
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EFFICIENT SPATIALLY-VARIANT CONVOLUTION VIA
DIFFERENTIABLE SPARSE KERNEL COMPLEX

Anonymous authors
Paper under double-blind review

Arbitrary KernelsGaussian Kernels

GT: 241.33ms Ours: 12.66ms

Parameter Map

c) Spatially Varying Filteringb) Differentiable Optimizationa) Sparse Kernel Complex
Dense Sparse

4489 samples 48 samples

(,)x yδ
(,)F x yθ

tgtK synK
L∂

Figure 1: An overview of our method. We represent a dense filter as a Sparse Kernel Complex, a
sequence of sparse layers whose parameters Θ are learned via Differentiable Optimization. We apply
our filter FΘ to an impulse δ to yield a synthesized kernel Ksyn, and minimize a loss L against the
target Ktgt to learn arbitrary shapes. These optimized kernels serve as a basis for high-performance
Spatially Varying Filtering, achieving quality nearly-ground-truth quality at up to a 20× speedup.

ABSTRACT

Image convolution with complex kernels is a fundamental operation in photogra-
phy, scientific imaging, and animation effects, yet direct dense convolution is com-
putationally prohibitive on resource-limited devices. Existing approximations,
such as simulated annealing or low-rank decompositions, either lack efficiency
or fail to capture non-convex kernels. We introduce a differentiable kernel de-
composition framework that represents a target spatially-variant, dense, complex
kernel using a set of sparse kernel samples. Our approach features (i) a decom-
position that enables differentiable optimization of sparse kernels, (ii) a dedicated
initialization strategy for non-convex shapes to avoid poor local minima, and (iii)
a kernel-space interpolation scheme that extends single-kernel filtering to spatially
varying filtering without retraining and additional runtime overhead. Experiments
on Gaussian and non-convex kernels show that our method achieves higher fidelity
than simulated annealing and significantly lower cost than low-rank decomposi-
tions. Our approach provides a practical solution for mobile imaging and real-time
rendering, while remaining fully differentiable for integration into broader learn-
ing pipelines.

1 INTRODUCTION

From rendering realistic depth-of-field effects (Sakurikar; Wu et al., 2022) in computational photog-
raphy to modeling the intricate point spread functions (Liu et al., 2022; Shajkofci & Liebling, 2020)
of optical systems, the ability to apply large, complex convolution kernels is a fundamental building
block in modern vision and graphics computing systems. This creates a fundamental tension: while
larger, more intricate kernels enable higher-fidelity results, their quadratic computational cost ren-
ders direct implementation impractical for interactive applications on devices ranging from mobile
phones to high-end GPUs.

To bridge this gap, a rich body of work has focused on approximation strategies. For specific cases
like Gaussian blur, elegant solutions (Zing, 2010; Kovesi, 2010) with constant-time complexity exist

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

by exploiting the filter’s analytical properties. However, these specialized methods are not applicable
to the arbitrary, often non-convex, kernels required for advanced effects. More general approaches,
such as low-rank matrix decomposition (McGraw, 2015), can handle arbitrary kernels but often
factor the operation into a series of smaller dense convolutions, limiting the potential for true sparsity
and efficiency gains.

A more direct and efficient approach (Schuster et al., 2020) is to approximate a dense kernel with
a truly sparse one, drastically reducing the number of required computations. Prominent strategies
in this space employ heuristic-based search algorithms, such as parallel simulated annealing, to dis-
cover optimal sparse sample patterns for arbitrary kernels. While powerful in their generality, these
methods often require a vast number of iterations to converge and can struggle to find high-fidelity
solutions due to the non-convex nature of the optimization landscape. This reveals a critical need
for a more principled and efficient method to discover high-quality sparse kernel representations.

In this work, we address this challenge by introducing a differentiable kernel decomposition frame-
work. This approach directly optimizes the parameters of a sequence of natively sparse kernels,
resulting in a highly efficient representation for runtime inference that stands in contrast to meth-
ods like low-rank decomposition. By formulating the decomposition as an end-to-end optimization
problem, we can leverage the power of gradient-based methods. This marks a significant departure
from heuristic search algorithms like simulated annealing, offering a more robust and efficient op-
timization that converges to high-fidelity solutions in significantly fewer iterations. To ensure the
success of this gradient-based approach, especially for non-convex target kernels, we introduce a
two-part initialization strategy that combines a structure-aware sampling method to capture intricate
shapes with a deterministic radial initialization for overall stability and rapid convergence.

Beyond single-kernel approximation, our framework provides a powerful foundation for efficient
spatially varying filtering. In such applications, a primary challenge is often the prohibitive over-
head of generating a unique kernel for each pixel, a cost that can become a significant performance
bottleneck. We address this with a novel filter-space interpolation scheme. Our method first pre-
computes an optimized basis of sparse filters that span a desired range of effects. At runtime, a
unique sparse filter is then synthesized for each pixel by simply interpolating this compact set of ba-
sis filters. This strategy reduces the per-pixel kernel synthesis cost to a minimal set of multiply-add
operations, effectively decoupling the kernel generation complexity from the image resolution and
enabling complex, spatially varying effects with negligible performance impact.

Our contributions are as follows:

• A novel differentiable framework for decomposing a dense, arbitrary kernel into a sequence
of optimized sparse layers, enabling efficient, high-fidelity approximation.

• A robust initialization scheme, combining a general radial strategy for stable convergence
with a sparse sampling method for capturing non-convex kernels.

• A filter-space interpolation method for high-performance, spatially-varying filtering that
decouples kernel synthesis cost from image resolution.

2 RELATED WORK

2.1 HIGH-PERFORMANCE KERNEL

Given that Gaussian blur is computationally expensive, numerous methods have been proposed to
optimize its performance. Fast O(1) approximations of Gaussian filtering, such as the Extended
Binomial Filter (Zing, 2010) and methods based on Summed-Area Tables (Kovesi, 2010), are also
common. However, their reliance on pre-computation or inherently sequential processing makes
them a poor fit for the massively parallel architecture of modern GPUs. A more suitable approach
for modern rendering is Kawase blur (Kawase, 2003), which is a multi-pass (multi-layer) filter that
requires only four texture samples per pass. This design significantly reduces the overall sample
count, enabling a high-performance blur effect. As an extension to the Kawase blur, Dual Filter-
ing (Martin et al., 2015) introduces downsampling passes followed by upsampling passes. This
strategy significantly reduces memory bandwidth and the number of pixels to be processed by oper-
ating on lower-resolution textures. However, a significant limitation for the practical application of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

these methods is the lack of a systematic way to map a desired Gaussian blur strength (e.g., a spe-
cific sigma value) to the corresponding parameters of the Kawase or Dual filters. Our work directly
addresses this issue.

2.2 SPATIO-VARIANT FILTERING

A significant body of work has focused on learning per-pixel spatially varying convolution kernels,
which have been successfully applied to a wide range of tasks, including video prediction, video
frame interpolation, denoising, and deblurring (Jia et al., 2016; Niklaus et al., 2017; Mildenhall et al.,
2018; Zhou et al., 2019; 2021). Diverging from existing approaches that directly predict a dense
map of per-pixel kernels, our method decouples the filter generation from the spatial resolution.
We achieve this by learning a highly compact lookup table (LUT) that parameterizes a continuous
space of filters, enabling flexible and efficient Spatio-Variant Filtering. Spatiotemporal Variance-
Guided Filtering (Schied et al., 2017) using a per-pixel combination of filters guided by estimated
variance in spatial and temporal domains. Differently, our method conditions the filter generation
process on an input per-pixel blur intensity map. This enables direct synthesis of filters tailored to
any desired spatially-variant blur effect, without the need for intermediate statistical analysis of the
image content.

2.3 KERNEL APPROXIMATION AND DECOMPOSITION

Inspired by Kawase blur (Kawase, 2003), High-Performance Image Filters (Schuster et al., 2020)
employs parallel tempering to optimize sample patterns for sparse convolution. However, the high
sensitivity of parallel tempering to its numerous hyperparameters compromises the method’s overall
robustness, in stark contrast to our gradient descent-based approach, which offers superior stabil-
ity. In video frame interpolation, 2D kernels are decomposed into pairs of 1D kernels to signifi-
cantly reduce computational complexity (Niklaus et al., 2017). To handle 3D convolutional kernels,
which operate over an additional temporal dimension, STDCF (Schied et al., 2017) decomposes
them into a group of spatial atoms and temporal atoms. To optimize convolutions with respect
to channel correlations, depthwise separable convolution decomposes a standard convolution into
two sequential, more efficient operations: a depthwise convolution followed by a 1x1 pointwise
convolution (Howard et al., 2017; Chollet, 2017; Ramadhani et al., 2024). Dynamic Convolution
Decomposition (Li et al., 2021; 2024) reformulates dynamic convolution by expressing the dynamic
weights as a combination of static base kernels and a set of learned residuals. KDLGT (Wu et al.,
2023) applies kernel decomposition techniques to accelerate the self-attention mechanism in Graph
Transformers. LKD-Net (Luo et al., 2023) decomposes the large depth-wise convolution into a small
depth-wise convolution and a depth-wise dilated convolution to increase the effective receptive field.

3 PRELIMINARY

3.1 KERNEL-BASED FILTERING

Kernel-based filtering is fundamental to many image processing tasks. This process takes an input
image Iin and computes each pixel’s value for the output image Iout as a weighted average of its
local neighbors within Iin. Formally, this operation is expressed as a 2D convolution, defined as:

Iout[x, y] = (Iin ∗K)[x, y] =

k∑
i=−k

k∑
j=−k

Iin[x+ i, y + j] ·K[i, j], (1)

where the matrix K is the M ×M convolution with kernel size M ∈ R+, whose elements K[i, j]
are weights that determine the contribution of each neighboring pixel to the final filtered value.

3.2 FILTER REPRESENTATION

The dense matrix representation for the kernel K in Eq. (1) is straightforward. However, its O(M2)
computational cost presents a significant bottleneck. This is especially true for filters with a large
spatial support, such as a Gaussian blur with a large σ, where the cost becomes prohibitively expen-
sive for real-time applications that demand high frame rates.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Our key insight is to approximate this expensive operation by structuring the filter as a sequence
of lightweight convolutional layers, where the output of one layer serves as the input for the subse-
quent one. Each layer applies a highly efficient sparse kernel, Ksparse, which we define by a small
collection of N samples with offset-weight pairs:

Ksparse = {(oi, wi)}Ni=1, (2)

where oi ∈ R2 is the spatial offset and wi is its corresponding weight.

The complete operation, consisting of L such layers with kernels (K1,K2, ...,KL), can be expressed
as a nested convolution:

Iout = (...((Iin ∗K1) ∗K2) ∗ ... ∗KL). (3)

This multi-layer filter reduces the cost to O(
∑L

l=1 Nl) per pixel. Since this sum is far smaller than
the number of weights in the target dense kernel (

∑
Nl ≪ M2), the approach offers a dramatic

speedup.

4 METHODOLOGY

4.1 DIFFERENTIABLE MULTI-LAYER KERNEL COMPLEX

Overview Sparse filters offer a computationally efficient alternative to dense kernels; however,
they often fail to capture the intricate structure of large, complex filters. The core challenge lies
in determining the optimal parameters—the spatial offsets and weights—for a sequence of sparse
kernels to accurately reconstruct a target. Manually designing these parameters or using traditional,
non-differentiable methods is a formidable task.

To overcome this, our key contribution is to frame the decomposition as a differentiable optimization
problem. This enables the simultaneous end-to-end learning of all sparse kernel parameters across
all layers. We define the complete set of these learnable parameters as Θ = {(ol,i, wl,i)}L,Nl

l=1,i=1,
which includes the offsets and weights for Nl samples in each of the L layers.

Our goal is to find the optimal parameters Θ∗ by minimizing a loss function L that measures the
discrepancy between our approximation and the target kernel:

Θ∗ = argmin
Θ

L(Ktarget, Fapprox(Θ)),

Fapprox(Θ) = Ks,1 ∗Ks,2 ∗ ... ∗Ks,L,
(4)

where Ktarget is the desired dense filter and Fapprox(Θ) is the composite kernel formed by the
convolution of the learned sparse kernels.

Learnable Parameter Our optimization strategy treats the offsets and weights of each sample as
independent, learnable parameters. Specifically, for each layer l and for each of the Nl sampling
points within it, we simultaneously optimize both the 2D offset vector ol,i and its corresponding
scalar weight wl,i.

The complete set of learnable parameters for the entire model, denoted by Θ, is therefore the collec-
tion of all such offset-weight pairs:

Θ =

L⋃
l=1

{(ol,j , wl,j)}Nl
j=1. (5)

Initialization A robust parameter initialization is crucial for the stable convergence of the opti-
mization. Heuristic methods, such as Kawase (Kawase, 2003) and Dual Filtering (Martin et al.,
2015), have fixed schemes tailored to specific filter types; however, a general approach is required
for arbitrary target kernels of different sizes.

To address this, we propose a radial initialization strategy. The core idea is to initialize the sampling
points in each layer to be uniformly distributed on the circumference of a circle, with the radius
of this circle increasing linearly with the layer index. This progressive expansion ensures that the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

effective receptive field of the composite kernel grows with each subsequent layer, making the initial
configuration capable of spanning a large-area target kernel from the outset. The radius for layer l,
denoted rl, is governed by a step size ∆r derived from the target kernel’s spatial extent and the total
number of layers L (see Appendix for derivation). The corresponding weights in each layer are
initialized uniformly.

This initialization is formally defined as:

rl = l ·∆r for l = 1, . . . , L,

ol,i =

(
rl cos

(
2πi

Nl

)
, rl sin

(
2πi

Nl

))
for i = 1, . . . , Nl,

wl,i =
1

Nl
.

(6)

4.2 SPARSE SAMPLING OF ARBITRARY KERNEL

A common way to initialize filter offsets is by sampling random positions within a local neighbor-
hood. While this approach is general, it often traps the optimization in poor local optima, especially
for kernels with complex or non-convex shapes.

Our method decomposes a dense kernel into a series of sparse ones. The first of these, Ks,1 (Eq. 4),
has the greatest influence on the final filtered output, so its initialization is critical. A simple im-
provement over purely random sampling is to confine samples to the minimal bounding box of the
kernel’s non-zero pixels. This ensures most samples fall near the target shape, but it is still inefficient
for non-convex kernels, whose bounding boxes can contain large empty regions.

To overcome this limitation, we propose a more sophisticated initialization strategy leveraging re-
jection sampling. Instead of drawing samples from the kernel’s bounding box, our method samples
directly from the support of the kernel, i.e., its non-zero locations. We first quantify the effective
sampling area, denoted by S, as the count of these non-zero pixels. A sampling radius r is subse-
quently derived based on the desired number of samples, Ns:

r =

√
S

Ns · π
. (7)

The detailed procedure is provided in the appendix. This approach ensures that the initial offsets for
the first sparse kernel provide a high-fidelity approximation of the target shape. By constraining the
sampling to relevant regions, this method effectively circumvents the problem of vanishing gradients
and prevents the optimization from converging to poor local optima.

4.3 SPATIALLY VARYING FILTERING

Next, we propose a decomposition method for spatially varying filtering.

Spatially varying filtering generalizes convolution by applying a unique filter at each pixel (x, y).
The filter’s properties—such as its blur radius, orientation, or shape—are determined by a corre-
sponding value P (x, y) from a parameter map. The core challenge lies in efficiently synthesizing
and applying these unique per-pixel kernels.

Conventional methods for spatially varying filtering are often impractical. Computing dense ker-
nels on-the-fly (Wang et al., 2023) is prohibitively slow, while pre-computing them (Kovesi, 2010)
demands excessive memory, rendering both approaches unsuitable for modern parallel hardware.
More efficient techniques (Leimkühler et al., 2018) gain speed by restricting filters to simple ana-
lytical models, such as a Gaussian. This approach, however, lacks the expressiveness to represent
complex, non-convex point spread functions (PSFs).

We observe that the cost of generating or storing spatially varying kernels by previous methods scales
linearly with image resolution. To address this significant overhead while still leveraging expressive,
sparsely optimized kernels, we introduce Filter-Space Interpolation, a method that decouples kernel
computational complexity from image size.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Our spatially varying filtering is built on an ordered set of M basis sparse filters, which discretely
sample a continuous, one-dimensional space F of filters. Each basis filter, fk, corresponds to a
scalar parameter pk (with p1 < p2 < · · · < pM) and consists of a unique set of N sampling offsets
and weights. This design allows our basis to represent a wide range of filter behaviors across the
parameter space, from applying arbitrary linear transformations to a kernel to simply varying the
standard deviation (σ) of a Gaussian. We define the basis as:

F = {fk(pk) | k = 1, . . . ,M} , where fk = {(oki, wki)}Ni=1 (8)
We divide the approach into an offline pre-computation stage and a runtime inference stage. In the
offline stage, we optimize each basis filter fk individually to represent the ideal filter effect at its
parameter value pk.

At runtime, we synthesize a unique sparse filter for each pixel (x, y), which is guided by a per-
pixel parameter map, P . From the parameter value at each coordinate, P (x, y), we determine a
corresponding vector of M interpolation weights, α(x, y) = (α1, . . . , αM). These weights specify
how to blend a compact set of basis filters, {fk}Mk=1, to reconstruct the final filter instance.

The final sparse filter for a given pixel, f(x, y), is synthesized as a direct convex combination of the
basis filters:

f(x, y) =

M∑
k=1

αk(x, y) · fk, (9)

subject to the constraint that
∑M

k=1 αk(x, y) = 1 and αk(x, y) ≥ 0.

By directly interpolating basis-filter offsets and weights, we sidestep the costly on-the-fly gener-
ation of kernels from analytical functions. This reduces the computational overhead of spatially
varying kernel synthesis to a minimal set of parallelizable multiply-add operations. Furthermore,
the interpolatable nature of our basis filters makes the entire set highly compressible, allowing us
to significantly reduce the memory footprint required to achieve a wide range of expressive effects
while offering flexible control over the quality-performance trade-off.

4.4 IMPLEMENTATION DETAILS

Training Process To ensure our learned filter parameters are generalized and not overfit to a spe-
cific dataset, we adopt an image-agnostic optimization strategy. We leverage a core principle of
Linear Shift-Invariant (LSI) systems (Goodman, 2005): a filter is fully characterized by its impulse
response.

First, we synthesize the effective kernel of our multi-pass filter, Fθ, by applying it to a discrete Dirac
delta function, δ. The resulting output is the synthesized impulse response, Ksyn. The impulse δ is
an image with a single non-zero pixel at its center coordinate c:

Ksyn = Fθ(δ), where δ[n] =

{
1 if n = c

0 otherwise.
(10)

Here, θ represents the learnable parameters of our filter and n denotes the discrete pixel coordinates.

Loss Design Second, we define our loss function, L, as the Charbonnier L1 loss C (Charbonnier
et al., 1994) between the synthesized kernel Ksyn and a target kernel Ktgt:

L = C(Ksyn,Ktgt). (11)
This impulse-response-based supervision allows us to ”collapse” the entire multi-layer filtering se-
quence into a single, equivalent kernel for direct and precise approximation of the target.

5 EXPERIMENTS

In this section, we conduct a series of experiments to evaluate our differentiable kernel decom-
position framework thoroughly. We first describe the experiment details and evaluation protocol
in Section 5.1. Next, in Section 5.2, we assess our method’s ability to approximate single, complex
kernels, comparing it against state-of-the-art techniques. We extend this analysis to the more chal-
lenging task of spatially varying filtering in Section 5.3. To validate our specific design choices, we
present a series of ablation studies in Section 5.4.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

LPIPS (10−4)

Gaussion σ =5

0.002

Ours 8×6

0.011

PST 8×6

0.001

Ours 12×4

0.053

PST 12×4

LPIPS (10−4)

Gaussion σ =7

0.007

Ours 8×6

0.008

PST 8×6

0.011

Ours 12×4

0.040

PST 12×4
LPIPS (10−4)

Gaussion σ =9

0.001

Ours 8×6

0.019

PST 8×6

0.011

Ours 12×4

0.077

PST 12×4

LPIPS (10−4)

Gaussion σ =11

0.001

Ours 8×6

0.010

PST 8×6

0.011

Ours 12×4

0.055

PST 12×4

Figure 2: Comparison of Gaussian kernel approximation with varying σ. We compare our
method against PST using two sparse configurations (8 layers × 6 samples and 12 layers × 4 sam-
ples). LPIPS scores appear in the top-right corner (lower is better).

5.1 SETUP

6.0 6.5 7.0 7.5 8.0 8.5 9.0
Latency(ms)

2

3

4

5

6

7

8

9

Lp
ip

s
(×

10
4)

Ours (S)

Ours (M)
Ours (L)

PST (S)

PST (M)

PST (L)

Rank (M)

Rank (L)48

96
128

48

96

128

98

196

Figure 3: Speed, accuracy, and samples com-
parison. The figure plots quality against latency
(lower is better for both). The size of each bubble
represents the total sample count.

Baselines. We compare our method against several
baselines. For both single kernel and spatially vary-
ing filtering, we include a low-rank decomposition
(LowRank) (McGraw, 2015) and the optimization-
based method of Parallel Tempering (PST) (Schuster
et al., 2020).

Datasets and Kernels. To evaluate the versatility
of our method, we use a diverse set of target kernels
and images. This set includes standard analytical
shapes, such as Gaussian kernels (with σ values from
5 to 11). To assess performance on more complex
targets, we additionally use a suite of arbitrary ker-
nels comprising simple geometric primitives (disks,
rings), regular polygons (4-sided and 6-sided), non-
convex shapes (a heart, a four-pointed star, and an
ampersand symbol), more complex shapes (animal
silhouettes), and optical PSFs (coma and spherical aberration). For the spatially varying filtering
experiments, we use five high-resolution photographs selected to represent realistic scenarios with
complex textures and both 1D and 2D spatial variations.

Implementation and Evaluation Metric. We implement our methods in PyTorch and perform
all optimization on a single GPU with 24 GB of memory, offering computational power comparable
to an NVIDIA RTX 4090. For all configurations of kernels and layers, we use the same Adam
optimizer with a learning rate linearly decayed from 1×10−3 to 1×10−4. We use 1000 optimization
steps per kernel for our method. For comparison, we run the PST algorithm for 10,000 iterations
with 10 parallel candidates, for a total of 100,000 optimization steps. For the LowRank method, we
utilize decompositions with ranks 1,2 and 3, chosen to maintain a comparable number of samplings.

For runtime analysis, we benchmark our approach on a representative mobile device equipped with
a Qualcomm Snapdragon 8 Gen 3 SoC, and report latency in milliseconds (ms). We evaluate both
numerical fidelity and perceptual similarity using Peak Signal-to-Noise Ratio (PSNR), Learned Per-
ceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), and FLIP-LDR (Andersson et al.,
2020). Higher values indicate better performance for PSNR, and lower values are better for LPIPS
and FLIP-LDR.

5.2 SINGLE KERNEL

Fig. 3 shows that our method consistently achieves a superior balance between reconstruction qual-
ity and inference speed compared to all other approaches. For our method and PST, the ’S’, ’M’,
and ’L’ correspond to total sample counts of 48 (12×4), 96 (24×4), and 128 (32×4), respectively.
The LowRank’s ’M’ and ’L’ use 98 (49×2) and 196 (49×4) parameters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

LPIPS (×10−4)

Disk 246.83

0.2446

Ours 32×4 8.51

0.3194

LowR. 49×4 9.11

0.7944

PST 32×4 8.55

0.2372

Ours 24×4 7.47

0.5112

LowR. 49×2 7.72

0.3702

PST 24×4 7.51

0.4114

Ours 12×4 6.13

0.6448

PST 12×4 6.13

PSNR (dB)

GT

47.95

Ours 32×4

38.50

LowR. 49×4

41.16

PST 32×4

49.02

Ours 24×4

37.69

LowR. 49×2

45.41

PST 24×4

46.31

Ours 12×4

41.24

PST 12×4

LPIPS (×10−4)

Star 192.48

0.7612

Ours 32×4 8.51

3.036

LowR. 49×4 9.11

2.841

PST 32×4 8.52

1.183

Ours 24×4 7.53

5.585

LowR. 49×2 7.74

3.579

PST 24×4 7.62

1.806

Ours 12×4 6.03

3.97

PST 12×4 6.14

PSNR (dB)

GT

58.09

Ours 32×4

42.91

LowR. 49×4

49.55

PST 32×4

56.53

Ours 24×4

34.60

LowR. 49×2

48.12

PST 24×4

52.82

Ours 12×4

48.88

PST 12×4

LPIPS (×10−4)

Coma 243.58

1.443

Ours 32×4 8.36

25.96

LowR. 49×6 12.91

39.21

PST 32×4 8.68

3.667

Ours 24×4 7.45

105.7

LowR. 49×4 7.63

28.31

PST 24×4 7.57

6.062

Ours 12×4 6.15

59.36

PST 12×4 6.16

PSNR (dB)

GT

49.09

Ours 32×4

39.61

LowR. 49×6

36.51

PST 32×4

47.10

Ours 24×4

39.61

LowR. 49×4

39.61

PST 24×4

48.21

Ours 12×4

36.99

PST 12×4

Figure 4: Comparison of Single kernel approximation. Compared to baselines, SVD-based de-
composition (LowR.) and Parallel Simulated Tempering (PST), our approach (blue) better preserves
sharp features on non-convex targets, resulting in lower LPIPS scores (lower is better).

Next, we present a comparison of Gaussian kernel approximation with varying standard deviations
σ in Fig. 2. In a 6-layer, 8-sample (8×6) configuration, our method achieves high-fidelity results
with low perceptual error, whereas PST exhibits visible noise and artifacts. This performance gap
widens in a sparser 12×4 setup. As σ increases, PST’s approximation degrades severely, while
our result remains visually coherent and maintains a substantially lower LPIPS error. These results
demonstrate that our gradient-based optimization is more robust than stochastic search methods PST,
consistently finding stable solutions even in challenging, sparse configurations.

Our method’s robustness extends beyond Gaussian kernels to the more general case of arbitrary
single-kernel filters, as shown in Fig. 4. Our method achieves superior visual fidelity, accurately
preserving structures in both simple and complex shapes. In contrast, LowRank produces blocky
artifacts and PST yields noisy results that degrade further at low sample counts. These visual ad-
vantages are confirmed quantitatively, as our method obtains the lowest LPIPS error across all tests,
often by a significant margin. Note that our method is also far more efficient, requiring only 1/100th
the iteration steps of PST.

5.3 SPATIALLY VARYING KERNEL

We present three spatially varying filtering examples in Fig. 5. The first is a 1D spatially varying blur
that uses a pseudo-depth map to simulate a tilt-shift camera effect. The other two are 2D anisotropic
effects: a rotational bokeh blur and a radial motion blur, both controlled by two parameters—blur
intensity and local blur angle.

Our method achieves results that are nearly indistinguishable from the ground truth. As shown in
the red and green insets, our method faithfully reproduces the complex structure of the ground-
truth (GT) kernels. In contrast, Parallel Simulated Tempering (PST) and Low-Rank Decomposition
(LowRank) either introduce noise (PST) or oversmooth the kernels (LowRank), and both fail to
recover the correct kernel shapes, while direct use of GT kernels is prohibitively slow. Quantitatively,
our method achieves the highest PSNR among all methods while maintaining real-time performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Ours 24×4 (Full Image)

PSNR 241.33ms

GT

39.27dB 12.66ms

Ours 24×4

32.49dB 12.61ms

PST 24×4

33.22dB 23.15ms

LowRank 49×4

GT Ours 24×4

PST 24×4 LowRank 49×4

Ours 32×4 (Full Image)

PSNR 239.63ms

GT

46.42dB 17.04ms

Ours 32×4

35.67dB 16.94ms

PST 32×4

28.56dB 23.32ms

LowRank 49×4

GT Ours 32×4

PST 32×4 LowRank 49×4

Ours 32×4 (Full Image)

PSNR 300.16ms

GT

46.98dB 26.01ms

Ours 32×4

34.21dB 26.09ms

PST 32×4

27.11dB 34.64ms

LowRank 49×4

GT Ours 32×4

PST 32×4 LowRank 49×4

Figure 5: Visual comparison of diverse spatially varying (SV) effects. We evaluate three SV con-
figurations: 1D tilt-shift blur (top), 2D rotational blur (middle), and 2D radial motion blur (bottom).
We compare our method against Parallel Simulated Tempering (PST) and Low-Rank Decomposi-
tion (LowRank).

This performance difference stems from how well each method’s base kernels handle filter-space
interpolation. While all approaches use interpolation to generate the varying filter parameters, our
optimization-based kernels are better conditioned for this process and appear to vary more linearly.
Consequently, they interpolate smoothly to form sharp, complex patterns. PST’s kernels, however,
suffer from poor optimization quality, and interpolating between them simply produces more noise.
Similarly, interpolating the basis kernels from LowRank’s decomposition causes them to average
into indistinct blurs rather than preserving the target structure.

5.4 ABLATIONS

We conduct ablation studies to validate our main design choices, focusing on both initialization
strategies and different layer configurations.

We first evaluate different initialization schemes across multiple kernels, as shown in Fig. 6. Both
our method and Parallel Simulated Tempering (PST) benefit from the proposed Sparse Sampling
(SS) initialization, which consistently outperforms the Increasing Radial (IR) initialization, while
the Random (Rand) initialization performs worst. Although SS accelerates convergence for both our
method and PST, PST still requires more than 30× the number of iterations to converge compared
with ours, and our final reconstruction quality is significantly higher.

We further study the influence of different configurations, varying the number of layers and the num-
ber of samples, as shown in Fig. 7. The convergence curves show that all configurations converge
stably, and configurations with more samples and layers tend to achieve higher quality. Compared
with PST, our method delivers more consistent behavior and better quality across all tested configu-
rations.

For additional results, please refer to the Appendix, which includes ablations on Gaussian kernels
with fewer samples and quantitative evaluations of initialization and regularization strategies on
arbitrary kernels.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

1000 2000 3000 4000

8
10
12
14
16
18
20
22
24
26
28
30
32
34

M
AE

 (x
10

5)

11.81
13.43

9.55

20000 60000 100000

8
10
12
14
16
18
20
22
24
26
28
30
32
34

14.31
15.35
13.83

Ours-Rand
Ours-IR
Ours-SS
PST-Rand
PST-IR
PST-SS

Iteration Step

LPIPS (×10−4) 105.7 19.4 9.371 8.577

LPIPS (×10−4) 35.83 11.1 9.148 7.304

LPIPS (×10−4) 36.7 14.98 9.477 3.441

Random
Radial

Sam
pling

Initialization Step 1010 (PST) Step 122 (Ours) Step 100000 (PST) Step 3000 (Ours)

1000 2000 3000 4000
4

6

8

10

12

14

16

18

20

22

M
AE

 (x
10

5)

8.65

11.41

5.32

20000 60000 100000
4

6

8

10

12

14

16

18

20

22

9.76

12.48

7.88

Ours-Rand
Ours-IR
Ours-SS
PST-Rand
PST-IR
PST-SS

Iteration Step

LPIPS (×10−4) 14.81 15.96 7.156 6.669

LPIPS (×10−4) 14.81 12.77 4.891 5.887

LPIPS (×10−4) 16.63 10.72 5.719 2.054

Random
Radial

Sam
pling

Initialization Step 1010 (PST) Step 122 (Ours) Step 100000 (PST) Step 3000 (Ours)

Figure 6: Ablation of initialization strategies on the Flower and Dove kernel. We evaluate both
our method and Parallel Simulated Annealing (PST) combined with three initialization schemes:
Random (Rand), Increasing Radial (IR), and Sparse Sampling (SS).

0 500 1000 1500 2000 2500 3000
Iteration Step

2

4

6

8

10

12

14

M
AE

 (x
10

5)

Ours 12x4
Ours 12x6
Ours 12x8
Ours 24x4
Ours 24x6
Ours 24x8

Ours 32x4
Ours 32x6
Ours 32x8
Ours 48x4
Ours 48x6
Ours 48x8

0.7872

Ours 12×4

0.4057

Ours 24×4

0.5092

Ours 32×4

0.1971

Ours 48×4
0.8215

Ours 12×6

0.3793

Ours 24×6

0.513

Ours 32×6

0.1665

Ours 48×6
0.8337

Ours 12×8

0.4891

Ours 24×8

0.5075

Ours 32×8

0.1506

Ours 48×8

1.28

PST 12×4

1.042

PST 24×4

1.192

PST 32×4

4.634

PST 48×4
0.9876

PST 12×6

1.323

PST 24×6

0.9697

PST 32×6

0.8311

PST 48×6
1.182

PST 12×8

1.325

PST 24×8

0.9494

PST 32×8

1.613

PST 48×8

Figure 7: Ablation results for various configurations of samples and layers on Ring kernel.

6 DISCUSSION AND CONCLUSION

We introduced a differentiable framework that recasts the challenging problem of approximating
large, complex convolution kernels as an end-to-end optimization task. Our approach robustly han-
dles a wide variety of kernels—from simple Gaussians to complex, non-convex forms—and con-
verges to high-fidelity solutions far more efficiently than prior methods. We extend this with filter-
space interpolation, enabling complex, spatially-varying effects with minimal per-pixel overhead.
This work opens several promising avenues for future research, including multi-dimensional param-
eter maps for simultaneous control over kernel attributes and the use of neural architecture search
to discover hardware-optimized filter decompositions. In conclusion, our work provides a practical,
high-performance solution for advanced image filtering in real-time applications like computational
photography, while its fully differentiable nature allows it to serve as a trainable layer within modern
deep learning pipelines.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle Åström, and
Mark D Fairchild. Flip: A difference evaluator for alternating images. Proc. ACM Comput.
Graph. Interact. Tech., 3(2):15–1, 2020.

Pierre Charbonnier, Laure Blanc-Feraud, Gilles Aubert, and Michel Barlaud. Two deterministic
half-quadratic regularization algorithms for computed imaging. In Proceedings of 1st interna-
tional conference on image processing, volume 2, pp. 168–172. IEEE, 1994.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Joseph W Goodman. Introduction to Fourier optics. Roberts and Company publishers, 2005.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks. Advances
in neural information processing systems, 29, 2016.

Masaki Kawase. Frame buffer postprocessing effects in double-steal (wrechless). In Game Devel-
opers Conference 2003, 3, 2003.

Peter Kovesi. Fast almost-gaussian filtering. In 2010 International conference on Digital image
computing: Techniques and applications, pp. 121–125. IEEE, 2010.

Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel. Laplacian kernel splatting for effi-
cient depth-of-field and motion blur synthesis or reconstruction. ACM Transactions on Graphics
(TOG), 37(4):1–11, 2018.

Yang Li, Bobo Yan, Jianxin Hou, Bingyang Bai, Xiaoyu Huang, Canfei Xu, and Limei Fang. Unet
based on dynamic convolution decomposition and triplet attention. Scientific Reports, 14(1):271,
2024.

Yunsheng Li, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Ye Yu, Lu Yuan,
Zicheng Liu, Mei Chen, and Nuno Vasconcelos. Revisiting dynamic convolution via matrix de-
composition. arXiv preprint arXiv:2103.08756, 2021.

Cewen Liu, Mengyao Sun, Nanxun Dai, Wei Wu, Yanwen Wei, Mingjie Guo, and Haohuan Fu. Deep
learning-based point-spread function deconvolution for migration image deblurring. Geophysics,
87(4):S249–S265, 2022.

Pinjun Luo, Guoqiang Xiao, Xinbo Gao, and Song Wu. Lkd-net: Large kernel convolution net-
work for single image dehazing. In 2023 IEEE international conference on multimedia and expo
(ICME), pp. 1601–1606. IEEE, 2023.

Sam Martin, Andrew Garrard, Andrew Gruber, Marius Bjorge, Renaldas Zioma, Simon Benge, and
Niklas Nummelin. Moving mobile graphics. In ACM SIGGRAPH 2015 Courses, SIGGRAPH ’15,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450336345. doi:
10.1145/2776880.2787664. URL https://doi.org/10.1145/2776880.2787664.

Tim McGraw. Fast bokeh effects using low-rank linear filters. The Visual Computer, 31(5):601–611,
2015.

Ben Mildenhall, Jonathan T Barron, Jiawen Chen, Dillon Sharlet, Ren Ng, and Robert Carroll. Burst
denoising with kernel prediction networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2502–2510, 2018.

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive convolution. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 670–679,
2017.

11

https://doi.org/10.1145/2776880.2787664

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Kurniawan Nur Ramadhani, Rinaldi Munir, and Nugraha Priya Utama. Improving video vision
transformer for deepfake video detection using facial landmark, depthwise separable convolution
and self attention. IEEE Access, 12:8932–8939, 2024.

Parikshit Vishwas Sakurikar. Epsilon focus photography a study of focus defocus and depth of field.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R Alla Chaitanya,
John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. Spatiotem-
poral variance-guided filtering: real-time reconstruction for path-traced global illumination. In
Proceedings of High Performance Graphics, pp. 1–12. 2017.

Kersten Schuster, Philip Trettner, and Leif Kobbelt. High-performance image filters via sparse
approximations. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 3
(2):1–19, 2020.

Adrian Shajkofci and Michael Liebling. Spatially-variant cnn-based point spread function estima-
tion for blind deconvolution and depth estimation in optical microscopy. IEEE Transactions on
Image Processing, 29:5848–5861, 2020.

Chao Wang, Krzysztof Wolski, Xingang Pan, Thomas Leimkühler, Bin Chen, Christian Theobalt,
Karol Myszkowski, Hans-Peter Seidel, and Ana Serrano. An implicit neural representation for
the image stack: Depth, all in focus, and high dynamic range. Technical report, 2023.

Yi Wu, Yanyang Xu, Wenhao Zhu, Guojie Song, Zhouchen Lin, Liang Wang, and Shaoguo Liu.
Kdlgt: A linear graph transformer framework via kernel decomposition approach. In IJCAI, pp.
2370–2378, 2023.

Zijin Wu, Xingyi Li, Juewen Peng, Hao Lu, Zhiguo Cao, and Weicai Zhong. Dof-nerf: Depth-of-
field meets neural radiance fields. In Proceedings of the 30th ACM International Conference on
Multimedia, pp. 1718–1729, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Jingkai Zhou, Varun Jampani, Zhixiong Pi, Qiong Liu, and Ming-Hsuan Yang. Decoupled dynamic
filter networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 6647–6656, 2021.

Shangchen Zhou, Jiawei Zhang, Jinshan Pan, Haozhe Xie, Wangmeng Zuo, and Jimmy Ren. Spatio-
temporal filter adaptive network for video deblurring. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 2482–2491, 2019.

A Zing. Extended binomial filter for fast gaussian blur. Vienna, Austria, 2010.

12

	Introduction
	Related Work
	High-Performance Kernel
	Spatio-Variant Filtering
	Kernel Approximation and Decomposition

	Preliminary
	Kernel-Based Filtering
	Filter Representation

	Methodology
	Differentiable Multi-Layer Kernel Complex
	Sparse Sampling of Arbitrary Kernel
	Spatially Varying Filtering
	Implementation Details

	Experiments
	Setup
	Single Kernel
	Spatially Varying Kernel
	Ablations

	Discussion and Conclusion

