
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING FEDERATED DOMAIN ADAPTATION WITH
MULTI-DOMAIN PROTOTYPE-BASED FEDERATED FINE-
TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Domain Adaptation (FDA) is a Federated Learning (FL) scenario where
models are trained across multiple clients with unique data domains but a shared
category space, without transmitting private data. The primary challenge in FDA is
data heterogeneity, which causes significant divergences in gradient updates when
using conventional averaging-based aggregation methods, reducing the efficacy
of the global model. This further undermines both in-domain and out-of-domain
performance (within the same federated system but outside the local client). To
address this, we propose a novel framework called Multi-domain Prototype-based
Federated Fine-Tuning (MPFT). MPFT fine-tunes a pre-trained model using multi-
domain prototypes, i.e., pretrained representations enriched with domain-specific
information from category-specific local data. This enables supervised learning on
the server to derive a globally optimized adapter that is subsequently distributed
to local clients, without the intrusion of data privacy. Empirical results show
that MPFT significantly improves both in-domain and out-of-domain accuracy
over conventional methods, enhancing knowledge preservation and adaptation in
FDA. Notably, MPFT achieves convergence within a single communication round,
greatly reducing computation and communication costs. To ensure privacy, MPFT
applies differential privacy to protect the prototypes. Additionally, we develop a
prototype-based feature space hijacking attack to evaluate robustness, confirming
that raw data samples remain unrecoverable even after extensive training epochs.
The complete implementation of MPFL is available at https://anonymous.
4open.science/r/DomainFL/.

1 INTRODUCTION

Federated Learning (FL) is a privacy-preserving distributed machine learning paradigm designed to
protect the data of participating clients (McMahan et al., 2017b). In FL, only models trained on local
data are shared between clients and servers, rather than the raw data itself, mitigating the risk of data
leaks. Mainstream FL research primarily focuses on optimizing each client’s performance within
its local data domain (in-domain performance). However, in Federated Domain Adaptation (FDA)
scenarios, clients need to perform well on the collective data domains shared by all participants to
meet certain business requirements. For instance, consider a consortium of banks training a model
to detect fraudulent transactions. Each bank has distinct customer bases and transaction patterns,
leading to variations in their data (domains). A good out-of-domain performance is essential for
anticipating new risks that a bank may not be exposed to yet. The challenge is to ensure the global
model performs well across all banks, achieving good in-domain accuracy (within each bank’s typical
use cases) and out-of-domain accuracy (generalizing across the federated financial system).

Studies have shown that FL achieves results similar to centralized training only when the datasets
among clients are independently and identically distributed (i.i.d) and share similar domain char-
acteristics (Liu et al., 2023; Seol & Kim, 2023; Shaheen et al., 2022). In typical scenarios where
all clients’ models are trained on local data from the same domains, update directions are aligned,
making it feasible to use averaging-based aggregation algorithms such as FedAvg (McMahan et al.,
2017b). However, in FDA, in which clients have unique domains but a shared category space, the

1

https://anonymous.4open.science/r/DomainFL/
https://anonymous.4open.science/r/DomainFL/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) centralized learning (b) FL with averaging-

based aggregation

P

P P

P

(c) MPFT with average

sampling

(d) MPFT with cluster

sampling

P

P

P P

P

P

P

P

(e) MPFT with random

sampling

P

P

P

P
P

P
P

P

colors: domain class P

p

P prototype aggregated model local model

Figure 1: Comparison of MPFT to centralized learning and previous averaging-based FL approaches.

significant dissimilarities of feature space among local model updates mean that averaging of weights
may not yield an optimal global model (Su et al., 2024; Sun et al., 2021).

To address this issue, we propose a novel framework called Multi-domain Prototype-based Federated
Fine-Tuning (MPFT). MPFT tackles this issue by having each client generate a specific proportion
of data embeddings (i.e., prototypes) to be transmitted to the server to create a prototype training
dataset. This allows us to simulate a centralized learning approach without transferring raw data, as
prototypes encapsulate sufficient domain-specific features to represent the entire data domain. The
server then fine-tunes a global adapter using this comprehensive set of prototypes, with the goal of
approximating the performance of centralized learning without relying on conventional averaging
approaches to derive a global model. Figure 1 illustrates how our aggregation method compares to
centralized learning and traditional averaging-based FL approaches.

Since only a specific proportion of local data embeddings are sampled as prototypes, and MPFT
requires only a single round of global communication to converge, our framework incurs significantly
lower computation and communication costs compared to other multi-round FL frameworks. MPFT
also incorporates a differential privacy mechanism to mitigate the risk that the original data of specific
prototypes are exposed during the prototype transmission process. Furthermore, simulations of
feature space hijacking attacks on MPFT demonstrate that attackers cannot reconstruct the original
data from the uploaded prototypes, even when the pretrained prototype encoder is known.

Our contributions are as follows: a) We propose MPFT, a one-round federated fine-tuning framework
with convergence guarantees that outperforms previous methods on multi-domain environments. b)
We introduce a novel metric to evaluate the performance of the FDA, specifically assessing out-
of-domain and in-domain accuracy to consider the trade-off between knowledge preservation and
adaptation. c) We demonstrate empirically that MPFT incurs lower computational and communication
overheads as compared to other FL methods while ensuring privacy through differential privacy
protection of the prototypes and maintaining robustness against feature space hijacking attacks.

2 RELATED WORK

Efforts to enhance performance in FL across heterogeneous datasets (FDA) have been extensive.
Regularization methods during training, such as FedProx (Li et al., 2020) and FedDyn (Jin et al., 2023),
or knowledge distillation techniques like FedGen (Venkateswaran et al., 2023) and FedNTD (Lee
et al., 2022), aim to align local models more closely with the global model. Such approaches help
mitigate the divergence among local models but rely on the assumption that the averaged global
model is well-suited for the entire data distribution which often does not hold in FDA.

Updating only parts of the model during aggregation is another strategy, exemplified by personalized
FL (PFL) (Tan et al., 2022a), which aims to customize local models to enhance in-domain perfor-
mance. Some methods involve using a personalized aggregation base to select specific portions of
global information for model aggregation, or updating only parts of the model during the aggrega-
tion phase, e.g., APFL (Deng et al., 2020), FedFomo (Zhang et al., 2020), FedAMP (Huang et al.,
2021), FedPHP (Li et al., 2021c), APPLE (Luo & Wu, 2022), and FedALA (Zhang et al., 2023a).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Additionally, some methods split model layers to segregate global and local components, such as in
FedPer (Arivazhagan et al., 2019), LG-FedAvg (Liang et al., 2020), FedRep (Husnoo et al., 2022),
FedRoD (Chen & Chao, 2021), FedBABU (Oh et al., 2021), FedCP (Zhang et al., 2023b), FedGH (Yi
et al., 2023), and DBE (Zhang et al., 2024). However, a key drawback is these methods still rely on
averaging-based aggregation, which results in poor out-of-domain adaptation performance, despite
achieving some in-domain improvements.

Some FL methods incorporate prototype learning. For instance, FedProto (Tan et al., 2022b) utilizes
averaged local prototypes to train as the global prototype on local clients. FPL (Huang et al., 2023)
transmit all the prototypes (data embeddings) to the server during the initial phase for clustering and
averaging, which is then sent back to the clients for further optimization. This method introduces
significant communication overhead and potential privacy leakage during the first phase. FedNH (Dai
et al., 2023) leverages class prototype transmission to address class imbalance across clients, rather
than tackling the more complex issue of domain heterogeneity.

Unlike the above methods, we do not assume that the average aggregation of different client models
or prototypes can represent the global model or global prototype in scenarios involving heterogeneous
client data. MPFT uses prototypes from different clients as basic units that replace data distribution
for centralized training on the server, thus obtaining an approximate global model capable of fitting
all heterogeneous client domains distribution, as demonstrated in Appendix A.

3 PROBLEM STATEMENT

Scenario assumption. Consider a scenario involving N clients, where each client possesses a
private training dataset D1, . . . ,DN , each drawn from a unique data domain and shared category
space1. Our goal is to train a model that balances domain knowledge preservation and domain
knowledge adaptation. Domain knowledge preservation refers to the ability of the model to retain
each client’s unique domain insights. Domain knowledge adaptation is defined as the model’s ability
to indirectly extract and transfer knowledge from each participating client’s domain to others, even if
a client i cannot directly train on another client j’s data.

Optimization goal. Building on this, we define the Domain Knowledge Preservation loss LP and
the Domain Knowledge Adaptation loss LA as follows:

LP =

N∑
i=1

Li(Θ
P
i ;Di; Θ

G), LA =

N∑
i=1

N∑
j=1,j ̸=i

Li(Θ
P
i ;Dj ; Θ

G), (1)

where L(·) denotes the loss function, ΘP
i denotes the local (personalized) model parameters for client

i, and ΘG denotes the global model parameters. In conventional FL, the local models ΘP
1 , . . . ,Θ

P
N

are periodically synchronized with the global model ΘG .

The optimization goal is to decrease both the LP and LA. Thus, we formalize the FDA optimization
goal as follows:

{ΘP
1 , . . . ,Θ

P
N ; ΘG} = arg min(α1

iLP + α2
iLA), (2)

where α1
i and α2

i are client-defined weight parameters which balance the trade-off between domain
knowledge preservation and domain knowledge adaptation, in line with the “no free lunch” theorem.

Evaluation metrics. To quantify the effectiveness of the optimization, we propose two metrics:
in-domain accuracy (ind acc) and out-of-domain accuracy (ood acc). Denoting ACC(j)

i to be the
accuracy for a client i when tested on domain j, ind acc and ood acc are defined as follows:

ind acc =

∑N
i=1 ACC(i)

i ni∑N
i=1 ni

, ood acc =

∑N
i=1

∑
j ̸=i ACC(j)

i nj∑N
i=1

∑
j ̸=i nj

, (3)

1These domains may be largely isolated with minimal overlap, but MPFT also generalizes to scenarios where
each client may have data from multiple domains, as demonstrated in Section 5.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where ni is the number of test samples for client i. The ind acc measures each client’s performance
on its own domain data, while the ood acc evaluates adaptation performance when tested on data
from other domains.

4 METHODOLOGY

Overview. We introduce Multi-domain Prototype-based Federated Fine-Tuning (MPFT), which
consists of three main components: Prototype Generation, Global Adapter Initialization, and Few-shot
Local Adaptation, as depicted in Figure 2. During the Prototype Generation phase, we generate
domain-specific prototypes for each client based on specific sampling methods and ratios. The clients
subsequently transmit their local prototypes to the server. In the Global Adapter Initialization phase,
we utilize these prototypes to train a global adapter designed to handle the multi-domain distribution
of all clients, thereby improving the ood performance of the global adapter across clients. The global
adapter is then sent back to the clients for local inference. While the global adapter performs well in
ood accuracy, some clients may require better ind performance. In such cases, they can proceed to
the Few-shot Local Adaptation phase, where a few-shot dataset is sampled locally to further fine-tune
the local adapter. Knowledge distillation is employed to mitigate catastrophic forgetting of global
knowledge during this phase.

Features Prototype

P
P

P

P
P

P

P
P

P
P

P

P

P

P

P

Server
n

Send prototypes

from different clients

Send optimized

global adapter

Backbone

Prototype Generation

Few-shot Local Adaptation

Global Adapter Initialization

Backbone
Local

Adapter

Global

Head

Global

Adapter

one-time

initialization

local adaptation loss

backpropagation

local prediction

feature

extractioninput

input

feature

extraction

prototype

generation

prototype

aggregation

Global

Adapter
Global

Adapter

Global

Head

global

prototype input

global loss

backpropagation

global prediction

Few-shot

Train Data

Train Data

Client
...

P
P

P

Figure 2: An overview of MPFL.

Prototype Generation. A prototype is a compact representation of a specific class feature that
is unique to each domain. To synchronize the consistency of the prototype’s embedding space
across domains, each client utilizes the same pretrained image encoder to generate the prototype
set {P(1), . . . ,P(K)}, where K represents the total number of classes. Although all clients share the
same label space, each label manifests uniquely within its respective feature domain.

To generate these prototypes, different sampling methods can be applied, including Mean Sampling,
Cluster Sampling, and Random Sampling, as described in Algorithm 1. The choice of sampling
method depends on the desired trade-off between computational efficiency and prototype representa-
tional robustness. In Mean Sampling, each client i generates a prototype for class k by calculating
the mean of the pretrained embeddings for that class. In Cluster Sampling, clustering (e.g., k-means)
is performed on pretrained embeddings of each class, and a certain number of cluster centers are then
selected based on a predefined sampling rate to form the prototype set. In Random Sampling, a fixed
number of pretrained embeddings of each class are randomly selected according to the sampling rate,
and these selected embeddings constitute the prototype set.

Once each client has generated their prototypes, they transmit these to the server. Consequently, the
server accumulates N domain-specific representations subset (prototypes subset) for each class k,
which are collectively represented as DP =

{⋃N
i=1

{
P(1)
i , . . . ,P(K)

i

}}
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Different Sampling Methods

1: function MEAN SAMPLING(Di)
2: for class k in 1, . . . ,K do
3: P

(k)
i ← 1

|D(k)
i |

∑
(x,y)∈D(k)

i ,y=k
f(ϕ;x) ▷ Compute mean embeddings for each class

4: end for
5: return Pi ← {P (1)

i , . . . , P
(K)
i }

6: end function

7: function CLUSTER SAMPLING(Di, r)
8: for class k in 1, . . . ,K do
9: Ck ←

⌈
r × |D(k)

i |
⌉

▷ Set the number of cluster centers

10: P(k)
i ← Cluster

(
f(ϕ;D(k)

i), Ck
)

▷ Perform cluster sampling
11: end for
12: return Pi ←

⋃K
j=1 P

(j)
i

13: end function

14: function RANDOM SAMPLING(Di, r)
15: for class k in 1, . . . ,K do
16: Ck ←

⌈
r × |D(k)

i |
⌉

▷ Set the number of randomly selected embeddings

17: P(k)
i ← RandomlySelect

(
f(ϕ;D(k)

i), Ck
)

▷ Perform random sampling
18: end for
19: return Pi ←

⋃K
j=1 P

(j)
i

20: end function

Global adapter initialization. Algorithm 2 outlines the global adapter initialization process. Note
that we avoid averaging-based aggregation within each class across different clients, as this would
distort the global distribution. Utilizing DP , we train the global adapter AG to adapt to the entire
system’s data distribution with cross-entropy loss L:

{ΘG , AG} = arg min L(DP ; ΘG ;AG). (4)

Upon successful training, the global adapter AG is sent to the clients, replacing their local adapters.

Algorithm 2 Federated Learning with Global Adapter Initialization

Input: N clients, L: loss function, Θ0{f(ϕ), g(ϕ)}: pretrained CLIP model Θ0 with image encoder
f(ϕ) and text encoder g(ϕ), A0: random initialized adapter, η: learning rate, K: number of data
classes, Di: client i training data, (x, y): data sample, method: sampling method (e.g., mean,
cluster, random), r: sampling rate.

Output: Reasonable global adapter AG

1: Generate linear probe classification head H by labels and pretrained text encoder g(ϕ).
2: Server sends f(ϕ), A0 and H to all clients to initialize local models.
3: for client i in 1, . . . , N in parallel do
4: Pi ← method (Di, r)
5: end for
6: Clients send the prototype to the server.
7: Server constructs the prototype training dataset DP by DP ←

⋃N
i=1 Pi.

8: while AG does not converge do
9: Server optimizes AG by AG ← AG − η∇AGL(DP ; ΘG ;AG).

10: end while
11: return AG

Few-shot local adaptation. While global adapter AG performs well in ood accuracy, it may not be
sufficient for ind accuracy. To address this, clients can use their local few-shot data DF

i to further
fine-tune AG, adapting it to their local domain and improving ind accuracy, as shown in Algorithm 3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 3 Few-shot Local Adaptation

Input: N joining clients, L: loss function, Θ0{f(ϕ), g(ϕ)}: pretrained CLIP model Θ0 with image
encoder f(ϕ) and text encoder g(ϕ), AG: global initialized adapter, α: local learning rate, K:
number of data classes, F : few-shot number, Di: client i training data, (x, y): data sample.

Output: Reasonable local adapters {AL
1 , . . . , A

L
N}

1: Server sends AG to all clients to initialize local adapter AL.
2: for client i in 1, . . . , N in parallel do
3: DF

i ←
{⋃K

j=1 {(xm, ym) ∈ Di | ym = j,m = 1, . . . ,F}
}

▷ Generate few-shot data

4: Client i obtains AL
i by AL

i ← AL
i − η∇AL

i
L(DF

i ; Θ
G ;AL

i ;A
G). ▷ Local adaptation

5: end for
6: return {AL

1 , . . . , A
L
N}

To avoid catastrophic forgetting (French, 1999) of global knowledge during the local adaptation
process, knowledge distillation (KD) method is employed to regularize the locally trained adapter
AL, ensuring it does not deviate too much from the global adapter AG . The loss function for local
adaptation is defined as:

L = LCE + βLKD, (5)

where LCE represents the cross-entropy loss, and LKD denotes the KD loss. The hyperparameter β
balances the influence of the KD loss in the overall objective. In Section 5.4, we compare the effects
of different KD weights β on balancing ind accuracy and ood accuracy.

Convergence. We analyze the convergence of MPFT, with detailed proofs provided in Appendix B.

Theorem 1 (Convergence of fine-tuning with prototypes) For a smooth, non-convex loss function
L with a Lipschitz continuous gradient with constant L, the global fine-tuning using prototypes DP

converges. The sequence of updates for the global adapter AG achieves a monotonic decrease in the
loss function L(DP ; ΘG , AG). Specifically, choosing a learning rate η such that 0 < η < 2

L ensures:

L(DP ; ΘG , AG
t+1) ≤ L(DP ; ΘG , AG

t)− c∥∇AGL(DP ; ΘG , AG
t)∥2 +

∆

N
,

where c = η − Lη2

2 is a positive constant, ensuring that the step size is appropriately bounded for
convergence. Here, ∆ is the maximum prototype divergence across clients.

Corollary 1.1 (Convergence to stationary point and rate) As T increases, the average gradient
norm decreases, indicating convergence to a stationary point:

1

T

T∑
t=1

∥∇AGL(DP ; ΘG , AG
t)∥2 ≤

L(DP ; ΘG , AG
1)− L(DP ; ΘG , AG

T) +
T∆
N

cT
.

This indicates that as T increases, the right-hand side approaches zero, confirming that the gradient
norm diminishes and the updates converge to a stationary point.

5 EXPERIMENT

Datasets and Models. To simulate a FDA environment, We use the DomainNet (Peng et al., 2019)
and PACS (Li et al., 2017) datasets which are widely used in multi-domain data adaptation. For
these datasets, we employ pretrained CLIP models from OpenCLIP (Cherti et al., 2023; Radford
et al., 2021; Schuhmann et al., 2022). The image encoder of CLIP for DomainNet is a ViT-B-32
pretrained on the LAION-2B dataset, while for PACS, we use a ConvNeXT-Base pretrained on the
LAION-400M dataset as the image encoder.

Implementation details. We implement various representative FL algorithms as baselines, includ-
ing FedAvg (McMahan et al., 2017a), FedProx (Li et al., 2020), Ditto (Li et al., 2021b), MOON (Li
et al., 2021a), FedProto (Tan et al., 2022b), and DBE (Zhang et al., 2024), using the PyTorch library

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

and based on the integrated FL library PFLlib (Zhang et al., 2023c). To simulate the common
FL scenario where data resides only on clients, we split the data for each client into a training set
(70%), a test set (20%), and a validation set (10%). We evaluate in-domain (ind) and out-of-domain
(ood) accuracy following Equation 3. To demonstrate the scalability of our method, we partition the
DomainNet dataset, which includes 345 categories, into subsets containing 50, 100, and 150 classes,
respectively. To more conveniently compute the convergence time for each FL method and compare
the computational and communication costs of them, we introduce an early stopping strategy during
training. More details about our experimental setup and baselines can be found in Appendix C.1 and
Appendix C.2, with details on the early stopping strategy provided in Appendix C.3.

Diverse FDA Scenarios. We conducted experiments and analyses from different perspectives on
various potential FDA scenarios. Section 5.1 presents the performance of different FL methods
in a basic scenario, where each client is assigned a unique data domain, with minimal overlap
between domains. Section 5.2 provides a detailed analysis of the global model’s performance on each
client, exploring the fairness of different methods in FDA. In Section 5.3, we design a more realistic
scenario where each client may hold data from multiple domains, reducing the domain heterogeneity
between clients. Appendix F sets up another realistic scenario where multiple clients belong to the
same data domain, significantly increasing the number of clients compared to the original setup. In
Section 5.4, we investigate the role of local adaptation. Section 5.5 compares the computational and
communication costs of different methods. Finally, in Section 5.6 and Appendix G, we explore the
differential privacy mechanism in MPFT and its robustness against feature space hijacking attacks.

5.1 PERFORMANCE ON MULTI-DOMAIN

We evaluate our method alongside other FL approaches in Table 1, including local training (i.e.,
each client fine-tunes the pretrained model separately). Empirical results show that local training
excels in ind accuracy but performs poorly in ood accuracy. A reason is that local fine-tuning results
in catastrophic forgetting (Luo et al., 2023). Personalized FL methods such as FedProto and DBE,
which generally maintain a personalized local model for each client, have higher ind accuracy but
compromise ood accuracy. In contrast, methods like FedAvg, MOON, and Ditto demonstrate more
balanced improvements in both ind and ood accuracies. FedProx, which introduces a regularization
term between the global and local models, improves ood accuracy at the expense of ind accuracy. In
comparison, our method consistently achieves superior performance in both ood and ind accuracy
across all DomainNet subsets. As the subset size of DomainNet increases, we observe variable
convergence stability across methods such as FedAvg, FedProx, and Ditto, while DBE demonstrates
accelerated convergence. In contrast, our method requires only one global communication round,
which significantly reduces both computational and communication costs. This benefit is further
elaborated in section 5.5.

Table 1: Test accuracy and communication rounds for different FL methods on DomainNet subsets
and PACS. The communication rounds are determined using an early stopping strategy, where fewer
rounds indicate faster convergence. Additionally, we compare the sensitivity of MPFT to different
global convergence thresholds to ensure the robustness of the results across various hyperparameters,
as refer to Appendix D.

DomainNet: Subset-50 DomainNet: Subset-100 DomainNet: Subset-150 PACS

ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds

local 0.7361 0.8609 0 0.6554 0.8310 0 0.6003 0.8067 0 0.6547 0.9984 0

FedAvg (McMahan et al., 2017a) 0.7902 0.7345 24 0.7628 0.6966 49 0.7263 0.6709 17 0.9725 0.9887 32
FedProx (Li et al., 2020) 0.7752 0.7178 10 0.7499 0.6827 9 0.7131 0.6569 5 0.9219 0.9659 13
Ditto (Li et al., 2021b) 0.7811 0.7624 20 0.7511 0.7182 30 0.7149 0.6904 13 0.9172 0.9930 35
MOON (Li et al., 2021a) 0.7902 0.7344 28 0.7623 0.6952 16 0.7267 0.6715 31 0.9763 0.9888 42
FedProto (Tan et al., 2022b) 0.7296 0.7696 5 0.6732 0.7385 8 0.6321 0.7073 7 0.8627 0.9963 32
DBE (Zhang et al., 2024) 0.7421 0.7622 22 0.7179 0.7233 6 0.6820 0.6956 5 0.971 0.984 12

MPFT (Average) 0.8077 0.7813 1 0.7674 0.7399 1 0.7294 0.7099 1 0.9486 0.9703 1
MPFT (Cluster, rate=0.1) 0.7951 0.7957 1 0.7641 0.7692 1 0.7171 0.7256 1 0.9808 0.9880 1
MPFT (Cluster, rate=0.3) 0.8204 0.8294 1 0.7766 0.7791 1 0.7430 0.7514 1 0.9841 0.9896 1
MPFT (Random, rate=0.1) 0.7953 0.7899 1 0.7566 0.7509 1 0.7194 0.7233 1 0.9829 0.9888 1
MPFT (Random, rate=0.3) 0.8236 0.8294 1 0.7803 0.7811 1 0.7469 0.7542 1 0.9887 0.9919 1

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 DETAILS ABOUT RESULTS ON EACH DOMAIN

To further explain why MPFT achieves better ind and ood accuracy compared to the baselines, we
visualize the performance of each domain in Figure 3. Each axis of the radar chart represents a specific
data domain (e.g., Real or Painting), with the shape and coverage area of the curves illustrating the
global model’s performance across these domains. Empirically, the roundness of the curve could
reflect the fairness of the model across different clients (domains)—the rounder the curve, the more
fair the method is in the global distribution, leading to better ood accuracy.

Compared to other FL baselines across different DomainNet subset sizes, MPFT with average
sampling method performs exceptionally well in the Quickdraw domain, with a more balanced
curve shape. Additionally, MPFT maintains strong performance across other domains relative to the
baselines, thereby achieving better overall fairness. For more details about the effects of random and
cluster sampling compared to average sampling on each domain, please refer to Appendix E.

DomainNet, Subset-50 DomainNet, Subset-100 DomainNet, Subset-150

FedAvg FedProx Ditto MOON MPFT (average)FedProto DBE

Figure 3: Comparison of different FL methods across various DomainNet subset sizes.

5.3 IMPACT OF MULTI-DOMAIN DIFFERENCES ON PERFORMANCE

In real-world scenarios, a client may contain data from multiple domains rather than a single specific
domain2 . We simulate a situation where each client contains 1−mr percent of data from its original
domain, mixed with mr percent of data from another domain. Here, mr represents the mixed ratio,
indicating the level of domain diversity on the client side. We evaluate our method alongside other FL
approaches under this scenario, as shown in Table 2, where DomainNet subset-50 is used. We observe
a reduction in the performance advantage of our method compared to others, as the mixed ratio
increases. This decline is due to the reduced heterogeneity within the FL system, which diminishes
the strengths of our approach. However, it is still evident that our method outperforms most FL
algorithms, particularly when using Random and Cluster sampling strategies.

Table 2: Results of mixed multi-domain situation on DomainNet Subset-50.

original mixed ratio = 0.3 mixed ratio = 0.4 mixed ratio = 0.5

ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds

local 0.7361 0.8609 0 0.7316 0.8477 0 0.7339 0.844 0 0.7408 0.8356 0

FedAvg (McMahan et al., 2017a) 0.7902 0.7345 24 0.7975 0.7639 19 0.7996 0.7691 8 0.8090 0.7845 7
FedProx (Li et al., 2020) 0.7752 0.7178 10 0.7798 0.7386 67 0.7813 0.7448 34 0.7903 0.7588 27
Ditto (Li et al., 2021b) 0.7811 0.7624 20 0.7966 0.8027 13 0.7811 0.7808 7 0.7777 0.7757 6
MOON (Li et al., 2021a) 0.7902 0.7344 28 0.7984 0.7639 13 0.8043 0.7763 8 0.8109 0.7865 8
FedProto (Tan et al., 2022b) 0.7296 0.7696 5 0.7110 0.7395 6 0.7075 0.7421 7 0.7019 0.7293 6
DBE (Zhang et al., 2024) 0.7421 0.7622 22 0.7348 0.7371 3 0.7293 0.7349 14 0.7286 0.7331 11

MPFT (Average) 0.8077 0.7813 1 0.7879 0.7610 1 0.7817 0.7577 1 0.7783 0.7533 1
MPFT (Cluster, rate=0.1) 0.7951 0.7957 1 0.8213 0.8169 1 0.7887 0.7897 1 0.8007 0.7912 1
MPFT (Cluster, rate=0.3) 0.8204 0.8294 1 0.8276 0.8253 1 0.8209 0.8142 1 0.8142 0.8071 1
MPFT (Random, rate=0.1) 0.7953 0.7899 1 0.7928 0.7856 1 0.8040 0.7958 1 0.7919 0.7801 1
MPFT (Random, rate=0.3) 0.8236 0.8294 1 0.8184 0.8141 1 0.8108 0.8065 1 0.8137 0.8050 1

2Additionally, it is common for multiple clients to share the same data domain, as refer to Appendix F.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.4 PERFORMANCE WITH LOCAL ADAPTATION

We compare the few-shot performance of local adaptation with different knowledge distillation (KD)
weights in Figure 4. As the KD weight increases, there is less out-of-domain knowledge forgetting but
worse in-domain knowledge alignment. With an increase in the number of few-shot samples, the ood
and ind accuracy show a similar trend. We provide more details about the experiment implementation
of KD in local adaptation in Appendix C.4.

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 50, kd weight=0

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 50, kd weight=10

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 50, kd weight=100

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 50, kd weight=1000

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 100, kd weight=0

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 100, kd weight=10

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 100, kd weight=100

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 100, kd weight=1000

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 150, kd weight=0

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 150, kd weight=10

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 150, kd weight=100

zer
o-s

ho
t
1-s

ho
t
2-s

ho
t
4-s

ho
t
8-s

ho
t

16
-sh

ot

32
-sh

ot

64
-sh

ot

ful
l-sh

ot

Few-shot Number

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

subset 150, kd weight=1000

ood acc ind acc

Figure 4: Few-shot performance comparison of local adaptation with different KD weights.

5.5 COMPUTATION COST AND COMMUNICATION COST

We further analyze the computation cost and communication cost in Table 3. Computation cost
is the total training time of FL, which is related to the number of communication rounds and the
computational complexity within each round. Among the methods compared, Ditto is the most
time-consuming due to the additional local training epoch it requires. In contrast, the MPFT, which
converges in just one global round, significantly reduces training time, particularly when the sampling
method is set to average. For other sampling methods, such as Random and Cluster, our approach
trades a modest increase in training time for substantial improvements in both ind and ood accuracy.
Communication cost is the number of parameters transmitted, which is theoretically influenced by
the number of communication rounds R, the model (adapter) parameters

∑
, and the prototypes∏

. The number of communication roundsR directly contributes to a linear increase in the overall
communication cost. Furthermore, the model adapter parameters

∑
and the size of the prototypes∏

determine the communication cost per round in these specific algorithms. In our empirical
results, MPFT with average sampling achieved the lowest communication cost across all experiments.
However, while random or cluster sampling slightly increases communication overhead, it also
significantly improves MPFT’s performance (see Table 1).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Computation cost and communication cost of FL methods. R represents the convergence
round,

∑
represents the number of model (adapter) parameters,

∏
represents the size of prototypes,

N represents the number of clients. The subsets are derived from the DomainNet dataset.

Computation Cost (total training time) Communication Cost (total parameter transmission)

Subset-50 Subset-100 Subset-150 PACS Subset-50 Subset-100 Subset-150 PACS Theoretical

local 240.8s 834.8s 1575.1s 311.2s 0 0 0 0 0

FedAvg 1933.5s 5812.4s 3824.6s 663.9s 144MB 294MB 102MB 128MB R×N × 2
∑

FedProx 803.9s 1253.5s 1120.1s 270.0s 60MB 54MB 30MB 52MB R×N × 2
∑

Ditto 3095.7s 8365.8s 5862.3s 1455.6s 120MB 180MB 78MB 140MB R×N × 2
∑

MOON 2164.2s 2237.4s 7027.4s 872.7s 168MB 96MB 186MB 168MB R×N × 2
∑

FedProto 393.1s 1153.4s 1608.0s 683.3s 5.9MB 18.8MB 24.6MB 3.5MB R×N × 2
∏

DBE 1693.6s 837.6s 1160.3s 248.8s 132MB 36MB 30MB 48MB R×N × 2
∑

MPFT (Average) 1.9s 7.3s 10.7s 0.1s 3.6MB 4.2MB 4.8MB 2MB N × (
∏

+
∑

)
MPFT (Cluster, rate=0.1) 44.7s 302.4s 208.0s 0.6s 12.5MB 20.9MB 30.7MB 3.1MB N × (

∏
+
∑

)
MPFT (Cluster, rate=0.3) 525.9s 624.1s 1344.4s 2.2s 30.9MB 55.8MB 84.8MB 5.3MB N × (

∏
+
∑

)
MPFT (Random, rate=0.1) 33.1s 99.9s 451.9s 0.4s 12.5MB 20.9MB 30.7MB 3.1MB N × (

∏
+
∑

)
MPFT (Random, rate=0.3) 454.5s 478.9s 1341.5s 2.4s 30.9MB 55.8MB 84.8MB 5.3MB N × (

∏
+
∑

)

5.6 PRIVACY PRESERVATION ANALYSIS

Following DBE (Zhang et al., 2024), we add Gaussian noiseN to client prototypes p1, . . . , pN with a
perturbation coefficient q for the noise and a scale parameter s for the noise distribution, the perturbed
prototype p̃i of client i can be defined as p̃i = pi + q · N (0, s2), where pi is the original prototype of
client i. The relationship between noise and privacy budget can be found in Appendix H.

Table 4 shows the results of applying this differential privacy method on the DomainNet subset-50,
with the sampling method set to average under various noise parameter combinations. This approach
effectively mitigates attackers from inferring individual data points even when they possess the
pretrained model and most of prototypes. Furthermore, we observe that specific noise configurations
can reduce bias across heterogeneous datasets, enhancing the robustness of prototype data. In some
cases, this even leads to improved performance compared to models without noise. For instance,
the combinations of (q = 0.5, s = 0.1), (q = 0.1, s = 0.05), and (q = 0.5, s = 0.05) exhibit such
effects. According to DBE, setting q = 0.2 and s = 0.05 is sufficient to ensure privacy protection.
However, excessively large noise can degrade model performance.

Table 4: Performance of differential privacy with varying noise parameters configuration

q = 0.1 s = 0.05

original s = 0.1 s = 0.5 s = 1 s = 5 q = 0.1 q = 0.2 q = 0.5 q = 0.8

ood acc 0.8077 0.8064 0.8083 0.8065 0.7898 0.8078 0.8064 0.8083 0.8055
ind acc 0.7813 0.7806 0.7806 0.7747 0.7437 0.7824 0.7806 0.7820 0.7782

To further evaluate the robustness of MPFT against adversarial attacks, we simulate a feature space
hijacking attack (Vepakomma et al., 2021) on MPFT, please refer to Appendix G.

6 CONCLUSION AND FUTURE WORK

We propose an adaptive and lightweight FDA framework, MPFT, designed to align a global model
with heterogeneous domains by fitting prototypes from different domains. Extensive experiments
demonstrate the effectiveness, low cost, and robustness of MPFT. This study may inspire further
research in FDA that focuses on generalizing across heterogeneous domain prototypes, rather than
relying on model parameter averaging for aggregation.

While MPFT achieves strong performance, it has some limitations. First, the quality of the prototypes
is highly dependent on the pretrained model’s ability to extract meaningful features. Second, although
attackers cannot reconstruct specific raw data from the prototypes, they may still be able to perform
membership inference attacks (Shokri et al., 2017) or attribution inference attacks (Fredrikson
et al., 2015) by exploiting statistical information contained within the prototypes. Addressing the
aforementioned limitations could further enhance the viability and effectiveness of this approach in
practical FL applications, making this method a viable alternative of averaging-based FL methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Feder-
ated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for
image classification. arXiv preprint arXiv:2107.00778, 2021.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818–2829, 2023.

Yutong Dai, Zeyuan Chen, Junnan Li, Shelby Heinecke, Lichao Sun, and Ran Xu. Tackling data
heterogeneity in federated learning with class prototypes. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 7314–7322, 2023.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9:211–407, 2014. URL https://api.semanticscholar.
org/CorpusID:207178262.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security, pp. 1322–1333, 2015.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531, 2015. URL https://api.semanticscholar.org/CorpusID:
7200347.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Wenke Huang, Mang Ye, Zekun Shi, He Li, and Bo Du. Rethinking federated learning with
domain shift: A prototype view. In 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 16312–16322. IEEE, 2023.

Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong Zhang.
Personalized cross-silo federated learning on non-iid data. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pp. 7865–7873, 2021.

Muhammad Akbar Husnoo, Adnan Anwar, Nasser Hosseinzadeh, Shama Naz Islam, Abdun Naser
Mahmood, and Robin Doss. Fedrep: Towards horizontal federated load forecasting for retail
energy providers. In 2022 IEEE PES 14th Asia-Pacific Power and Energy Engineering Conference
(APPEEC), pp. 1–6. IEEE, 2022.

Cheng Jin, Xuandong Chen, Yi Gu, and Qun Li. Feddyn: A dynamic and efficient federated
distillation approach on recommender system. In 2022 IEEE 28th International Conference on
Parallel and Distributed Systems (ICPADS), pp. 786–793. IEEE, 2023.

Gihun Lee, Minchan Jeong, Yongjin Shin, Sangmin Bae, and Se-Young Yun. Preservation of the
global knowledge by not-true distillation in federated learning. Advances in Neural Information
Processing Systems, 35:38461–38474, 2022.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

11

https://api.semanticscholar.org/CorpusID:207178262
https://api.semanticscholar.org/CorpusID:207178262
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:7200347

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10713–10722, 2021a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International conference on machine learning, pp. 6357–6368.
PMLR, 2021b.

Xin-Chun Li, De-Chuan Zhan, Yunfeng Shao, Bingshuai Li, and Shaoming Song. Fedphp: Federated
personalization with inherited private models. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 587–602. Springer, 2021c.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Bingyan Liu, Nuoyan Lv, Yuanchun Guo, and Yawen Li. Recent advances on federated learning: A
systematic survey. arXiv preprint arXiv:2301.01299, 2023.

Jun Luo and Shandong Wu. Adapt to adaptation: Learning personalization for cross-silo federated
learning. In IJCAI: proceedings of the conference, volume 2022, pp. 2166. NIH Public Access,
2022.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017a.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017b.

Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Towards enhanced representation for
federated image classification. arXiv preprint arXiv:2106.06042, 2021.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1406–1415, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In ICML, 2021.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia
Jitsev. LAION-5b: An open large-scale dataset for training next generation image-text models.
In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2022. URL https://openreview.net/forum?id=M3Y74vmsMcY.

Mihye Seol and Taejoon Kim. Performance enhancement in federated learning by reducing class
imbalance of non-iid data. Sensors, 23(3):1152, 2023.

Momina Shaheen, Muhammad Shoaib Farooq, Tariq Umer, and Byung-Seo Kim. Applications of
federated learning; taxonomy, challenges, and research trends. Electronics, 11(4):670, 2022.

12

https://openreview.net/forum?id=M3Y74vmsMcY

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18.
IEEE, 2017.

Shangchao Su, Mingzhao Yang, Bin Li, and Xiangyang Xue. Federated adaptive prompt tuning
for multi-domain collaborative learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 15117–15125, 2024.

Benyuan Sun, Hongxing Huo, Yi Yang, and Bo Bai. Partialfed: Cross-domain personalized federated
learning via partial initialization. Advances in Neural Information Processing Systems, 34:23309–
23320, 2021.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 2022a.

Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto:
Federated prototype learning across heterogeneous clients. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 8432–8440, 2022b.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Praveen Venkateswaran, Vatche Isahagian, Vinod Muthusamy, and Nalini Venkatasubramanian.
Fedgen: Generalizable federated learning for sequential data. In 2023 IEEE 16th International
Conference on Cloud Computing (CLOUD), pp. 308–318. IEEE, 2023.

Praneeth Vepakomma, Abhishek Singh, Emily Zhang, Otkrist Gupta, and Ramesh Raskar. Nopeek-
infer: Preventing face reconstruction attacks in distributed inference after on-premise training. In
2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021),
pp. 1–8. IEEE, 2021.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad Farokhi, Shi Jin, Tony Q. S. Quek,
and H. Vincent Poor. Federated learning with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. doi:
10.1109/TIFS.2020.2988575.

Liping Yi, Gang Wang, Xiaoguang Liu, Zhuan Shi, and Han Yu. Fedgh: Heterogeneous federated
learning with generalized global header. In Proceedings of the 31st ACM International Conference
on Multimedia, pp. 8686–8696, 2023.

Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
Fedala: Adaptive local aggregation for personalized federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 11237–11244, 2023a.

Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
Fedcp: Separating feature information for personalized federated learning via conditional policy.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 3249–3261, 2023b.

Jianqing Zhang, Yang Liu, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Jian Cao.
Pfllib: Personalized federated learning algorithm library. arXiv preprint arXiv:2312.04992, 2023c.

Jianqing Zhang, Yang Hua, Jian Cao, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing
Guan. Eliminating domain bias for federated learning in representation space. Advances in Neural
Information Processing Systems, 36, 2024.

Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized federated
learning with first order model optimization. arXiv preprint arXiv:2012.08565, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A VISUALIZATION OF PROTOTYPE

In order to allow readers to intuitively understand the relationship between prototypes and original
data, we visualize the data embeddings (all prototypes) and averaged prototypes in two-dimensional
coordinates using the t-SNE (Van der Maaten & Hinton, 2008) algorithm, as shown in Figure 5.
Different colors represent different domains: for example, blue indicates the ”Painting” domain,
while orange signifies the ”Real” domain. Different markers represent various categories of data
samples. The darker markers located within each sample cluster represent the prototypes of the
”domain-class”. It is evident that each prototype effectively reflects the distribution of its specific
domain-class information. However, the mean prototype, represented by the large red star, is distant
from each individual prototype. This observation underscores why we do not average the prototypes,
as it fails to accurately reflect the overall data distribution, particularly in FDA scenarios.

30 20 10 0 10 20 30 40
Dimension 1

40

20

0

20

40

Di
m

en
sio

n
2

t-SNE Visualization of Multiple Datasets with Prototypes
Legend

Dataset
Painting
Real
Quickdraw
Dataset-Class
Painting - aircraft carrier
Painting - airplane
Painting - alarm clock
Real - alarm clock
Real - airplane
Real - aircraft carrier
Quickdraw - airplane
Quickdraw - aircraft carrier
Quickdraw - alarm clock
Average Prototype

Figure 5: t-SNE visualization of multiple datasets with their corresponding prototypes.

The Universal Approximation Theorem (Hornik et al., 1989) suggests that neural networks act as
”universal” data distribution fitters, effectively fitting the distribution of given data samples. However,
this also leads to parameter space deviations between different client models in heterogeneous FL. To
address these issues, we introduce a more reasonable aggregation method rather than averaging-based
aggregation. We treat the same category of data in different domains with significant differences as
independent data prototypes. We then use the collection of these data prototypes, which form a more
general data distribution that covers the entire FL system, to train a global model that better fits the
global distribution.

B CONVERGENCE ANALYSIS

Setup: The global loss function for fine-tuning using prototypes is:

L(DP ; ΘG , AG) =
1

N

N∑
i=1

Li(DP ; ΘG , AG),

where DP is the set of prototypes aggregated from all clients.

Assumptions: The standard assumptions follow those of (Li et al., 2020; Tan et al., 2022b): 1)
The loss function L is non-convex but smooth, 2) The gradient of the loss function is Lipschitz

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

continuous with constant L. 3) The divergence between the prototypes of different clients for a given
class is bounded. Let ∆(k)

i be the divergence between client i’s prototype for class k and the average
prototype across all clients:

∆
(k)
i = ∥p(k)i − p̄(k)∥, p̄(k) =

1

N

N∑
i=1

p
(k)
i ,

and assume that ∆(k)
i ≤ ∆ for all i and k. Since the prototypes are derived from pretrained image

embeddings, this assumption likely holds due to the consistency provided by the pretrained encoder
in synchronizing the embedding space across domains.

Proof: Given the update rule AG
t+1 = AG

t − η∇AGL(DP ; ΘG , AG
t), for a smooth, non-convex loss

function L, the Lipschitz continuity implies:

L(DP ; ΘG , AG
t+1) ≤ L(DP ; ΘG , AG

t)−η∥∇AGL(DP ; ΘG , AG
t)∥2+

Lη2

2
∥∇AGL(DP ; ΘG , AG

t)∥2+
∆

N
.

Rearranging the terms, we obtain:

L(DP ; ΘG , AG
t+1) ≤ L(DP ; ΘG , AG

t)−
(
η − Lη2

2

)
∥∇AGL(DP ; ΘG , AG

t)∥2 +
∆

N
.

Choosing η such that 0 < η < 2
L , we have:

L(DP ; ΘG , AG
t+1) ≤ L(DP ; ΘG , AG

t)− c∥∇AGL(DP ; ΘG , AG
t)∥2 +

∆

N
,

where c = η − Lη2

2 is a positive constant. This ensures a decrease in the loss function at each step,
leading to convergence, with an additional term accounting for prototype divergence.

B.1 COROLLARY 1: ON CONVERGENCE TO STATIONARY POINT AND CONVERGENCE RATE

To analyze the convergence rate, we sum both sides of the inequality from t = 1 to T :

T∑
t=1

L(DP ; ΘG , AG
t+1) ≤

T∑
t=1

L(DP ; ΘG , AG
t)− c

T∑
t=1

∥∇AGL(DP ; ΘG , AG
t)∥2 +

T∆

N
.

This simplifies to:

L(DP ; ΘG , AG
1)− L(DP ; ΘG , AG

T) ≥ c
T∑

t=1

∥∇AGL(DP ; ΘG , AG
t)∥2 −

T∆

N
.

Rearranging the terms and dividing by cT , we obtain the convergence rate:

1

T

T∑
t=1

∥∇AGL(DP ; ΘG , AG
t)∥2 ≤

L(DP ; ΘG , AG
1)− L(DP ; ΘG , AG

T) +
T∆
N

cT
.

As T increases, the average gradient norm decreases, indicating convergence to a stationary point, ad-
justed for prototype divergence. Note that the size of the divergence ∆ affects the rate of convergence.
A smaller ∆ implies that the prototypes across clients are more similar, leading to faster convergence.
Conversely, a larger ∆ suggests greater variability between client data, which may slow down the
convergence rate.

B.2 REMARK: ON ERROR BOUNDS

By incorporating the average prototype divergence, the error bound for client i is:

ϵind
i ≤ ϵlocal

i + α∆avg
i ,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where ϵlocal
i is the local model error without federation, α is a constant that measures the sensitivity of

the error to the prototype divergence, and ∆avg
i = 1

K

∑K
k=1 ∆

(k)
i is the average prototype divergence

for client i. Thus, the in-domain error bound can be written as:

ϵind ≤
∑N

i=1

(
ϵlocal
i + α∆avg

i

)
ni∑N

i=1 ni

.

For out-of-domain accuracy (ood acc), we are interested in how well the global model generalizes
across different client domains. The maximum divergence of prototypes captures the worst-case
divergence between any two domains.

Given the metric:

ood acc =

∑N
i=1

∑
j ̸=i ACC(j)

i nj∑N
i=1

∑
j ̸=i nj

,

By incorporating the maximum prototype divergence, the error bound for client i on domain j is:

ϵood
ij ≤ ϵlocal

i + β∆max
ij ,

where ϵlocal
i is the local model error without federation, β is a constant that measures the sensitivity of

the error to the prototype divergence, and ∆max
ij = maxk ∥p(k)i − p

(k)
j ∥.

Thus, the overall out-of-domain error bound is:

ϵood ≤
∑N

i=1

∑
j ̸=i

(
ϵlocal
ij + β∆max

ij

)
nj∑N

i=1

∑
j ̸=i nj

.

We note that the in- and out-of-domain error bounds are directly influenced by average prototype
divergence and maximum prototype divergence (worst-case scenario), respectively.

• Impact of higher sampling rate: A higher sampling rate generally leads to better accuracy
because more prototypes are generated per class, providing a richer representation of the
feature distribution across domains. This helps the global model better generalize to out-of-
domain data by capturing a diverse set of variations.

• Sampling methods: Cluster sampling is particularly effective for OOD accuracy because
it captures the underlying structure of the data distribution within each class by selecting
multiple representative prototypes (e.g., cluster centers). Mean sampling, while computa-
tionally efficient, oversimplifies the data distribution by averaging all data points, leading
to a loss of critical information needed for robust adaptation. Random sampling performs
almost as well as cluster sampling in some scenarios. This may be due to the fact that
random sampling, by chance, captures sufficient variations within each class, providing
a diverse enough representation to improve OOD accuracy. However, it may not be as
reliable as cluster sampling because it lacks systematic selection of prototypes and could
miss important subgroups within the class distribution.

B.3 CONVERGENCE ANALYSIS WITH DIFFERENTIAL PRIVACY NOISE

The convergence analysis changes slightly when differential privacy (DP) noise is added. The key
difference is the adjustment in the divergence term:

The divergence between client prototypes for class k is given by:

∆
(k)
i = ∥p(k)i − p̄(k)∥, p̄(k) =

1

N

N∑
i=1

p
(k)
i .

Suppose Gaussian noise β(p
(k)
i), with an upper bound of β, is added to each prototype p

(k)
i . Since

the Gaussian noise has a mean of zero, by the law of large numbers, we can assume that p̄(k) remains

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

approximately unchanged when N is large. The new divergence term becomes:

∆̃
(k)
i ≤ ∆

(k)
i + β,

leading to an updated upper bound:
∆ ≤ ∆+ β.

The new convergence inequality, adapted from Theorem 1, is:

L(DP ; ΘG , AG
t+1) ≤ L(DP ; ΘG , AG

t)− c∥∇AGL(DP ; ΘG , AG
t)∥2 +

∆+ β

N
.

This indicates that the constant term of convergence increases linearly with the noise level. However,
since the coefficient of β is 1

N , the impact of DP noise becomes negligible as N grows larger, meaning
that the addition of DP noise does not significantly hinder convergence in theory.

C MORE DETAILS ABOUT EXPERIMENT IMPLEMENTATION

C.1 BASIC SETUP

Global classification head generation. We generate the global classification head by utilizing the
manually designed prompts and class names of the dataset, calculated by the pretrained text encoder
in the CLIP model used in our experiments. The global classification head is obtained by averaging
the ’prompt+label’ embeddings from all different domains. Following common fine-tune settings, we
only train the adapter, while freezing the entire image encoder and global classification head.

Training. Our simulations are conducted on a Google® Compute Platform (GCP) equipped with
47 Intel®Xeon® CPUs and 4 NVIDIA® L4 GPUs. For global adapter training, we employ cross-
entropy loss with an AdamW optimizer, setting the learning rate to 0.001. We set the maximum
global rounds to 200 and implement an early stopping strategy to evaluate the convergence rounds. It
is important to note that our method achieves convergence in just one global round, rendering the
early stopping strategy primarily applicable to other FL methods. For simplicity, we assume that all
clients can participate in every communication round in all experiments.

C.2 DETAILS ABOUT IMPLEMENTATION OF BASELINES

For the baseline models used in the experiments, we identified the best parameters for our dataset
within the recommended parameter ranges provided in their original texts. For FedAvg, we followed
the settings in the original article and used the dataset sizes of different clients as the basis for the
weighted average. In FedProx, we set the regularization coefficient to 5, which is lower than the usual
settings of 10, 100, or 1000. This adjustment was made because a higher regularization coefficient
made it difficult for the model to converge to the global equilibrium point due to data heterogeneity.
In Ditto, we used a local round number of 1 and set the regularization term to 2. For MOON, we
set the coefficient µ to 0.001 and the temperature coefficient τ to 1, both within the recommended
ranges of the original text. For FedProto, we used 50 as the regularization coefficient. In DBE, we
adopted 0.01 as the momentum coefficient and 1 as the regular Xiang coefficient, both within the
recommended ranges of the paper. For all baselines, we use the same set of hyperparameters, as
shown in Table 5.

To ensure fairness in the comparison, all baseline methods, including FedAvg and FedProx, were
trained using the same pre-trained feature extractor as MPFT. Furthermore, the training setup for all
baselines was aligned with MPFT’s training paradigm: the pre-trained feature extractor and the global
head were frozen, and only the adapter was trained. For consistency, operations in other baselines
(e.g., average aggregation in FedAvg) were applied specifically to the adapter parameters instead of
the entire model parameters. This adaptation ensures a fair comparison of the performance of MPFT
and the baselines under the same conditions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: The hyperparameters used in all baselines.

Optimizer AdamW
Learning rate 0.001
Batch size 32
Gradient clip 1
Local epoch 1
Maximum global rounds 200
Warm-up global rounds 10
Patience global rounds 10

C.3 DETAILS ABOUT EARLY STOPPING STRATEGY

Each client completes one local epoch per global round. We set the total number of global rounds to
200 and implement an early stopping strategy to evaluate the convergence rounds of each algorithm.
The criterion for early stopping is based on validation loss; specifically, we select the results from the
round that achieves the best validation loss as the final outcome. The patience parameter is set to 10
rounds, meaning that if the validation loss does not decrease below the best recorded loss within a
span of 10 consecutive rounds, the training process is terminated. By implementing the early stopping
strategy, we can more easily test the convergence round of each method and use this strategy to find
the round with the best result.

C.4 DETAILS ABOUT KNOWLEDGE DISTILLATION IN LOCAL ADAPTATION

We use the most basic form of knowledge distillation strategy in our framework (Hinton et al., 2015),
which is response-based knowledge distillation:

AL
i = argminLKD(DF

i ; Θ
G ;AL

i ;A
G). (6)

Here, AL
i represents the local adapter for client i, DF

i is the local dataset, ΘG are the global model
parameters, and AG represents the global adapter. Then, we have:

IG = {AG(f(ϕ;x1)), . . . , A
G(f(ϕ;xn))}, {(x1, y1), . . . , (xn, yn)} ∈ DF

i . (7)

Here, IG denotes the set of outputs from the global adapter for the local dataset DF
i .

ILi = {AL
i (f(ϕ;x1)), . . . , A

L
i (f(ϕ;xn))}, {(x1, y1), . . . , (xn, yn)} ∈ DF

i . (8)

Similarly, ILi denotes the set of outputs from the local adapter AL
i for the local dataset DF

i .

LKD = KL(IG ∥ ILi) (9)

The knowledge distillation loss LKD is computed as the Kullback-Leibler (KL) divergence between
the outputs of the global adapter and the local adapter.

KL(p ∥ q) =
∑
i

pi log

(
pi
qi

)
(10)

Here, p and q represent the probability distributions output by the global and local adapters, respec-
tively, and KL(p ∥ q) denotes the KL divergence.

D SENSITIVITY ANALYSIS OF GLOBAL CONVERGENCE THRESHOLD

During the global adapter initialization phase, we set a threshold to ensure the model stops training
the prototypes when the variance of loss over multiple rounds decreases to a low value, indicating

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

that the global adapter has converged. To test the sensitivity of the experimental results to the
threshold, we test different thresholds for the global adapter initialization process, specifically 0.1,
0.01, 0.001, and 0.0001. Figure 6 shows the impact of these thresholds3. As the threshold decreases,
the out-of-distribution (ood) and in-distribution (ind) performance initially increase and then decrease.
In contrast, the convergence epochs and training time consistently increase. This trend is intuitive
because a lower threshold requires more rounds for the model to converge. Overall, we recommend
using a threshold of 0.01 or 0.001 to minimize training time and reduce the risk of overfitting.

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

0.800

0.802

0.804

0.806

0.808

0.810

Oo
d

ac
c

subset-50, Ood acc

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

0.760

0.765

0.770

0.775

0.780

0.785

0.790

In
d

ac
c

subset-50, Ind acc

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

200

400

600

800

1000

1200

1400

1600

1800

Ro
un

d

subset-50, Round

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

5

10

15

20

25

30

35

40

45

Tr
ai

n
tim

e

subset-50, Train time

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

0.762

0.764

0.766

0.768

0.770

0.772

0.774

Oo
d

ac
c

subset-100, Ood acc

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

0.734

0.736

0.738

0.740

0.742

0.744

0.746

In
d

ac
c

subset-100, Ind acc

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

500

1000

1500

2000

2500

Ro
un

d

subset-100, Round

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

20

40

60

80

100

120

140

Tr
ai

n
tim

e

subset-100, Train time

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

0.7175

0.7200

0.7225

0.7250

0.7275

0.7300

0.7325

0.7350

Oo
d

ac
c

subset-150, Ood acc

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

0.704

0.706

0.708

0.710

0.712

0.714

In
d

ac
c

subset-150, Ind acc

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

500

1000

1500

2000

2500

3000

Ro
un

d

subset-150, Round

1e
-01

1e
-02

1e
-03

1e
-04

1e
-05

Threshold

50

75

100

125

150

175

200

225

Tr
ai

n
tim

e

subset-150, Train time

Figure 6: Impact of different convergence thresholds on global adapter initialization.

E MORE DETAILS ABOUT RESULTS ON EACH DOMAIN

Figure 7 and Figure 8 further illustrate the effects of random sampling and cluster sampling compared
to average sampling within the MPFT framework across different sizes of the DomainNet subset. They
reveal similar trends: random sampling and cluster sampling achieve more balanced performance
in the Quickdraw domain, with curves approaching circular shapes and covering larger areas. This
suggests that these improved sampling methods enhance the model’s ability to handle balance and
diversity across various data domains.

We also observe that as the sampling rate increases in the random or cluster sampling methods, the
model’s performance in the Quickdraw domain improves, leading to more globally optimized results.
However, the increase in sampling results in more training convergence time consumption and higher
data transmission between the server and clients, which raises both computation and communication
costs, as shown in Table 3. This trade-off needs to be considered in practical applications.

3Note that the rounds in the figure represent the convergence epochs for the global prototype training in the
server, not the communication rounds (global rounds).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

DomainNet, Subset-50 DomainNet, Subset-100 DomainNet, Subset-150

MPFT (cluster, rate = 0.1) MPFT (cluster, rate = 0.3) MPFT (cluster, rate = 0.5) MPFT (cluster, rate = 0.7) MPFT (average)

Figure 7: Comparison of cluster and average sampling in MPFT framework.

DomainNet, Subset-50 DomainNet, Subset-100 DomainNet, Subset-150

MPFT (random, rate = 0.1) MPFT (random, rate = 0.3) MPFT (random, rate = 0.5) MPFT (random, rate = 0.7) MPFT (average)

Figure 8: Comparison of random and average sampling in MPFT framework.

F RESULTS OF MULTIPLE CLIENTS WITH SAME DOMAIN

In this section, we present the results of experiments where multiple clients belong to the same data
domain, a scenario commonly encountered in FL. Specifically, we partition the data from the same
domain into multiple subsets, each maintaining the same class labels, and distribute these subsets
across multiple clients. This setup results in a far greater number of clients than in the experiments
discussed in Section 5.1. As the number of clients increases, the data distribution among clients
becomes more similar, potentially reducing domain heterogeneity.

In particular, we compare the results for scenarios with 6, 18, 24, and 30 clients on the DomainNet
Subset-50 dataset. Table 6 shows the ind acc, ood acc and the number of communication rounds
required for different FL methods.

As the number of clients increases, we observe that methods such as FedAvg, FedProx, and MOON
experience a decline in ood accuracy. This could be due to the reduced heterogeneity among clients,
leading to less domain-specific knowledge being aggregated into the global model. Conversely, Ditto,
FedProto and DBE show a reduction in ind accuracy, because these more personalized methods are
less effective at preserving in-domain knowledge when client heterogeneity decreases.

In contrast, MPFT manages to maintain both ind acc and ood acc, similar to the original experimental
setup, even as the number of clients increases. Notably, in certain cases, MPFT even improves
accuracy. For example, with cluster sampling at a rate of 0.1, MPFT achieves a significant performance
boost with 18 clients compared to the original experiment. This suggests that MPFT’s adaptive
aggregation mechanism is robust to changes in client numbers and data distribution, making it more
scalable and effective in scenarios with multiple clients from the same domain.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 6: Results of multi clients with same domain on DomainNet Subset-50 dataset.

6 clients (original) 18 clients 24 clients 30 clients

ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds

local 0.7361 0.8609 0 0.7330 0.8557 0 0.7437 0.8479 0 0.7434 0.8451 0

FedAvg 0.7902 0.7345 24 0.7708 0.7197 25 0.7693 0.7186 24 0.7685 0.7192 25
FedProx 0.7752 0.7178 10 0.7685 0.7165 0 0.7675 0.7163 0 0.7667 0.7172 1
Ditto 0.7811 0.7624 20 0.7643 0.7386 15 0.7639 0.7397 37 0.7619 0.7357 14
MOON 0.7902 0.7344 28 0.7709 0.7197 27 0.7691 0.7186 20 0.7682 0.7188 6
FedProto 0.7296 0.7696 5 0.7299 0.7530 9 0.7305 0.7476 9 0.7308 0.7562 11
DBE 0.7421 0.7622 22 0.7504 0.7602 8 0.7621 0.7511 4 0.7449 0.7580 24

MPFT (Average) 0.8077 0.7813 1 0.8062 0.7833 1 0.8032 0.7820 1 0.8032 0.7839 1
MPFT (Cluster, rate=0.1) 0.7951 0.7957 1 0.8091 0.8128 1 0.8002 0.8011 1 0.8217 0.8232 1
MPFT (Cluster, rate=0.3) 0.8204 0.8294 1 0.8139 0.8188 1 0.8103 0.8157 1 0.8126 0.8183 1
MPFT (Random, rate=0.1) 0.7953 0.7899 1 0.7911 0.7880 1 0.7909 0.7838 1 0.7975 0.7971 1
MPFT (Random, rate=0.3) 0.8236 0.8294 1 0.8218 0.8267 1 0.8119 0.8138 1 0.8219 0.8257 1

G FEATURE SPACE HIJACKING ATTACK

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Figure 9: Results of the feature space hijacking attack on our model. Each prototype was constructed
from a single image. Even after one million iterations of training, the original image could not be
recovered, demonstrating the security of using prototypes.

In the MPFT framework, the communication of local clients’ prototypes and a trained global adapter
may present potential security vulnerabilities. We hypothesize an attack vector utilizing the archi-
tecture of our approach, to design a feature space hijacking attack. The attacker could leverage the
pretrained model’s image encoder f(ϕ) and the uploaded prototype p(k) to attempt restoration of the
original training data x:

1. An estimated input x∗ is constructed and processed through the pretrained image encoder
f(ϕ) to obtain an estimated prototype p∗.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

2. The mean squared error (MSE) loss is used to iteratively refine x∗, aiming to minimize the
discrepancy between p∗ and the actual prototype p, thereby approximating p

(k)
i .

To demonstrate the resistance of our method to feature space hijacking attacks, we randomly selected
a picture from each client to form a prototype and attempted to simulate an attacker trying to restore
the picture. One picture is chosen as the prototype because if a prototype attack composed of a single
picture cannot be restored, a prototype composed of multiple average representations of the same
category will be even more challenging for an attacker to restore and exploit.

Figure 9 illustrates the process of restoring a single image by multiple clients. Intuitively, we observe
that even after one million gradient descent iterations, the attacker still cannot restore the salient
features of the original image. It is important to note that on our device, it takes nearly 8 hours
to complete such iterative training for each image, imposing a significant time cost on attackers
attempting large-scale attacks.

H RELATIONSHIP BETWEEN NOISE AND PRIVACY BUDGET

We perform differential privacy (DP) analysis in the average prototype sampling stage:

Proposition 1 (Post-Processing) Let f : N|X | → R be a randomized algorithm that is (ε, δ)-
differentially private. Let g : R→ R′ be an arbitrary randomized mapping. Then g ◦ f : N|X | → R′

is (ε, δ)-differentially private.

In MPFT, we can regard sampling as f and learning from the prototype as g, which output is the
learned model. Then the whole learning process is (ε, δ)-differentially private provided that the
sampling function f is (ε, δ)-differentially private.

Definition 1 (Gaussian Mechanism) Let f : N|X | → Rd be an arbitrary d-dimensional function,
and define its ℓ2 sensitivity to be:

∆2f = max
adjacent x,y

∥f(x)− f(y)∥2.

The Gaussian Mechanism with parameter σ adds noise scaled toN (0, σ2) to each of the d components
of the output.

Theorem 2 (Relationship between Gaussian Mechanism and privacy budget) Let ε ∈ (0, 1) be
arbitrary. For c2 > 2 ln(1.25/δ), the Gaussian Mechanism with parameter

σ ≥ c
∆2f

ε

is (ε, δ)-differentially private.

For average sampling, the sampling procedure for class i involves the data embeddings Di =

{d(i)k }
ni

k=1, where ni is the number of data points in class i. For cluster sampling, simply replace Di

by data embeddings inside the cluster, with other analysis unchanged.

The average sampling function f is

f(Di) =

∑ni

k=1 d
(i)
k

ni
.

We define fi as the restriction of f taking only data points in class i as input. Two adjacent datasets
differ by exactly one data point. For two adjacent datasets Dp, Dq , suppose they differ at datapoints

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

d
(i)
p ∈ Dp, d

(i)
q ∈ Dq , then:

∥f(Dp)− f(Dq)∥2 =

∥∥∥∥∥∥
∑

d
(i)
k ∈Dp

d
(i)
k

ni
−

∑
d
(i)
k ∈Dq

d
(i)
k

ni

∥∥∥∥∥∥
2

=

∥∥∥d(i)p − d
(i)
q

∥∥∥
2

ni
,

∆2fi = max
p,q∈{1,...,ni}

∥∥∥d(i)p − d
(i)
q

∥∥∥
2

ni
.

For (δi, εi)-differentially private guarantee:

σ ≥
√
2 ln(1.25/δi) ·∆2fi

εi
.

A strong differentially private guarantee is achieved when εi < 1, δi ≤ 1
ni

according to the theorem
in (Dwork & Roth, 2014). In federated learning settings such as (Wei et al., 2020), a medium
differentially private guarantee is achieved when εi is around 10.

We calculate our differentially private guarantee as

εi =

√
2 ln(1.25ni) ·∆2fi

σ
.

For our differential privacy experiment in Section 5.6, the σ value used is the multiplication qs.
Table 7 shows empirical results of average privacy budget ε̄ with different σ values, where we take
δi =

1
ni

:

Table 7: Average privacy budget ε̄ for different σ values.

σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.5

DomainNet, Subset=50 54.76 10.95 5.48 1.10
DomainNet, Subset=100 65.48 13.10 6.55 1.31
DomainNet, Subset=150 60.73 12.15 6.07 1.21

The table demonstrates that, as the noise scale σ increases, the average privacy budget ε̄ decreases,
indicating stronger privacy protection. When σ is above 0.05, the privacy budget is sufficient to
provide robust privacy guarantees. Furthermore, as shown in Table 4, the performance of MPFT
experiences minimal decline when σ is in the range of 0.05–0.1. These results, both theoretical and
empirical, demonstrate that MPFT can effectively utilize differential privacy mechanisms to protect
prototypes without significant performance loss.

23

	Introduction
	Related work
	Problem statement
	Methodology
	Experiment
	Performance on multi-domain
	Details about results on each domain
	Impact of Multi-Domain Differences on Performance
	Performance with local adaptation
	Computation cost and communication cost
	Privacy preservation analysis

	Conclusion and Future Work
	Visualization of prototype
	Convergence analysis
	Corollary 1: On Convergence to Stationary Point and Convergence Rate
	Remark: On Error Bounds
	Convergence Analysis with Differential Privacy Noise

	More Details about Experiment Implementation
	Basic Setup
	Details about Implementation of Baselines
	Details about Early Stopping Strategy
	Details about Knowledge Distillation in Local Adaptation

	Sensitivity Analysis of Global Convergence Threshold
	More Details about results on each domain
	Results of Multiple Clients with Same Domain
	Feature space hijacking attack
	relationship between noise and privacy budget

