
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING FEDERATED DOMAIN ADAPTATION WITH
MULTI-DOMAIN PROTOTYPE-BASED FEDERATED FINE-
TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Domain Adaptation (FDA) is a Federated Learning (FL) scenario where
models are trained across multiple clients with unique data domains but a shared
category space, without transmitting private data. The primary challenge in FDA is
data heterogeneity, which causes significant divergences in gradient updates when
using conventional averaging-based aggregation methods, reducing the efficacy
of the global model. This further undermines both in-domain and out-of-domain
performance (within the same federated system but outside the local client). To
address this, we propose a novel framework called Multi-domain Prototype-based
Federated Fine-Tuning (MPFT). MPFT fine-tunes a pre-trained model using multi-
domain prototypes, i.e., pretrained representations enriched with domain-specific
information from category-specific local data. This enables supervised learning on
the server to derive a globally optimized adapter that is subsequently distributed
to local clients, without the intrusion of data privacy. Empirical results show
that MPFT significantly improves both in-domain and out-of-domain accuracy
over conventional methods, enhancing knowledge preservation and adaptation in
FDA. Notably, MPFT achieves convergence within a single communication round,
greatly reducing computation and communication costs. To ensure privacy, MPFT
applies differential privacy to protect the prototypes. Additionally, we develop a
prototype-based feature space hijacking attack to evaluate robustness, confirming
that raw data samples remain unrecoverable even after extensive training epochs.
The complete implementation of MPFL is available at https://anonymous.
4open.science/r/DomainFL/.

1 INTRODUCTION

Federated Learning (FL) is a privacy-preserving distributed machine learning paradigm designed to
protect the data of participating clients (McMahan et al., 2017b). In FL, only models trained on local
data are shared between clients and servers, rather than the raw data itself, mitigating the risk of data
leaks. Mainstream FL research primarily focuses on optimizing each client’s performance within
its local data domain (in-domain performance). However, in Federated Domain Adaptation (FDA)
scenarios, clients need to perform well on the collective data domains shared by all participants to
meet certain business requirements. For instance, consider a consortium of banks training a model
to detect fraudulent transactions. Each bank has distinct customer bases and transaction patterns,
leading to variations in their data (domains). A good out-of-domain performance is essential for
anticipating new risks that a bank may not be exposed to yet. The challenge is to ensure the global
model performs well across all banks, achieving good in-domain accuracy (within each bank’s typical
use cases) and out-of-domain accuracy (generalizing across the federated financial system).

Studies have shown that FL achieves results similar to centralized training only when the datasets
among clients are independently and identically distributed (i.i.d) and share similar domain char-
acteristics (Liu et al., 2023; Seol & Kim, 2023; Shaheen et al., 2022). In typical scenarios where
all clients’ models are trained on local data from the same domains, update directions are aligned,
making it feasible to use averaging-based aggregation algorithms such as FedAvg (McMahan et al.,
2017b). However, in FDA, in which clients have unique domains but a shared category space, the
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Figure 1: Comparison of MPFT to centralized learning and previous averaging-based FL approaches.

significant dissimilarities of feature space among local model updates mean that averaging of weights
may not yield an optimal global model (Su et al., 2024; Sun et al., 2021).

To address this issue, we propose a novel framework called Multi-domain Prototype-based Federated
Fine-Tuning (MPFT). MPFT tackles this issue by having each client generate a specific proportion
of data embeddings (i.e., prototypes) to be transmitted to the server to create a prototype training
dataset. This allows us to simulate a centralized learning approach without transferring raw data, as
prototypes encapsulate sufficient domain-specific features to represent the entire data domain. The
server then fine-tunes a global adapter using this comprehensive set of prototypes, with the goal of
approximating the performance of centralized learning without relying on conventional averaging
approaches to derive a global model. Figure 1 illustrates how our aggregation method compares to
centralized learning and traditional averaging-based FL approaches.

Since only a specific proportion of local data embeddings are sampled as prototypes, and MPFT
requires only a single round of global communication to converge, our framework incurs significantly
lower computation and communication costs compared to other multi-round FL frameworks. MPFT
also incorporates a differential privacy mechanism to mitigate the risk that the original data of specific
prototypes are exposed during the prototype transmission process. Furthermore, simulations of
feature space hijacking attacks on MPFT demonstrate that attackers cannot reconstruct the original
data from the uploaded prototypes, even when the pretrained prototype encoder is known.

Our contributions are as follows: a) We propose MPFT, a one-round federated fine-tuning framework
with convergence guarantees that outperforms previous methods on multi-domain environments. b)
We introduce a novel metric to evaluate the performance of the FDA, specifically assessing out-
of-domain and in-domain accuracy to consider the trade-off between knowledge preservation and
adaptation. c) We demonstrate empirically that MPFT incurs lower computational and communication
overheads as compared to other FL methods while ensuring privacy through differential privacy
protection of the prototypes and maintaining robustness against feature space hijacking attacks.

2 RELATED WORK

Efforts to enhance performance in FL across heterogeneous datasets (FDA) have been extensive.
Regularization methods during training, such as FedProx (Li et al., 2020) and FedDyn (Jin et al., 2023),
or knowledge distillation techniques like FedGen (Venkateswaran et al., 2023) and FedNTD (Lee
et al., 2022), aim to align local models more closely with the global model. Such approaches help
mitigate the divergence among local models but rely on the assumption that the averaged global
model is well-suited for the entire data distribution which often does not hold in FDA.

Updating only parts of the model during aggregation is another strategy, exemplified by personalized
FL (PFL) (Tan et al., 2022a), which aims to customize local models to enhance in-domain perfor-
mance. Some methods involve using a personalized aggregation base to select specific portions of
global information for model aggregation, or updating only parts of the model during the aggrega-
tion phase, e.g., APFL (Deng et al., 2020), FedFomo (Zhang et al., 2020), FedAMP (Huang et al.,
2021), FedPHP (Li et al., 2021c), APPLE (Luo & Wu, 2022), and FedALA (Zhang et al., 2023a).
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Additionally, some methods split model layers to segregate global and local components, such as in
FedPer (Arivazhagan et al., 2019), LG-FedAvg (Liang et al., 2020), FedRep (Husnoo et al., 2022),
FedRoD (Chen & Chao, 2021), FedBABU (Oh et al., 2021), FedCP (Zhang et al., 2023b), FedGH (Yi
et al., 2023), and DBE (Zhang et al., 2024). However, a key drawback is these methods still rely on
averaging-based aggregation, which results in poor out-of-domain adaptation performance, despite
achieving some in-domain improvements.

Some FL methods incorporate prototype learning. For instance, FedProto (Tan et al., 2022b) utilizes
averaged local prototypes to train as the global prototype on local clients. FPL (Huang et al., 2023)
transmit all the prototypes (data embeddings) to the server during the initial phase for clustering and
averaging, which is then sent back to the clients for further optimization. This method introduces
significant communication overhead and potential privacy leakage during the first phase. FedNH (Dai
et al., 2023) leverages class prototype transmission to address class imbalance across clients, rather
than tackling the more complex issue of domain heterogeneity.

Unlike the above methods, we do not assume that the average aggregation of different client models
or prototypes can represent the global model or global prototype in scenarios involving heterogeneous
client data. MPFT uses prototypes from different clients as basic units that replace data distribution
for centralized training on the server, thus obtaining an approximate global model capable of fitting
all heterogeneous client domains distribution, as demonstrated in Appendix A.

3 PROBLEM STATEMENT

Scenario assumption. Consider a scenario involving N clients, where each client possesses a
private training dataset D1, . . . ,DN , each drawn from a unique data domain and shared category
space1. Our goal is to train a model that balances domain knowledge preservation and domain
knowledge adaptation. Domain knowledge preservation refers to the ability of the model to retain
each client’s unique domain insights. Domain knowledge adaptation is defined as the model’s ability
to indirectly extract and transfer knowledge from each participating client’s domain to others, even if
a client i cannot directly train on another client j’s data.

Optimization goal. Building on this, we define the Domain Knowledge Preservation loss LP and
the Domain Knowledge Adaptation loss LA as follows:

LP =

N∑
i=1

Li(Θ
P
i ;Di; Θ

G), LA =

N∑
i=1

N∑
j=1,j ̸=i

Li(Θ
P
i ;Dj ; Θ

G), (1)

where L(·) denotes the loss function, ΘP
i denotes the local (personalized) model parameters for client

i, and ΘG denotes the global model parameters. In conventional FL, the local models ΘP
1 , . . . ,Θ

P
N

are periodically synchronized with the global model ΘG .

The optimization goal is to decrease both the LP and LA. Thus, we formalize the FDA optimization
goal as follows:

{ΘP
1 , . . . ,Θ

P
N ; ΘG} = arg min(α1

iLP + α2
iLA), (2)

where α1
i and α2

i are client-defined weight parameters which balance the trade-off between domain
knowledge preservation and domain knowledge adaptation, in line with the “no free lunch” theorem.

Evaluation metrics. To quantify the effectiveness of the optimization, we propose two metrics:
in-domain accuracy (ind acc) and out-of-domain accuracy (ood acc). Denoting ACC(j)

i to be the
accuracy for a client i when tested on domain j, ind acc and ood acc are defined as follows:

ind acc =

∑N
i=1 ACC(i)

i ni∑N
i=1 ni

, ood acc =

∑N
i=1

∑
j ̸=i ACC(j)

i nj∑N
i=1

∑
j ̸=i nj

, (3)

1These domains may be largely isolated with minimal overlap, but MPFT also generalizes to scenarios where
each client may have data from multiple domains, as demonstrated in Section 5.
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where ni is the number of test samples for client i. The ind acc measures each client’s performance
on its own domain data, while the ood acc evaluates adaptation performance when tested on data
from other domains.

4 METHODOLOGY

Overview. We introduce Multi-domain Prototype-based Federated Fine-Tuning (MPFT), which
consists of three main components: Prototype Generation, Global Adapter Initialization, and Few-shot
Local Adaptation, as depicted in Figure 2. During the Prototype Generation phase, we generate
domain-specific prototypes for each client based on specific sampling methods and ratios. The clients
subsequently transmit their local prototypes to the server. In the Global Adapter Initialization phase,
we utilize these prototypes to train a global adapter designed to handle the multi-domain distribution
of all clients, thereby improving the ood performance of the global adapter across clients. The global
adapter is then sent back to the clients for local inference. While the global adapter performs well in
ood accuracy, some clients may require better ind performance. In such cases, they can proceed to
the Few-shot Local Adaptation phase, where a few-shot dataset is sampled locally to further fine-tune
the local adapter. Knowledge distillation is employed to mitigate catastrophic forgetting of global
knowledge during this phase.
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Figure 2: An overview of MPFL.

Prototype Generation. A prototype is a compact representation of a specific class feature that
is unique to each domain. To synchronize the consistency of the prototype’s embedding space
across domains, each client utilizes the same pretrained image encoder to generate the prototype
set {P(1), . . . ,P(K)}, where K represents the total number of classes. Although all clients share the
same label space, each label manifests uniquely within its respective feature domain.

To generate these prototypes, different sampling methods can be applied, including Mean Sampling,
Cluster Sampling, and Random Sampling, as described in Algorithm 1. The choice of sampling
method depends on the desired trade-off between computational efficiency and prototype representa-
tional robustness. In Mean Sampling, each client i generates a prototype for class k by calculating
the mean of the pretrained embeddings for that class. In Cluster Sampling, clustering (e.g., k-means)
is performed on pretrained embeddings of each class, and a certain number of cluster centers are then
selected based on a predefined sampling rate to form the prototype set. In Random Sampling, a fixed
number of pretrained embeddings of each class are randomly selected according to the sampling rate,
and these selected embeddings constitute the prototype set.

Once each client has generated their prototypes, they transmit these to the server. Consequently, the
server accumulates N domain-specific representations subset (prototypes subset) for each class k,
which are collectively represented as DP =

{⋃N
i=1

{
P(1)
i , . . . ,P(K)

i

}}
.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Different Sampling Methods

1: function MEAN SAMPLING(Di)
2: for class k in 1, . . . ,K do
3: P

(k)
i ← 1

|D(k)
i |

∑
(x,y)∈D(k)

i ,y=k
f(ϕ;x) ▷ Compute mean embeddings for each class

4: end for
5: return Pi ← {P (1)

i , . . . , P
(K)
i }

6: end function

7: function CLUSTER SAMPLING(Di, r)
8: for class k in 1, . . . ,K do
9: Ck ←

⌈
r × |D(k)

i |
⌉

▷ Set the number of cluster centers

10: P(k)
i ← Cluster

(
f(ϕ;D(k)

i ), Ck
)

▷ Perform cluster sampling
11: end for
12: return Pi ←

⋃K
j=1 P

(j)
i

13: end function

14: function RANDOM SAMPLING(Di, r)
15: for class k in 1, . . . ,K do
16: Ck ←

⌈
r × |D(k)

i |
⌉

▷ Set the number of randomly selected embeddings

17: P(k)
i ← RandomlySelect

(
f(ϕ;D(k)

i ), Ck
)

▷ Perform random sampling
18: end for
19: return Pi ←

⋃K
j=1 P

(j)
i

20: end function

Global adapter initialization. Algorithm 2 outlines the global adapter initialization process. Note
that we avoid averaging-based aggregation within each class across different clients, as this would
distort the global distribution. Utilizing DP , we train the global adapter AG to adapt to the entire
system’s data distribution with cross-entropy loss L:

{ΘG , AG} = arg min L(DP ; ΘG ;AG). (4)

Upon successful training, the global adapter AG is sent to the clients, replacing their local adapters.

Algorithm 2 Federated Learning with Global Adapter Initialization

Input: N clients, L: loss function, Θ0{f(ϕ), g(ϕ)}: pretrained CLIP model Θ0 with image encoder
f(ϕ) and text encoder g(ϕ), A0: random initialized adapter, η: learning rate, K: number of data
classes, Di: client i training data, (x, y): data sample, method: sampling method (e.g., mean,
cluster, random), r: sampling rate.

Output: Reasonable global adapter AG

1: Generate linear probe classification head H by labels and pretrained text encoder g(ϕ).
2: Server sends f(ϕ), A0 and H to all clients to initialize local models.
3: for client i in 1, . . . , N in parallel do
4: Pi ← method (Di, r)
5: end for
6: Clients send the prototype to the server.
7: Server constructs the prototype training dataset DP by DP ←

⋃N
i=1 Pi.

8: while AG does not converge do
9: Server optimizes AG by AG ← AG − η∇AGL(DP ; ΘG ;AG).

10: end while
11: return AG

Few-shot local adaptation. While global adapter AG performs well in ood accuracy, it may not be
sufficient for ind accuracy. To address this, clients can use their local few-shot data DF

i to further
fine-tune AG, adapting it to their local domain and improving ind accuracy, as shown in Algorithm 3.

5
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Algorithm 3 Few-shot Local Adaptation

Input: N joining clients, L: loss function, Θ0{f(ϕ), g(ϕ)}: pretrained CLIP model Θ0 with image
encoder f(ϕ) and text encoder g(ϕ), AG: global initialized adapter, α: local learning rate, K:
number of data classes, F : few-shot number, Di: client i training data, (x, y): data sample.

Output: Reasonable local adapters {AL
1 , . . . , A

L
N}

1: Server sends AG to all clients to initialize local adapter AL.
2: for client i in 1, . . . , N in parallel do
3: DF

i ←
{⋃K

j=1 {(xm, ym) ∈ Di | ym = j,m = 1, . . . ,F}
}

▷ Generate few-shot data

4: Client i obtains AL
i by AL

i ← AL
i − η∇AL

i
L(DF

i ; Θ
G ;AL

i ;A
G). ▷ Local adaptation

5: end for
6: return {AL

1 , . . . , A
L
N}

To avoid catastrophic forgetting (French, 1999) of global knowledge during the local adaptation
process, knowledge distillation (KD) method is employed to regularize the locally trained adapter
AL, ensuring it does not deviate too much from the global adapter AG . The loss function for local
adaptation is defined as:

L = LCE + βLKD, (5)

where LCE represents the cross-entropy loss, and LKD denotes the KD loss. The hyperparameter β
balances the influence of the KD loss in the overall objective. In Section 5.4, we compare the effects
of different KD weights β on balancing ind accuracy and ood accuracy.

Convergence. We analyze the convergence of MPFT, with detailed proofs provided in Appendix B.

Theorem 1 (Convergence of fine-tuning with prototypes) For a smooth, non-convex loss function
L with a Lipschitz continuous gradient with constant L, the global fine-tuning using prototypes DP

converges. The sequence of updates for the global adapter AG achieves a monotonic decrease in the
loss function L(DP ; ΘG , AG). Specifically, choosing a learning rate η such that 0 < η < 2

L ensures:

L(DP ; ΘG , AG
t+1) ≤ L(DP ; ΘG , AG

t )− c∥∇AGL(DP ; ΘG , AG
t )∥2 +

∆

N
,

where c = η − Lη2

2 is a positive constant, ensuring that the step size is appropriately bounded for
convergence. Here, ∆ is the maximum prototype divergence across clients.

Corollary 1.1 (Convergence to stationary point and rate) As T increases, the average gradient
norm decreases, indicating convergence to a stationary point:

1

T

T∑
t=1

∥∇AGL(DP ; ΘG , AG
t )∥2 ≤

L(DP ; ΘG , AG
1 )− L(DP ; ΘG , AG

T ) +
T∆
N

cT
.

This indicates that as T increases, the right-hand side approaches zero, confirming that the gradient
norm diminishes and the updates converge to a stationary point.

5 EXPERIMENT

Datasets and Models. To simulate a FDA environment, We use the DomainNet (Peng et al., 2019)
and PACS (Li et al., 2017) datasets which are widely used in multi-domain data adaptation. For
these datasets, we employ pretrained CLIP models from OpenCLIP (Cherti et al., 2023; Radford
et al., 2021; Schuhmann et al., 2022). The image encoder of CLIP for DomainNet is a ViT-B-32
pretrained on the LAION-2B dataset, while for PACS, we use a ConvNeXT-Base pretrained on the
LAION-400M dataset as the image encoder.

Implementation details. We implement various representative FL algorithms as baselines, includ-
ing FedAvg (McMahan et al., 2017a), FedProx (Li et al., 2020), Ditto (Li et al., 2021b), MOON (Li
et al., 2021a), FedProto (Tan et al., 2022b), and DBE (Zhang et al., 2024), using the PyTorch library

6
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and based on the integrated FL library PFLlib (Zhang et al., 2023c). To simulate the common
FL scenario where data resides only on clients, we split the data for each client into a training set
(70%), a test set (20%), and a validation set (10%). We evaluate in-domain (ind) and out-of-domain
(ood) accuracy following Equation 3. To demonstrate the scalability of our method, we partition the
DomainNet dataset, which includes 345 categories, into subsets containing 50, 100, and 150 classes,
respectively. To more conveniently compute the convergence time for each FL method and compare
the computational and communication costs of them, we introduce an early stopping strategy during
training. More details about our experimental setup and baselines can be found in Appendix C.1 and
Appendix C.2, with details on the early stopping strategy provided in Appendix C.3.

Diverse FDA Scenarios. We conducted experiments and analyses from different perspectives on
various potential FDA scenarios. Section 5.1 presents the performance of different FL methods
in a basic scenario, where each client is assigned a unique data domain, with minimal overlap
between domains. Section 5.2 provides a detailed analysis of the global model’s performance on each
client, exploring the fairness of different methods in FDA. In Section 5.3, we design a more realistic
scenario where each client may hold data from multiple domains, reducing the domain heterogeneity
between clients. Appendix F sets up another realistic scenario where multiple clients belong to the
same data domain, significantly increasing the number of clients compared to the original setup. In
Section 5.4, we investigate the role of local adaptation. Section 5.5 compares the computational and
communication costs of different methods. Finally, in Section 5.6 and Appendix G, we explore the
differential privacy mechanism in MPFT and its robustness against feature space hijacking attacks.

5.1 PERFORMANCE ON MULTI-DOMAIN

We evaluate our method alongside other FL approaches in Table 1, including local training (i.e.,
each client fine-tunes the pretrained model separately). Empirical results show that local training
excels in ind accuracy but performs poorly in ood accuracy. A reason is that local fine-tuning results
in catastrophic forgetting (Luo et al., 2023). Personalized FL methods such as FedProto and DBE,
which generally maintain a personalized local model for each client, have higher ind accuracy but
compromise ood accuracy. In contrast, methods like FedAvg, MOON, and Ditto demonstrate more
balanced improvements in both ind and ood accuracies. FedProx, which introduces a regularization
term between the global and local models, improves ood accuracy at the expense of ind accuracy. In
comparison, our method consistently achieves superior performance in both ood and ind accuracy
across all DomainNet subsets. As the subset size of DomainNet increases, we observe variable
convergence stability across methods such as FedAvg, FedProx, and Ditto, while DBE demonstrates
accelerated convergence. In contrast, our method requires only one global communication round,
which significantly reduces both computational and communication costs. This benefit is further
elaborated in section 5.5.

Table 1: Test accuracy and communication rounds for different FL methods on DomainNet subsets
and PACS. The communication rounds are determined using an early stopping strategy, where fewer
rounds indicate faster convergence. Additionally, we compare the sensitivity of MPFT to different
global convergence thresholds to ensure the robustness of the results across various hyperparameters,
as refer to Appendix D.

DomainNet: Subset-50 DomainNet: Subset-100 DomainNet: Subset-150 PACS

ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds

local 0.7361 0.8609 0 0.6554 0.8310 0 0.6003 0.8067 0 0.6547 0.9984 0

FedAvg (McMahan et al., 2017a) 0.7902 0.7345 24 0.7628 0.6966 49 0.7263 0.6709 17 0.9725 0.9887 32
FedProx (Li et al., 2020) 0.7752 0.7178 10 0.7499 0.6827 9 0.7131 0.6569 5 0.9219 0.9659 13
Ditto (Li et al., 2021b) 0.7811 0.7624 20 0.7511 0.7182 30 0.7149 0.6904 13 0.9172 0.9930 35
MOON (Li et al., 2021a) 0.7902 0.7344 28 0.7623 0.6952 16 0.7267 0.6715 31 0.9763 0.9888 42
FedProto (Tan et al., 2022b) 0.7296 0.7696 5 0.6732 0.7385 8 0.6321 0.7073 7 0.8627 0.9963 32
DBE (Zhang et al., 2024) 0.7421 0.7622 22 0.7179 0.7233 6 0.6820 0.6956 5 0.971 0.984 12

MPFT (Average) 0.8077 0.7813 1 0.7674 0.7399 1 0.7294 0.7099 1 0.9486 0.9703 1
MPFT (Cluster, rate=0.1) 0.7951 0.7957 1 0.7641 0.7692 1 0.7171 0.7256 1 0.9808 0.9880 1
MPFT (Cluster, rate=0.3) 0.8204 0.8294 1 0.7766 0.7791 1 0.7430 0.7514 1 0.9841 0.9896 1
MPFT (Random, rate=0.1) 0.7953 0.7899 1 0.7566 0.7509 1 0.7194 0.7233 1 0.9829 0.9888 1
MPFT (Random, rate=0.3) 0.8236 0.8294 1 0.7803 0.7811 1 0.7469 0.7542 1 0.9887 0.9919 1
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5.2 DETAILS ABOUT RESULTS ON EACH DOMAIN

To further explain why MPFT achieves better ind and ood accuracy compared to the baselines, we
visualize the performance of each domain in Figure 3. Each axis of the radar chart represents a specific
data domain (e.g., Real or Painting), with the shape and coverage area of the curves illustrating the
global model’s performance across these domains. Empirically, the roundness of the curve could
reflect the fairness of the model across different clients (domains)—the rounder the curve, the more
fair the method is in the global distribution, leading to better ood accuracy.

Compared to other FL baselines across different DomainNet subset sizes, MPFT with average
sampling method performs exceptionally well in the Quickdraw domain, with a more balanced
curve shape. Additionally, MPFT maintains strong performance across other domains relative to the
baselines, thereby achieving better overall fairness. For more details about the effects of random and
cluster sampling compared to average sampling on each domain, please refer to Appendix E.
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FedAvg FedProx Ditto MOON MPFT (average)FedProto DBE

Figure 3: Comparison of different FL methods across various DomainNet subset sizes.

5.3 IMPACT OF MULTI-DOMAIN DIFFERENCES ON PERFORMANCE

In real-world scenarios, a client may contain data from multiple domains rather than a single specific
domain2 . We simulate a situation where each client contains 1−mr percent of data from its original
domain, mixed with mr percent of data from another domain. Here, mr represents the mixed ratio,
indicating the level of domain diversity on the client side. We evaluate our method alongside other FL
approaches under this scenario, as shown in Table 2, where DomainNet subset-50 is used. We observe
a reduction in the performance advantage of our method compared to others, as the mixed ratio
increases. This decline is due to the reduced heterogeneity within the FL system, which diminishes
the strengths of our approach. However, it is still evident that our method outperforms most FL
algorithms, particularly when using Random and Cluster sampling strategies.

Table 2: Results of mixed multi-domain situation on DomainNet Subset-50.

original mixed ratio = 0.3 mixed ratio = 0.4 mixed ratio = 0.5

ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds

local 0.7361 0.8609 0 0.7316 0.8477 0 0.7339 0.844 0 0.7408 0.8356 0

FedAvg (McMahan et al., 2017a) 0.7902 0.7345 24 0.7975 0.7639 19 0.7996 0.7691 8 0.8090 0.7845 7
FedProx (Li et al., 2020) 0.7752 0.7178 10 0.7798 0.7386 67 0.7813 0.7448 34 0.7903 0.7588 27
Ditto (Li et al., 2021b) 0.7811 0.7624 20 0.7966 0.8027 13 0.7811 0.7808 7 0.7777 0.7757 6
MOON (Li et al., 2021a) 0.7902 0.7344 28 0.7984 0.7639 13 0.8043 0.7763 8 0.8109 0.7865 8
FedProto (Tan et al., 2022b) 0.7296 0.7696 5 0.7110 0.7395 6 0.7075 0.7421 7 0.7019 0.7293 6
DBE (Zhang et al., 2024) 0.7421 0.7622 22 0.7348 0.7371 3 0.7293 0.7349 14 0.7286 0.7331 11

MPFT (Average) 0.8077 0.7813 1 0.7879 0.7610 1 0.7817 0.7577 1 0.7783 0.7533 1
MPFT (Cluster, rate=0.1) 0.7951 0.7957 1 0.8213 0.8169 1 0.7887 0.7897 1 0.8007 0.7912 1
MPFT (Cluster, rate=0.3) 0.8204 0.8294 1 0.8276 0.8253 1 0.8209 0.8142 1 0.8142 0.8071 1
MPFT (Random, rate=0.1) 0.7953 0.7899 1 0.7928 0.7856 1 0.8040 0.7958 1 0.7919 0.7801 1
MPFT (Random, rate=0.3) 0.8236 0.8294 1 0.8184 0.8141 1 0.8108 0.8065 1 0.8137 0.8050 1

2Additionally, it is common for multiple clients to share the same data domain, as refer to Appendix F.
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5.4 PERFORMANCE WITH LOCAL ADAPTATION

We compare the few-shot performance of local adaptation with different knowledge distillation (KD)
weights in Figure 4. As the KD weight increases, there is less out-of-domain knowledge forgetting but
worse in-domain knowledge alignment. With an increase in the number of few-shot samples, the ood
and ind accuracy show a similar trend. We provide more details about the experiment implementation
of KD in local adaptation in Appendix C.4.
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Figure 4: Few-shot performance comparison of local adaptation with different KD weights.

5.5 COMPUTATION COST AND COMMUNICATION COST

We further analyze the computation cost and communication cost in Table 3. Computation cost
is the total training time of FL, which is related to the number of communication rounds and the
computational complexity within each round. Among the methods compared, Ditto is the most
time-consuming due to the additional local training epoch it requires. In contrast, the MPFT, which
converges in just one global round, significantly reduces training time, particularly when the sampling
method is set to average. For other sampling methods, such as Random and Cluster, our approach
trades a modest increase in training time for substantial improvements in both ind and ood accuracy.
Communication cost is the number of parameters transmitted, which is theoretically influenced by
the number of communication rounds R, the model (adapter) parameters

∑
, and the prototypes∏

. The number of communication roundsR directly contributes to a linear increase in the overall
communication cost. Furthermore, the model adapter parameters

∑
and the size of the prototypes∏

determine the communication cost per round in these specific algorithms. In our empirical
results, MPFT with average sampling achieved the lowest communication cost across all experiments.
However, while random or cluster sampling slightly increases communication overhead, it also
significantly improves MPFT’s performance (see Table 1).
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Table 3: Computation cost and communication cost of FL methods. R represents the convergence
round,

∑
represents the number of model (adapter) parameters,

∏
represents the size of prototypes,

N represents the number of clients. The subsets are derived from the DomainNet dataset.

Computation Cost (total training time) Communication Cost (total parameter transmission)

Subset-50 Subset-100 Subset-150 PACS Subset-50 Subset-100 Subset-150 PACS Theoretical

local 240.8s 834.8s 1575.1s 311.2s 0 0 0 0 0

FedAvg 1933.5s 5812.4s 3824.6s 663.9s 144MB 294MB 102MB 128MB R×N × 2
∑

FedProx 803.9s 1253.5s 1120.1s 270.0s 60MB 54MB 30MB 52MB R×N × 2
∑

Ditto 3095.7s 8365.8s 5862.3s 1455.6s 120MB 180MB 78MB 140MB R×N × 2
∑

MOON 2164.2s 2237.4s 7027.4s 872.7s 168MB 96MB 186MB 168MB R×N × 2
∑

FedProto 393.1s 1153.4s 1608.0s 683.3s 5.9MB 18.8MB 24.6MB 3.5MB R×N × 2
∏

DBE 1693.6s 837.6s 1160.3s 248.8s 132MB 36MB 30MB 48MB R×N × 2
∑

MPFT (Average) 1.9s 7.3s 10.7s 0.1s 3.6MB 4.2MB 4.8MB 2MB N × (
∏

+
∑

)
MPFT (Cluster, rate=0.1) 44.7s 302.4s 208.0s 0.6s 12.5MB 20.9MB 30.7MB 3.1MB N × (

∏
+
∑

)
MPFT (Cluster, rate=0.3) 525.9s 624.1s 1344.4s 2.2s 30.9MB 55.8MB 84.8MB 5.3MB N × (

∏
+
∑

)
MPFT (Random, rate=0.1) 33.1s 99.9s 451.9s 0.4s 12.5MB 20.9MB 30.7MB 3.1MB N × (

∏
+
∑

)
MPFT (Random, rate=0.3) 454.5s 478.9s 1341.5s 2.4s 30.9MB 55.8MB 84.8MB 5.3MB N × (

∏
+
∑

)

5.6 PRIVACY PRESERVATION ANALYSIS

Following DBE (Zhang et al., 2024), we add Gaussian noiseN to client prototypes p1, . . . , pN with a
perturbation coefficient q for the noise and a scale parameter s for the noise distribution, the perturbed
prototype p̃i of client i can be defined as p̃i = pi + q · N (0, s2), where pi is the original prototype of
client i. The relationship between noise and privacy budget can be found in Appendix H.

Table 4 shows the results of applying this differential privacy method on the DomainNet subset-50,
with the sampling method set to average under various noise parameter combinations. This approach
effectively mitigates attackers from inferring individual data points even when they possess the
pretrained model and most of prototypes. Furthermore, we observe that specific noise configurations
can reduce bias across heterogeneous datasets, enhancing the robustness of prototype data. In some
cases, this even leads to improved performance compared to models without noise. For instance,
the combinations of (q = 0.5, s = 0.1), (q = 0.1, s = 0.05), and (q = 0.5, s = 0.05) exhibit such
effects. According to DBE, setting q = 0.2 and s = 0.05 is sufficient to ensure privacy protection.
However, excessively large noise can degrade model performance.

Table 4: Performance of differential privacy with varying noise parameters configuration

q = 0.1 s = 0.05

original s = 0.1 s = 0.5 s = 1 s = 5 q = 0.1 q = 0.2 q = 0.5 q = 0.8

ood acc 0.8077 0.8064 0.8083 0.8065 0.7898 0.8078 0.8064 0.8083 0.8055
ind acc 0.7813 0.7806 0.7806 0.7747 0.7437 0.7824 0.7806 0.7820 0.7782

To further evaluate the robustness of MPFT against adversarial attacks, we simulate a feature space
hijacking attack (Vepakomma et al., 2021) on MPFT, please refer to Appendix G.

6 CONCLUSION AND FUTURE WORK

We propose an adaptive and lightweight FDA framework, MPFT, designed to align a global model
with heterogeneous domains by fitting prototypes from different domains. Extensive experiments
demonstrate the effectiveness, low cost, and robustness of MPFT. This study may inspire further
research in FDA that focuses on generalizing across heterogeneous domain prototypes, rather than
relying on model parameter averaging for aggregation.

While MPFT achieves strong performance, it has some limitations. First, the quality of the prototypes
is highly dependent on the pretrained model’s ability to extract meaningful features. Second, although
attackers cannot reconstruct specific raw data from the prototypes, they may still be able to perform
membership inference attacks (Shokri et al., 2017) or attribution inference attacks (Fredrikson
et al., 2015) by exploiting statistical information contained within the prototypes. Addressing the
aforementioned limitations could further enhance the viability and effectiveness of this approach in
practical FL applications, making this method a viable alternative of averaging-based FL methods.
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A VISUALIZATION OF PROTOTYPE

In order to allow readers to intuitively understand the relationship between prototypes and original
data, we visualize the data embeddings (all prototypes) and averaged prototypes in two-dimensional
coordinates using the t-SNE (Van der Maaten & Hinton, 2008) algorithm, as shown in Figure 5.
Different colors represent different domains: for example, blue indicates the ”Painting” domain,
while orange signifies the ”Real” domain. Different markers represent various categories of data
samples. The darker markers located within each sample cluster represent the prototypes of the
”domain-class”. It is evident that each prototype effectively reflects the distribution of its specific
domain-class information. However, the mean prototype, represented by the large red star, is distant
from each individual prototype. This observation underscores why we do not average the prototypes,
as it fails to accurately reflect the overall data distribution, particularly in FDA scenarios.
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t-SNE Visualization of Multiple Datasets with Prototypes
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Figure 5: t-SNE visualization of multiple datasets with their corresponding prototypes.

The Universal Approximation Theorem (Hornik et al., 1989) suggests that neural networks act as
”universal” data distribution fitters, effectively fitting the distribution of given data samples. However,
this also leads to parameter space deviations between different client models in heterogeneous FL. To
address these issues, we introduce a more reasonable aggregation method rather than averaging-based
aggregation. We treat the same category of data in different domains with significant differences as
independent data prototypes. We then use the collection of these data prototypes, which form a more
general data distribution that covers the entire FL system, to train a global model that better fits the
global distribution.

B CONVERGENCE ANALYSIS

Setup: The global loss function for fine-tuning using prototypes is:

L(DP ; ΘG , AG) =
1

N

N∑
i=1

Li(DP ; ΘG , AG),

where DP is the set of prototypes aggregated from all clients.

Assumptions: The standard assumptions follow those of (Li et al., 2020; Tan et al., 2022b): 1)
The loss function L is non-convex but smooth, 2) The gradient of the loss function is Lipschitz
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continuous with constant L. 3) The divergence between the prototypes of different clients for a given
class is bounded. Let ∆(k)

i be the divergence between client i’s prototype for class k and the average
prototype across all clients:

∆
(k)
i = ∥p(k)i − p̄(k)∥, p̄(k) =

1

N

N∑
i=1

p
(k)
i ,

and assume that ∆(k)
i ≤ ∆ for all i and k. Since the prototypes are derived from pretrained image

embeddings, this assumption likely holds due to the consistency provided by the pretrained encoder
in synchronizing the embedding space across domains.

Proof: Given the update rule AG
t+1 = AG

t − η∇AGL(DP ; ΘG , AG
t ), for a smooth, non-convex loss

function L, the Lipschitz continuity implies:

L(DP ; ΘG , AG
t+1) ≤ L(DP ; ΘG , AG

t )−η∥∇AGL(DP ; ΘG , AG
t )∥2+

Lη2

2
∥∇AGL(DP ; ΘG , AG

t )∥2+
∆

N
.

Rearranging the terms, we obtain:

L(DP ; ΘG , AG
t+1) ≤ L(DP ; ΘG , AG

t )−
(
η − Lη2

2

)
∥∇AGL(DP ; ΘG , AG

t )∥2 +
∆

N
.

Choosing η such that 0 < η < 2
L , we have:

L(DP ; ΘG , AG
t+1) ≤ L(DP ; ΘG , AG

t )− c∥∇AGL(DP ; ΘG , AG
t )∥2 +

∆

N
,

where c = η − Lη2

2 is a positive constant. This ensures a decrease in the loss function at each step,
leading to convergence, with an additional term accounting for prototype divergence.

B.1 COROLLARY 1: ON CONVERGENCE TO STATIONARY POINT AND CONVERGENCE RATE

To analyze the convergence rate, we sum both sides of the inequality from t = 1 to T :

T∑
t=1

L(DP ; ΘG , AG
t+1) ≤

T∑
t=1

L(DP ; ΘG , AG
t )− c

T∑
t=1

∥∇AGL(DP ; ΘG , AG
t )∥2 +

T∆

N
.

This simplifies to:

L(DP ; ΘG , AG
1 )− L(DP ; ΘG , AG

T ) ≥ c
T∑

t=1

∥∇AGL(DP ; ΘG , AG
t )∥2 −

T∆

N
.

Rearranging the terms and dividing by cT , we obtain the convergence rate:

1

T

T∑
t=1

∥∇AGL(DP ; ΘG , AG
t )∥2 ≤

L(DP ; ΘG , AG
1 )− L(DP ; ΘG , AG

T ) +
T∆
N

cT
.

As T increases, the average gradient norm decreases, indicating convergence to a stationary point, ad-
justed for prototype divergence. Note that the size of the divergence ∆ affects the rate of convergence.
A smaller ∆ implies that the prototypes across clients are more similar, leading to faster convergence.
Conversely, a larger ∆ suggests greater variability between client data, which may slow down the
convergence rate.

B.2 REMARK: ON ERROR BOUNDS

By incorporating the average prototype divergence, the error bound for client i is:

ϵind
i ≤ ϵlocal

i + α∆avg
i ,
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where ϵlocal
i is the local model error without federation, α is a constant that measures the sensitivity of

the error to the prototype divergence, and ∆avg
i = 1

K

∑K
k=1 ∆

(k)
i is the average prototype divergence

for client i. Thus, the in-domain error bound can be written as:

ϵind ≤
∑N

i=1

(
ϵlocal
i + α∆avg

i

)
ni∑N

i=1 ni

.

For out-of-domain accuracy (ood acc), we are interested in how well the global model generalizes
across different client domains. The maximum divergence of prototypes captures the worst-case
divergence between any two domains.

Given the metric:

ood acc =

∑N
i=1

∑
j ̸=i ACC(j)

i nj∑N
i=1

∑
j ̸=i nj

,

By incorporating the maximum prototype divergence, the error bound for client i on domain j is:

ϵood
ij ≤ ϵlocal

i + β∆max
ij ,

where ϵlocal
i is the local model error without federation, β is a constant that measures the sensitivity of

the error to the prototype divergence, and ∆max
ij = maxk ∥p(k)i − p

(k)
j ∥.

Thus, the overall out-of-domain error bound is:

ϵood ≤
∑N

i=1

∑
j ̸=i

(
ϵlocal
ij + β∆max

ij

)
nj∑N

i=1

∑
j ̸=i nj

.

We note that the in- and out-of-domain error bounds are directly influenced by average prototype
divergence and maximum prototype divergence (worst-case scenario), respectively.

• Impact of higher sampling rate: A higher sampling rate generally leads to better accuracy
because more prototypes are generated per class, providing a richer representation of the
feature distribution across domains. This helps the global model better generalize to out-of-
domain data by capturing a diverse set of variations.

• Sampling methods: Cluster sampling is particularly effective for OOD accuracy because
it captures the underlying structure of the data distribution within each class by selecting
multiple representative prototypes (e.g., cluster centers). Mean sampling, while computa-
tionally efficient, oversimplifies the data distribution by averaging all data points, leading
to a loss of critical information needed for robust adaptation. Random sampling performs
almost as well as cluster sampling in some scenarios. This may be due to the fact that
random sampling, by chance, captures sufficient variations within each class, providing
a diverse enough representation to improve OOD accuracy. However, it may not be as
reliable as cluster sampling because it lacks systematic selection of prototypes and could
miss important subgroups within the class distribution.

B.3 CONVERGENCE ANALYSIS WITH DIFFERENTIAL PRIVACY NOISE

The convergence analysis changes slightly when differential privacy (DP) noise is added. The key
difference is the adjustment in the divergence term:

The divergence between client prototypes for class k is given by:

∆
(k)
i = ∥p(k)i − p̄(k)∥, p̄(k) =

1

N

N∑
i=1

p
(k)
i .

Suppose Gaussian noise β(p
(k)
i ), with an upper bound of β, is added to each prototype p

(k)
i . Since

the Gaussian noise has a mean of zero, by the law of large numbers, we can assume that p̄(k) remains

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

approximately unchanged when N is large. The new divergence term becomes:

∆̃
(k)
i ≤ ∆

(k)
i + β,

leading to an updated upper bound:
∆ ≤ ∆+ β.

The new convergence inequality, adapted from Theorem 1, is:

L(DP ; ΘG , AG
t+1) ≤ L(DP ; ΘG , AG

t )− c∥∇AGL(DP ; ΘG , AG
t )∥2 +

∆+ β

N
.

This indicates that the constant term of convergence increases linearly with the noise level. However,
since the coefficient of β is 1

N , the impact of DP noise becomes negligible as N grows larger, meaning
that the addition of DP noise does not significantly hinder convergence in theory.

C MORE DETAILS ABOUT EXPERIMENT IMPLEMENTATION

C.1 BASIC SETUP

Global classification head generation. We generate the global classification head by utilizing the
manually designed prompts and class names of the dataset, calculated by the pretrained text encoder
in the CLIP model used in our experiments. The global classification head is obtained by averaging
the ’prompt+label’ embeddings from all different domains. Following common fine-tune settings, we
only train the adapter, while freezing the entire image encoder and global classification head.

Training. Our simulations are conducted on a Google® Compute Platform (GCP) equipped with
47 Intel®Xeon® CPUs and 4 NVIDIA® L4 GPUs. For global adapter training, we employ cross-
entropy loss with an AdamW optimizer, setting the learning rate to 0.001. We set the maximum
global rounds to 200 and implement an early stopping strategy to evaluate the convergence rounds. It
is important to note that our method achieves convergence in just one global round, rendering the
early stopping strategy primarily applicable to other FL methods. For simplicity, we assume that all
clients can participate in every communication round in all experiments.

C.2 DETAILS ABOUT IMPLEMENTATION OF BASELINES

For the baseline models used in the experiments, we identified the best parameters for our dataset
within the recommended parameter ranges provided in their original texts. For FedAvg, we followed
the settings in the original article and used the dataset sizes of different clients as the basis for the
weighted average. In FedProx, we set the regularization coefficient to 5, which is lower than the usual
settings of 10, 100, or 1000. This adjustment was made because a higher regularization coefficient
made it difficult for the model to converge to the global equilibrium point due to data heterogeneity.
In Ditto, we used a local round number of 1 and set the regularization term to 2. For MOON, we
set the coefficient µ to 0.001 and the temperature coefficient τ to 1, both within the recommended
ranges of the original text. For FedProto, we used 50 as the regularization coefficient. In DBE, we
adopted 0.01 as the momentum coefficient and 1 as the regular Xiang coefficient, both within the
recommended ranges of the paper. For all baselines, we use the same set of hyperparameters, as
shown in Table 5.

To ensure fairness in the comparison, all baseline methods, including FedAvg and FedProx, were
trained using the same pre-trained feature extractor as MPFT. Furthermore, the training setup for all
baselines was aligned with MPFT’s training paradigm: the pre-trained feature extractor and the global
head were frozen, and only the adapter was trained. For consistency, operations in other baselines
(e.g., average aggregation in FedAvg) were applied specifically to the adapter parameters instead of
the entire model parameters. This adaptation ensures a fair comparison of the performance of MPFT
and the baselines under the same conditions.
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Table 5: The hyperparameters used in all baselines.

Optimizer AdamW
Learning rate 0.001
Batch size 32
Gradient clip 1
Local epoch 1
Maximum global rounds 200
Warm-up global rounds 10
Patience global rounds 10

C.3 DETAILS ABOUT EARLY STOPPING STRATEGY

Each client completes one local epoch per global round. We set the total number of global rounds to
200 and implement an early stopping strategy to evaluate the convergence rounds of each algorithm.
The criterion for early stopping is based on validation loss; specifically, we select the results from the
round that achieves the best validation loss as the final outcome. The patience parameter is set to 10
rounds, meaning that if the validation loss does not decrease below the best recorded loss within a
span of 10 consecutive rounds, the training process is terminated. By implementing the early stopping
strategy, we can more easily test the convergence round of each method and use this strategy to find
the round with the best result.

C.4 DETAILS ABOUT KNOWLEDGE DISTILLATION IN LOCAL ADAPTATION

We use the most basic form of knowledge distillation strategy in our framework (Hinton et al., 2015),
which is response-based knowledge distillation:

AL
i = argminLKD(DF

i ; Θ
G ;AL

i ;A
G). (6)

Here, AL
i represents the local adapter for client i, DF

i is the local dataset, ΘG are the global model
parameters, and AG represents the global adapter. Then, we have:

IG = {AG(f(ϕ;x1)), . . . , A
G(f(ϕ;xn))}, {(x1, y1), . . . , (xn, yn)} ∈ DF

i . (7)

Here, IG denotes the set of outputs from the global adapter for the local dataset DF
i .

ILi = {AL
i (f(ϕ;x1)), . . . , A

L
i (f(ϕ;xn))}, {(x1, y1), . . . , (xn, yn)} ∈ DF

i . (8)

Similarly, ILi denotes the set of outputs from the local adapter AL
i for the local dataset DF

i .

LKD = KL(IG ∥ ILi ) (9)

The knowledge distillation loss LKD is computed as the Kullback-Leibler (KL) divergence between
the outputs of the global adapter and the local adapter.

KL(p ∥ q) =
∑
i

pi log

(
pi
qi

)
(10)

Here, p and q represent the probability distributions output by the global and local adapters, respec-
tively, and KL(p ∥ q) denotes the KL divergence.

D SENSITIVITY ANALYSIS OF GLOBAL CONVERGENCE THRESHOLD

During the global adapter initialization phase, we set a threshold to ensure the model stops training
the prototypes when the variance of loss over multiple rounds decreases to a low value, indicating
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that the global adapter has converged. To test the sensitivity of the experimental results to the
threshold, we test different thresholds for the global adapter initialization process, specifically 0.1,
0.01, 0.001, and 0.0001. Figure 6 shows the impact of these thresholds3. As the threshold decreases,
the out-of-distribution (ood) and in-distribution (ind) performance initially increase and then decrease.
In contrast, the convergence epochs and training time consistently increase. This trend is intuitive
because a lower threshold requires more rounds for the model to converge. Overall, we recommend
using a threshold of 0.01 or 0.001 to minimize training time and reduce the risk of overfitting.
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Figure 6: Impact of different convergence thresholds on global adapter initialization.

E MORE DETAILS ABOUT RESULTS ON EACH DOMAIN

Figure 7 and Figure 8 further illustrate the effects of random sampling and cluster sampling compared
to average sampling within the MPFT framework across different sizes of the DomainNet subset. They
reveal similar trends: random sampling and cluster sampling achieve more balanced performance
in the Quickdraw domain, with curves approaching circular shapes and covering larger areas. This
suggests that these improved sampling methods enhance the model’s ability to handle balance and
diversity across various data domains.

We also observe that as the sampling rate increases in the random or cluster sampling methods, the
model’s performance in the Quickdraw domain improves, leading to more globally optimized results.
However, the increase in sampling results in more training convergence time consumption and higher
data transmission between the server and clients, which raises both computation and communication
costs, as shown in Table 3. This trade-off needs to be considered in practical applications.

3Note that the rounds in the figure represent the convergence epochs for the global prototype training in the
server, not the communication rounds (global rounds).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

  

  

  

   
       

        

    

      

         

         

  

  

  

   
       

        

    

      

         

         

  

  

  

   
       

        

    

      

         

         

DomainNet, Subset-50 DomainNet, Subset-100 DomainNet, Subset-150

MPFT (cluster, rate = 0.1) MPFT (cluster, rate = 0.3) MPFT (cluster, rate = 0.5) MPFT (cluster, rate = 0.7) MPFT (average)

Figure 7: Comparison of cluster and average sampling in MPFT framework.
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Figure 8: Comparison of random and average sampling in MPFT framework.

F RESULTS OF MULTIPLE CLIENTS WITH SAME DOMAIN

In this section, we present the results of experiments where multiple clients belong to the same data
domain, a scenario commonly encountered in FL. Specifically, we partition the data from the same
domain into multiple subsets, each maintaining the same class labels, and distribute these subsets
across multiple clients. This setup results in a far greater number of clients than in the experiments
discussed in Section 5.1. As the number of clients increases, the data distribution among clients
becomes more similar, potentially reducing domain heterogeneity.

In particular, we compare the results for scenarios with 6, 18, 24, and 30 clients on the DomainNet
Subset-50 dataset. Table 6 shows the ind acc, ood acc and the number of communication rounds
required for different FL methods.

As the number of clients increases, we observe that methods such as FedAvg, FedProx, and MOON
experience a decline in ood accuracy. This could be due to the reduced heterogeneity among clients,
leading to less domain-specific knowledge being aggregated into the global model. Conversely, Ditto,
FedProto and DBE show a reduction in ind accuracy, because these more personalized methods are
less effective at preserving in-domain knowledge when client heterogeneity decreases.

In contrast, MPFT manages to maintain both ind acc and ood acc, similar to the original experimental
setup, even as the number of clients increases. Notably, in certain cases, MPFT even improves
accuracy. For example, with cluster sampling at a rate of 0.1, MPFT achieves a significant performance
boost with 18 clients compared to the original experiment. This suggests that MPFT’s adaptive
aggregation mechanism is robust to changes in client numbers and data distribution, making it more
scalable and effective in scenarios with multiple clients from the same domain.
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Table 6: Results of multi clients with same domain on DomainNet Subset-50 dataset.

6 clients (original) 18 clients 24 clients 30 clients

ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds ood acc ind acc rounds

local 0.7361 0.8609 0 0.7330 0.8557 0 0.7437 0.8479 0 0.7434 0.8451 0

FedAvg 0.7902 0.7345 24 0.7708 0.7197 25 0.7693 0.7186 24 0.7685 0.7192 25
FedProx 0.7752 0.7178 10 0.7685 0.7165 0 0.7675 0.7163 0 0.7667 0.7172 1
Ditto 0.7811 0.7624 20 0.7643 0.7386 15 0.7639 0.7397 37 0.7619 0.7357 14
MOON 0.7902 0.7344 28 0.7709 0.7197 27 0.7691 0.7186 20 0.7682 0.7188 6
FedProto 0.7296 0.7696 5 0.7299 0.7530 9 0.7305 0.7476 9 0.7308 0.7562 11
DBE 0.7421 0.7622 22 0.7504 0.7602 8 0.7621 0.7511 4 0.7449 0.7580 24

MPFT (Average) 0.8077 0.7813 1 0.8062 0.7833 1 0.8032 0.7820 1 0.8032 0.7839 1
MPFT (Cluster, rate=0.1) 0.7951 0.7957 1 0.8091 0.8128 1 0.8002 0.8011 1 0.8217 0.8232 1
MPFT (Cluster, rate=0.3) 0.8204 0.8294 1 0.8139 0.8188 1 0.8103 0.8157 1 0.8126 0.8183 1
MPFT (Random, rate=0.1) 0.7953 0.7899 1 0.7911 0.7880 1 0.7909 0.7838 1 0.7975 0.7971 1
MPFT (Random, rate=0.3) 0.8236 0.8294 1 0.8218 0.8267 1 0.8119 0.8138 1 0.8219 0.8257 1

G FEATURE SPACE HIJACKING ATTACK

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Original Iter=0 Iter=250000 Iter=500000 Iter=750000 Iter=1000000

Figure 9: Results of the feature space hijacking attack on our model. Each prototype was constructed
from a single image. Even after one million iterations of training, the original image could not be
recovered, demonstrating the security of using prototypes.

In the MPFT framework, the communication of local clients’ prototypes and a trained global adapter
may present potential security vulnerabilities. We hypothesize an attack vector utilizing the archi-
tecture of our approach, to design a feature space hijacking attack. The attacker could leverage the
pretrained model’s image encoder f(ϕ) and the uploaded prototype p(k) to attempt restoration of the
original training data x:

1. An estimated input x∗ is constructed and processed through the pretrained image encoder
f(ϕ) to obtain an estimated prototype p∗.
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2. The mean squared error (MSE) loss is used to iteratively refine x∗, aiming to minimize the
discrepancy between p∗ and the actual prototype p, thereby approximating p

(k)
i .

To demonstrate the resistance of our method to feature space hijacking attacks, we randomly selected
a picture from each client to form a prototype and attempted to simulate an attacker trying to restore
the picture. One picture is chosen as the prototype because if a prototype attack composed of a single
picture cannot be restored, a prototype composed of multiple average representations of the same
category will be even more challenging for an attacker to restore and exploit.

Figure 9 illustrates the process of restoring a single image by multiple clients. Intuitively, we observe
that even after one million gradient descent iterations, the attacker still cannot restore the salient
features of the original image. It is important to note that on our device, it takes nearly 8 hours
to complete such iterative training for each image, imposing a significant time cost on attackers
attempting large-scale attacks.

H RELATIONSHIP BETWEEN NOISE AND PRIVACY BUDGET

We perform differential privacy (DP) analysis in the average prototype sampling stage:

Proposition 1 (Post-Processing) Let f : N|X | → R be a randomized algorithm that is (ε, δ)-
differentially private. Let g : R→ R′ be an arbitrary randomized mapping. Then g ◦ f : N|X | → R′

is (ε, δ)-differentially private.

In MPFT, we can regard sampling as f and learning from the prototype as g, which output is the
learned model. Then the whole learning process is (ε, δ)-differentially private provided that the
sampling function f is (ε, δ)-differentially private.

Definition 1 (Gaussian Mechanism) Let f : N|X | → Rd be an arbitrary d-dimensional function,
and define its ℓ2 sensitivity to be:

∆2f = max
adjacent x,y

∥f(x)− f(y)∥2.

The Gaussian Mechanism with parameter σ adds noise scaled toN (0, σ2) to each of the d components
of the output.

Theorem 2 (Relationship between Gaussian Mechanism and privacy budget) Let ε ∈ (0, 1) be
arbitrary. For c2 > 2 ln(1.25/δ), the Gaussian Mechanism with parameter

σ ≥ c
∆2f

ε

is (ε, δ)-differentially private.

For average sampling, the sampling procedure for class i involves the data embeddings Di =

{d(i)k }
ni

k=1, where ni is the number of data points in class i. For cluster sampling, simply replace Di

by data embeddings inside the cluster, with other analysis unchanged.

The average sampling function f is

f(Di) =

∑ni

k=1 d
(i)
k

ni
.

We define fi as the restriction of f taking only data points in class i as input. Two adjacent datasets
differ by exactly one data point. For two adjacent datasets Dp, Dq , suppose they differ at datapoints
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d
(i)
p ∈ Dp, d

(i)
q ∈ Dq , then:

∥f(Dp)− f(Dq)∥2 =

∥∥∥∥∥∥
∑

d
(i)
k ∈Dp

d
(i)
k

ni
−

∑
d
(i)
k ∈Dq

d
(i)
k

ni

∥∥∥∥∥∥
2

=

∥∥∥d(i)p − d
(i)
q

∥∥∥
2

ni
,

∆2fi = max
p,q∈{1,...,ni}

∥∥∥d(i)p − d
(i)
q

∥∥∥
2

ni
.

For (δi, εi)-differentially private guarantee:

σ ≥
√
2 ln(1.25/δi) ·∆2fi

εi
.

A strong differentially private guarantee is achieved when εi < 1, δi ≤ 1
ni

according to the theorem
in (Dwork & Roth, 2014). In federated learning settings such as (Wei et al., 2020), a medium
differentially private guarantee is achieved when εi is around 10.

We calculate our differentially private guarantee as

εi =

√
2 ln(1.25ni) ·∆2fi

σ
.

For our differential privacy experiment in Section 5.6, the σ value used is the multiplication qs.
Table 7 shows empirical results of average privacy budget ε̄ with different σ values, where we take
δi =

1
ni

:

Table 7: Average privacy budget ε̄ for different σ values.

σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.5

DomainNet, Subset=50 54.76 10.95 5.48 1.10
DomainNet, Subset=100 65.48 13.10 6.55 1.31
DomainNet, Subset=150 60.73 12.15 6.07 1.21

The table demonstrates that, as the noise scale σ increases, the average privacy budget ε̄ decreases,
indicating stronger privacy protection. When σ is above 0.05, the privacy budget is sufficient to
provide robust privacy guarantees. Furthermore, as shown in Table 4, the performance of MPFT
experiences minimal decline when σ is in the range of 0.05–0.1. These results, both theoretical and
empirical, demonstrate that MPFT can effectively utilize differential privacy mechanisms to protect
prototypes without significant performance loss.
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