R2E-Gym: Procedural Environments and Hybrid
Verifiers for Scaling Open-Weights SWE Agents

Naman Jain * Jaskirat Singh-* Manish Shetty’ Tianjun Zhang
Liang Zheng~ Koushik Sen' Ion Stoica

UC Berkeley Australian National University
{naman_jain@berkeley.edu jaskirat.singh@anu.edu.au}
Abstract

Improving open-source models on real-world SWE tasks (solving GITHUB issues)
faces two key challenges: 1) scalable curation of execution environments to train
these models, and 2) optimal scaling of test-time compute. We introduce R2E-
Gym, the largest procedurally-curated executable gym environment for training
real-world SWE-agents, consisting of more than 8.1K tasks. R2E-Gym is pow-
ered by two main contributions: 1) SWEGEN: a synthetic data curation recipe
that enables scalable curation of executable environments using test-generation
and back-translation directly from commits, thereby reducing reliance on human-
written issues or unit tests. We show that this enables more scalable training leading
to PAss@1 of 34.4% on SWEBENCH-VERIFIED benchmark with our 32B model. 2)
Hybrid Test-time Scaling: we next provide an in-depth analysis of two test-time
scaling axes; execution-based and execution-free verifiers, demonstrating that they
exhibit complementary strengths and limitations. Test-based verifiers suffer from
low distinguishability, while execution-free verifiers are biased and often rely on
stylistic features. Surprisingly, we find that while each approach individually satu-
rates around 42-43%, significantly higher gains can be obtained by leveraging their
complementary strengths. Overall, our approach shows power of synthetic data for
SWE agent training and achieves 51% on the SWEBENCH-VERIFIED benchmark,
for first time showing the strong potential of synthetic data generation and hybrid
verifiers for SWE agents.

1 Introduction

Autonomous software engineering (SWE), aiming to solve real-world software engineering problems
such as GITHUB issues, has made significant progress in recent times (Wang et al., 2024; Yang et al.,
2024b). While LLM-based SWE-Agents have demonstrated remarkable improvements, state-of-the-
art performance is largely driven by proprietary models (Anthropic, 2025; Jaech et al., 2024) — with
open-models lagging behind (Xie et al., 2025).

Addressing this gap requires solving two fundamental challenges: First, scalable curation of high-
quality execution environments to train these models; and second, developing efficient aggregation
strategies to maximize test-time performance. While several benchmarks for evaluating SWE-agents
on GITHUB issues exist (Jimenez et al., 2023; Zhao et al., 2024), scalable curation of high-quality
training environments remains a challenging problem. For instance, while the training split from
SWE-Bench (Jimenez et al., 2023) contains output patches, it lacks executable environments. Pan
et al. (2024) collect executable test environments, but rely on human-written issues and test cases.

* Equal Contribution. Project Page: https://r2e-gym.github.io

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: DLAC.

https://r2e-gym.github.io

SWE-Bench Verified % (Best@K)

Human PRs SWEGEN | Pass@1 Score Execution-Based Sonnet-3.5
' . Execution-Free Hybrid Scaling OpenHands)
! N ') Sonnet-3.5 g
=] | i ! i w/ Tools 5
g : i f 3
52 : < +8.29% +7.3% o1 g
[Sa} H H i H . =
FE 25X & +16.6% 1 i Ol-preview
25 ! 3 5 3 : Ours
Q.5
a5 - 51.0% g
2 S SweRL 2
Q)
& M 42.8% 43.7% SweGym 32% Z
=3} =
a 34.4% SweFixer 30.2% @
0% 10% 20% 30% 40% 50%
(a) Synthetic Data (b) Hybrid Test-time Scaling (c) Open-weights SOTA Performance

Figure 1: Overview. In this paper, we introduce R2E-Gym, the largest gym environment and training
framework for training open-weight SWE agents. R2E-Gym is powered by two main contributions:
(a) SWEGEN: a synthetic data curation recipe for curating executable training environments w/o
relying on human tests and issues (§2). (b) Hybrid Inference Time Scaling: showing that while
both execution-based and execution-free verifiers elicit inference-time gains; significantly better
performance can be achieved by leveraging the strengths of both (§4). (c) Overall, the final approach
reflects SOTA performance for open-weight SWE-agents, while also being competitive with some
proprietary model baselines'.

In this paper, we introduce R2E-GYM, the largest procedurally curated environment for training
real-world SWE-agents — consisting of more than 8.1K problems, with executable gym environments,
unit tests, and natural-language task descriptions (§2). R2E-GYM addresses both key challenges
through two primary contributions (Figures la and 1b):

Synthetic Data Enables More Scalable Training. We propose SWEGEN — a novel synthetic data
curation recipe that enables collection of a large number of executable training environments without
reliance on human-written pull requests (PRs) or unit tests. We show that instead of using human-
written PRs, good-quality execution environments can directly be curated from commits through
backtranslation (Li et al., 2023; Wei et al., 2023) and test collection or generation (§2). Compared
to PR-based data collection (Pan et al., 2024), this approach enables more scalable data curation
(Figure la) and agent-training, resulting in a PAss@1 performance of 34.4% on the challenging
SWEBENCH-VERIFIED benchmark.

Hybrid Inference Time Scaling. We next leverage R2E-GYM to investigate two complementary
axes for scaling test-time compute (§4): 1) Execution-based verifiers that evaluate patches through
test cases (Xia et al., 2024b), and 2) Execution-free verifiers that assess trajectories through learned
models (Pan et al., 2024). While prior works have studied these approaches in isolation, they lack a
comprehensive analysis of their relative strengths and weaknesses. We first present a unique and in-
depth analysis of their working mechanisms, demonstrating that execution-free and execution-based
methods actually exhibit complementary strengths and weaknesses. We find two key insights (studied
in §4.2): a) Execution-based methods provide direct signals for patch correctness but struggle with
discriminating between solutions , and b) Execution-free verifiers provide better discrimination but
can be biased by other heuristics (e.g., agent thoughts) over the final patch. Based on the above
insights, we propose a hybrid scaling approach leveraging the strengths of both methods. Surprisingly,
while the performance of both execution-based and execution-free methods plateaus around 42-43%,
the hybrid approach yields significantly higher gains, achieving a final performance of 51% on
SWEBENCH-VERIFIED (Figure 1b and §4.3).

The key contributions of this paper are: 1) We introduce R2E-GYM, the largest procedurally curated
environment for training real-world SWE-agents, increasing the number of executable environments
by over 3 times. 2) We provide an in-depth analysis demonstrating that execution-based and execution-
free axes for scaling test-time compute exhibit complementary strengths and weaknesses. 3) Based
on the above insights, we propose a hybrid scaling approach that leverages the strengths of both
methods, significantly improving test-time performance. 4) Finally, we release an open-weights 32B
model that achieves 51% on SWEBENCH-VERIFIED, reflecting a new state-of-the-art for open-weight

SwE-agents, while also for the first time demonstrating competitive or better performance compared
to commercial models (Fig. 1¢), e.g., ol (Jaech et al., 2024) and sonnet-3.5-v2 (Anthropic, 2024).

2 R2E-GYM: Procedural Synthetic Data Generation

scra%vamid)

Dataset (split) | Repo? Executable? | # Instances . pillow

ornado
APPS (Hendrycks et al., 2021) X v 10,000
R2E (Jain et al., 2024) v v 246 aiohttp
SWE-Bench(train) (Jimenez et al., 2023) v X 19,008
SWE-Gym Raw (Pan et al., 2024) v X 66,894 coveragepy |5
SWE-Bench (test) (Jimenez et al., 2023) v/ v 2,294 datalad 3.9% RZE"(;Z;g;‘bset
SWE-Gym (Pan et al., 2024) ‘ v v ‘ 2,438 o
R2E-Gym-Subset (Ours) v v 4,578 pandas
R2E-Gym (Ours) ‘ v v ‘ 8,135 17.1%

numpy
10.5%

Table 1: Dataset Statistics. Comparing statistics across
different datasets curating executable training environ-
ments for SWE-agent training. R2E-Gym refers to our Table 2: Repo distribution for R2E-
full dataset, and R2E-Gym-Subset refers to a filtered Gym subset (no overlap with SWE-
subset of tasks, with non-overlapping repositories with Bench) used for training (refer §3).

SWE-Bench.
Overview. SWE task collection methods (Jimenez et al., 2023) rely on human-written issues and

unit tests for problem statements and evaluation functions. However, this presents a challenge for
scaling data curation as size is limited by human-written PRs. To overcome this limitation, we
propose SWEGEN — a synthetic data curation recipe using backtranslation and test generation. We
procedurally generate environments using only commits from GITHUB repositories, reducing reliance
on both human-written issues and test cases.

orange3

Repository and Commit Curation. We use SEART GITHUB search? to identify PYTHON repositories
with a large number of commits. Next, we extract commit history and associated code changes
for each repository. We filter relevant commits using a combination of rule-based and LLM-based
heuristics, identifying interesting code changes. For each relevant commit, we next collect build
scripts by semi-manually searching across dependency pins. We expand our set of heuristics and
installation procedure further in the Appendix A.

Test-Validation and Generation for Environment Collection. Following Jimenez et al. (2023),
we use the existing test cases in the curated commits to identify Fail—Pass (F2P) test cases, i.e. test
cases that fail in the original buggy commit and pass in the fixed commit. In cases where the curated
commits do not have associated tests, limiting the ability to use them for training environments, we
supplement such commits with automatically generated Fail—Pass test-cases. Appendix A expands
our test generation approach.

Backtranslation: Non-reliance on GITHUB Issues. Using the above steps, we collect a large
number of commits, associated build environments and F2P (Fail—Pass) test cases. Now, we need
to collect the problem statements associated with the commits. Prior works (Jimenez et al., 2023;
Pan et al., 2024) use human-written GITHUB issues as problem statements. This inevitably cannot
use the entire commit history since human-written issues are not available for all commits. Here,
following Li et al. (2023); Wei et al. (2023) we propose a backtranslation approach to collect the
problem statements associated with the commits.

However, naively back-translating code changes is quite noisy as models often generate generic
problem statements that do not capture the essence of the code changes. Instead, we identify that
human-written issues often contain failing tests and execution traces as part of bug reports. We use
this observation to collect high-quality problem statements by using the F2P test-cases as part of the
backtranslation prompt. Similar to existing works (Jain et al., 2024; Zhuo et al., 2024), we find that
using test execution information allows generating precise and directed problem statements. Please
find prompts and examples in Appendix.

We collect over 8.1K problem statements using this approach (referred to as R2E-Gym). We
decontaminate this set by removing repositories overlapping with SWE-Bench test-set repositories,
obtaining 4578 problems (referred to as R2E-Gym-Subset) and use that across all experiments unless

'Results with all open-weight models are reported with test-time scaling.
’https://seart-ghs.si.usi.ch/

https://seart-ghs.si.usi.ch/

Table 3: Resolve Rate (%) Comparison on SWEBENCH-VERIFIED and SWEBENCH-LITE benchmarks.
We observe that synthetic data curation (SWEGEN): allows our approach to scale better across
different model sizes. All experiments use the Qwen-2.5-Coder as base-models.

Model SWEBENCH-LITE SWEBENCH-VERIFIED

Size | Base-model SWE-Gym Ours A | Base-model SWE-Gym Ours A
7B 1.0 (£1.0) 10.0 (£2.4) 11.0(£0.8) +1.0 | 1.8(£1.3) 10.6(£2.1) 19.0 (£1.0) +8.4
14B 2.7(£1.9) 12.7(£2.3) 20.67 (£0.7) +7.97| 4.0(£1.6) 16.4(+2.0) 268 (£1.4) +10.4
32B 3.0(£1.4) 153 (£2.5) 23.77 (£0.8) +8.47| 7.0(£1.3) 20.6 (£2.1) 344 (+1.2) +13.8

specified otherwise. Table 1 shows the statistics of different datasets, and Figure 2 and Figure 8
show the distribution of the repositories in R2ZE-Gym-Subset and R2E-Gym respectively. Notably,
using our SWEGEN approach, we can collect over 2.5 times more problems than relying on the data
collection relying on GITHUB issues (Figure 1a).

3 Training SWE-Agents using R2E-GYM Environments

Agent Scaffolding. We design a minimal scaffold on top of OPENHANDS (Wang et al., 2024) to
experiment with agents for diverse SWE tasks. It uses a traditional REACT framework (Yao et al.,
2022) without any specialized workflow; equipping the LLM with only a bash terminal, file editor,
and search tool. Figure 15 depicts an example code editing trajectory.

Trajectory Collection and SFT Training. We next collect SFT trajectories using from R2E-Gym
environments. To avoid contamination, we only use a subset of R2E-Gym consisting of repos
with no overlap with the SWE-Bench dataset. The resulting subset (R2E-Gym-Subset) consists of
4578 executable environments across 10 repositories (Figure 2). For each task environment, we
use SONNET-3.5-v2 with our agent scaffold and collect the successful agent trajectories. Through
this process, we collect 3321 trajectories from 2048 unique task environments. We then use these
trajectories to train our agent via supervised fine-tuning on agent thoughts and actions. For training,
we use LLaMA-Factory (Zheng et al., 2024) and Qwen-2.5-Coder models (7B, 14B, 32B) as our
base models. For detailed experiment configuration and hyperparameters, please refer to Appendix B.

3.1 Results and Analysis

Comparison to open-weight SWE-Agents across Model Scales. We report Pass@1 of R2E-Gym
trained models on the SWEBENCH-VERIFIED and SWEBENCH-LITE benchmarks in Table 3. We also
report comparisons with recently proposed SWE-Gym (Pan et al., 2024), which is most closest to our
work. As seen in Table 3, we find that our approach enables better scaling for training SWE-agents
across all model sizes. For instance, on SWEBENCH-VERIFIED, for the same base-model type and
scale, our 32B model significantly improves the Pass @ 1 performance by 14%; pushing the final
performance from 20.6 (SWE-Gym) to 34.4%.

Scaling with Number of Trajectories. We investigate relationship between training samplesize
(number of trajectories) and agent performance in Figure 2. We evaluate 14B and 32B models trained
with trajectory counts ranging from 100 to 3, 200. Our findings indicate that performance improves
with increasing trajectory count, though with diminishing returns for both models. Notably, the 14B
model begins to saturate at approximately 800 samples, while 32B model still shows improvements,
likely due to its larger capacity. These results extend the findings of Pan et al. (2024), who studied
dataset scaling up to ~ 500 samples. Our analysis shows that while performance does improve with
increasing samplesize, rate of improvement diminishes or even plateaus for smaller models.

Real vs Synthetic Problem Statements. The R2E-Gym approach enables us to generate problem
statements without relying on human-written descriptions and test cases, offering greater scalability.
We compare the performance of models trained on real GitHub issues versus our synthetic problem
statements (collecting 400 trajectories from both sets). Remarkably, models trained on synthetic data
achieve nearly identical performance (27.8% Pass@1) to those trained on real data (28.0%). This
validates the efficacy of our synthetic data methodology, demonstrating that procedurally generated
environments can match the training value of real-world examples while providing scalability.

Explicit Thought Traces are Important. During SFT we use both the agent’s thought processes
and actions as training targets. Models trained with thought demonstrations achieve significantly

Model Performance vs. Data Size Ablation Config PASS@1 (%)

35.0
— . With 344
32.5 >
= — / Adding Thoughts Without 30.4
-
®275 - ; pE— . Real 28.0
2250 — = Realvs. Synthetic ¢ pheic 27.8
g 225
20,0 * —e— 148 Model Figure 3: Top. Using thoughts in REACT agent
17.5] —e— 32B Model trajectories leads to significant performance
15.0759 200 200 800 1600 3200 improvements. Bottom. Using SWEGEN syn-
' Data Size L thetic generated issues and test cases achieves
Flgure 2: Pass@1 _Sc?llng curve with increas- similar performance as real-world issues (400
Ing number of t'ralmng samp!es. Performance trajectories for both real & synthetic in above)
improvement with more training samples, en- while providing better scalability during data
abled by SWEGEN approach. collection.

better performance compared to those trained without (34.2% vs 30.4% in Table 3). This suggests
that exposing the model to step-by-step reasoning process is necessary for reliable problem-solving.

4 Efficient Inference Time Scaling With Hybrid Verifiers

We utilize R2E-Gym (§2) for inference-time scaling experiments with coding agents. In §4.1,
we explore different axes for scaling test-time compute, focusing on two distinct approaches: 1)
Execution-based Verifiers and 2) Execution-free Verifiers. We analyze the relative strengths and
weaknesses of each approach, demonstrating their complementary nature (§4.2). Based on this
insight, we propose a hybrid approach that leverages the strengths of both, significantly improving
test-time performance (§4.3). Finally, we provide detailed ablations and analysis, examining critical
design choices for our approach (§4.4).

4.1 Exploring Different Axes for Training Verifiers

Given an input task description D, a set of agent trajectories {7;}X ; and candidate patch outputs
{P,}K |, our objective is to build a verifier that assigns scores S = {s;} X, to rank the outputs. To
this end, we investigate two types of verifiers:

Execution-Based Verifiers. We train a specialized festing-agent that generates reproduction test cases
to determine whether a candidate patch resolves the issue (i.e., whether the patch passes the generated
test suite). Additionally, following Xia et al. (2024b), we leverage existing regression tests to filter
out patches that fail to maintain backward compatibility. Our execution-based (EB) verifier thus
comprises two components: 1) a testing-agent that generates targeted tests to evaluate bug fixes, and
2) a regression test filter that eliminates patches that compromise existing functionality. Specifically,
we train the testing-agent (using QWEN-CODER-32B as base-model) to generate a comprehensive test
script containing M = 10 diverse tests that cover various inputs, corner cases, etc.. See Appendix D
for example generated tests. The execution-based score sZ for each each patch Py is then computed
as,

jel,K] ; where TestScorey, = ZPass(Pk,Testi)

TestScorey,, if RSy, = max RSj,
0, otherwise, f

ey

where RS}, refers to the regression test score for the k*" patch and helps selelct the patches with the
highest regression test scores (Xia et al., 2024b). TestScorey, is simply the sum of the number of
passing tests for each patch Py. Please refer to Appendix §C for further details.

Notably, unlike zero-shot test generation with Agentless (Xia et al., 2024b), our testing agent interacts
with the environment to examine existing test cases and generates new tests informed by these
examples with execution feedback. We demonstrate that this environment-aware approach provides

additional benefits over zero-shot methods in §4.4.)))
Execution-free Verifiers. We next train execution-free (EF) verifiers for selecting the best trajec-

tory from a set of sampled trajectories from the code-editing agent (§3). In particular, following

Best@K with Test Agent Rollouts

45 44;./"/ X
~ 3.0 - e
) A S : —
fo [2 %0 %0 g |
& % i @ e

7/ 46 /‘ Edi
i iting Agent Rollouts
3 7 Verifiers E —s=— #11 Agent Rollouts
—+— Hybrid Verifier ™ —e— #16 Agent Rollouts
| —=— Execution-Based Verifier #21 Agent Rollouts
30 320 —— Execution-Free Verifier —— #26 Agent Rollouts
R N N T A (e S 2 ~ 2 > > o © A
Agent Rollouts (K) # Test Agent Rollouts (K)

Figure 4: Left. BEsT@K with increasing number of editing-agent rollouts. Inference-time scaling
improves final performance for both execution-based and execution-free verifiers. Hybrid Verifier
combining execution-based and execution-free verifiers provides significantly superious scaling.
Right. BEsT@K with increasing number of testing-agent rollouts. Increasing test-agent rollouts also
improves final performance and can provide more compute efficient scaling than naively increasing
only editing-agent rollouts.

Table 4: Performance of various models/methods on SWE-Bench Verified.

Method Model Type Verified
Proprietary Models
Agentless-1.5 (Xia et al., 2024b) GPT-40 Pipeline 34.0
Agentless (Xia et al., 2024b) 01 Pipeline 48.0
Claude + Tools Claude-3.6-Sonnet Agent 49.0
Agentless-1.5 (Xia et al., 2024b) Claude-3.6-Sonnet Pipeline 50.8
OpenHands (Wang et al., 2024) Claude-3.6-Sonnet Agent 53.0
Claude + Tools Claude-3.7-Sonnet Agent 62.3
Claude + Tools (Best@ Any) Claude-3.7-Sonnet Agent 70.3
Open-source Models
SWE-SynlInfer (Ma et al., 2024) Lingma-SWE-GPT-72B Agent 30.2
SWE-Fixer (Xie et al., 2025) SWE-Fixer-72B Pipeline 30.2
SWE-Gym (BEsT@ 16 w/ Verifier) (Pan et al., 2024) SWE-Gym-32B Agent 32.0
SWE-RL (BEsT@500 w/ Tests) (Wei et al., 2025) SWE-RL-70B Pipeline 41.0
Agentless (Xia et al., 2024b) DeepSeek-R1 Pipeline 49.2
R2E-Gym (Ours) (Pass@1) R2E-Gym-32B Agent 344
R2E-Gym (Ours) (BEsT@16 w / Hybrid) R2E-Gym-32B Agent 494
R2E-Gym (Ours) (BEsT@26 w / Hybrid) R2E-Gym-32B Agent 51.0

(Pan et al., 2024), given task description D, agent-trajectory 7 (sequence of thought, action, and
observations) and output patch P, we finetune a Qwen2.5-Coder-14B model to predict YES and
NO tokens to determine correctness of a trajectory using SFT on correct and incorrect trajectories.
The execution-free score is then computed by normalizing the relative probability of YES token as
sPF = P(YES)/(P(YES) + P(N0)), where P(YES) and P(NO) are estimated through log-probabilities
of corresponding token predictions.

4.2 Comparative Analysis of Execution-Based and Execution-Free Verifiers

Experimental Methodology. We evaluate verifier performance using the BEsT@K metric, which
quantifies each verifier’s ability to identify correct patches from multiple candidates. Specifically,
given K trajectories, the BEsT@K metric represents the percentage of problems where the verifier
successfully selects the correct patch using its scoring mechanism. For our experiments, we sample
1 trajectory at temperature 7' = 0 and 25 trajectories at temperatures 7' = 0.8 and 7' = 0.9 from
the R2E-Gym-32B model on SWEBENCH-VERIFIED problems. These trajectories achieve PAss @26
=64.4% (Figure 13). Next, we sample 7 tests using our testing agent at temperature 7' = 0.8. When
generating tests, the test agent is provided a fixed in-context example (from Django) showing sample
starter code and format for writing test cases. We empirically find that use of an incontext example is
useful for improving output formatting and lacking domain knowledge in the base LM; improving
test generation for ~ 2% problems. Please see Listing C.1 for further details.

Both verifiers elicit inference time gains. Figure 4 illustrates the BEST@K performance of both
verifier types on the SWEBENCH-VERIFIED benchmark as a function of number of editing agent
rollouts. Both execution-based and execution-free verifiers demonstrate substantial performance

improvements with increased number of rollouts. However, BEsT@K rate quickly plateaus for both
methods, converging similarly to 43.7% and 42.8% respectively.

Limited Distinguishability in Execution-Based Verifiers. Recall that these verifiers output scores
based on test pass counts and thus cannot differentiate between patches with identical test pass-rates,
limiting their discriminative capacity. We study this discriminative capability from tests generated
by our 32B testing agent, prompted SONNET-3.5-v2 model, and Agentless-1.5 reproduction tests
(Xia et al., 2024b)* on a subset of SWEBENCH-VERIFIED problems. Figure 5 (left) presents the
problem density distribution for distinguishability rate, i.e., the proportion of tests that successfully
differentiate between top-ranked correct and incorrect patches. The results demonstrate that for
the majority of problems, less than 20% of tests provide discriminative signal, constraining the
re-ranking. Figure 6 additionally depicts that most generated tests either do not reproduce the bug
(high Pass—Pass values in 6-left) or do not pass ground truth patches (high Fail—Fail values in
6-middle) primarily due to bugs or exceptions in the generated test cases.

Vulnerability to Test Toxicity. Following (Chen et al., 2022), we examine the prevalence of toxic
tests, i.e., tests that pass incorrect patches but fail correct patches. Figure 5 (right) illustrates the
distribution of toxic test rates across different test generation approaches. While toxic tests are
generally rare, we find that for a small but significant subset of problems, testing agents generate
toxic tests (up to 10% of total tests) that can erroneously rank incorrect patches above correct ones,
undermining the reliability of execution-based verification.

m== Hybrid (w/ Agentless)
Hybrid (w/o top-n)
ed tests) mmm Hybrid (Ours)

51.0%

Probability Density for Distinguishing Rates Probability Density for Toxicity Rates g 48.8%
> Models 2030 Models g 47.4%
00 Ours (328) 2 005 — Ours (32B) Ew
2 Sonnet 2 Sonnet < %
0 0.06 [} W .
> Agentless-1.5 (gpt-4o) >0 Agentless-1.5 (gpt-40) g | 427%
= 0.0s A =015 5" |
3 A a2
] \ 2 \ c
s \ Boao i@
£ 002 SN g 0.05 [a* |

0.00 — == 0.00 B — — ” |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distinguishing Rates Toxicity Rates Ablation Study for Hybrid Verifier

Figure 5: Analyzing limitations of execution-based verifiers. Left: Problem Probability Distri-
butions for distinguishability rates depicting weak discrimination capabilities of tests. We observe
that for the majority of problems, less than 20% of tests provide discriminative signal, constraining
the re-ranking ability of test-based agent. Center: Distributions for toxicity rates showing (rare)
generation of toxic tests. We find that execution-based verifiers are also vulnerable to (rare) generation
of toxic tests (tests that pass incorrect patches but fail correct patches); which can undermine the
reliability of execution-based verifiers. Right: Abalation on hybrid verifier details.

Probability Density for Pass - Pass Probability Density for Fail - Fail Probability Density for Fail - Pass
0.08
Rates > Rates > Rates
= 0.07 =0.04 +0.04
a6 —— Ours (32B) 2 —— Ours (32B) 2 —— Ours (32B)
g 005 . Sonnet g 0.03 Sonnet g 0.03 Sonnet
Agentless-1.5 (gpt-40) - Agentless-1.5 (gpt-40) - Agentless-1.5 (gpt-40)
= 0.04 ~ =2 =
Z 0o N Z o0 Zom
Q002 2 3
© 001 © 001
a 0.01 - [o
e S TTT—
OO%O 0.2 0.4 0.6 0.8 1.0 OO%.O 0.2 04_ 0_5 0.8 1.0 OO%.O 0.2 04_ 0.6 0.8 1.0
Pass - Pass Fail - Fail Fail - Pass

Figure 6: Problem Probability Distributions for Pass—Pass, Fail—Fail, and Fail—Pass generated
test fractions for various approaches. We identify a large fraction of generated tests either do not
reproduce the bug (left) or do not even pass the correct solution (middle).

Execution-Free Verifiers can rely on heuristics. We next study the workings and limitations of
execution-free verifiers. In particular, we first perform quantitative ablation studies, studying the
impact of different trajectory components (e.g., output patch, agent thoughts) to verifier performance.
To this end, we train multiple execution-free verifiers (§4.1) excluding different trajectory components
while training the verifier. Results are shown in Figure 7-a. We find that agent thoughts play a
considerable role in determining the verifier performance. Surprisingly, the final BEST@26 drops
from 42.8% to 37.6% when we remove the trajectory from the verifier input (i.e., only use the
final patches). This means that while patch alone is responsible for determining the correctness,
execution-free verifiers heavily rely on trajectory features, such as agent thoughts, to make predictions.

3We utilize test cases from the official artifacts repository (Xia et al., 2024a).

Method Accuracy (%) Best@26 (%)
Final Patch + Traj. 71.82 42.8
Patch Only 68.01 37.6
Traj. - Thoughts 68.77 41.4

(a) Impact of Patch & Thoughts on
execution-free verifier. Patch alone
reduces performance, indicating that
model relies on other heuristics (e.g.,
agent thoughts) for reranking; which can
be misleading (see part-b: right).

1. Successfully reproduced the issue

2. Implemented a fix [...]

4. Ensured edge cases are handled

5. Maintained backward compatibility [...]
<function= finish >submit</function> [...]

Great! The fix works. Let’s see what we did to fix the issue:
1. We identified that the original code was failing because it was trying to use
the ‘. inverse () ° method directly on permutations, which [...]

(b) Top two attention windows while predicting YES for
an incorrect trajectory. We find that focusing on heuristics
(agent thoughts) can mislead the verifier.

Figure 7: Quantitative and qualitative analysis on limitations of execution-free verifiers. We
perform two experiments: a) Quantitative ablations on the impact of output patch on verifier perfor-
mance; showing that execution-based verifiers rely on other heuristics (e.g., agent thoughts) over
the final patch. b) Qualitative visualization analyzing top £ = 2 sliding windows with highest
mean attention score while predicting output token YES (§4.2) for an incorrect agent trajectory
(sympy__sympy-24443: SWE-Bench (Yang et al., 2024b)). Focusing on heuristics (e.g., agent
thoughts) can be misleading, and the verifier predicts the trajectory as correct. Visualizations are
condensed for space. Please refer to the Appendix for further visualizations and results.

To further investigate this phenomenon, we also perform an attention analysis trying to visualize parts
of the input trajectory which are most relevant while predicting the output success with execution-free
verifiers. In particular, we perform a sliding window search over the input trajectory, and compute
the mean attention score over the tokens in the window when predicting the final output token
(YES: correct, NO: incorrect). Figure 7 (right) illustrates the top two windows receiving the highest
attention scores, demonstrating that verifiers disproportionately attend to agent thoughts. This can
be misleading since the verifier can use these sentiment signals in these thoughts as proxies for
correctness rather than evaluating the technical merits of the solution (i.e. the output patch).

4.3 Hybrid Inference Time Scaling

Combining the verifier strengths. Given the analysis from §4.2, we can summarize two key insights:
1) Execution-based approach provides direct signal for patch correctness through execution but suffers
from lack of distinguishing tests 2) Execution-free approach offers better distinguishability between
patches through a continuous reward score s but can be biased to pay more attention to heuristics
(e.g., agent thoughts) over final output patch.

Given the above insights, we thus propose a hybrid verifier that leverages the strengths of both
approaches. Particularly, we define the hybrid verifier with score s!! as,

EF e JEF
H EF EB EF Sk if S~ 1s among the top n scores,
sy = Top,,(s;")+ s =, where Top,, (s = . 2
k pn(k) k > pn(k) —00, otherwise. ()

where s8 provides execution-feedback, s£'¥" provides distinguishability in case of a tie with
execution-based test scores (as skEF provides a continuous score between 0 and 1), and Top,, restricts
hybrid verifier to only consider the top verifier ranked patches. In practice, we perform regression
filtering after the top-n filtering to ensure non-zero scores.

Main Results. Results are shown in Tab. 4 and Fig. 4. While both execution-based and execution-free
methods rapidly reach performance plateaus with increasing agent rollouts (saturating at ~ 43%),
our hybrid approach demonstrates substantially superior scaling properties, yielding significant
performance improvements (additional 7-8%); achieving a BEST@26 performance of 51% on the
challenging SWEBENCH-VERIFIED benchmark.

4.4 Ablation Studies on Hybrid Verification Design

Variation with Test-Agent Rollouts. As in 4.2, execution-based test generation can suffer from
a lack of distinguishing tests. One approach to address this, is to sample more test-agent rollouts.
We quantify this effect in Figure 4 (right). We observe that increasing number of test-agent rollouts
consistently helps improve performance with our hybrid approach.

Compute-Efficient Rollouts. Figure 4 (right) illustrates the BEST@K performance as a function
of both test-agent and code-editing agent rollout counts. Interestingly, we find that sampling more
test-agent rollouts can provide more compute optimized inference-scaling over naively sampling
more editing-agent rollouts. For instance, increasing the number of editing-agent rollouts from 16 to
21 improves the BEST@K performance from 47.6% to 48.4%. In contrast, simply sampling 5 more
test-rollouts can yield better gains (BEST@K 49.3%).*

Regression Tests Alone are Insufficient. Our execution-based verification framework integrates
both regression and generated reproduction tests. Figure 5 (right) isolates the impact of regression
tests alone on the final performance. While regression tests alone improve performance from 42.9%
to 47.4%, using generated tests further enhances performance to 51.0%, demonstrating that both test
types provide essential and complimentary signals.

Agentic vs Agentless Tests. A distinguishing feature of our approach is to train a specialized agent
for test-generation; instead of the zero-shot approach from Xia et al. (2024b). To evaluate this design
choice, we conducted a controlled comparison using official Agentless tests from their released
artifact (Xia et al., 2024a) within our hybrid verification framework on the SWEBENCH-VERIFIED
benchmark. Figure 5 (right) demonstrates that while Agentless tests provide meaningful performance
improvements, our agent-generated tests yield superior results (51.0% versus 48.8%), validating our
agent-based approach to test generation.

Role of Top,,. We evaluate the impact of the Top,, filtering mechanism introduced in Equation (2).
Figure 5 (right) shows that this selective application strategy improves performance from 49.8% to
51.0%. This improvement likely stems from mitigating the impact of toxic tests (§4.2) by restricting
their application to higher-quality patches (identified via execution-free reward scores s&'), thereby
enhancing the reliability of the verification process.

5 Related Work

Programming Agents. Recent work on GITHUB issue resolution includes SWE-agent (Yang et al.,
2024b), Autocoderover (Zhang et al., 2024b), OpenHands (Wang et al., 2024), AgentLess (Xia et al.,
2024b), Moatless Orwall (2024). All of them rely on proprietary models due to a lack of datasets and
open-weight models -— a gap our work addresses.

Agent Training Environments. Existing SWE agent environments have key limitations: SWE-
Bench (Jimenez et al., 2023) lacks executable training environments, R2E (Jain et al., 2024) offers
only 246 instances with function completion. SWE-Gym (Pan et al., 2024) collects executable
GITHUB environments similar to us but rely on human-written issues and test cases. Synthetic data
generation has been studied but our work is the first to apply it for executable GITHUB environment
collection. We use back-translation (Li et al., 2024) and test-generation in SWEGEN approach.

SWE-Agent Training. Ma et al. (2024) and Xie et al. (2025) train on synthetic code editing tasks.
Pan et al. (2024) study SFT on agent trajectories and inference scaling similar to our work. Wei et al.
(2025) explores reinforcement learning on large scale data collected from real-world GITHUB issues
without execution feedback.

Verifiers for SWE-Coding Tasks. Various works have explored use of verifiers for SWE tasks.
AgentLess (Xia et al., 2024b) used majority voting to select the best patch from multiple agents.
Agentless-1.5 relied on reproduction and regression tests to verify the correctness of generated
patches. Zhang et al. (2024a) proposed multi-agent commitee-review (LLM judge) to select the best
patch from multiple agents. Pan et al. (2024) proposed trajectory verifiers to re-rank the generated
patches based on LLM score.

In this work, we extend these lines of work by first presenting novel insights on challenges and
opportunities for both execution-based and execution-free approaches in SWE-Coding. Using
these insights, we also propose a novel hybrid approach that effectively combines their strengths
to achieve better performance (51.0% on SWEBENCH-VERIFIED).

“Note that test-agent rollouts are also usually considerably cheaper than editing-agent rollouts.

6 Conclusion

In this paper, we introduce R2E-Gym, the largest gym environment and training framework for
scaling open-weight SWE agents. We share two key insights: 1) Synthetic data curation can enable
more scalable training on SWE tasks. 2) Hybrid-test time scaling: different axis for test-time scaling
(execution-based testing agents and execution-free verifiers) exhibit complementary strengths; which
can be leveraged to achieve significantly higher test-time gains. Overall, our final approach achieves
51% on SWE-Bench Verified, showing the potential of synthetic data generation and hybrid verifiers
for SWE agents. We hope that our work can offer unique insights for scaling open-source SWE-agents
on real-world applications.

10

References

Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias Uddin, and Song
Wang. Swe-bench+: Enhanced coding benchmark for llms. arXiv preprint arXiv:2410.06992,
2024. 17

Anthropic. Raising the bar on SWE-bench Verified with Claude 3.5 Sonnet. https://www.
anthropic.com/research/swe-bench-sonnet, 2024. 3

Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/claude-3-7-sonnet,
February 2025. 1

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022. 7

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021. 19

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurlPS, 2021. 3

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024. 1, 3

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning
any github repository into a programming agent environment. In /ICML 2024, 2024. 3, 9

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770,2023. 1,3,9

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason Weston, and
Mike Lewis. Self-alignment with instruction backtranslation. arXiv preprint arXiv:2308.06259,
2023. 2,3

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason E Weston,
and Mike Lewis. Self-alignment with instruction backtranslation. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
10ijHJIBRsT. 9

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua
Li, Fei Huang, and Yongbin Li. Lingma swe-gpt: An open development-process-centric language
model for automated software improvement. arXiv preprint arXiv:2411.00622, 2024. 6, 9

A. Orwall. Moatless tool. https://github.com/aorwall/moatless-tools, 2024. Accessed:
2024-10-22. 9, 17

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with swe-gym, 2024. URL https://arxiv.
org/abs/2412.21139. 1,2,3,4,6,9, 19

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741,2024. 1,4, 6,9, 17

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120, 2023. 2, 3

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025. 6, 9

11

https://www.anthropic.com/research/swe-bench-sonnet
https://www.anthropic.com/research/swe-bench-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://openreview.net/forum?id=1oijHJBRsT
https://openreview.net/forum?id=1oijHJBRsT
https://github.com/aorwall/moatless-tools
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. https://github.com/OpenAutoCoder/Agentless,
2024a. 7,9

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024b. 2,5,6,7,9

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution. arXiv preprint
arXiv:2501.05040, 2025. 1, 6,9

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a. 19

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793,2024b. 1, 8, 9

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022. 4,17

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh RN, Tian Lan, Lei Li,
Renze Lou, Jiacheng Xu, et al. Diversity empowers intelligence: Integrating expertise of software

engineering agents. In The Thirteenth International Conference on Learning Representations,
2024a. 9

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 1592-1604, 2024b. 9

Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé, and Alexander M
Rush. CommitQ: Library generation from scratch. arXiv preprint arXiv:2412.01769, 2024. 1

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqgiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372. 4,17, 18, 19

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024. 3

12

https://github.com/OpenAutoCoder/Agentless
http://arxiv.org/abs/2403.13372

A Dataset Details

datalad
(2.2%)

overagepy| scrapy
(13%) | pyramid (365
23%)

zzzzzz

R2E-Gym (8135)

pandas e
L) (2.6%)

matplotlib
(9.9%)

Figure 8: Repo distribution for our complete R2E-Gym dataset consisting of 8135 instances.

Commit Filtering Heuristics. Our commit filtering approach employs multiple heuristics to identify
high-quality bug fixes and improvements suitable for training data. We particularly filter for small
scoped changes, prioritizing non-documentation updates, and correlated code and test matches. We
perform this filter at both line and AST entity level. To ensure consistency and quality, we employ
specific thresholds in our filtering process:

* Maximum of 5 non-test files modified in a single commit

* Maximum of 100 edited lines across all non-test files

* Maximum patch length of 2000 characters to ensure focused changes

* No more than 1 deleted entity in non-test files

* Maximum of 3 added entities in non-test files

* Maximum of 3 edited entities in non-test files

* No more than 10 statement-level changes to maintain tractability

Additionally, we use LLM as a judge filter to further refine our dataset.

Repository Installation. Installing historical commits from GitHub repositories presents significant
challenges due to evolving dependency requirements and API changes. We use a Docker-based
approach with a search-based dependency resolution strategy to create reproducible environments for
each commit. Our installation process follows these steps:

1. Extract dependency information from requirements.txt, setup.py, etc

2. Iteratively identify potential version conflicts and compatibility issues

3. Generate multiple candidate dependency configurations

4. Test each configuration until a working environment is found
This process is semi-manual and challenging to scale and we aim to rely more on LLMS in the future.

Example installation scripts test multiple dependency combinations sequentially, exiting on the first
successful build:

build_and_check_pandas () {
local python_version=$1;
local numpy_version=$1;
local setuptools_version=3

13

}

Attempt with first configuration

if build_and_check_pandas "3.7" "1.17.x" "<0.30" "62.%" "0.23"; then
echo "[INFO],First,combosucceeded._ Exiting."
exit O

fi

Attempt with second configuration

if build_and_check_pandas "3.8" "1.20.x" "<0.30" "62.%" "0.23"; then
echo "[INFO],Second combosucceeded. Exiting."
exit O

fi

Attempt with third configuration

if build_and_check_pandas "3.10" "1.26.x" "===3.0.5" "62.%" "0.23";
then
echo "[INFO],Third,combo succeeded. Exiting."
exit O
fi

Listing 1: Example installation script excerpt

This approach allows us to create working environments for historical commits, enabling execution-
based validation of our dataset.

Test Generation. We use an Agentless-like reproduction test generation approach. A key difference
is that we use the ground truth patch as context when generating the tests.

Issue Generation. As discussed in the main paper, we use backtranslation to generate synthetic
issues for commits that lack human-written GitHub issues. Our approach leverages both the code
changes in the commit and the test execution results to create realistic, informative issue descriptions.
The issue generation process follows these steps:

. Extract failing test functions from the execution results

. Analyze test outputs to identify error messages and expected behaviors

. Provide the LLM with commit message, code patch, and test execution results

R I \S T

. Guide the LLM to generate a concise, informative issue that describes the bug without
revealing the solution

For each commit, we extract and utilize specific components:

* Commit metadata: Hash and commit message provide context about the change

* Code patches: We separate non-test file changes (showing what was fixed) from test file
changes (showing how to verify the fix)

* Test execution: We include both old (failing) and new (passing) executions

Test functions: We extract relevant test functions that demonstrate the bug

* Assertion failures: We extract and format the failing assertions from the old commit to
show error details

The prompt construction carefully organizes these components to give the LLM sufficient context
while focusing attention on the most relevant information for issue generation. We carefully design
our prompting strategy to ensure the generated issues resemble human-written ones, focusing on
clarity, naturalness, and providing sufficient information for understanding the bug.

Build the complete prompt with all components
def get_prompt(commit, execution_result, issues=None):
Include commit hash and message
Include commit patch (non-test files)
Include test file changes
Include execution results from old and new commits

14

Include improved test functions

Include test function code

Include assertion failures

Include example issues and instructions

H O HH

Listing 2: Issue generation code structure

The template below shows our prompt guidelines:

As you are trying to generate synthetic issues, you will follow these
guidelines:

[y

Keep the issue concise and informative.

2. Describe the failing test, including the input that causes the
failure, the nature of the failure, and the expected behavior. Do
NOT mention test functions or files directly.

3. Do not reveal the solution to the problem in the issue. Only
describe the bug and the expected behavior.

4. If there are multiple failing tests, focus on the most informative
one or a subset that best describes the gemneral nature of the
failure.

5. Describe the expected output of the failing test:

- For errors, describe the error message.
- For failing tests, mention what is supposed to happen.

6. Write the issue as a human would, using simple language without
excessive formatting.

7. Use concrete terms to describe the nature of the failure. Avoid
vague terms like "specific output" or "certain data".

8. INCLUDE test code to describe the bug but keep it brief and
relevant. Truncate or simplify tests longer than 5-6 lines.

9. Do not mention external files unless absolutely necessary.

10. Format code snippets using triple backticks.

The issue should include:

1. A clear and concise title

2. A description of the problem with detailed example buggy code
3. Expected behavior

4. Actual behavior or error message

Listing 3: Issue generation template

This approach enables us to generate high-quality synthetic issues that provide clear problem state-
ments for our training data, even for commits that lack human-written issues. Below are examples of
synthetic issues generated using our approach:

*xTitle:** Calling ‘load() ¢ Before ‘draft() ‘¢ Causes ‘draft()‘ to Fail
for JPEG Images

Description:

When generating a thumbnail for a JPEG image using the ‘thumbnail ()¢
method, the method calls ‘load() ¢ before ‘draft() ‘. This sequence
results in the ‘draft()‘ method returning ‘None‘, which prevents
the thumbnail from being properly optimized.

*xExample Code:*x*
[N 31
python
from PIL import Image

with Image.open("Tests/images/hopper.jpg") as im:
im.thumbnail ((64, 64))

€ ¢ <

**Expected Behavior :x*x

15

The ‘thumbnail()‘ method should utilize the ‘draft()‘ method to
optimize the image size before loading, ensuring that the
thumbnail is resized correctly and efficiently.

**x Actual Behavior :xx*

The ‘draft()‘ method returns ‘None‘ because ‘load()‘ is invoked before
it. This prevents the thumbnail from being optimized, potentially
leading to incorrect thumbnail sizes or unnecessary memory usage.

Listing 4: Example synthetic issue for a PIL image thumbnail bug

Title: Unable to Register Route with Names Containing Both Dots
and Colons

Description:

After merging branch ’0.18°, attempting to register a route with a
name that includes both dots (‘.¢) and colons (‘:¢) results in a
ValueError ¢. The recent changes were intended to allow route names

to be a sequence of Python identifiers separated by dots or
colons, but this combination is still causing issues.

<

*x*Example Code:*x*
‘¢‘python
from aiohttp.web import UrlDispatcher, PlainRoute

def handler (request):
return ’Hello’

router = UrlDispatcher ()

Attempting to register a route with both dots and colons in the name

route = PlainRoute(’GET’, handler, ’test.test:test’, ’/handler/to/path
)

router.register_route (route)

¢ ¢ ¢

**Expected Behavior :x*x
Registering a route with a name like ‘’test.test:test’‘ should succeed
without errors, as the name follows the updated rules allowing
multiple identifiers separated by dots or colons.

x Actual Behavior :*x*

A ‘ValueError ¢ is raised with the message:

[2N 2N1

ValueError: Incorrect route name value, Route name should be a
sequence of python identifiers separated by dot or column

[N 2N1

This prevents the registration of route names that include both dots
and colons, contrary to the intended flexibility introduced in the
recent commit.

Listing 5: Example synthetic issue for a route name validation bug

Patch Minimization. We identify that the ground-truth patches often contain irrelavant code changes
that are not required to fix the bug, often making modifications to style and structure of the programs.
We implement a patch-minimization approach to identify the minimal set of code changes required to
fix the bug by iteratively removing the code changes and checking whether the tests still pass. This
allows us to collect fine-grained signal for evaluating localization capabilities of LLMS.

B SFT Training

Agent Details.

16

Figure 9: Code-editing agent architecture: The agent takes an issue description and codebase as input
and produces a patch that fixes the issue.

We use R2E-Gym to train a general-purpose prompting agent. In particular, we train our code-editing
agent on tasks from R2E-Gym, where given an executable environment £ and problem description D,
the agent is asked to solve the provided issue using any means necessary. Particularly, unlike (Orwall,
2024), we do not rely on the use of specialized workflows. The agent is tasked to solve the entire task
end-to-end, including writing its own reproduction scripts, finding the bug, proposing a fix and then
testing its correctness. Similar to (Wang et al., 2024), the agent is also provided with a finish tool,
allowing it to submit a solution if it thinks it has completed the task.

Agent and Tools. Similar to (Aleithan et al., 2024; Wang et al., 2024), we adopt the traditional
REACT format (Yao et al., 2022) for agent-design. For AGENTHUB, we use a minimalistic set of four
tools to enable the agent to perform diverse SWE tasks; 1) file_editor: for viewing and editing
files, 2) search_tool: for searching a relevant term in a given file or folder, 3) execute_bash:
allowing execution of non-interactive bash commands (e.g., for running test scripts), 4) submit:
for ending the current trajectory while returning expected outputs.No internet or browser access is
provided to the agent during the training process.

Data Curation. For training, we use supervised finetuning with rejection sampling using trajectories
from sonnet-3.5 model for supervision. To avoid contamination, we only use a subset of R2ZE-Gym
consisting of repos with no overlap with the SWE-Benchdataset. The resulting subset (R2E-Gym-lite)
consists of 4538 executable environments across 10 repositories (Figure 2). Overall, we collect a
total of 3321 successful trajectories from 2048 unique test environments. For rejection sampling we
use the unit tests from R2E-Gym environments (both synthetic and existing). For each trajectory,
we use a maximum of N = 40 steps. Also, we limit the number of tokens per-trajectory to 32K
max tokens. Finally, we also use a maximum timeout of 10-min for the overall trajectory and 90
seconds for each action execution, in order to avoid cases where the agent launches a long-running
background process. We collect all training data using a temperature of 0.2.

Training Setup and Hyperparameters. For training, we use the Quen-2.5-Coder 7B, 14B and
32B series as the base model for training SWE-agents on R2E-Gym. For training we perform full
SFT using the above collected trajectories using LLaMA-Factory (Zheng et al., 2024). We train the
overall model for a total of 2 epochs, batch size as 8 while using a learning rate of 1e~>. The warmup
ratio for training was set to 0.1. Due to computational constraints, a maximum context length of 20K
was used for training the agent. In future, the use of context-parallelism can enable us to further push
the performance when training SWE-agents on more complex tasks requiring larger-context lengths.

C Inference Time Scaling

C.1 Execution-Based Testing Agents

Figure 10: Testing agent architecture: The agent generates comprehensive test cases to verify if a
candidate patch resolves the issue.

17

Agent Details. We train a specialized testing-agent that generates reproduction test cases to determine
whether a candidate patch resolves the issue (i.e., whether the patch passes the generated test suite).
Specifically, we train the testing-agent (using QWEN-CODER-32B as base-model) to generate a
comprehensive test script containing M = 10 diverse tests that cover various inputs, corner cases,
etc. We use the same agent scaffold from Sec. 3 for training the testing agent.

Data Curation. For training, we use supervised finetuning using trajectories from sonnet-3.5
model for supervision. Overall, we collect a total of 2203 test-generation trajectories from sonnet
(both positive and negative trajectories with minimal rejection sampling). For each trajectory, we
use a maximum of N = 40 steps. Also, we limit the number of tokens per-trajectory to 20K max
tokens. Finally, we also use a maximum timeout of 5-min for the overall trajectory and 60 seconds for
each action execution, in order to avoid cases where the agent launches a long-running background
process.

Training Setup and Hyperparameters. For training, we use the QWEN-CODER-32B model as the
base model. We then use the above collected training SFT trajectories to perform full finetuning with
the QWEN-CODER-32B model using LLaMA-Factory (Zheng et al., 2024). We train the overall model
for a total of 2 epochs, batch size as 8 while using a learning rate of le — 5. A maximum context
length of 20K was used for training the agent. The warmup ratio for training was set to 0.1.

In-Context Starter Code Demonstration. We provide the following in-context starter-code demon-
stration (from the Django repository) to the testing agent.

import os

import django

from django.conf import settings

from django.db import models

from django.test import TestCase

from django.test.utils import setup_test_environment

Configure Django settings before setup
os.environ.setdefault (’DJANGO_SETTINGS_MODULE’, ’tests.test_sqlite’)

Override settings
settings.configure (
DATABASES={

"default": {

"ENGINE": "django.db.backends.sqlite3",
"NAME": "test.db",
"TEST": {
"NAME": "test.db",
} bl

¥
}!
INSTALLED_APPS=["tests"],
MIGRATION_MODULES={"tests": Nonel}, # Disable migrations for the
tests app

)

Setup Django
django.setup ()
setup_test_environment ()

Define test models

class ExampleModel (models.Model):
example_char = models.CharField(max_length=255)
example_int = models.IntegerField ()

class Meta:
app_label = ’tests’ # Set the app_label to ’tests’

Create the database tables
from django.core.management import call_command
call_command(’migrate’, run_syncdb=True)

18

def add_test_data():
"""Create test instances of the model"""
ExampleModel.objects.create (example_char="Test_ 1", example_int=1)
ExampleModel.objects.create (example_char="Test_ 2", example_int=2)

Add test data
add_test_data ()

Listing 6: Incontext Demonstration for Testing Agent

C.2 Execution-Free Verifiers

1 Trajectory
| (Issue + React-

Trajectory

Loop + Patch) Verifier

Figure 11: Execution-free verifier architecture: The verifier predicts whether a patch is correct based
on the full trajectory without executing the code.

Verifier Details. In addition to the execution-based “testing agents”, we also explore the execution-
free outcome-supervised reward models (a.k.a verifiers) (Cobbe et al., 2021). In particular, given a
problem statement D, agent-trajectory 7 = {a1, 01, a2, 02, . .., ay, 0, } and output patch O from the
code-editing agent on the R2E-Gym environments, we train a Qwen2.5-Coder-14B model (Yang
et al.,, 2024a) to output a scalar score value s € [0, 1] predicting the probability of output patch
being correct. Specifically, following (Pan et al., 2024) we output the correctness of each patch
through output tokens YES (correct) and NO (incorrect). The overall reward score is then computed by
normalizing the relative probability of YES token as » = P(YES)/(P(YES) 4+ P(NO)), where P(YES)
and P(NO) are estimated through the log-probabilities of the corresponding token predictions.

Training Data. We first use the trajectories collected for code-editing agent training §3 in order
to obtain a collection of positive and negative samples for verifier training. Following the best
configuration from (Pan et al., 2024), we also generate on-policy trajectories using our trained 32B
model. We then filter the collected samples to have an equal number of positive and negative samples.
The overall dataset consists of 5700 total trajectories including both positive and negative samples.
For training, we follow the template from (Pan et al., 2024), asking the LLLM model to predict the
output as YES for positive and NO for negative trajectories.

Training Setup and Hyperparameters. For training, we use the QWEN-CODER-14B model as the
base model. We then use the above collected training SFT trajectories to perform finetuning using
LLaMA-Factory (Zheng et al., 2024). Similar to (Pan et al., 2024), we perform LORA finetuning
using a rank of 64. We train the overall model for a total of 2 epochs, batch size of 8 while using
a learning rate of 1e — 5. A maximum context length of 32K was used for training the agent. The
warmup ratio for training was set to 0.1.

C.3 Execution-Based Analysis

In our analysis of execution-based testing agents, we focus on two key metrics: distinguishability
and toxicity of generated tests. These metrics help us understand the effectiveness and limitations of
execution-based verification.

Distinguishability Rate. The distinguishability rate measures a test’s ability to differentiate between
correct and incorrect patches. A test is considered "distinguishing" if it behaves differently when
applied to correct patches versus incorrect patches. In practical terms, this means the test can help us
identify which patches are correct and which are not.

For example, consider a test that passes for all correct patches but fails for all incorrect patches—this
test has perfect distinguishability. Conversely, a test that passes (or fails) for both correct and incorrect

19

patches provides no useful signal for distinguishing between them. Mathematically, for a given
test ¢ and a set of patches P divided into correct patches P, and incorrect patches P;, we compute
distinguishability metric as:

Distinguish(¢) = 1 [maxPass(p, t) # maxPass(p, t) 3)
pEP; peP.:

where Pass(p, t) indicates whether patch p passes test ¢, and 1[-] is the indicator function. This
formula checks whether the best-performing incorrect patch behaves differently on the test compared
to the best-performing correct patch. The distinguishability rate for a set of tests 7' is then the average
distinguishability across all tests:

1
T > Distinguish(t) “4)

DistinguishRate(7") = 7
teT

In our analysis, we found that most generated tests have low distinguishability rates—typically less
than 20% of tests can effectively differentiate between correct and incorrect patches. This limitation
significantly impacts the ability of execution-based verification to identify the best patches, especially
as the number of candidate patches increases.

Toxicity Rate. We define toxic tests as those that incorrectly favor incorrect patches over correct
ones. The toxicity rate is the proportion of tests that exhibit this behavior. Mathematically:

Toxic(t) = 1 Pass(p,t) > Pass(p, t 5
xic(t) {ggg (p,?) > maxPass(p)} ®
The toxicity rate for a set of tests 7' is:
. 1 .
ToxicityRate(T) = Il ZTOXIC(t) (6)
teT

While toxic tests are generally rare, they can significantly impact verification reliability when present,
with toxicity rates reaching up to 10% for some problems. These findings highlight the importance of
generating diverse, high-quality tests and the value of combining execution-based verification with
other approaches, such as execution-free verifiers, to achieve more robust results.

C.4 Execution-Free Analysis

Figure 12 shows the limitations of the execution-free verifier.

D Example Testing Agent Outputs

This section provides examples of test cases generated by our approach.

D.1 Example 1: SymPy Relational Parsing Tests

The following example shows a truncated test suite for validating relational parsing in SymPy,
demonstrating our approach’s ability to generate multiple test cases. This test was generated to
address the issue in SymPy PR #24661, which fixes relational parsing in the SymPy library.

from sympy import Lt, Gt, Le, Ge, Eq, Ne

def test_relational_parsing():
Test case 1: Basic less than operation
try:
result = parse_expr(’1l < 2’, evaluate=False)
expected = Lt(1, 2, evaluate=False)
if str(result) == str(expected):

20

https://github.com/sympy/sympy/pull/24661

Since we’ve: [ASSISTANT]

1. Successfully reproduced the issue Great! The fix works. Let’s analyze what we
2. Implemented a fix did:

3. Verified the fix works

4. Ensured edge cases are handled 1. We identified the original code was

5. Maintained backward compatibility failing because

it was using a ‘.inverse()‘ method
I believe we can now submit this as the directly, which
solution: doesn’t exist for permutations.
2. We fixed the issue by:

<function=finish> - Using ‘**-1¢ for inverses, which works

<parameter=command >submit </parameter > for both

<parameter=result>Fixed the ¢ Permutations and FreeGroupElements

_check_homomorphism‘ function...]

[ASSISTANT] [USER]
The changes look good. I’ve made the Exit code: 0

following improvements: Execution output of [execute_bash]:
1. Simplified logic to check both the [STDOUT]

generator and inverse
2. Used the ‘*x*x-1¢ operator for Permutation | Testing with DihedralGroup (3):

and FreeGroupElement SUCCESS: Homomorphism created successfully
3. Maintained robust handling of inverted
generators Testing with SymmetricGroup(3):

SUCCESS: Homomorphism created successfully

Let’s run the reproduce script again:

<function=execute_bash>
<parameter=cmd>python reproduce_issue.py</
parameter >
</function>
[/ASSISTANT]

Figure T2: Analyzing limitations of execution-free verifiers. Qualitative visualization analyzing
top k = 4 sliding windows over agent trajectory (refer §4.2) with highest mean attention score
(sympy__sympy-24443: SWE-Bench). We observe that the RM can be biased by the agent thought
/ actions, instead of relying on the final output patch.

Best@K with Editing Agent Rollouts Best@K with Editing Agent Rollouts
4.4
65 Pass@K o —.‘.§$._,—.-—-_. 65 Pass@K o —.‘.53.4._,__._.—.
60 —— Pass@K ,,,-f"'l" 60 —— Pass@K ’,,-"'J‘"
58,00 58,00
o -
o~
55 55 jy/
v 48.5 48.8
Das D45 e
o /',.;03 41.3 4127 Al et} 9
4 i a— aer 3 g = yide, 2.8
40 /.;ZZA;O‘T‘ 415 Verifiers 40 /;’A = 415 Verifiers
2 /¢
% : —e+— Hybrid Verifier 7 : —e+— Hybrid Verifier
35 —=— Execution-Based Verifier 35 —=— Execution-Based Verifier
30 320 —— Execution-Free Verifier 30 31.9 —— Execution-Free Verifier
>y X o » ISIPNEIN ,»b N ,‘/Q ,1’/]/ "l/b‘ ,]/b 2 R} INSIIRN NS \5) NS ,]/0 ,1’/]/ ,]/b‘ ,‘/b
Agent Rollouts (K) # Agent Rollouts (K)

Figure 13: Pass@K plot for our agent and using Agentless tests respectively.

print ("Test Case 1: Issue resolved")
else:
print ("Test Case 1: Issue reproduced")
except Exception as e:
print ("Test Case 1: Other issues")

Test case 2: Greater than operation
try:
result = parse_expr(’3 > 2’, evaluate=False)
expected = Gt (3, 2, evaluate=False)
if str(result) == str(expected):
print ("Test Case 2: Issue resolved")
else:
print ("Test Case 2: Issue reproduced")
except Exception as e:
print ("Test Case 2: Other issues")

... [6 more test cases omitted for brevity]

21

Test case 9: Chained comparisons
try:
result = parse_expr(’1 < x < 2’, evaluate=False)
if isinstance(result, bool):
print ("Test Case 9: Issue reproduced")
else:
print ("Test Case 9: Issue resolved")
except Exception as e:
print ("Test Case 9: Other issues")

Listing 7: Test cases for SymPy relational parsing (truncated). Successfully detects incorrect code
from correct code.

D.2 Example 2: Django Model Choice Field Validation Tests

The following truncated example demonstrates tests for Django’s ModelChoiceField validation with
proper setup and teardown code. This test was generated to address the issue in Django PR #13933,
which improves error messages in ModelChoiceField validation.

from django.forms import ModelChoiceField, ModelMultipleChoiceField
from django.db import models

from django.core.exceptions import ValidationError

from django.test import TestCase

from django.db import connection

Create a simple test model
class TestModel (models.Model):
name = models.CharField (max_length=100)

def __str__(self):
return self.name

class Meta:
app_label = ’test_app’

def setup_test_environment ():
Create the test table
with connection.schema_editor () as schema_editor:
schema_editor.create_model (TestModel)

Create some test data

TestModel.objects.create (name="0ption 1")
TestModel.objects.create (name="0ption 2")
TestModel.objects.create (name="0ption 3")

def cleanup_test_environment ():
Drop the test table
with connection.schema_editor() as schema_editor:
schema_editor.delete_model (TestModel)

def test_modelchoice_validation():
try:
Test Case 1: Basic invalid choice for ModelChoiceField
field = ModelChoiceField(queryset=TestModel.objects.all())
try:
field.clean(999) # Non-existent ID
print ("Test Case 1: Issue resolved")
except ValidationError as e:

if "999" not in str(e): # Value should be in error
message
print ("Test Case 1: Issue reproduced")

else:

22

https://github.com/django/django/pull/13933

print ("Test Case 1: Issue resolved")
... [4 more test cases omitted for brevity]

Test Case 6: Valid choice
obj = TestModel.objects.first ()

try:
result = field.clean(obj.id)
if result == obj:
print ("Test Case 6: Issue resolved")
else:

print ("Test Case 6: Issue reproduced")
except ValidationError:
print ("Test Case 6: Issue reproduced")
except Exception as e:
print (f"Unexpected error: {el}")

Listing 8: Test cases for Django ModelChoiceField validation (truncated). Most test cases error due
to unhandled exceptions and do not distinguish.

E Agent Trajectory Example

This section provides a visual example of an agent’s trajectory while solving a software engineering
task. The sequence shows the step-by-step process from problem statement to solution, demonstrating
how our agent approaches and solves real-world programming issues.

Problem Statement

“PolyElement.as_expr()" not accepting symbols
The method ‘PolyElement.as_expr()"

https://github.com/sympy/sympy/blob/193e3825645d93c73e31cdceb6d742cc6919624d/sympy/polys/rings.py#L618-L624

is supposed to let you set the symbols you want to use, but, as it stands, either you pass the wrong number
of symbols, and get an error message, or you pass the right number of symbols, and it ignores them, using
“self.ring.symbols' instead:

**python

>>> from sympy import ring, ZZ, symbols
>>> R, x, y, z = ring("x,y,2z", ZZ)

>>> f = 3kxkk2ky — Xkykz + T*zkk3 + 1
>>> U, V, W= symbols("u,v,w")

>>> f.as_expr(U, V, W)

BkxHkk2KY — Xkykz + Tkzk*3 + 1

Figure 14: Problem statement presented to the agent, describing the issue that needs to be resolved.

This trajectory example illustrates several key aspects of our agent’s problem-solving approach:

» Systematic Exploration: The agent methodically explores the codebase to understand the
context and locate the issue.

* Root Cause Analysis: Rather than addressing symptoms, the agent identifies the underlying
cause of the problem using test_issue.py.

* Solution Development: The agent formulates a clear plan before implementing changes.
These capabilities enable our agent to effectively tackle complex software engineering tasks that

require deep understanding of code structure, programming language semantics, and software design
principles.

23

Step2
Step1

Thought:
Thought:

Great! T can see that "PolyElement’ is primarily defined in

*/testbed/synpy/polys/rings.py" .
Let's look at the specific inplementation:

I'UL help you fix the issue with "PolyElement.as_expr()® not accepting symbols. Let's follow the
steps systenatically.

1. First, let's explore the repository to understand its structure:

Action:

Action: <function=file_editor>
<paraneter=connand>view</paraneter>
<function=search>

5.
<paraneter=view_range>[610, 630]</paraneter>
</function>

</function>

Observation:

Observation:

Execution output of [file_editor]:

Execution output of [searchl: Here's the result of running ‘cat -n' on the file: /testbed/sympy/polys/rings.py:
Found 196 matches for "PolyElement” in /testbed: 1 ew_ring:
«/sympy/utilities/tests/test_pickling.py (1 matches) 611 return self
+/synpy/printing/precedence.py (3 matches) 612 elif self.ring.symbols != new_ring.symbols:
~/sympy/printing/latex.py (1 natches) 613 s = list(zip(x_dict_reorder(self, self.ring.symbols, new_ring.synbols)))
+/synpy/printing/repr.py (1 matches) 614 return new_ring. fron_terns (terns, self.ring.donain)
«/sympy/printing/str.py (1 matches) 615 else:
+/sympy/printing/pretty/pretty.py (1 matches) 616 return new_ring. fron_dict(self, self.ring.domain)
«/synpy/printing/tests/test_latex.py (1 matches) 617
-/sympy/printing/tests/test_repr.py (2 matches) 618
«/synpy/printing/tests/test_str.py (1 matches)

def as_expr(self, xsynbols):

if symbols and len(symbols) != self.ring.ngens:
~/synpy/polys/rings.py (17 matches)

619
+/synpy/polys/modulargcd. py (65 matches)

620 raise ValueError(“not enough symbols, expected %s got %s" % (self.ring.ngens,
Ten(svmbols)))

(a) Step 1: Initial analysis and exploration (b) Step 2: Detailed Exploration

Step3
Stepd.
Thought:
Thought:
Now I understand the issue. The “as_expr()® method is not properly using the symbols passed to
it. Let's first create a script to reproduce the issu
Let's run the reproduction script to confirm the issue:
Action:

Action:
<function=fil

<paraneter=comnand>create</paraneters

<function=execute_bash>

_issue. " sssue.,
<parameter=file_text>fron sympy import ring, 2z, symbols <ronctions

inport signal

inport sys

ot tineout_bandtrsianum, frame:
rint(Script +ined ot after 30 seconds P—
enenitta
el stonal(signal ST, Cinecut_ponder) Execution output of (exeute_bashl:
ol s

0:

¢ creaie un:y:mm«;"\ ring and polynonial Expression with new synbols: 3eceexy - xaykz + Tazeed + 1
L %,y 2 = ring("x,y, 2", ERROR: Original synbols are still in the expression

= Soceey - xayez + Tezeed 4 1 Tests failed!

Correctly raised ValueError for wrong nusber of synbols

Create new synbols

Uy ¥, W= symbols("u,v,w) [SToERR]

(c) Step 3: Reproducing the issue (d) Step 4: Running reproduction tests

Step6
Steps

Thought:
Thought:

The changes look good. The key changes are:

1. Changed the logic to only check synbol count if synbols are provided
The issue is confirmed! The script shows that: 2. Only use “self.ring.synbols’ os a fallback when no symbols are provided
1. The error for wrong nuber of symbols works correctly 3. Maintained the same error checking for wrong number of symbols
2. When the correct nunber of symbols is provided, they are not being used in the output
expression

Let's run the reproduction script again to verify the fix:
Looking at the code in 'rings.py’, the issue is in the ‘as_expr() method. The problem is that

when synbols are provided, they are correctly validated for nusber but then inmediately
overuritten with self.ring.synbols’ on line 622. This is clearly a bug.

Action:
Let's fix the code:

<function=execute_bash>

_issue.
Action: </function>
<function=file_editor>
<parameter=comand>str_replace</paraneter>
paraneter=comand>str_replace</paranete pE——
<parameter-old_strsdef as_expr(self, xsymbols):
it symbols 2nd Len(symbols) 1= self. ring.ngens:
r: ValueError(“not enough symbols, expected %s got %s" % (self.ring.ngens, Exit code: 0
entsysbots))) Execution output of [execute_bash]:
etee: [sToouT]
symbols = sel. ring. synbols
Correctly raised ValueError for wrong number of symbols
return expr_fron_dict(self.as_expr_dict(), ssysbols)</paraneter> Expression with new symbols: JHusk2e - usviw + Thessd + 1
parmetermney stradet a8, SxprseLr, Feyabols): SUCCESS: New symbols are correctly used in the expression
TF symbo. - AU tests passed!
1f len(symbols) 1= self. ring.ngens:
raise ValueError("not enough synbols, expected %5 got %s" % (self.ring.ngens, (STOERR)

(e) Step 5: Implementing the fix (f) Step 6: Veritying the fix

Figure 15: Short successful agent trajectory (using our 32B model) showing the step-by-step process
of solving a software engineering task. The agent analyzes the problem, identifies the root cause,
implements a solution, tests it, and verifies that it resolves the issue.

24

	Introduction
	R2E-Gym: Procedural Synthetic Data Generation
	Training SWE-Agents using R2E-Gym Environments
	Results and Analysis

	Efficient Inference Time Scaling With Hybrid Verifiers
	Exploring Different Axes for Training Verifiers
	Comparative Analysis of Execution-Based and Execution-Free Verifiers
	Hybrid Inference Time Scaling
	Ablation Studies on Hybrid Verification Design

	Related Work
	Conclusion
	Dataset Details
	SFT Training
	Inference Time Scaling
	Execution-Based Testing Agents
	Execution-Free Verifiers
	Execution-Based Analysis
	Execution-Free Analysis

	Example Testing Agent Outputs
	Example 1: SymPy Relational Parsing Tests
	Example 2: Django Model Choice Field Validation Tests

	Agent Trajectory Example

