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Abstract

Human children far exceed modern machine learning al-
gorithms in their sample efficiency, achieving high perfor-
mance in key domains with much less data than current
models. This “data gap” is a key challenge both for build-
ing intelligent artificial systems and for understanding hu-
man development. Egocentric video capturing children’s
experience – their “training data” – is a key ingredient for
comparison of humans and models and for the develop-
ment of algorithmic innovations to bridge this gap. Yet
there are few such datasets available, and extant data are
low-resolution, have limited metadata, and importantly,
represent only a small set of children’s experiences. Here,
we provide the first release of a large developmental ego-
centric video dataset – the BabyView dataset – recorded
using a high-resolution camera with a large vertical field-
of-view and gyroscope/accelerometer data. This 868 hour
dataset includes egocentric videos from children spanning
6 months – 3 years of age in longitudinal, at-home contexts.
We provide gold-standard annotations for the evaluation
of speech transcription, speaker diarization, and human
pose estimation, and evaluate models in each of these
domains. We train self-supervised language and vision
models and evaluate their transfer to out-of-distribution
tasks, including syntactic structure learning, object recog-
nition, depth estimation, and image segmentation. Al-
though performance in each domain scales with dataset
size, overall performance is relatively lower than when
models are trained on curated datasets, especially in the
visual domain. Our dataset stands as an open challenge
for robust, human-like AI systems: how can such systems
achieve human-levels of success on the same scale and
distribution of training data as humans?

Keywords: head-mounted cameras; data gap; language learn-
ing; visual representations; large language models

Infants and young children are remarkable learners, becom-
ing capable and engaged social partners within their first two
years of life. The pace of this developmental progress far ex-
ceeds modern machine learning algorithms in its efficiency

and capacity (Frank, 2023). In particular, signature accomplish-
ments of artificial systems, such as few-shot learning (Brown
et al., 2020) and image classification (Krizhevsky et al., 2012),
require hundreds of billions of words of training data and mil-
lions of labeled images. In contrast, human learners become
proficient in extending labels for newly learned visual concepts
(Carey & Bartlett, 1978) and producing language (Frank et al.,
2021) from only tens of millions of words and far fewer labeled
examples (Zhuang et al., 2021). This “data gap” between hu-
man and machine learners is thus a key challenge for the joint
goals of understanding human learning and building intelligent
artificial systems. Making progress will require not just an un-
derstanding of the flexibility of human intelligence, but also an
understanding of the efficiency of human learning.

Data availability is a major barrier to progress in our under-
standing of the gap in learning efficiency between machines
and humans. To make effective comparisons between human
and machine learners, we need to be able to evaluate models
on data comparable to what children see and hear during ev-
eryday learning experiences. While models today are trained
on millions or billions of images and/or videos, these are taken
from the adult perspective, providing a very different vantage
point on the world that is disconnected from real-world learning
environments.

Egocentric video recordings taken from the child’s perspec-
tive provide a key window into what children both see and
hear as they learn about the world around them and from their
social partners (Smith et al., 2015; Yoshida & Smith, 2008;
Aslin, 2009; Franchak et al., 2011). Developmental psychology
studies using these types of video recordings have together
revealed that the infant view is dramatically different from that
of adults’ (Yoshida & Smith, 2008) and varies as children learn
to locomote on their own and interact actively with the objects,
places, and people around them (Kretch et al., 2014; Long,
Sanchez, et al., 2022).

Here we present the largest high-resolution developmental
egocentric video dataset to date, the BabyView dataset. We
collect videos from 31 families predominantly located in the
United States, totaling 868 hours of usable recordings. We
capitalize on innovations in the development of head-mounted
cameras (Long et al., 2023), obtaining videos with a large verti-



cal field of view and coordinated gyroscope/accelerometer data
that can be used to estimate the child’s own head movements.
We provide pose detection, automated speech transcriptions,
and diarization, along with gold-standard annotations for use
in evaluating each of these. We additionally provide language
outcome measures for a subset of the children in the dataset.
We then evaluate self-supervised vision and language models
on these data relative to existing benchmarks.

Related Work
Few developmental egocentric video datasets are avail-
able Egocentric video has been an important domain for
computer vision (Damen et al., 2022; Grauman et al., 2022)
and resulting commercial applications, such as wearable de-
vices. Yet, egocentric video datasets are mostly taken from the
adult perspective, including the Ego4D dataset, which has be-
come an important standard in this field (Grauman et al., 2022).
Head-mounted cameras have also been used in research with
children, including both descriptive investigations (Yoshida &
Smith, 2008; Aslin, 2009; Franchak et al., 2011; Kretch et
al., 2014; Fausey et al., 2016; Bergelson & Aslin, 2017) and
computer vision studies (Sheybani et al., 2024; Zhuang et al.,
2021). Unfortunately, most prior work did not obtain consent for
broad sharing with other research groups and so many major
datasets are unavailable for re-analysis.

The few developmental egocentric video datasets that are
available have been difficult to use for training models for rea-
sons of both data quantity and quality (Long, Sanchez, et al.,
2022; Sullivan et al., 2021; Bergelson & Aslin, 2017). For exam-
ple, the SAYCam dataset – by far the largest available dataset
– is relatively low-resolution (480 × 640 pixels), has limited
motion-correction (leading to blurry views), and has times-
tamps imprinted on every frame (Sullivan et al., 2021). The
audio quality is quite variable depending on the background
noise and context, and the videos have restricted vertical view
angle that obscures views of children’s hands and what chil-
dren are interacting with. Further, SAYCam represents video
from three children of highly-involved and informed academic
parents, all of whom were the first children in their families.
These issues have limited the field’s ability to make use of
automated annotations of the visual or linguistic content of
these videos and have restricted the ability to use these data
to draw broadly generalizable conclusions. Here, we present
the largest high-resolution, developmental egocentric video
dataset with broad consent from caregivers for reuse within the
research community.

Models trained on developmental data show limited per-
formance Self-supervised vision models trained using devel-
opmental egocentric video data (Zhuang et al., 2021; Orhan
et al., 2020; Zhuang et al., 2022; Orhan & Lake, 2024; Vong
et al., 2024) have had some intermediate success. However,
these models significantly underperform those self-supervised
models trained on curated datasets, while the latter models ap-
proach the accuracy of models trained using fully-supervised

methods (Oquab et al., 2023; Caron et al., 2021; He et al.,
2021; T. Chen et al., 2020; He et al., 2020). Thus, it remains
unclear whether the current state-of-the-art techniques rep-
resent truly general-purpose visual learning algorithms. In
particular, it is unclear whether gaps in model performance
are due to dataset quality and quantity or are instead due to
the difficulty of learning robust representations from children’s
more realistic everyday inputs.

Relatedly, in the language domain, recent work has inves-
tigated the possibility of training language models (LMs) on
small-scale developmental datasets (see e.g., Warstadt et al.,
2023; Zhuang et al., 2024; Feng et al., 2024), but most of
these have focused on datasets larger than those available
from egocentric video data. For example, the text data used
in the popular BabyLM competition (Warstadt et al., 2023) are
also meant to approximate what a 10-year-old child could re-
ceive (including text from Wikipedia and other sources), which
is very likely more – and different – data than what is required
to acquire a language. One exception is Qin et al. (2024), who
trained GPT-2 (Radford et al., 2019) on very small amounts
of input from a single child and investigated the amount of
grammatical knowledge that could be learned.

Here, we evaluate whether data from a new, high-resolution
dataset will lead to increases in performance for self-
supervised visual and linguistic benchmark models.

The BabyView Dataset
We address gaps in data availability by collecting and analyzing
a new set of developmental egocentric videos: the BabyView
dataset. The current paper describes the first release of the
dataset, but data collection is still ongoing and we anticipate
future growth in the overall size of the dataset. Recordings
were obtained using a high-resolution head-mounted camera
for infants and children from 6 months through 3 years of age
in at-home settings. In the BabyView-Home portion of the
dataset, 31 families recorded longitudinal data during everyday
activities for a total of 868 hours across all children. All videos
are accompanied by accelerometer/gyroscope data that can be
used to estimate children’s head-motion (N. Joshi et al., 2010;
Karpenko et al., 2011; B. Joshi et al., 2022). We additionally
release the Ego-SingleChild dataset, a related dataset with
70 hours of recordings with a different camera (see below).
Together, these data comprise the first release of the largest
high-resolution egocentric video dataset from children that will
be available to researchers for both descriptive analysis and
model building (see Table 1 for comparison to prior datasets).

Camera and sensor data
The BabyView camera is a GoPro Hero Bones camera at-
tached to a child-safety helmet. This camera was selected
because it has gyroscope and accelerometer data, built-in im-
age stabilization features, and relatively high-resolution sound
and video (Long et al., 2023). The camera is oriented vertically
and is neutral with respect to the face plane of the child, en-
abling the camera to capture both adult faces and objects in a
child’s hands in the same image, with an effective view angle



Table 1: Comparison of the BabyView dataset to existing related datasets; the BabyView dataset is the only egocentric
developmental video dataset with accelerometer/gyroscope data available for research.

Dataset Egocentric? Longitudinal? Type N Hours Audio Transcript Motion

BV-Home ✓ ✓ Infant 31 868 ✓ ✓ ✓
Ego-SingleChild ✓ ✓ Infant 1 70 ✓ ✓

SAYCam Sullivan et al. (2021) ✓ ✓ Infant 3 476 ✓ ✓
Ego4D Grauman et al. (2022) ✓ Adult 931 3,670 ✓ ✓
Epic Kitchens Damen et al. (2018) ✓ Adult 37 100 ✓ ✓

of 100° vertical by 75° horizontal (see Figure 1a,b) (Long et
al., 2023).

Dataset components

BV-Home Thirty-one families consented to capture home
recordings with their infant-toddler (0;5–3;1 years, average
age at onboarding = 10 months, SD = 0.26 years, see Fig-
ure 1c). Data collection is ongoing. Families were recruited
from a convenience sample of researchers in the field of cogni-
tive development (N=7/31 families) and from advertisements
within the State of California, and the broader United States.
Some English-speaking (N = 18/31) and English/Spanish bilin-
gual families (N=1/31) completed one or more parent-report
measures of children’s language development using the long-
forms of the MacArthur-Bates Communicative Development
Inventories (Marchman et al., 2023; Jackson-Maldonado et
al., 2003). Our current sample is relatively multilingual (with
only 19/31 English monolingual participants) and highly ed-
ucated, with 24/31 families having at least one parent with
a graduate degree. See Appendix for further information on
participant consent, detailed demographics, and number of
language questionnaires.

Ego-SingleChild We also release 70 hours of data from a
single child of an academic parent who recorded frequently.
This participant was recruited before procedures were finalized,
and recorded using a different camera from other participants.
They used a Cigno F18 Night Vision 1080P Headband Sport
Camera rather than the BabyView camera, which yields shorter
and lower-resolution videos. However, they are comparable
to previous dense longitudinal recordings (see (Sullivan et al.,
2021)), and thus provide additional data that other researchers
may benefit from.

Data access & ongoing data collection

Egocentric video data from children in their home environments
necessarily contain more sensitive information than videos in
egocentric videos by adults. Families provided full consent for
the data that are shared at the time of recording. During a
6-month period after recording, families can also retract any
portion of their recording. Thus, all data in this release will
be made available in August 2025 once the parental embargo
period has lapsed for all videos in this release (release 2025.1).
To ensure BabyView data are accessible to researchers while

protecting the privacy of participants, we distribute the data
through Databrary (https://nyu.databrary.org/) (Gilmore et al.,
2016), similar to previous developmental egocentric datasets
(Sullivan et al., 2021; Bergelson & Aslin, 2017). Databrary
is a U.S. National Institutes of Health-funded site designed
specifically for the distribution of developmental video data.
Access to data on Databrary requires investigators to be autho-
rized via an institutional agreement that bars re-identification
of participants and redistribution of data.

BabyView is an ongoing longitudinal project and our aim is
to release further data as the dataset grows. Because of the
multi-faceted and growing nature of our dataset, we do not
pre-specify train/test splits, recognizing that any split might be
appropriate for only a subset of research goals (e.g., examining
age-related change, or within- vs. cross-child change).

Annotations
Language annotations
Transcription & diarization pipeline All videos were tran-
scribed using Distil-Whisper model distil-large-v3 (Gandhi et
al., 2023). As this version only supports English transcription,
we conducted transcription validation for families who reported
speaking only English at home. We also ran a multilingual
voice type classifier (Lavechin et al., 2020) in parallel on the
audio extracted from all BabyView-Home videos (regardless
of language), which classified the speech segments as origi-
nating from a female adult, male adult, key child (the wearer of
the camera), or other child. Transcripts and diarizations were
then merged: Each utterance was assigned to one speaker
by choosing the model-annotated speaker category that had
the greatest overlap with the utterance timestamps. In some
cases, an utterance did not overlap with any model-annotated
speaker; these were marked as NA (NA rate was 8.39% for BV-
Home). For our language model training experiments below,
we also ran the same pipeline on the SAYCam audio, though
we did not conduct validation on this dataset.

Evaluation procedure To assess the accuracy of speech
transcription and speaker diarization on this dataset, we hand-
annotated a subset of 2242 utterances in English monolingual
families, stratified across participant and age at the time of
recording. These utterances account for 2.59 hours of the
BV-Home videos. For each sampled video, we extracted 30
seconds of video beginning at the midpoint of the video. Two

https://nyu.databrary.org/
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Figure 1: (a) Schematic of a child wearing the BabyView camera illustrating a large vertical field of view. (b) Example frames
from a video in the dataset (where the parent has provided broad sharing consent). (c) Cumulative hours of video by each of the
participants; each color represents an individual child. The grey line represents video data from the Ego-SingleChild subset. Data
collection is ongoing. The BabyView dataset thus collects high-resolution video and gyroscope/accelerometer with a large vertical
field of view from many children over a large age range, with dense longitudinal data from a few participants.

Table 2: Performance of the automated transcription and diarization pipeline across the age of the child and the speaker.
Child-produced speech had the highest error rates.

Dataset Child age Speaker Word error rate Diarization
precision

Diarization
recall

Utterances
annotated

BV-Home All Ages All Speakers 0.35 0.66 0.66 2242
6-18 m.o. Adult 0.26 0.66 0.79 1371

Key-child 1.08 0.73 0.45 208
Other-child 0.51 0.63 0.39 95

18-30 m.o. Adult 0.37 0.64 0.77 271
Key-child 0.56 0.76 0.62 94
Other-child 0.21 0.60 0.38 15

authors transcribed the speech and labeled the speaker in
each segment. For transcription validation, we computed a
Word Error Rate (WER), which is the ratio of the number of
word-level errors to the total number of words in the original
utterance (Gandhi et al., 2023). To evaluate speaker diarization
accuracy, we computed precision and recall of the model output
by age and speaker.

Child-produced and child-directed speech is challenging
for transcription algorithms Across all speakers, WER for
automated transcriptions was comparable to that for adult
recordings and was somewhat lower in these naturalistic home
environments, especially compared to that previously seen
using the same methods with preschool classroom recordings

(see Sparks et al., 2024). Qualitatively, these decrements in
performance appear to result from a high prevalence of infant-
directed speech with which annotation algorithms are less
familiar. Although automated transcriptions perform poorly for
the youngest children, we see considerable improvement in
WER of child-produced speech of the older (18–30 months)
children in the dataset. Similarly, we found that Whisper often
hallucinated incorrect utterances for child-produced speech
for the youngest infants (rather than appropriately labeling it
as babble). The speaker diarization algorithm (Lavechin et
al., 2020) was able to identify whether a child vs. adult was
speaking 78% of the time, and often could accurately identify
the speaker type (female-adult, male-adult, key-child, other-
child) (see Table 2). While combining speaker diarization and



automated transcriptions can be useful, modern transcription
algorithms are still less accurate than humans at understanding
both adult speech in home environments and child-produced
speech.

Human pose annotations

Pose annotations Human pose annotations provide critical
data on the social information available to infants and chil-
dren throughout development that could guide their learning
(Fausey et al., 2016; Long, Sanchez, et al., 2022) and pose
detection models been successfully applied to previous ego-
centric datasets (Long, Sanchez, et al., 2022; Long, Kachergis,
et al., 2022). We evaluated how well state-of-the-art pose
detectors performed on the BabyView dataset. To do so, we
first sampled 353 frames from the dataset (stratified across
participants and sessions) and manually annotated the 333
non-blurry frames using LabelStudio (Tkachenko et al., 2020-
2022), creating a validation set. To efficiently annotate the
frames, we deployed the RTMPose (Jiang et al., 2023) model
via MMPose (Contributors, 2020b) as a backend to provide
initial pose keypoints and bounding box predictions, which we
then manually corrected. The pose annotations followed the
format used in the COCO keypoints dataset (Lin et al., 2014;
Sun et al., 2019). To evaluate the accuracy of keypoint detec-
tions and compare our results with those of other studies, we
adopted the Object Keypoint Similarity (OKS) metric (Sun et
al., 2019) (see Appendix).

Child egocentric viewpoints are challenging for most pose
detection models The BabyView validation set was more
challenging for most models than the COCO validation set (Lin
et al., 2014), highlighting a new pose benchmark for naturalistic
egocentric videos (see Table 3). However, ViTPose-H, the
largest model in the group, showed comparable performance
between the two validation sets, suggesting that it is more
robust to the viewpoint variation inherent in egocentric videos.

Benchmarks

Language representation learning

Next, inspired by the BabyLM challenge, which seeks to learn
human-like linguistic representations from small amounts of
developmentally-realistic data (Warstadt et al., 2023), we ex-
amined the ability to learn linguistic representations from the
BV-Home transcripts. We compared our results with those
obtained using high-quality data from the Child Language
Data Exchange System (CHILDES), a repository of human-
transcribed corpora of children’s and caregivers’ talk (MacWhin-
ney, 2014).

Experiment Setup We pretrained GPT-2 (Radford et al.,
2019) with 124M parameters (small) on each dataset for up
to 20 epochs (see Appendix for details). We trained three
seeds for each model, averaging their evaluation results. For
BV-Home, after deduplication, we only used transcripts for

English monolinguals for a total of ∼1.3M words of conver-
sation (19 families, 469 hours of video data), corresponding
to ∼2M total words including speaker labels and other meta-
data. To match this, we sampled 2M total words from the di-
arized SAYCam data. For contrast, the total amount of human-
transcribed English-language data available in CHILDES (in-
cluding speaker labels and other metadata) is ∼29M total
words. To align the amount of training data across datasets,
we sampled 2M total words from CHILDES.

We further compared training on the combination of BV-
Home and SAYCam data with 4M total words from CHILDES.
We also trained a version on the entire 29M English subset of
CHILDES, in line with Feng et al. (2024). Each dataset was
separated into 85/15 train and validation splits. This resulted
in 1.7M/0.3M splits for the 2M experiments, 3.4M/0.6M splits
for the 4M experiments, and 24.5M/4.5M splits for the 29M
experiment. For evaluation, we used Zorro (Huebner et al.,
2021), a benchmark compatible with child vocabulary that aims
to quantify the grammatical knowledge of LMs by assessing
their capability to effectively distinguish between minimal pairs
of sentences that exhibit various grammatical contrasts.

BV-Home transcriptions provide comparable learning sig-
nal for grammatical knowledge All GPT-2 models achieved
above-chance performance on the Zorro evaluation, even with
fewer than 2M words of total training data. For the 2M ex-
periments (1.7M training words), there was a negligible dif-
ference between BV-Home (63.47±1.24%), SAYCam data
(63.34±1.99%), and CHILDES (63.70±1.17%). For the 4M
experiments (3.4M training words), CHILDES (66.59±1.63%)
performed slightly better than the combination of BV-Home
and SAYCam (65.13±1.33%). Training on the full CHILDES
(24.5M training words) resulted in significantly higher perfor-
mance (78.29±0.51%), as expected with much more language
data. This is also shown in Figure 2; training on more language
data resulted in better performance, in contrast to our vision
data scaling experiments shown in Figure 3. Overall, despite
the potential data quality issues in BabyView and SAYCam tran-
scripts (introduced by speech recognition errors), we observed
that transcriptions of BV-Home and SAYCam are overall com-
parable to CHILDES as a learning signal for language models
to obtain grammatical knowledge.

Visual representation learning

We conducted a first set of experiments to investigate the ability
of recent self-supervised models to learn useful visual repre-
sentations from frames taken from these egocentric videos.
Enabled by BV-Home, we conducted the largest scale evalu-
ation to date of self-supervised learning methods trained on
children’s egocentric visual experience.

Experiment Setup We trained a ViT-B/14 DINOv2 (Oquab
et al., 2023) from scratch as our reference self-supervised
learning algorithm, due to its high performance on various
downstream tasks, including object recognition, depth esti-
mation, and semantic segmentation. We used the standard



Table 3: Pose Detection performance on COCO2017 Val and BabyView Val. BabyView Validation frames were more challenging
than COCO for all models except ViTPose-H. AP refers to average precision, and AR refers to average recall.

Architecture Num. Params Input Size COCO-AP Babyview-AP COCO-AR Babyview-AR

RTMO-l (Lu et al., 2023) 44.8M 640x640 0.724 0.593 0.762 0.723
YOLOXPose-l (Maji et al., 2022) 87.0M 640x640 0.712 0.588 0.749 0.658
SIMCC-resnet50 (Y. Li et al., 2022) 25.7M 384x288 0.735 0.676 0.790 0.723
RTMPose-l-aic-coco (Jiang et al., 2023) 36.7M 384x288 0.773 0.735 0.819 0.773
HRFormer-pose-base (YUAN et al., 2021) 43.2M 384x288 0.774 0.743 0.823 0.785
ViTPose-H (Xu et al., 2022) 632M 256x192 0.788 0.788 0.840 0.825
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Figure 2: Language data scaling experiments, showing gram-
matical accuracy on Zorro (chance = 0.5) for GPT-2 trained
on progressively increasing amounts of child-directed speech
(CDS) data. Within the GPT-2 CDS data points, the first rep-
resents 1.7M training words from BV-Home, the second rep-
resents 3.4M training words combined over BV-Home and
SAYCam, and the final point represents 24.5M training words
from CHILDES. Zorro accuracy is also shown for RoBERTa
(Liu et al., 2019) [240M words] and BabyBERTa (Huebner et al.,
2021) [5M words]. Given the clear saturation of the metric in
the larger pretrained model, we used a logistic function, which
asymptotically approaches 1, rather than a linear fit.

training configuration from the official code base across all
training runs. We sampled Ego4D at 1 FPS, leading to 15M
frames, and sampled the BV-Home and SAYCam at 5FPS,
leading to about 8M frames per dataset for initial comparisons,
and another 8M frames from the full BV-Home dataset for a
total of 16M BV-Home frames. Despite the inherent redun-
dancy in video data, this ensured a relatively large amount
of data, compared with the 1.4M ImageNet training set. We
evaluated object recognition accuracy on ImageNet, and after
additional training on high-resolution images of the original
datasets, we evaluated depth estimation on NYUv2 (Silberman
et al., 2012) and semantic segmentation on COCOStuff (Cae-
sar et al., 2018). On top of the frozen ViT, for ImageNet we
used kNN and a linear probe, whereas for depth estimation we
trained a DPT and for semantic segmentation we used a linear
probe, following DINOv2 protocols (see Appendix).

Self-supervised learning from any egocentric data is chal-
lenging We anticipated that the more diverse and higher-
resolution videos in BV-Home would afford improvements over
prior egocentric video datasets (Sullivan et al., 2021). Yet, we
found that models trained on a similar amount of BV-Home
data did not outperform those trained on the SAYCam dataset,
despite the difference in data quality (see Table 4), though we
found a small improvement in semantic segmentation perfor-
mance on models trained on BV-Home vs. SAYCam.1 More
broadly, however, we found that the gap in performance is not
just specific to data collected from children. Even when training
on Ego4D – a roughly 7× larger and more diverse dataset
– we saw that a significant gap to curated vision datasets re-
mained across all tasks. We further investigated training an
additional self-supervised learning method, MoCov3 (X. Chen
et al., 2021) also based on a ViT-B/16 on 430 hours of BV-
Home data: We obtained 18.7 for kNN and 27.3 for linear
on ImageNet, indicating that other self-supervised learning
techniques also show a significant gap in performance.

Insufficient scaling to meet human or self-supervised per-
formance from curated datasets Given a reasonably large
amount of training data from egocentric video of children’s
visual experience, could the current self-supervised state-of-
the-art model reach human performance, or obtain equivalent
performance to training on curated vision datasets? To ad-
dress this question, we trained on 1%, 5%, 10%, 25%, 50%,
and 100% of a combined dataset of our first half of BV-Home
(430 hours) and SAYCam, and extrapolated by fitting log-linear
trend lines. For a final datapoint, we added another 424 hours
of BV-Home video data (see Table 4). For object recognition
on ImageNet (see Figure 3a) we observed that more than 107

hours would be required to reach human performance (Rus-
sakovsky et al., 2015) or ImageNet pre-training performance.
In Figures 3b and 3c, we found that a similar trend holds
for depth estimation and semantic segmentation, with satu-
rating performance as the scale of data is increased, even
as we roughly doubled the amount of BV-Home data used in
pre-training. Note that the first two points on these plots indi-
cated 160K and 800K images and the last point 16M images.
While training on the combination of both SAYCam and the

1Note results are above random chance: ImageNet – 0.001,
NYUv2 – 2, COCOstuff – 0.2.
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Figure 3: Data scaling experiments for object recognition, depth estimation and semantic segmentation. In a we observed a trend
that DINOv2 would require upwards of 107 hours of video to match human or ImageNet self-supervised ImageNet performance.
In b and c, we also observed unfavorable scaling for depth estimation and semantic segmentation.

Table 4: Object recognition, depth estimation, and semantic segmentation results on the BabyView & comparison datasets.
Downstream generalization accuracy was significantly reduced when learning on frames from egocentric videos relative to curated
datasets.

Object Recognition – Top 1 Depth Estimation Semantic Segmentation
Dataset ImageNet kNN↑ ImageNet linear↑ NYUv2 RMSE↓ COCOStuff mIoU↑

None (random init.) 10.00 1.43 0.886 0.54

LVD-124M (Oquab et al., 2023) 82.10 84.50 0.307 44.46
ImageNet (Russakovsky et al., 2015) 76.29 77.64 0.456 34.65

Ego4D(Grauman et al., 2022) 43.59 54.39 0.525 23.78
SAYCam(Sullivan et al., 2021) 42.59 52.52 0.518 21.08
BV-Home (430 hours) 40.72 52.19 0.526 22.03
SAYCam + BV-Home (430 hours) 41.76 53.28 0.511 22.53
SAYCam + BV-Home (868 hours) 42.76 53.28 0.505 22.81

largest draw of the BV-Home dataset did lead to a numeric
improvement evaluation metrics compared to SAYCam alone,
the improvement was relatively slim. Overall, these results
suggested that there is still a substantial “data gap” between
state-of-the-art self-supervised vision models and children.

General Discussion
We present a new, large-scale, high-resolution egocentric video
dataset documenting infants’ and young children’s everyday

experiences, accompanied by both dense metadata and gold-
standard annotations for several key domains. In contrast
to prior work with lower-resolution videos and earlier models
(Long, Kachergis, et al., 2022), we find that state-of-the-art
speech recognition (Gandhi et al., 2023; Radford et al., 2023)
and pose detection (Xu et al., 2022; Contributors, 2020b) mod-
els perform well on stratified samples of frames and audio
recordings from the dataset. Further, language models trained
on these data performed comparably to models trained on cur-



rent gold-standard corpora of hand-transcribed child-directed
speech corpora. The BabyView camera thus provides im-
proved data over which supervised algorithms can extract de-
scriptives that will be an important resource for characterizing
children’s early learning environments (Sparks et al., 2024).

Yet, our results also suggest that the naturalistic, everyday
experiences of children pose a challenging problem for the
most advanced learning algorithms, especially in the visual
domain: current state-of-the-art models fall short relative to
existing benchmarks when trained on “human amounts” of
visual or linguistic data, requiring unrealistic amounts of addi-
tional data to achieve human-level performance (Frank, 2023).
Scaling for language data suggested the possibility of rela-
tively strong performance with human-scale data, but scaling
for vision models was strikingly bad. In particular, our results
suggest that current self-supervised visual learning models are
dependent on large, curated datasets with a broad diversity of
inputs to construct robust visual representations useful for ob-
ject recognition, depth estimation, and semantic segmentation.

While a similar “data gap” has also been reported by Orhan
(2021), our findings yield a somewhat lower estimation of the
amount of data needed to achieve human-level performance
than suggested in Orhan (2021) and higher estimation than in
Orhan (2023). However, direct comparisons are challenging
due to the fact that our results use the state of the art DI-
NOv2 (Oquab et al., 2023; Orhan, 2021) rather than masked
autoencoders (He et al., 2021; Orhan, 2023), and solely ego-
centric video datasets (vs. a mix of egocentric and allocentric).
Most importantly, we do not fine-tune our models end-to-end on
ImageNet, as in Orhan (2021, 2023), but freeze the pre-trained
encoders and train readout layers on top. Overall, however, our
results are broadly convergent with Orhan (2021) in suggest-
ing that there remains a large data gap between human and
machine performance in self-supervised visual learning.

What accounts for this difference between the visual and
linguistic domains? We suspect that this is because the lan-
guage data in these experiments are closer to the standard
data used to train large language models—e.g., conversa-
tion transcripts or subtitles. In contrast, images sampled from
egocentric videos vary dramatically from images in curated
visual datasets. Using transcribed language also means that
the language information has undergone some segmentation
and parsing, unlike the visual information. Future work that
systematically varies input data will help confirm these ideas.

What might lead to more child-like models of early learn-
ing? One idea is that the joint learning of visual and language
representations (Vong et al., 2024) requires more fine-grained
and efficient learning algorithms, such as lexicon-level visual
grounding (Zhuang et al., 2023, 2024). In addition, children’s
everyday experiences contain deep regularities within everyday
activity contexts (Clerkin et al., 2017; Clerkin & Smith, 2022;
de Barbaro & Fausey, 2022) that are challenging for current
models but appear advantageous for human learners. For ex-
ample, the same objects and words are repeated often within
the same activity contexts (e.g., mealtime), which could cre-

ate known contexts for children to learn infrequent items (e.g.,
pomegranates). Constructing models that can learn as chil-
dren do from these skewed input distributions – where some
words and objects are frequent and others appear very rarely –
is thus a key challenge for future work (Smith & Slone, 2017).

In addition, we speculate that focusing on modeling event
representations in naturalistic video (Zhuang et al., 2020) might
lead to more developmentally realistic models, as children are,
of course, learning from continuous events rather than static
images. Indeed, new work suggests that video models trained
on SAYCam (Sullivan et al., 2021) can learn action concepts
(Orhan et al., 2024). In addition, we suspect that incorporating
information about both children’s own head-motion (B. Joshi et
al., 2022) via IMU data (contained in this dataset), as well as
attentional guidance signals from caregivers (Long, Sanchez,
et al., 2022; Yu et al., 2021) may yield more data-efficient
models of early language and visual concept learning.

Regardless of innovations in model architectures or learning
algorithms, our results highlight the need for developmentally-
appropriate outcome data (Tan et al., 2025) which can be used
to evaluate models trained on developmental data. Our specu-
lation about scaling for language model training is hindered by
the lack of developmental data on grammaticality judgments
– we do not know what a realistic topline should be for hu-
man learners. Similarly, toddlers cannot classify all ImageNet
categories, and a growing literature suggests that object recog-
nition abilities mature throughout middle childhood, as does
their visual concept knowledge (Long et al., 2024; Huber et
al., 2023). Children’s emerging mid-level visual understanding
(such as motion, 3D shape, and depth perception) may also
be an alternative basis for comparing models and children,
especially as children may develop these capacities through
active exploration and interaction with their world long before
they have fine-grained category representations. Thus, this
work highlights the need to create benchmarks that allow us to
measure and quantify performance in a unified way across both
models and children. Systematically comparing models’ and
children’s emerging representations across both the linguistic
(e.g., lexical knowledge, grammar, semantics) and the visual
(e.g., visual concepts, intuitive physics) domains will likely help
elucidate the observed gap in model performance by yielding
testable predictions for future work.

Finally, models trained on the same visual diet as children
might eventually emerge as superior models of neural re-
sponses to visual stimuli. While there is a fairly substantial
literature predicting neural responses in ventral cortex from
the embeddings of models trained in different ways (Yamins
et al., 2014; Conwell et al., 2024), very few of these models
have been trained on naturalistic datasets (cf. (Zhuang et al.,
2021; Conwell et al., 2024)). We anticipate that the BabyView
dataset will enable the systematic benchmarking of models
trained with more ecologically-valid input data.

These data have several limitations. First, these data nec-
essarily incorporate selection bias: parents who opt-in to the
study are recording in their homes when they choose to (to



avoid privacy issues) and can choose to excise any portion
of their data; in addition, some naturalistic experiences (e.g.,
bathtime) are not incorporated into the dataset. Further, with
two exceptions, all families are located in the United States,
limiting generalizability. Nonetheless, BV-Home incorporates
data from a greater diversity of families across race, ethnicity,
and family incomes than before (see Appendix). The potential
harms that could arise from this dataset relate to breaches
of privacy and trust on the part of the participating families.
To guard against these, researchers are required to sign the
Databrary data use agreement (Gilmore et al., 2016), which
prohibits reidentification or redistribution of videos.

In sum, we present the first release of a new, large-scale,
high-resolution developmental egocentric video dataset. Our
dataset provides an unprecedented view into the everyday
experiences of young children and stands as a challenge to
modern AI: how can such systems achieve human levels of
success on the same scale and distribution of training data as
human children?
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Appendix
Dataset details

Participant consent All data collection was approved under
Stanford University Protocols #20398 and #72325. consent
was obtained via one-on-one conversations. Given the sensi-
tive nature of the data, families had multiple opportunities to
withdraw their recordings. They could mark videos for deletion
during recording and up to six months during the embargo
period.

Participant instructions & recording details All participant
instructions were taken from Long et al. (2023) which devel-
oped the protocols for using the BabyView Camera, and are
publicly available at https://osf.io/kwvxu/.

Families were instructed to record as often as was feasible
for their families, with a requested minimum of 45 minutes per
week. We used standard, rechargeable 9V battery to provide
power to the BabyView camera, which allows for continuous
45-60 minute recordings on a standard charge. Families were
compensated based on the duration (mins) of video record-
ings they provided on a weekly basis, as well as bonuses for
questionnaires, totalling 18,370.00 USD across all families.

BV-Home additional participant demographics Our sam-
ple is highly educated, with 24/31 families having at least one
parent with a graduate degree, and with all but one family hav-
ing at least one parent with a 4-year college degree. 14/31
children are exposed to more than one language at home,
including the following languages: English, Chinese, Farsi,
French, Gujarati, Japanese, Korean, Malayalam, Portuguese,
Spanish, Tagalog, Thai, Vietnamese. Geographically, 22/31
of families live within California, 5/31 live in the Northeastern
United States, 1/31 live in the Southern United States, 1/31
live in the Midwestern United States, 1/31 live in Canada, and
1/31 live in South Korea.

Participating children were 58.06% female, 41.94% male,
0% African American/Black, 19.35% Asian American/Pacific
Islander, 38.71% Caucasian/White, 9.68% Hispanic/Latinx,
41.94% multiracial, 0% other.

We only have income information for 27/31 families, as re-
porting was optional. The average family income of our sample
is 231622.15 USD (75000–1000000 USD, SD = 181466.57
USD). 16/31 families have more than one child in the house-
hold and 2/31 families have more than 2 caregivers living in
the household.

BV-Home language outcome questionnaires Long-form
MacArthur Bates CDI language questionnaires (https://mb-
cdi.stanford.edu/) were administered every 3 months start-
ing at enrollment. Families were provided compensation
for each completed questionnaire. These parent-report
forms assess children’s vocabulary comprehension and pro-
duction; aggregate data by age can be viewed at word-
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bank.stanford.edu. Forms were administered through Web-
CDI (https://webcdi.org/). Data from 69 (4 Spanish, 65 English)
questionnaires are included in this first release of the dataset.

Video processing pipeline Videos were manually uploaded
by each family to their personalized Google Drive folders. The
uploaded videos were automatically downloaded to a secure
server where the metadata (accelerometer and gyroscope)
were extracted and the videos were compressed then uploaded
to a second Google Drive platform. The compression step used
the ffmpeg (Tomar, 2006) program to encode video into the
libx265 format with a constant rate factor of 23 to enable high
quality MP4 videos.

Annotation details
Pose keypoint details and evaluation The pose keypoints
that were evaluated includes 17 keypoints: nose, left eye, right
eye, left ear, right ear, left shoulder, right shoulder, left elbow,
right elbow, left wrist, right wrist, left hip, right hip, left knee,
right knee, left ankle, and right ankle.

The Object Keypoint Similarity (OKS) metric reported is as
follows:

OKS =
∑i exp

(
− d2

i
2s2k2

i

)
δ(vi > 0)

∑i δ(vi > 0)
.

In this formula, di represents the Euclidean distance between
the detected keypoint and the ground truth, vi indicates the
visibility of the ground truth keypoint, s denotes the object scale,
and ki is a constant specific to each keypoint that adjusts the
falloff. We report standard metrics for average precision and
recall: AP (the average of AP scores at 10 different OKS
thresholds: 0.50, 0.55, ..., 0.90, 0.95), and AR (the average of
AR scores at OKS = 0.50, 0.55, ..., 0.90, 0.95).

Compute resources and infrastructure for annotation Our
annotation work was performed on an internal cluster server
with an AMD EPYC 9334 32-Core Processor, 756GB memory,
8 NVIDIA A40 GPUs, and Ubuntu 20.04. We used 8 GPUs
for speech recognition and 1 GPU for both assisting with an-
notation and testing pose detection models on the validation
set.

Language benchmark details
Language model training & evaluation details In training
our GPT-2 models, we used a learning rate (LR) of 10−4, linear
LR scheduler with no warmup steps, a batch size of 8 or 16
per GPU, training seeds of 0, 42, and 123, and Adam optimizer
with β = (0.9,0.999) and ε = 10−8.

The final chosen GPT-2 model for each experiment is the
epoch that performed best (lowest loss) on the corresponding
validation split. The corresponding byte-level BPE tokenizer for
each model was also trained from scratch on the corresponding
dataset.

The training data was set up so that each line corresponded
to a single transcribed conversation, which is broken up into
chunks of 1024 consecutive tokens by GPT-2 during training.

To ensure the data format is consistent for evaluation pur-
poses, we aligned the most important and frequently occurring
speaker labels across datasets (mainly based on the existing
CHILDES labels): CHI for the target child, MOT for the mother
or female adult, and OCHI for other children. All other speaker
labels were kept to their default. Around 60% or more of all
utterances within each dataset were from CHI or MOT.

See below for an example of part of a single training con-
versation. Double asterisks surround speaker labels, double
newline tokens separate utterances, and an end-of-text token
marks the end of the conversation. This format was consistent
across all conversations and datasets.

**CHI**: Hi. \n\n **CHI**: There you go. \n\n **OCHI**:
Do you have a little ball in your cup. \n\n (...) \n\n **CHI**:
Are those your stars? \n\n **MOT**: Can you say star? \n\n
**CHI**: Star. \n\n **CHI**: Look. \n\n **CHI**: Stars. \n\n
**MOT**: Stars. See? Look, look at the yellow star, a golden
star. <|endoftext|>

We found cases of duplicate conversations and duplicate
utterances within conversations among the transcribed data
across the three datasets. We removed these to the best of
our ability before training.

The Zorro evaluation was inspired by BLiMP (Warstadt et
al., 2020) and is a modification for child-directed language (e.g.
lower vocabulary). However, it was designed specifically for
masked language models such as RoBERTa. To adapt it to
GPT-2, we reformatted the Zorro data to match the BLiMP
format and used the BLiMP evaluation in the BabyLM evalua-
tion suite 2 since the main difference between the two is the
evaluation data. Further, we use the full Zorro test suite and do
not filter examples by vocabulary. Hence, our results are not
comparable to Qin et al. (2024) which filters Zorro examples
by the vocabulary of their training datasets.

To better match the training data format and assess the ef-
fects of speaker labels on evaluation, we came up with three
variations of Zorro: 1) the original Zorro evaluation sentences,
2) the sentences with the CHI speaker label prepended, and
3) the sentences with the MOT speaker label prepended. To
further match the training data, the speaker labels were sur-
rounded by double asterisks, and sentences included double
newline tokens (before and after). We found that variation 3
(prepending each Zorro sentence with MOT) worked best for
all datasets. This is likely because the utterances spoken by
the mother and female adults are typically more grammatical
than those of the child.

Compute resources and infrastructure for language model
training Our language model experiments were run on an
internal cluster server consisting of 5 A40s and 8 A100s.

Vision benchmark details

Video preprocessing

2https://github.com/babylm/evaluation-pipeline
-2023
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BabyView We sample BV-Home at 5 FPS at a resolution of
720x360 for the initial 224 global crop training of DINO, and
at 720x1280 for the 518 high resolution final stage of training.
This results in a total of 16M frames for the total BV-Home
dataset.

To create datasets of different sizes (1%, 5%, etc.) we ran-
domly selected complete clips and append them to a continu-
ously increasing list which we save at different size increments.
This ensureed that every smaller set of data was a strict subset
of the larger set (e.g., the clips in the 1% set are all contained
in 5% set etc.). After getting these lists of clips, we extracted
frames with the same procedure.

Because the dataset was at a 9:16 widescreen aspect ratio,
significantly different from the mostly 4:3 ImageNet image as-
pect ratio for which the DINO random cropping strategy was
developed, we took random crop with aspect ratio in the 4:3 to
3:4 range with the biggest possible size, before performing the
DINO cropping and augmentation. Empirically this resulted in
a 1% improvement in ImageNet classification accuracy.

SAYCam We sampled SAYCam at 5 FPS in the native reso-
lution of 480x640. This resulted in a total of 8.5M frames.

Ego4D We took the complete Ego4D dataset without ad-
ditional post-processing and sample frames at 1 FPS using
ffmpeg at 1/2 of the original resolution. The smallest side of the
images we extracted ranged from 360 to 960 pixels—sufficient
resolution for training (the variance in resolution exists in the
original dataset due to the use of different recording devices).
We reduced the original resolution to limit the footprint of the
dataset on disk and to lower the computational cost of data
loading. This resulted in a total of 15M frames. We apply the
same 3:4 aspect ratio augmentation that we did for BabyView.

Training

DINOv2 To train DINOv2 we use the official code reposi-
tory.3 We tried to perform minimal modifications of the existing
pipeline. We trained a ViT-B/14 with a batch size of 1024 with
the default ImageNet-1K training config for the default 125K pa-
rameter updates. This initial training is done with a global crop
of 224x224. All other hyperparameters were kept the same.
We experimented with doubling the amount of parameter up-
dates but did not see improvements. Following the DINOv2
paper, we trained for an additional 10K parameter updates with
a global crop of size 518x518.

MoCov3 To train MoCov3 we use the official code repository.4

We trained a ViT-B/16 with a batch size of 512 with the default
ImageNet-1K training configurations for up to 725K parameter
updates. Similar to DINOv2, the training was done with an
initial global crop of 224x224.

3https://github.com/facebookresearch/dinov2
4https://github.com/facebookresearch/moco-v3

Downstream tasks

ImageNet Category Recognition We used the code from
the official DINOv2 repository for kNN classification or for train-
ing a linear classifier. Our evaluation procedure, therefore,
directly followed the procedure used in DINOv2.

NYUv2 Depth Estimation Following the descriptions in the
DINOv2 paper, we used the Monocular Depth Toolbox (Z. Li,
2022), and follow their evaluation protocol. The code interfac-
ing DINOv2 with this package is not released, but the trained
depth estimation models and configs are released. After writing
the interface code, we verified that the evaluation was correct
by training a DPT-based Ranftl et al. (2021) depth estimator
(Dense Prediction Transformer) which uses the trained model
as a backbone for the semantic segmentation and depth esti-
mation task. We utilized this codebase on top of an off-of-the
shelf official DINOv2 checkpoint which matched the perfor-
mance from the paper.

COCOStuff Semantic Segmentation We interfaced the offi-
cial DINOv2 code with the mmsegmentation package (Contrib-
utors, 2020a). Similarly, the interface code is not released but
the models and configs are available. To verify correctness, we
trained a linear probe on top of an off-the-shelf official DINOv2
checkpoint and matched the performance from the paper on
PASCAL VOC. We used the same config to train a linear probe
on COCOStuff as was released for PASCAL VOC. We did not
find improvements by training for longer. Future work may
investigate training more complex architectures, which was pro-
hibitive for this work due to the time and compute constraints
required.

Compute resources The DINOv2 vision models in this paper
can be trained on a single 8x NVIDIA A40 GPU node. While no
multi-node training is required, one full training run of DINOv2
takes about 3 days on 8x A40 GPUs. This translates to about
550 GPU hours per experiment, making it difficult to perform
multiple runs to obtain error bars.

Data accessibility

No data are available for review due to the parental embargo
policy. All data will be hosted on https://nyu.databrary.org/
in June 2025 after the parental embargo for this release has
lapsed. Researchers must be affiliated with a PI at a research
institution, who must request access to the project.

All compressed videos and their associated meta-data will
be named according to a standardized format that encodes
the participant id and the date at which the recordings were
made. A .csv spreadsheet will provide detailed, anonymized
information about each individual participant. Separate lan-
guage outcome data (in standard CDI format) will be provided
and linked to the individual participant IDs.
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Licensing
The code and behavioral data published with the
benchmark will be licensed under CC BY-NC 4.0.
The video dataset is licensed under the terms
laid out in the Databrary Access Agreement, see
https://databrary.org/about/agreement/agreement.html.

Licenses for models used: YOLOXPose is licensed under
the GPL-3.0 license. MMPose, RTMO, SimCC, ViTPose, mm-
segmentation, DINOv2, Monocular Depth Toolbox, and Label-
Studio are licensed under the Apache-2.0 license. GPT-2 is
licensed under the modified MIT License. RTMPose is licensed
under the MIT license. All are permissive for this paper release.

We, the authors, bear all responsibility in case we have
violated any rights by the publication of these data and code in
these venues.

Code availability
Relevant model training code can be found at
https://osf.io/j45qa/.
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