a \nsmartphone
screenshot. The interactive Ul elements on the screenshot are labeled with numeric tags starting from 1. The
\nnumeric tag of each interactive element is located in the center of the element\n\nYou can call the following
functions to control the smartphone:\n\nl. tap(element: int)\nThis function is used to tap an UI element shown on
the smartphone screen\n\'element\" is a numeric tag assigned to an UI element shown on the smartphone screen.
\nA simple use case can be tap(5), which taps the Ul element labeled with the number 5\n\n2. text(text_input:
str)\nThis function is used to insert text input in an input field/box. text_input is the string you want to insert and
must \nbe wrapped with double quotation marks. A simple use case can be text(\'Hello, world!\"), which inserts the
string \n\"Hello, world!\" into the input area on the smartphone screen. This function is usually callable when you
see a keyboard \nshowing in the lower half of the screen\n\n3. long_press(element: int)\nThis function is used to
long press an UI element shown on the smartphone screen\n\'element\' is a numeric tag assigned to an UI element
shown on the smartphone screen.\nA simple use case can be long_press(5), which long presses the UI element
labeled with the number 5\n\n4. swipe(element: int, direction: str, dist: str)\nThis function is used to swipe an UI
element shown on the smartphone screen, usually a scroll view or a slide bar\n\"element\' is a numeric tag assigned
to an UI element shown on the smartphone screen. \"direction\" is a string that \nrepresents one of the four
directions: up, down, left, right. \"direction\" must be wrapped with double quotation \nmarks. \"dist\" determines
the distance of the swipe and can be one of the three options: short, medium, long. You should \nchoose the
appropriate distance option according to your need\nA simple use case can be swipe(21, \"up\’, \'medium\"), which
swipes up the UI element labeled with the number 21 for a \nmedium distance\n\n5. grid()\nYou should call this
function when you find the element you want to interact with is not labeled with a numeric tag and \nother
elements with numeric tags cannot help with the task. The function will bring up a grid overlay to divide the
\nsmartphone screen into small areas and this will give you more freedom to choose any part of the screen to tap,
long \npress, or swipe.

The task you need to complete is to How much does a 2 bedroom apartment rent for in Denver?.
Your past actions to proceed with this task are summarized as follows: None

Now, given the documentation and the following labeled screenshot, you need to think and call the function needed
to proceed with the task. Your output should include three parts in the given format:

Observation: <Describe what you observe in the image>

Thought: <To complete the given task, what is the next step I should do>

Action: <The function call with the correct parameters to proceed with the task. When you are certain that the task
is successfully done and the goal is reached as of the current observation, you should output FINISH. You cannot
output anything else except a function call or FINISH \nin this field.>

Summary: <Summarize your past actions along with your latest action in one or two sentences. Do not include the
numeric \ntag in your summary>\nYou can only take one action at a time, so please directly call the function."

Figure 19: Set-of-Marks prompting. The boldened inputs can be changed according to our goal. The task changes for every
different task. The past actions change as we take actions (it is None now since this is the prompt for the first round).
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J. Other Experiments
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Figure 20: Success rate with different horizon length (H < {10, 20})under different methods on the AiTW Google
Search task set.

J.1. Horizon Limit

We investigate the horizon limit of filtered BC and DigiRL on the AitW General subset. As most tasks can be effectively
solved within 10 steps, we specify two horizon limits: a sufficient horizont H = 10, and a redundant horizon H = 20.
Results show that a redundant horizon introduces significantly faster learning speed for both filtered BC and DigiRL,
presumbaly because longer horizon means more opportunity to try in a single trajectory. In both horizon settings, we observe
the DigiRL offers a significant speedup of around 100 trajectories over Filtered BC.

K. Hyperparameters

Hyperparameters for both Filtered BC and DigiRL are carefully tuned through binary search on the training set of General
and Web Shopping subsets. The final choice of hyperparameters for both methods can be found in Table 5. As shown in the
table, the only hyperparameters introduced by DigiRL are supervised training hyperparameters for the value function and
instruction value function (including number of iterations and learning rate) and GAE .
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Table 5: Hyperparameters for All Experiments

Method Hyperparameter Offline  Offline-to-Online
actor Ir 3e-3 3e-3
batch size 128 128
rollout trajectories - 16
Filtered replay buffer size - 5000
BC rollout temperature - 1.0
maximum gradient norm 0.01 0.01
actor updates per iteration 20 20
number of iterations for offline actor updates 10 10
actor Ir 3e-3 3e-3
value function Ir 3e-3 3e-3
instruction value function Ir 3e-3 3e-3
instruction value function Ir 3e-3 3e-3
batch size 128 128
rollout trajectories - 16
DigiRL replay buffer size - 5000
rollout temperature - 1.0
maximum gradient norm 0.01 0.01
GAE )\ 0.5 0.5
actor updates per iteration 20 20
value function updates per iteration 5
instruction value function updates per iteration -
number of iterations for offline actor updates 10 10
number of iterations for offline value function updates 20 20
number of iterations for offline instruction value function updates - 20

Table 6: Hyperparameters for DigiRL and Filtered BC on both General and Web Shopping subset of AitW..
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