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Abstract

Multimodal physiological signals, such as EEG, EOG and EMG, provide rich and
reliable physiological information for automated sleep staging (ASS). However,
in the real world, the completeness of various modalities is difficult to guarantee,
which seriously affects the performance of ASS based on multimodal learning.
Furthermore, the exploration of temporal context information within PSs is also
a serious challenge. To this end, we propose a robust multimodal sleep staging
framework named contrastive imagination modality sleep network (CIMSleepNet).
Specifically, CIMSleepNet handles the issue of arbitrary modal missing through
the combination of modal awareness imagination module (MAIM) and semantic
& modal calibration contrastive learning (SMCCL). Among them, MAIM can
capture the interaction among modalities by learning the shared representation
distribution of all modalities. Meanwhile, SMCCL introduces prior information
of semantics and modalities to check semantic consistency while maintaining
the uniqueness of each modality. Utilizing the calibration of SMCCL, the data
distribution recovered by MAIM is aligned with the real data distribution. We
further design a multi-level cross-branch temporal attention mechanism, which can
facilitate the mining of cross-scale temporal context representations at both the
intra-epoch and inter-epoch levels. Extensive experiments on five multimodal sleep
datasets demonstrate that CIMSleepNet remarkably outperforms other competitive
methods under various missing modality patterns. The source code is available at:
https://github.com/SQAIYY/CIMSleepNet.

1 Introduction

Automated sleep staging (ASS) is essential to promote sleep quality assessment and sleep disorder
diagnosis, providing convenience for the public in the daily monitoring of sleep within their home
environment. Many machine learning algorithms, including feature engineering and deep learning,
have been proposed for ASS [1, 2, 3, 4, 5]. In particular, deep learning methods represented by
convolutional neural network (CNN) have achieved remarkable results in the field of ASS [6].
Compared with feature engineering, deep learning does not require the guidance of prior knowledge
and has the advantage of automatically extracting physiological signals (PSs) features.

In clinical applications, due to the complexity of human physiological states, subjects usually need to
wear multiple sensors to obtain more comprehensive and integrated physiological information from
multimodal PSs collected from different sources [7]. Hence, several multimodal fusion algorithms
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Figure 1: The distribution of multimodal data in different scenarios. (a) exhibits the complete
modality, and (b) exhibits the incomplete modality.

[8, 9, 10, 11] based on deep learning have been developed to cope with the challenges of multimodal
ASS. Although various multimodal fusion algorithms provide guarantees for automated processing
and analysis of these multimodal PSs, they still have some limitations. As illustrated in the Fig.
1 (a), existing methods are almost all conducted under the assumption that all modal data are
complete. However, in real scenarios, the modal data will be incomplete due to sensor malfunctions
or detachment, as shown in the Fig. 1 (b). Unfortunately, the second scenario will seriously affect the
reasoning process of algorithms, resulting in a sharp decline in performance [12].

Further, how to mine dynamic temporal changes and complex stage-transitioning patterns in PSs
is another challenge for ASS. Most sleep staging works [13, 14, 15, 16, 17] utilize recurrent neural
network (RNN) and its variants to model temporal dependencies within learnable hidden states.
Recently, due to its efficient parallel computing ability and powerful global context modeling ability,
Transformer has gradually become the preferred alternative to RNN in the ASS field [18, 19, 20].
However, Transformer lacks the recurrent modeling abilities of RNN, which is crucial for mining the
structural representations and positional embedding of input sequences [21, 22]. Meanwhile, most
methods are limited to mining temporal correlations at a single level in PSs, i.e., intra-epoch level or
inter-epoch level. These issues make it difficult for existing temporal models to fully understand the
complex variability patterns in PTS, thereby affecting the performance of sleep staging.

Considering the above challenges, we propose a robust multimodal sleep staging framework named
contrastive imagination modality sleep network (CIMSleepNet), suitable for scenarios with incom-
plete modalities. The core contributions of CIMSleepNet are summarized as follows.

• We first design a modal awareness imagination module (MAIM), which can realize the
imputation of missing modalities to restore the completeness of the various modalities.
MAIM leverages the distribution of available modalities as prior conditions to learn multi-
modal shared representations and enhance the inter-modal correlation, thereby improving
the recovery process of missing modalities.

• We provide a novel insight into the impact of the intrinsic connection between semantic and
modality on data distribution. Hence, a semantic & modal calibration contrastive learning
(SMCCL) is presented to modify the restored data distribution. It can utilize bidirectional
guidance of semantic and modality to align the restored data with the real distribution.

• We further explore a multi-level cross-branch temporal attention (MCTA) mechanism that
enables interactive modeling of recurrent features and self-attention weights from the intra-
epoch and inter-epoch levels to yield more comprehensive temporal representations.

• Extensive experiments on five multimodal sleep datasets exhibit that CIMSleepNet can
significantly improve multimodal ASS performance under various missing modality patterns.

2 Related Work

Multimodal Learning for Sleep Staging: In the ASS field, several pioneering studies have been
devoted to exploring how to utilize multimodal PSs acquired from various sensors to improve ASS
performance. Andreotti et al. [8] selected three polysomnography (PSG) signals related to sleep,
electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), as input to CNN
to improve ASS accuracy. Similarly, Jia et al. [23] effectively mined salient waves form multimodal
sleep PSs with a multimodal salient wave detection network. Lin et al. [11] designed a cross-link
fusion module to eliminate redundant information in multimodal PSs. Huy et al. [8] focused on
the training mode of the deep model, and proposed an adaptive gradient blending strategy, which
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improves the joint learning representation ability of multimodal PSs in different views. Furthermore,
multimodal PSs collected by some consumer electronic devices have gradually been applied in
ASS field. For instance, Walch et al. [24] utilized feature engineering methods to analyze human
motion signals and heart rate (HR) signals collected by Apple Watch, and verified their relevance
to the sleep stage. Then, Zhai et al. [9] and Mads et al. [25] further improved multimodal sleep
staging performance based on consumer electronic devices by constructing a feature fusion method
based on deep learning. However, these studies have largely neglected the impact of incomplete
modalities scenarios, which are more representative of real-world data distributions. Kontras et al.
[26] ingeniously combined self-attention and cross-attention mechanisms to extract coordinating
representations for multimodal PSs, thereby mitigating the interference caused by missing modalities
on neural network. Nevertheless, this method was developed to handle the complete absence of one
or more modalities, whereas it is impractical in real-life clinical applications.

Contrastive Learning Under Missing Modalities: Invariant contrastive learning (ICL) and semantic
contrastive learning (SCL) are currently promising choices for solving the modality missing issue. For
instance, Lin et al. [27] proposed a cross-modal ICL, aiming to utilize available modalities to achieve
prediction of missing modalities. Similarly, Liu et al. [28] narrowed the gap between heterogeneous
modalities through ICL for reconstructing missing modalities. SCL introduces category information
on the basis of the former to achieve semantic structure preservation in missing modal cases [29, 30].
These studies focus on learning multimodal consistency representations, i.e., only recovering the
multimodal shared information to deal with multimodal missing issues. However, this strategy leads
to the loss of specific information unique to each modality, thereby failing to exploit inter-modal
complementarity.

Temporal Context Learning in sequence modeling: It has achieved rapid development driven
by the sequence-to-sequence models. For instance, Supratak et al. [13] introduced bidirectional
long short-term memory (Bi-LSTM) to learn transition rules during sleep stages. Phan et al. [14]
applied bidirectional gated recurrent unit (Bi-GRU) to model contextual information of sequence
representations. Phyo et al. [16] provided a Bi-LSTM equipped with two auxiliary tasks to explicitly
learn periodic transition patterns. Besides, Qu et al. [18] employed Transformer to improve the
ability to mine context information in a parallel optimization manner. Eldele et al. [19] deployed
temporal CNN to Transformer, further improving its ability to capture temporal features. Although
Transformer has advantages over RNN and its variants in terms of computational efficiency and
context learning, it lacks recurrent modeling ability, resulting in the omission of some important
temporal attribute information [21, 22]. Furthermore, studies [22, 31, 32, 33] have proved that the
features learned by RNN and Transformer are complementary. The above optimization perspective
provides valuable inspiration for us to design novel temporal context architectures.

3 Methodology

3.1 Problem Formulation

We first define a complete multimodal PSs dataset D = {(Xi,yi)}Ni=1 where Xi is the ith multimodal
epoch (sample), yi is the sleep stage label of the ith epoch and N is total number of epochs.
Suppose Xi contains M modities, i.e., Xi = {xj

i}
M
j=1, xj

i ∈ RCj×Lj , where Cj and Lj are the
number of channels and sampling points of the jth modality, respectively. Furthermore, yi ∈
{0, 1, · · · ,K − 1}, where K is the number of sleep stage categories. Different from the complete
modality missing issue of Kontras et al. [26], we mainly focus on the chunk-based missing pattern,
i.e., random missing in units of multiple epochs, which is a common situation in biomedical research
[34]. This is mainly due to the fact that subjects tend to be interrupted for an extended period of
time during the data collection. To construct incomplete modal dataset, we define a mask matrix
Z = {{Zj

i }
N
i=1}

M
j=1 ∈ RN×M at the epoch level to track the missing status of modalities. If xj

i is
observed, Zj

i= 1; otherwise, Zj
i = 0. Note that, Z0

i ∧ Z1
i ∧, · · · ,∧Z

M−1
i ̸= 0, i.e., each Xi must

have at least one available modality. According to the mask matrix, the missing rate of the dataset can
be defined as ρ = 1− 1

N ·M
∑N

i=1

∑M
j=1 Z

j
i . Then, we define the incomplete multimodal PSs dataset

D̃ = {(X̃i, yi)}Ni=1, where X̃i and Xi have the same shape, i.e., X̃i = {x̃j
i}

M
j=1, x̃j

i ∈ RCj×Lj . After
that, we reorganize the dataset D̃ with a new shape, i.e., xj ∈ RN⃗×T×Cj×Lj , to perform temporal
context modeling. Among them, N⃗ = ⌊N/T ⌋ and T is the length of contextual information. Finally,
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Figure 2: The overall framework of CMISleepNet. It consists of three main components: MAIM,
SMCCL and MCTA mechanism. Two incomplete modalities, X̃1 and X̃2 are taken as examples for
illustration. In the missing modality imputation phase, MAIM learns multimodal shared representa-
tions from the available modal distribution to recover complete modalities X̄1 and X̄2. Meanwhile,
X̄1 and X̄2 are fed into SMCCL to perform distribution alignment, making the recovered modal
data closer to the real data distribution. Furthermore, temporal CNN is utilized to performer feature
extraction of X̄1 and X̄2 and obtain the multimodal fusion representation F̃. After that, F̃ is fed into
a Transformer containing MCTA for temporal context modeling to obtain the temporal representation↔
F, which is then used for prediction of sleep stage scores. CMISleepNet also includes three objective
functions: ℓ(I) for missing modality imputation, ℓ(s) for distribution alignment, ℓ(c) for sleep staging.

we also define a modality matrix S = { { sji} H
i=1} M

j=1 ∈ RH×M to provide information about the
modalities involved in each epoch, where sji ∈ {0, 1, · · · ,M − 1} is the modal label of the jth
modality of the ith epoch and H = N⃗ · T .

As schematized in Fig. 2, we present CIMSleepNet, which aims to cope with the issues of modality
missing and temporal context modeling in multimodal ASS. Given incomplete multimodal PSs, we
first employ MAIM to impute the missing modal data (Sec. 3.2). Meanwhile, SMCCL is utilized to
modify the distribution of the recovered data (Sec. 3.3). Then, we leverage temporal CNN and MCTA
embedded in the Transformer structure to perform feature extraction and temporal context modeling
on the recovered complete multimodal data, respectively (Sec. 3.4). Finally, the model parameters
are optimized by combining various objective functions to achieve sleep staging (Sec. 3.5).

3.2 Missing Modality Imputation

To impute missing modalities, we design MAIM, which mainly consists of M (M=2 in Fig. 2)
modality-specific encoders E( · ) = {Ej( · )}Mj=1 and decoders D( · ) = {Dj( · )}Mj=1 . Each encoder
and decoder is implemented via separable temporal CNN [16] to reduce the parameter redundancy.

Modality-specific encoder. As as depicted in Fig. 2, incomplete multimodal PSs X̃ and mask
matrix Z are transmitted in MAIM through multimodal data flow and mask matrix flow respectively.
Firstly, multiple encoders are utilized to project multimodal PSs into the latent space, and the latent
representations of all modalities are fused in a multiply add operation, formulated as

fi =
1∑M

j=1 Z
j
i

∑N

j=1
Zj
iEj

(
x̃j
i

)
(1)

where fi denotes the multimodal shared representation obtained from Xi. Since the modalities in the
training set are also incomplete, the best choice for guiding the missing data in the reconstruction
process is other available data of the same modality [30]. However, the data recovered by this way
loses the diversity of the original data and cannot retain the original semantic structure. To improve
the data diversity, we drew inspiration from multimodal variational autoencoder (MVAE) [35] to
learn not the shared representations of multimodal PSs but their distributions. Learning diverse data
ensures that the generated data is not limited to the data that guide it, making it easier for SMCCL to
perform calibration. We first utilize multilayer perceptron (MLP) to obtain two vectors, µi and σi,
which are used to describe the mean and variance in the distribution from the fi. Then, fi is subjected
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to reparameterization to obtain the latent representation f̂i. Formally, f̂i = µi + exp
(
σi

2

)
⊙ εi, where

⊙ is element-wise multiplication and εi is a random variable sampled from the distribution of fi.
After that, f̂i is mapped back into the input space of fi to get multimodal shared representation f̄i.

Modality-specific decoder. In the decoding stage, f̄i is fed into each decoder for reconstructing
modality-specific data, i.e., {x̄j

i}
M
j=1 = {Dj (̄fi)}Mj=1. Similar to MVAE, the parameters of MAIM

are optimized guided by the joint of mean square error (MSE) ℓ
(mse)

and Kullback-Leibler (KL)
divergence ℓ

(KL)

. We refer to the overall loss function as the modal imagination loss function ℓ(I).
Suppose the batchsize is h, ℓ(I) can be denoted as

ℓ(I) =
1

M

∑M

j
ℓ

(mse)

j + ηℓ
(KL)

=
1

M ·B
∑M

j=1

∑B

i=1

∥∥∥x̃j
i − x̄j

i

∥∥∥2 − η

2B

∑B

i=1

∑D̄

k=1

(
1 + ln

(
σk
i

)
−

(
µk
i

)2 − (
σk
i

)2) (2)

where B = h · T , D̄ is the dimension of f̄i, η is the loss weight, x̃j
i is the real sample (if x̃j

i is missing,
x̃j
i is the random sampling of the available data in the same modality). We found that the value of η

is not sensitive, but removing ℓ
(KL)

results in a significant decrease in performance of CMISleepNet.
Hence, we set η to 1. In particular, ℓ

(KL)

is used to constrain how close the latent variable distribution
is to the prior distribution, prompting the decoder to generate more diverse samples. Then, the mask
matrix is utilized to judge whether all recovered data is in a missing state before. if x̃j

i is missing, x̄j
i

will be used as the recovered modality; otherwise, x̃j
i itself will be used. It can be expressed by mask

matrix as x̄j
i = Zj

i x̃
j
i + (1− Zj

i )x̄
j
i .

3.3 Distribution Alignment

Different from contrastive learning based on modality consistency [27, 28, 30, 29], our SMCCL
introduces semantic and modal information, which not only preserves the semantic structure but also
restores the specific modality information to a great extent. As illustrated in Fig. 2, SMCCL covers
three similarity levels. The first-level similarity is applied to narrow the distance between different
samples with two identical patterns, i.e., the same category and the same modality. Second-level and
third-level similarities are utilized to correct the distribution between samples with any of the same
single patterns. Note that, the constraint strength of the first-level similarity should be higher than
that of the other two levels of similarity because it can be dual-guided in semantics and modality. The
latter two levels of similarity are meaningful, and samples that meet these similarity criteria should
not be repelled. Because these data still have semantic similarity or modal similarity. Furthermore,
contrastive learning is performed within a batch, and the original complete data that meets the
first-level similarity standard with the restored data may not necessarily exist in a batch, which further
reflects the necessity of the latter two levels of similarity.

Supposing that a batch contains B epochs, we divide the above similarity levels by constructing
similarity weight matrix W = {{wj

i }
B×M
i=1 }B×M

j=1 . To divide the similarity levels of all sample pairs,
we use the label set {yi}Bi=1 and modality matrix S to introduce both semantic and modal information
for each sample. We first replicate the label set, increasing its modality dimension, to obtain label
weight Y = {{ỹji }

B
i=1}Mj=1. Flatten two matrices and replicate in the row and column dimension

to expand to R = B ·M . We redefine two matrices as Ȳ = {{ȳji }
R
i=1}

R
j=1 and S̄ = {{s̄ji}

R
i=1}

R
j=1.

Then, calculate the contrastive mask matrices of Ȳ and S̄, U and V, formulated as:

U = {{uji}
R
i=1}

R
j=1, u

j
i =

{
1, ȳji = ẏji
0, ȳji ̸= ẏji

V = {{vji }
R
i=1}

R
j=1, v

j
i =

{
1, s̄ji = ṡji
0, s̄ji ̸= ṡji

(3)

where "1" is a positive pair and "0" is a negative pair. Besides, ẏji and ṡji are the elements in ȲT and
S̄T respectively. Further, the similarity weight matrix W can be constructed by

W = U⊙V︸ ︷︷ ︸
the 1th level

+ (1-Θ)(U−U⊙V)︸ ︷︷ ︸
the 2th level

+Θ(V −U⊙V)︸ ︷︷ ︸
the 3th level

(4)

where ⊙ denotes element-wise multiplication and Θ = {{Θj
i}

R
i=1}

R
j=1 is used to set the weights for

the second-level and third-level similarity. We refer to Θ as the modality consistency matrix and
Θj

i as the modality consistency score. In Θ, {{Θj
i}

k·B
i=(k−1)·B+1}

R
j=1 is the modality consistency

score of the kth modality and other modalities, which contain all the same Θj
i values. We rename

Θj
i in {{Θj

i}
k·B
i=(k−1)·B+1}

R
j=1 to θk and calculate it by the inter-modal mutual information under
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information theory [36]. Taking the kth modality as an example, we use the projector gk( ·) composed
of MLP to map the reconstructed complete modality data into a low-dimensional feature space and
activate it by the Softmax function δk( · ), i.e., ϕk = δk(gk(x̄

k)). Formally,

θk =
1

M − 1

∑M

i=1
1i̸=k · I(ϕ

k;ϕi)

H(ϕk,ϕi)
(5)

where 1x is an indicator, when x is true, the result is "1", otherwise it is "0", I(ϕk;ϕi) is the mutual
information of ϕk and ϕi, H(ϕk,ϕi) is the joint entropy of ϕk and ϕi. The value range of θk is
between 0 and 1, and it can automatically adjust the ratio of the second-level and third-level similarity
according to the modal consistency. For instance, if the value of θk is larger, it means that the
inter-modal consistency is higher, but the amount of specific modal information is lower. Hence,
it is necessary to increase the introduction of modal information, i.e., to increase the weight of the
third-level similarity of formula (4). Vice versa. To more intuitively represent the construction process
of the similarity weight W, we provide an example in Appendix C. To formulate I(ϕk; ϕi)

H(ϕk , ϕi) , we define
a discrete joint probability distribution P(m,n) and two discrete marginal probability distributions
P(m) and P(n). Since ϕk and ϕi are activated by Softmax function, ϕk and ϕi can be regarded as
the distribution of two discrete cluster assignment variables m and n on Ḋ categories like [29, 37].
Among them, Ḋ is the feature dimension of ϕk and ϕi. Hence, we redefine P(m,n), P(m) and
P(n) as P = 1

2 (ϕk(ϕi)T
+ ϕi(ϕk)T) ∈ RB×Ḋ×Ḋ, Pm = Expand( 1

Ḋ

∑Ḋ
dn=1 P•,•,dn

) ∈ RB×Ḋ×Ḋ

and Pn = Expand( 1
Ḋ

∑Ḋ
dm=1 P•,dm,•) ∈ RB×Ḋ×Ḋ, respectively. As a result, the discrete form

of I(ϕk; ϕi)
H(ϕk , ϕi) can be expressed as

I(ϕk; ϕi)
H(ϕk, ϕi)

= log 1
P

(
P

PmPn

)
(6)

The theoretical result of formula (6) are demonstrated in Appendix D. To match the dimensions of
the two redefined matrices Ȳ and S̄,we perform a flatten operation on each batch of reconstructed
data to obtain Ẋ = {x̄i}B·M

i=1 . Then, we fed Ẋ into another projector ḡ( · ) for the computation of
contrastive loss, i.e., ψ = ḡ(Ẋ),ψ = {φi}B·M

i=1 . According to W, we propose a novel contrastive
learning, SMCCL,which can be defined as

ℓ(s) =
−1

Nwj
i>0 − 1

∑B·M

i=1

∑B·M

j=1
1i ̸=j · 1wj

i>0 · w
j
i · log

exp(φi · φj/τ)∑B·M
k=1 1i̸=k · exp(φi · φk/τ)

(7)

where ℓ(s) is named distribution alignment loss, Nwj
i>0 − 1 is the number of wj

i > 0 in a batch and
τ is a temperature coefficient, which is set to 0.07 like [38]. In SMCCL, ℓ(s) adjusts the attention
given to different sample pairs based on W, achieving more fine-grained distribution calibration.

3.4 Feature Extraction and Temporal Context Modeling

As illustrated in Fig. 2, the recovered complete modal dataset X̄ = {{xji}
B
i=1}

M
j is also fed into

the temporal CNN for feature extraction and concatenation to obtain multimodal fusion temporal
representation F̃ ∈ RB×D×C , B = h · T during the distribution calibration process. Among them,
C is the number of channels, D is the feature dimension, h is the batch size and T is the context
length. Then, we utilize a Transformer composed of layer normalization (LN), MCTA, and MLP for
temporal context modeling, thereby obtaining temporal representation

↔
F ∈ RB×D×C . We focus on

introducing MCTA, with its single-head structure depicted in Fig. 3. Firstly, the fusion representation
after the first LN is divided into S heads, i.e., Ḟ = {ḟs}Ss=1, where ḟs ∈ RB×D×(C/S). After that, ḟs
is fed into MCTA. It has two branches and includes intra-epoch and inter-epoch levels, which can
fully mine the temporal context information of latent features.

Intra-epoch level: In the 1th branch, temporal CNN is adopted to generate the query Qs and the key
K

(T )
s and value V (T )

s . Related study [39] have proven that temporal CNN exhibits efficiency beyond
linear operations, while also eliminating the requirement for positional encoding. In the 2th branch,
we use Bi-GRU to learn the recurrent representation of ḟs. Similarly, key K̄(B)

s and value V̄ (B)
s from

f̄
(B)
s are obtained via temporal CNN. To achieve cross-branch interaction, we splice K(T )

s and V (T )
s

with K̄(B)
s and V̄ (B)

s . As a result, the intra-epoch cross-branch attention can be calculated as

ḟ (T )
s = Intra_ CAs = Softmax(

Qs ·KT
s√

C/S
)Vs,Ks =

[
K(T )

s ||K̄(B)
s

]
, Vs =

[
V (T )
s ||V̄ (B)

s

]
(8)
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Figure 3: Design of the multi-level cross-branch temporal attention (MCTA) mechanism. D and
T are the number of channels of temporal CNN at different levels; the values of D/2 and T/2 are
rounded down; k is the kernel size; st is the stride. M and N are the neuron counts of Bi-GRU at
different levels, where M = C/S and N = D · C/S.

In the interactive process, MCTA can effectively integrate recurrent bias into self-attention weights to
improve the shortcomings of traditional Transformer recurrent modeling ability.

Inter-epoch level: As shown in Fig. 3, the 1th branch and the 2th branch of the inter-epoch
level exhibit a reversed pattern compared to the intra-epoch level. This design enables MCTA to
not only realize the interaction of cross-branch in parallel manner, but also capture rich temporal
representations layer by layer. In this level, ḟ (T )

s ∈ Rh×T×(D·C/S) and f̄ (B)
s ∈ Rh×T×(D·C/S) serve as

the input of the two branches respectively. In the 1th branch, similar to the 2th branch at the intra-
epoch level, ḟ (T )

s is mapped to ḟ (B)
s , to obtain K (B)

s and V (B)
s . In the 2th branch, f̄ (B)

s is mapped to Q̄s,
K̄s and V̄s by temporal CNN. Likewise, the inter-epoch cross-branch attention can be calculated as

f̄ (T )
s = Inter_CAs = Softmax(

Q̄s · K̄T
s√

C/S
)V̄s, K̄s =

[
K̄ (T )

s ||K (B)
s

]
, Vs =

[
V̄ (T )
s ||V (B)

s

]
(9)

After that, we concatenate ḟ (B)
s ∈ Rh×T×(D·C/S) and f̄ (T )

s ∈ Rh×T×(D·C/S), and perform dimensional-
ity reduction via temporal CNN to obtain the fused representation f̈s ∈ RB×(D̈/S). Finally, extending
single-head MCTA to multiple heads can be expressed as F̈ = [̈f1||̈f2|| · · · ||̈fS]∈ RB×D̈.

3.5 Optimization Objective

We utilize temporal representation
↔
F ∈ RB×D×C to perform sleep staging. Meanwhile, cross entropy

loss ℓ(c) is regarded as a good choice to guide the learning of model parameters, i.e.,

ℓ(c) = − 1

B

B∑
i=1

K∑
j=1

W̃j (yi,j ln (ỹi,j) + (1− yi,j) ln (1− ỹi,j)) (10)

where B is the batch size, K is the number of categories, W̃ is the category weight, y is the real
label and ỹ is the predicted label. After that, we construct the total objective loss for CIMSleepNet.
Formally, ℓ = ℓ(c) + αℓ(I) + βℓ(s), where α and β are the weight of the loss term.

4 EXPERIMENTS

4.1 Datasets and Implementation Details

Datasets: Five multimodal sleep datasets, Sleep-EDF-20 [40, 41], Sleep-EDF-78 [40, 41], SVUH-
UCD [40], Motion and heart rate (MHR) [24] and SHHS [42, 43] are used for the effectiveness of
CIMSleepNet. The first four datasets are used to verify the performance of CIMSleepNet when the
modality is randomly partially missing, and the last dataset is used to verify its performance when
the modality is completely missing. We choose EEG and EOG, for Sleep-EDF-20, Sleep-EDF-78
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Table 1: Performance comparison for complete and incomplete modalities in randomly partially
missing case. Here "incomplete" means the maximum missing rate.

Datasets Methods Complete Incomplete

Acc MF1 K Acc MF1 K

Sleep-EDF-20

FeatConcat 0.825 0.761 0.771 0.497 0.429 0.285
MultitaskCNN [8] 0.835 0.753 0.775 0.589 0.506 0.449
SalientSleepNet [23] 0.872 0.827 0.827 0.634 0.565 0.485
MM-Net [11] 0.867 0.817 0.822 0.570 0.493 0.432
TransSleep [16] 0.864 0.819 0.821 0.594 0.521 0.457
XSleepNet [10] 0.864 0.809 0.819 0.623 0.560 0.478
CIMSleepNet 0.867 0.821 0.824 0.853 0.801 0.805

Sleep-EDF-78

FeatConcat 0.788 0.726 0.717 0.526 0.471 0.392
MultitaskCNN [8] 0.795 0.727 0.722 0.613 0.535 0.453
SalientSleepNet [23] 0.843 0.794 0.791 0.722 0.643 0.625
MM-Net [11] 0.845 0.796 0.794 0.706 0.628 0.597
TransSleep [16] 0.846 0.797 0.795 0.738 0.654 0.637
XSleepNet [10] 0.838 0.776 0.779 0.697 0.622 0.583
CIMSleepNet 0.849 0.799 0.797 0.830 0.772 0.775

SVUH-UCD

FeatConcat 0.745 0.731 0.672 0.502 0.445 0.336
MultitaskCNN [8] 0.774 0.763 0.705 0.643 0.630 0.533
TransSleep [16] 0.794 0.782 0.732 0.725 0.698 0.636
XSleepNet [10] 0.783 0.761 0.725 0.708 0.689 0.615
CIMSleepNet 0.801 0.794 0.751 0.788 0.777 0.726

MHR

FeatConcat 0.700 0.464 0.237 0.477 0.243 0.011
MLP [24] 0.723 0.529 0.306 0.610 0.348 0.035
DeepCNN [9] 0.759 0.615 0.421 0.616 0.354 0.039
CIMSleepNet 0.729 0.553 0.348 0.701 0.466 0.240

and SHHS; EEG, EOG and EMG, for SVUH-UCD; motion signal and HR, for MHR. We provide
detailed introduction and preprocessing methods of all datasets in Appendix E.

Implementation Details: In the first four datasets, CIMSleepNet is trained and tested using k-fold
cross-validation, with a total of five repetitions of this procedure. Each result is the average of five
results. In the last dataset, the training strategy refers to [26]. The detailed experimental settings and
important hyperparameter settings are in Appendix F.

4.2 Comparison with the state-of-the-arts

Table 2: Performance comparison in completely missing
case.

Test Modalities Methods Acc MF1 K

EEG CoRe-Sleep [26] 0.882 0.808 0.834
CIMSleepNet 0.891 0.817 0.845

EOG CoRe-Sleep [26] 0.853 0.753 0.792
CIMSleepNet 0.858 0.760 0.798

EEG+EOG CoRe-Sleep [26] 0.895 0.823 0.853
CIMSleepNet 0.903 0.828 0.862

In randomly partially missing case,
we compare our CIMSleepNet with
8 ASS methods that can support
multimodal learning: FeatConcat,
MultitaskCNN [8], SalientSleepNet
[23], MM-Net [11], TransSleep [16],
XSleepNet [10], MLP [24] and Deep-
CNN [9]. We leverage mask matrix Z
and the public code of these methods
to simulate the incomplete modality
case. Then, we compare CIMSleep-
Net with them under different missing
rate ρ. According to the calculation
formula of ρ, for two modalities, the missing rate ranges from [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]; for three
modalities, the missing rate ranges from [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7], where 0.7 is an approx-
imate value of 2/3. In the completely missing case, we compare CIMSleepNet with CoRe-Sleep
[26], the only existing ASS method that can handle complete missing of one or more modalities. We
employ accuracy (Acc), macro F1-score (MF1) and Cohen Kappa (K) [44] to quantitatively analyze
all methods. We also compare the data recovery performance of SMCCL with ICL [28] and SCL
[30]. All methods are described in Appendix G.
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Figure 4: Impact of various missing rates.The shaded area represents the range of upper and lower
standard deviations.

Figure 5: Visualization of the recovered
modalities by ICL, SCL and SMCCL.

Quantitative results: As shown in Tab 1, CIMSleepNet
achieves performance comparable to the state-of-the-arts in
the complete modality. In the incomplete modalities, com-
pared to the performance on complete modalities, all mod-
els exhibit a decrease in performance on the four datasets.
Fortunately, CIMSleepNet has the least performance degra-
dation and performs the best. As schematized in Fig. 4,
we further evaluate the performance of CIMSleepNet and
other methods under different missing rates. We observe
that CIMSleepNet outperforms other methods in almost all
datasets and missing rates. As the missing rate increases,
the performance of other methods begins to decline sig-
nificantly. Relatively speaking, CIMSleepNet exhibits a
more stable trend. Further, Tab 2 exhibits the performance
of CIMSleepNet trained with ρ = 0.5 (maximizing the
model’s robustness to missing modalities) and tested under
complete modality absence. We observe that CIMSleepNet
outperforms CoRe-Sleep in terms of performance across different testing modalities.

Qualitative results: We substitute ICL and SCL with SMCCL on CIMSleepNet to compare the
performance of these three contrastive learning methods in data recovery (when ρ = 0.5). As depicted
in Fig. 5, we randomly selected 500 recovered missing samples (500 EEG epochs and 500 EOG
epochs) in Sleep-EDF-20 and projected them into 2D space via t-SNE [45]. ICL only focuses on
the inter-modal consistency and ignores the recovery of semantic information. SCL retains semantic
information based on ICL, thereby improving data matching. However, ICL and SCL tend to learn the
inter-modal consistency, i.e., utilize multimodal shared information to guide the recovery of missing
data. This strategy easily leads to the loss of modality-specific information, thus failing to exploit
the inter-modal complementarity. Different from ICL and SCL, our SMCCL explores the intrinsic
connection between semantic and modal information under mutual information theory. Hence,
compared to ICL and SCL, the data recovered by SMCCL exhibits a more consistent distribution
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with the original data, further demonstrating its effectiveness in handling missing modalities. We
also visualize the features extracted by each method. Specifically, we randomly select the data of
one subject (9th) among the Sleep-EDF-20. As illustrated in Fig. 6, we use t-SNE [45] to visualize
the distribution of features generated by all methods at ρ = 0.5, which are extracted before the final
decision head. Compared with other methods, our CIMSleepNet can extract more discriminative
representations in incomplete modalities, further demonstrating its robustness.

Figure 6: Visualization of latent features of different methods on Sleep-EDF-20.

Ablation studies: We conduct ablation studies for CIMSleepNet on Sleep-EDF-20 under the con-
dition of missing rate ρ = 0.5. It can be observed from Tab 3 that no matter which component is
deleted, each evaluation metric of the results will decrease. It is particularly noteworthy that in the
absence of both MAIM and SMCCL, the performance drops significantly, further demonstrating their
importance in dealing with the missing modality issue. Furthermore, we find that although the two
components designed to mitigate modality missing issue (MAIM and SMCCL) introduce additional
parameters, the increase is much less than that introduced by the sequence modeling component
(MCTA). However, sequence modeling is crucial for capturing the temporal information of PSs and
improving model performance [10, 46]. The ablation experiment of MCTA, parameter sensitivity
analysis and training process analysis are detailed in Appendix H, I and J, respectively.

Table 3: Ablation study of CIMSleepNet on Sleep-EDF-20. “✓” indicates the use of this component.
MCTA indicates the Transformer equipped with MCTA. The context length of single inference is 25.

MAIM SMCCL MCTA Acc MF1 K Model Size (MB) GFLOPs

0.497 0.429 0.285 2.344 0.069
✓ 0.771 0.704 0.672 5.767 0.096

✓ 0.786 0.726 0.699 8.458 0.071
✓ 0.694 0.629 0.536 30.272 2.206

✓ ✓ 0.810 0.756 0.759 4.412 0.097
✓ ✓ 0.829 0.778 0.777 33.696 2.876

✓ ✓ 0.834 0.786 0.784 36.386 2.246
✓ ✓ ✓ 0.853 0.801 0.805 37.678 2.902

5 Conclusion

We try to challenge multimodal ASS under incomplete modalities by proposing CIMSleepNet. In
CIMSleepNet, MAIM reconstructs missing modality data by establishing interactions among modali-
ties, which allows for the provision of complete modality data support for subsequent components.
Meanwhile, SMCCL ingeniously leverages semantic information and modal information to subdivide
similarity into three levels, thereby simulating real data distribution. Then, MCTA mechanism accom-
plishes comprehensive temporal context modeling, further improving the expressive ability of latent
temporal representations. Extensive experiments demonstrate that the effectiveness of CIMSleepNet
in various incomplete modalities.
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A Limitations

Our work also has some limitations. To deal with the missing modality issue and temporal dependency,
we introduce an additional architecture, which will incur additional computational overhead. It is
worth mentioning that the lack of labeling information is also a common phenomenon in real-world
applications. Hence, we expect to develop an unsupervised or semi-supervised learning multimodal
approach in our forthcoming study, which can simultaneously address the challenges of modality
missing and label missing.

B Broader Impacts

Our work facilitates the daily sleep quality assessment and sleep disorder diagnosis for the public, and
lays the foundation for promoting personalized treatment of sleep disorders. However, the multimodal
physiological data required for model training may involve sensitive personal health data, which may
bring potential social privacy and security issues.

C Similarity Weight Matrix Construction Example

Supposing that a batch contains 3 multimodal epochs and the number of modal types is 3, the
calculation process and results of the similarity weight matrix W are illustrated in Fig. 7. Specifically,
the redefinition of matrices Y and S is realized by using flatten and replicate operations. Moreover,
calculate Ȳ and S̄ separately to obtain the mask matrices U and V by

U = {{uji}
R
i=1}

R
j=1, u

j
i =

{
1, ȳji = ẏji
0, ȳji ̸= ẏji

V = {{vji }
R
i=1}

R
j=1, v

j
i =

{
1, s̄ji = ṡji
0, s̄ji ̸= ṡji

(11)

where "1" is a positive pair and "0" is a negative pair. Besides, ẏji and ṡji are the elements in ȲT and
S̄T respectively. Further, combining modality consistency matrix Θ, the similarity weight matrix W
can be constructed by

W = U⊙V︸ ︷︷ ︸
the 1th level

+ (1-Θ)(U−U⊙V)︸ ︷︷ ︸
the 2th level

+Θ(V −U⊙V)︸ ︷︷ ︸
the 3th level

(12)

where ⊙ denotes element-wise multiplication and Θ in Fig. 7 is composed of the set consisting of θ1,
θ2 and θ3.

D Theoretical Proof

We simplify I(ϕk; ϕi)
H(ϕk , ϕi) in continuous random variables. It can be expressed as follows

I(ϕk; ϕi)
H(ϕk,ϕi)

=
H(ϕk)+H(ϕi)−H(ϕk, ϕi)

H(ϕk, ϕi)

=

∫
p(x)ln 1

p(x)dx+
∫
p(y)ln 1

p(y)dy −
∫∫

p(x,y)ln 1
p(x,y)dxdy∫∫

p(x,y)ln 1
p(x,y)dxdy

=

∫∫
p(x, y)ln 1

p(x)dxdy +
∫∫

p(x, y)ln 1
p(y)dxdy −

∫∫
p(x,y)ln 1

p(x,y)dxdy∫∫
p(x,y)ln 1

p(x,y)dxdy

=

∫∫
p(x,y)ln 1

p(x)p(y)dxdy −
∫∫

p(x,y)ln 1
p(x,y)dxdy∫∫

p(x,y)ln 1
p(x,y)dxdy

=

∫∫
p(x,y)ln p(x,y)

p(x)p(y)dxdy∫∫
p(x,y)ln 1

p(x,y)dxdy

=

∫∫
log 1

p(x,y)

(
p(x,y)
p(x)p(y)

)
dxdy

(13)
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Figure 7: Example of similarity weight matrix W construction.

where p(x) and p(y) are the marginal probability distributions of ϕk and ϕi, respectively, i.e., the
continuous form of P(m) and P(n) in formula (6). p(x,y) is their joint probability distribution, i.e.,
the continuous form of P(m,n) in formula (6). Therefore, the expression of formula (6) is obtained.

E Data and Preprocessing

1) Sleep-EDF-20 [40, 41]: The dataset has been widely applied in sleep study, comprising 39 nights
of PSG recordings from 20 subjects. The subjects are aged between 25 and 34 years old, with 10
males and 10 females. Each recording are divided into epochs in units of 30 seconds. The data
preprocessing method draws on the previous work [10]. After preprocessing, the context length T
is set to 25, and the redundant segments at the front end are discarded.. These epochs are classified
into five different categories, including wake (W), rapid eye movement (REM), and three types of
non-REM (N1, N2, and N3). Then, two modalities, electroencephalogram (EEG) (Fpz-Cz channel)
and electrooculogram (EOG) (ROC-LOC channel), are utilized to evaluate CIMSleepNet. Among
them, the sampling frequency of EEG and EOG is both 100Hz.
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2) Sleep-EDF-78 [40, 41]: The dataset includes 153 recordings from 78 subjects. The subjects have
a wide age range, from 25 to 101 years old, and included 41 males and 37 females. Similarly, the
length of each epoch is 30 seconds, and the method [10] is utilized to preprocess Sleep-EDF-78
data. We set the context length T to 25 for each modality. The choice of modalities, categories and
sampling frequency are the same as for Sleep-EDF-20.

3) SVUH-UCD [40]: The dataset focuses on sleep staging study with sleep disorders. It includes
25 PSG recordings from 25 sleep apnea patients. Their ages ranged from 28 to 68, including 21
males and 4 females. Following previous study [47], we choose EEG (C3-A2 channel, 128 Hz), EOG
(horizontal channel, 64 Hz) and EMG (64 Hz), and resample these recordings to 100Hz. Furthermore,
we also set the context length T to 25. This dataset are also divided into five sleep stages.

4) MHR [24]: This is a public sleep dataset based on wearable devices, which contains overnight
sleep recordings from 31 subjects. Subjects are allowed 8 hours of sleep monitoring opportunities and
each epoch is 30 seconds in length. We preprocess this dataset using the method described in previous
work [24]. After the preprocessing is completed, we set the context length T to 20 and exclude
redundant epochs. Following the usage rules of this dataset, we employ two modalities, the motion
signals composed of three-axis accelerometry and the heart rate signals, to perform classification tasks
for the three categories: W, non-REM, and REM. In these two modalities, the sampling frequency of
motion signal and heart rate signal is 50Hz and 1Hz respectively.

5) SHHS [42, 43]: This dataset is a large sleep dataset collected from multiple sleep centers, which
contains two sub-datasets, namely SHHS-1 and SHHS-2. Following previous studies [10, 26], we
choose SHHS-1 for our experiment. SHHS-1 consists of 5,791 subjects aged between 39 and 90 years
old. We employ the EEG (C4-A1 channel, 125Hz) and EOG (L-R channel, 50Hz), and resample
them to 100 Hz. Furthermore, the context length T is set to 25. We also divide it into five sleep stages.

F Implementation Details

We choose the programming language based on Python 3.8 and the deep learning framework based
on PyTorch 1.13 to build and train the model. All experiments are conducted on a server containing
an RTX 4090 GPU (24GB) and an Intel(R) Xeon(R) Gold 6430 processor (120GB) equipped with 16
virtual CPUs. The total objective loss is mainly optimized through the Adam optimizer. In the first
four dataset, CMISleepNet is trained (Held-out validation set 4 subjects for Sleep-EDF-20, SVUH-
UCD and MHR; 7 subjects for Sleep-EDF-78) and tested by k-fold cross-validation. Specifically,
CMISleepNet performs five random samplings and five k-fold cross-validations for each missing rate
in every dataset. After each k-fold cross-validation, the prediction results from the test sets of all
folds are combined as one time result. Each missing rate result is the average of five results. In the
last dataset, the training strategy refers to [26], i.e., using a random split of 0.7 and 0.3 for the train
(Held-out 100 subjects for validation) and test set.

The important hyperparameters on different datasets can be described as: We set the learning rate of
all datasets to 0.001 and 0.0001 before and after the 10th iteration, respectively. The weight decay is
set to 0.0001 for all datasets. The maximum number of iterations is set to 100 for all datasets. The
number of intra-epoch heads S1 = 4 and the number of inter-epoch heads S2 = 8 for all datasets.
The number of cross-validation folds, k, is set to 20 for Sleep-EDF-20; 20 for Sleep-EDF-78; 25 for
SVUH-UCD and 15 for MHR. The coefficient set W̃ utilized to adjust category weights are set to
[1.5, 2.5, 1.5,1.0, 1.5] for Sleep-EDF-20; [1.5, 2.2, 1.5,1.0, 1.5] for Sleep-EDF-78; [1.5, 2.0, 1.5,1.0,
1.5] for SVUH-UCD; [ 2.0, 1.0, 2.0] for MHR; [2.0, 3.0, 1.5,1.0, 1.5] for SHHS. Further, we set the
coefficients α and β of the total objective function to 0.001 and 0.01, respectively for all datasets.

G Compared Methods

In randomly partially missing case, we compare our CIMSleepNet with 8 ASS methods that can
support multimodal learning: FeatConcat, MultitaskCNN [8], SalientSleepNet [23], MM-Net [11],
TransSleep [16], XSleepNet [10], MLP [24] and DeepCNN [9]. In the completely missing case,
we compare CIMSleepNet with CoRe-Sleep [26], the only existing ASS method that can handle
complete missing of one or more modalities. We also compare the data recovery performance of
SMCCL with ICL [28] and SCL [30]. All methods are described as follows.
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1) FeatConcat: The temporal CNNs are utilized as the feature extractor of each modality data, and
the features of different modalities are directly fused. Moreover, the fused features are sent to MLP
for classification.

2) MultitaskCNN [8]: Based on the sleep staging task, the task of predicting adjacent epochs is
added to improve the multimodal sleep staging performance.

3) SalientSleepNet [23]: A dual-branch U2-Net structure is proposed to improve the feature extraction
of salient waves of multimodal physiological signals.

4) MM-Net [11]: A cross-link fusion module is exploited to reduce redundant information of
multi-modality and multi-view.

5) TransSleep [16]: Two auxiliary tasks, segment confusion stage estimation and stage-transition
detection, are designed to address stage transitions during sleep. We make it capable of handling
multimodal data by increasing the number of channels at the input head of TransSleep.

6) XSleepNet [10]: An adaptive gradient blending strategy is designed to improve the joint represen-
tation ability of the original signal and the corresponding time-frequency image.

7) MLP [24]: Combining motion features and heart rate features, and using MLP to implement sleep
staging (Wake/ NREM/ REM) based on wearable devices.

8) DeepCNN [9]: A deep CNN is constructed to explore the impact of early-stage fusion, late-stage
fusion and hybrid fusion. We chose the late-stage fusion solution because it has the best performance.

9) CoRe-Sleep [26]: The ingenious combination of self-attention and cross-attention improves the
robustness of the model under imperfect data.

10) ICL [28]: Improving modal consistency by bringing different modalities of the same instance
closer together.

11) SCL [30]: The introduction of semantic information improves the ability to recover the semantic
structure information of data.

H Ablation studies of MCTA

We also explore the internal details of Transformer equipped with MCTA. The six baseline models in
Tab 4 are substructures of Transformer equipped with MCTA. Among them, Intra-X denotes using
two X layers for intra-epoch temporal dependency modeling. Inter-X denotes using two X layers
for inter-epoch context modeling. Intra & Inter-X denotes using four X layers for temporal context
modeling, with the first two layers capturing intra-epoch temporal dependency and the last two layers
capturing inter-epoch context. X refers to GRU or Transformer. It can be observed from the results
that both Intra & Inter-GRU and Intra & Inter-Transformer outperform their respective single-level
models. Further, CIMSleepNet performs the best when using Transformer equipped with MCTA,
which proves the effectiveness of multi-level cross-branch representation fusion.

Table 4: Ablation study of Transformer equipped with MCTA on Sleep-EDF-20.

Methods Acc MF1 K

Intra-GRU 0.827 0.775 0.772
Inter-GRU 0.835 0.780 0.787
Intra & Inter-GRU 0.839 0.788 0.791
Intra-Transformer 0.813 0.770 0.765
Inter-Transformer 0.837 0.789 0.793
Intra & Inter-Transformer 0.845 0.795 0.797
Transformer with MCTA 0.853 0.801 0.805
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I Parameter Sensitivity Analysis

We explore the impact of α and β on the performance of CIMSleepNet on the Sleep-EDF-20. As
shown in Fig. 8, as the values of α and β change, the performance of CIMSleepNet fluctuates to
varying degrees. We also observe that β has a greater sensitivity to CIMSleepNet compared to α.

Figure 8: Hyperparameters, α and β, analysis on Sleep-EDF-20.

J Training Process Analysis

As schematized in Fig. 9, we provide visualizations of different validation loss curves to explore
their real-time changes during training. We can observed: During the entire training process, modal
imagination loss and distribution alignment loss will decrease as the number of iterations increases,
which shows that the data imputation ability and distribution fitting ability of the model are gradually
improving. It is worth mentioning that, in the early stages of training, the rate of decrease in
distribution alignment loss is greater than that of modal imagination loss. This phenomenon occurs
because the data generated during the initial training stage deviates significantly from the real
distribution, requiring substantial adjustments through distribution alignment loss function. When
the modal imagination loss and distribution alignment loss are in a stationary state, the classification
loss continues to decrease, which indicates that the data generated in the stationary state will further
improve the classification performance of the model.

Figure 9: Training dynamics of modal imagination loss, distribution alignment loss and classification
loss on Sleep-EDF-20. Among them, modal imagination loss is presented in two modalities: EEG
and EOG respectively.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims contained in the abstract and introduction accurately reflect
the contribution and scope of our study.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]
Justification: We create a separate section in Appendix A to discuss the limitations of this
study.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The manuscript contains proofs of theoretical results, and all theorems, formu-
las and proofs are supported by corresponding theories and references.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This manuscript fully presents all the information necessary to reproduce the
main experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used in this study are all public datasets, and we provide their
citations. In addition, we open the corresponding codes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are described in detail in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experimental results are the average of training under multiple random
seeds. The error margins are included in the results for various missing modalities.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed information about the computational resources in the
Appendix F. We also provide experiment on computational efficiency in Tab 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our manuscript complies with the NeurIPS ethical guidelines both in terms of
research area as well as methods and datasets.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We create a separate section in Appendix B to discuss the broader impacts of
this study.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our study poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of all assets used in this research are duly ac-
knowledged, and the licenses and terms of use are clearly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented, and documenta-
tion is provided along with the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We use public datasets and do not involve crowdsourced experiments and
research on humans.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our study does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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