
Published as a conference paper at ICLR 2025

HUMAN-ALIGNED CHESS WITH A BIT OF SEARCH

Yiming Zhang1 Athul Paul Jacob2 Vivian Lai3 Daniel Fried1 Daphne Ippolito1
1Carnegie Mellon University 2MIT 3Visa Research

ABSTRACT

Chess has long been a testbed for AI’s quest to match human intelligence, and
in recent years, chess AI systems have surpassed the strongest humans at the
game. However, these strong AI systems are not human-aligned; they are unable
to match the skill levels of all human partners or model human-like behaviors
beyond piece movement. In this paper, we introduce ALLIE, a chess-playing
AI designed to bridge the gap between artificial and human intelligence in this
classic game. ALLIE is trained on log sequences of real chess games to model the
behaviors of human chess players across the skill spectrum, including non-move
behaviors such as pondering times and resignations In offline evaluations, we find
that ALLIE exhibits humanlike behavior: it outperforms the existing state-of-the-art
in human chess move prediction and “ponders” at critical positions. The model
learns to reliably assign reward at each game state, which can be used at inference
as a reward function in a novel time-adaptive Monte-Carlo tree search (MCTS)
procedure, where the amount of search depends on how long humans would think
in the same positions. Adaptive search enables remarkable skill calibration; in
a large-scale online evaluation against players with ratings from 1000 to 2600
Elo, our adaptive search method leads to a skill gap of only 49 Elo on average,
substantially outperforming search-free and standard MCTS baselines. Against
grandmaster-level (2500 Elo) opponents, ALLIE with adaptive search exhibits the
strength of a fellow grandmaster, all while learning exclusively from humans.1

1 INTRODUCTION

Computer chess is among the most studied problems in Artificial Intelligence. In the pursuit of
stronger chess engines, decades of hardware and algorithmic improvements since the first computer
chess programs (Turing, 1948; Shannon, 1950) have led to the development of increasingly strong
chess engines (Campbell et al., 2002). Current state-of-the-art systems, such as Stockfish (Romstad
et al., 2008) and AlphaZero (Silver et al., 2017) have reached strength far beyond even the best human
players. However, these systems are not calibrated to play at levels matching human strength, and
they make moves that are inscrutable even to human experts.

In this work, we revisit the classic challenge of computer chess, but with a different objective:
developing a skill-calibrated and human-aligned chess AI. By skill-calibrated, we mean an system
that is evenly matched (i.e., winning approximately 50% of games) against players across the skill
spectrum, while maintaining humanlike play. Skill calibration of AI systems is an open research
challenge, and could prove valuable for domains requiring superhuman AI systems to collaborate
with and be overseen by imperfect human partners. Similar to McIlroy-Young et al. (2020), we
define human-aligned as whether the model behaves indistinguishably from a human player. Our
definition extends beyond just move selection: other key aspects, such as time spent pondering a
move and the decision to resign in losing positions, are fundamental to how humans play chess. By
incorporating these humanlike behaviors, our chess engine ALLIE aims to serve as an engaging and
realistic sparring partner for human players.2

Our approach draws upon recent success in language modeling. Large decoder-only Transformer
models, when trained on vast text corpora (Radford et al., 2019; Touvron et al., 2023), learn to

1Code, data and model weights are available on GitHub.
2Pondering in chess means spending time to make a move — humans usually spend more time at critical

positions. Resignation is the act of conceding a game out of respect for the other player in a losing position.
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generate text that is sometimes indistinguishable to human-written content (Dugan et al., 2023).
Similar to language, chess has a natural sequential representation—with moves taking the place of
tokens. It is therefore natural to model chess like language: we train a decoder-only Transformer
model (Vaswani et al., 2017) on a large dataset of human chess game trajectories to model how
humans play chess. Our resulting model predicts human moves at a state-of-the-art level (competitive
with GPT-3.5 despite many fewer parameters), and demonstrates humanlike behavior in other aspects
of chess play, such as pondering and resigning, which previous systems are incapable of modeling.
The model also demonstrates a remarkable ability to predict game outcomes at intermediate board
positions, achieved solely through supervision on human game outcomes.

Using ALLIE’s next move distribution and value estimation learned exclusively from humans, we add
a bit of search at inference time. Specifically, our time-adaptive Monte-Carlo tree search (MCTS)
method allocates limited inference budget proportional to the predicted human ponder time, enabling
more intensive search at critical positions. In a large-scale human study of 7,483 games with 2,412
human players, we find that our adaptive search method enables skill calibration to strengths ranging
from beginner to expert levels with a skill gap of only 49 Elo points on average across the skill
spectrum. Against 2500 Elo opponents, our adaptive search method enables ALLIE to achieve
near-perfect skill calibration, substantially outperforming both search-free baselines and a traditional
MCTS approach with equal computational budget.3

2 RELATED WORK

Most existing approaches in chess engine development have focused on creating the best possible
system. Early successful engines like Deep Blue relied on hand-coded rules and extensive search
algorithms (Campbell et al., 2002). In contrast, AlphaZero (Silver et al., 2017) used self-play and
Monte-Carlo tree search (MCTS) to learn a probability distribution over actions (policy) and estimate
game outcomes with a value function. AlphaZero also employed MCTS at inference time to select
winning moves. We explore a variation of this MCTS algorithm in Section 3.3, using policy and
value functions learned directly from human games, and inference time search budget allocated
proportional to human ponder time.

More recently, McIlroy-Young et al. (2020) introduced ‘MAIA’, a neural network trained on human
chess games rather than through self-play, proposing a new goal of creating a human-aligned chess
AI and achieved remarkable accuracy in modeling how humans play chess. Following the success
of MAIA, it has been shown chess players can be reliably identified using a small number of games
through their playing style (McIlroy-Young et al., 2021), and fine-tuning on individual gameplay
substantially boosts the model’s capability of predicting the individual’s moves (McIlroy-Young
et al., 2022). Recently, Maia-2 (Tang et al., 2024) further unifies the Maia models at different skill
levels into a single model. Jacob et al. (2022) showed that policy and value functions learned from
humans can be combined with MCTS to improve policy strength, and we extend upon their work and
demonstrate that adaptive search enables ALLIE to almost perfectly match the strengths of human
players up to the grandmaster level. By learning value estimates generated by an oracle search engine,
Ruoss et al. (2024) showed that neural networks can achieve grandmaster-level performance without
inference-time search. Our approach differs in that our networks are supervised on human data alone.

Our proposed method is inspired by Toshniwal et al. (2022)’s idea of treating chess like a language
modeling task. Feng et al. (2023) fine-tuned a language model on chess games, books and commentary
and demonstrated that the model can track pieces throughout games and solve chess puzzles, and
Karvonen (2024) demonstrated that a language model trained to predict chess moves exhibits emergent
understanding of chess concepts. Zhang et al. (2024) similarly showed that a Transformer model
trained on human games can be made to play at a higher skill level than the games in its training data
by using a low sampling temperature.

3 BUILDING ALLIE, A HUMAN-ALIGNED CHESS MODEL

Here, we describe how we represent a chess game, and our training and inference methods.

3Elo is a standard measure of strength in two-player games (higher is stronger). A 2500 Elo level corresponds
to 99.6% percentile of players on the popular chess website Lichess.
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Figure 1: A position in a chess game (left) can be represented as the sequence
of moves that produced it (right), using the UCI notation, and some metadata.
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Figure 1: (a) The current game state can be represented as the sequence of moves that produced it.
This sequence, which also includes metadata on the players’ skill and the time setting (e.g. a blitz
game), is inputted to a Transformer, which predicts the next move, pondering time for this move, and
a value assessment of the move. (b) At inference time, we employee Monte-Carlo Tree Search with
the value predictions from the model. The number of rollouts Nsim is chosen dynamically based on
the predicted pondering time.

3.1 REPRESENTING A CHESS GAME SEQUENTIALLY

Vocabulary To apply language modeling techniques to chess, we need a sequential representation
of a chess game. To this end, we view a chess game as a sequence of moves. We encode moves
using Universal Chess Interface (UCI) notation, which specifies every chess move as its starting and
ending square (see example in Figure 1). We initialize the language model’s vocabulary Σ as the set
of possible moves under UCI notation (1968 in total). A board state is implied by the sequence of
moves that led to that board state. Game metadata, including the two players’ skill levels, time control
(how much time each player is allowed to take over all the moves in a game), and a termination
condition (e.g., whether the game ends with a resignation or checkmate) are added to the vocabulary
as special tokens.4 This representation is compact for training: contextualized by the previous tokens
in a sequence, each token in the dataset implicitly maps to a single board state, making training on a
dataset with billions of chess positions feasible and efficient.

Strength conditioning Player skill in chess is computed using the Elo rating system (Elo, 1967).
Elo scores normally fall in the range of 500 (beginner players) to 3000 (top chess professionals). To
calibrate the playing strength of ALLIE to different levels of players, we model gameplay under a
conditional generation framework (Keskar et al., 2019), where encodings of the Elo ratings of both
players are prepended to the game sequence.

The obvious way to encode Elo ratings as tokens would be to add items to our vocabulary representing
each Elo score between 500 and 3000. However, this approach runs into data sparsity issues (a small
number of games for each individual Elo rating), and this discrete representation fails to encode the
fact that scalar distances between Elo scores are meaningful (a difference of 5 between two players’
Elo ratings indicates they are much closer in ability than a difference of 500). To address these issues,
we introduce soft control tokens, which interpolate between a weak token, representing 500 Elo, and
a strong token, representing 3000 Elo. For a player with Elo rating k, we compute a soft token ek
by linearly interpolating between the weak and strong tokens: ek = γeweak + (1− γ)estrong, where
γ = 3000−k

2500 . During training, we prefix each game with two soft tokens corresponding to the two
players’ strengths.

3.2 TRAINING ALLIE TO MOVE, PONDER AND EVALUATE

Using a sequential representation of a chess game, we can naturally apply standard sequence modeling
techniques to model how human players make moves and when they decide to resign (we treat
“resignation” as just another move token the model can assign probability to). ALLIE is built using a
decoder-only Transformer model (architecture details in Section 4.2) which inputs the game history
as a sequence and has three output heads: (1) a policy head pθ that outputs a probability distribution
over possible next moves, (2) a pondering-time head tθ that outputs the number of seconds a human
player would take to come up with this move, and (3) a value assessment head vθ that outputs a scalar

4Time control and skill level are prepended to the start of the game sequence, and termination condition
tokens are appended to the end of the game sequence.
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value representing who is expected to win the game. The pondering-time and value assessment heads
are crucial for the human-aligned chess play that we aim to capture. The former allows ALLIE to
behave like a human, taking more time to make decisions in complex game states than simple ones,
and the latter allows the model to discriminate between good moves and blunders. All three heads
combined enable the adaptive MCTS procedure, detailed in Section 3.3.

All three prediction heads are individually parameterized as linear layers applied to the outputs of the
final decoder layer. Given a dataset D = {(m, t, v)} of chess games, each represented as a sequence
of moves m ∈ ΣN , human think time before each move t ∈ RN and the ultimate game outcome
v ∈ {−1[black wins], 0[draw], 1[white wins]}, we train the model to minimize the log likelihood of
the next move and mean squared errors of time and value predictions:

L(θ) =
∑

(m,t,v)∈D

 ∑
1≤i≤N

(
− log pθ(mi |m<i) + (tθ(m<i)− ti)

2
+ (vθ(m<i)− v)

2
) .

A similar objective of jointly learning policy and value can be found in MCTS-based reinforcement
learning algorithms (Silver et al., 2017; Schrittwieser et al., 2020).

3.3 POLICY IMPROVEMENT UNDER TIME CONSTRAINTS WITH ADAPTIVE SEARCH

Virtually all strong chess engines (Romstad et al., 2008; Pascutto & Linscott, 2019) rely on search, a
process of exploring possible future moves to pick the best move. Past work has shown that search is
crucial for achieving strong gameplay (Silver et al., 2017; Jones, 2021). Since ALLIE produces both
policy and value estimators, planning algorithms such as Monte-Carlo tree search (MCTS) (Coulom,
2007) can be applied off-the-shelf for policy improvement. As shown in Figure 1b, MCTS works by
rolling out multiple moves into the future, selecting paths that are most likely to lead to a win.

State-of-the-art search-based chess engines such as AlphaZero use a constant number of rollout steps
for each move, leading to them assessing tens of thousands to millions of positions before playing a
move. Such large amounts of search are incompatible with our goal of human-alignment; in blitz
games, humans frequently makes moves with <1 second of time usage, and it is practically infeasible
to search through such a large number of rollouts on consumer hardware in this timeframe. On the
other hand, in critical game states where the model predicts a human would spend more time to
ponder, it is plausible that running deeper simulations would allow for better modeling of the elevated
depth of human reasoning in such positions and improve policy strength.

To this end, we propose a time-adaptive MCTS procedure that aligns MCTS with human reasoning:
at each position m, we dynamically set the number of rollouts Nsim = ⌊c · tθ(m)⌋, where tθ(m)
is the predicted human pondering-time at the position m and c a constant.5 Another alternative
implementation of time-adaptive MCTS would be to keep searching until a timeout is reached, but
we opted against doing this in order to make our implementation independent of hardware efficiency.

4 EXPERIMENTAL SETUP

4.1 DATASET

We constructed a raw dataset of chess games using all blitz6 games played in 2022 on Lichess,
a popular online chess platform.7 To address the data’s skew toward low-skill-level games, we
downsampled the dataset to have roughly equal numbers of games in bins in increments of 100 Elo.
From this downsampled dataset, we use 18 thousand games for testing, and the remaining games for
training and validation. In total, the training set contains 91 million games and 6.6 billion tokens.

Our primary automatic evaluation metric is move-matching accuracy—how often does the model
correctly predict the next move in the game. Following McIlroy-Young et al. (2020), when eval-
uating accuracy, we discard the first 5 moves of each game, which reduces the impact of opening

5The value of c is set so that Nsim = 50 for the average position. Our MCTS implementation and
hyperparameters follow AlphaZero (Silver et al., 2017). See Appendix E.2.

6A blitz game is one where each player usually can take 3-5 minutes across all their moves.
7https://database.lichess.org/
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memorization (there are only so many ways to begin a chess game). We further omit from evaluation
any moves made under time pressure (when there is less than 30 seconds on the clock) to avoid the
influence of random moves made due to being low on time. This leaves us with 884,049 positions
from an evaluation test set. To further evaluate the abilities of ALLIE to produce valid chess moves
under out-of-distribution game states, we also constructed a dataset of random chess games, where
each game contains moves that are randomly sampled among legal moves in each position.

4.2 MODEL ARCHITECTURE

Our model uses a standard decoder-only Transformer architecture (Vaswani et al., 2017) with 355M
parameters. We initialize model parameters (excluding embeddings) using weights from the pre-
trained GPT-2 medium model (Radford et al., 2019), and embeddings are trained from scratch
since the vocabulary is not shared with natural language. It may seem surprising that that learned
model weights for language modeling are useful for a non-linguistic task like chess, but this transfer
technique is shown effective in other domains (Papadimitriou & Jurafsky, 2020; Shen et al., 2023).
The value prediction head is followed by a tanh activation layer that squeezes the value prediction
to the range [−1, 1], with the extreme values corresponding to wins for each of the two players.
Time prediction labels are normalized to have variance 1, and all three loss terms are weighted
equally. The model is trained for 2M steps with a global batch size of 131,072 tokens on our training
set. This corresponds to roughly 40 epochs over the training data. Additional training details and
hyperparameters are provided in Appendix E.1. In Appendix F, we explore the effect of both dataset
size and parameter count on model capability. We find that our setting is mostly data-constrained—
model performance is limited by the number of human chess games available on the Internet—and
doubling model size has only a small effect on the model’s ability of predicting human moves.

4.3 BASELINES

We compare our ALLIE’s learned policy against MAIA (McIlroy-Young et al., 2020), which, like
ALLIE, is trained on human-games to make next-move predictions. MAIA is a family of nine
individual models, each trained on Lichess games from players with Elo ratings in a given range.
We refer to these as MAIA-{1100, 1200, . . . , 1900}. The MAIA network architecture is a residual
CNN, and their move prediction objective used during training is similar to our approach, but the
input representation is board state without full move history information. To unify the different Maia
models into a single strong baseline, we define a MAIA⋆ model by adaptively choosing the Maia
model with the closest Elo rating to the players’ ratings. For example, a 1480-rated game would
be evaluated using the Maia-1500 model. We note that publicly available MAIA models are much
smaller than ALLIE, and this has an effect on the relative performance of the models. We explore a
variant of ALLIE with half the parameters in our ablation study (Section F).

The primary comparative metric we use for automatic evaluation is move-matching accuracy: what
fraction of the time does the system correctly predict the move a human would have made. Other
aspects of human-aligned chess play (e.g., modeling human moves vs. time usage) require different
evaluation metrics, which we detail in Section 5. To the best of our knowledge, there are no existing
chess engines that model how humans play chess in terms of pondering and resigning, so we do not
have a direct comparison with a baseline system for these behaviors.

Though large language models (LLMs) such as OpenAI’s GPT-3.5(-turbo-instruct) have not (to
our knowledge) been explicitly trained to play chess, they have been shown to reliably produce
humanlike next moves.8 This is accomplished by prompting the LLM with a textual representation of
the game state using PGN notation.9 Due to dependency on the textual PGN notation, this approach
is not compatible with OpenAI’s latest chat-based LLMs (e.g., GPT-4), and we report prompts and
implementation details in Appendix B. It is difficult to make a fair comparison between ALLIE and
GPT-3.5 because on the one hand, GPT-3.5 has many more parameters and potentially observed much
more chess data during pre-training. On the other hand, GPT-3.5 was never intended to play chess,
and the fact that it can play chess is somewhat remarkable. We report GPT-3.5 results just to provide
context on performance achievable by a frontier large language model.

8https://nicholas.carlini.com/writing/2023/chess-llm.html
9The Portable Game Notation (PGN) is a popular human-readable and human-writable textual notation for

chess games.
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Table 1: All configurations of our chess-engine, ALLIE.

Config. Description

ALLIE-POLICY Softmax sampling according to pθ with unit temperature.
ALLIE-GREEDY Greedy decoding according to pθ conditioned on a 2,500 Elo level.
ALLIE-SEARCH ALLIE-POLICY with non-adaptive MCTS (50 rollouts).
ALLIE-ADAPTIVE-SEARCH ALLIE-POLICY with adaptive MCTS (c set such that MCTS performs

50 rollouts on average across all positions).

Table 2: ALLIE learns to play valid
chess moves. 95% confidence inter-
vals are shown.

Evaluation set Top-1 move
is valid (%)

Lichess 100.0± 0.0
Lichess (under check) 100.0± 0.0
Random 99.9± 0.0
Random (under check) 96.6± 0.0

Table 3: ALLIE-POLICY outperforms state-of-the-art meth-
ods in human move prediction. Move prediction accuracy
with 95% confidence intervals are reported in the table.

Human plays... ALLIE (%) Maia⋆ (%) GPT-3.5 (%)

All moves 55.7± 0.1 51.6± 0.1 53.7± 0.1
Castling 74.3± 0.5 73.3± 0.6 72.4± 0.6
En passant 70.4± 4.1 67.7± 4.2 71.4± 4.0
Pawn promotion 86.9± 1.7 85.1± 1.8 86.0± 1.7
Threefold repetition 92.0± 4.6 87.0± 5.7 92.8± 4.4

4.4 LARGE-SCALE HUMAN STUDY

In addition to conducting offline evaluation, we deployed the four configurations of ALLIE described
in Table 1 as well as MAIA⋆, to play blitz games on the website Lichess. ALLIE-POLICY was
conditioned to play adaptively at the opponent’s strength, and moves were sampled from the model
distribution pθ. ALLIE-GREEDY was conditioned to play at a 2,500 skill level, and top moves
under the model distribution are played. This setting allowed us to measure the upper bound of the
policy strength.10 ALLIE-SEARCH and ALLIE-ADAPTIVE-SEARCH employ inference-time MCTS
to improve move selection, with the latter using an adaptive number of rollouts. Overall, we collected
7,483 blitz games with 2,412 human players over a multi-week period. After each game, players
were invited to fill out a survey about their experience. Survey results can be found in Appendix D.2.

5 RESULTS

To apply inference-time search to ALLIE, we first need to understand if chess is at all learnable
from human-generated data (Section 5.1), and if so, how well ALLIE models human gameplay
(Section 5.2). We discuss our main results on adaptive MCTS and skill calibration in a large-scale
study against human players in Section 5.3.

5.1 DOES ALLIE LEARN THE RULES OF CHESS?

First, we ask whether the rules of chess are learnable from human-generated chess data. The model
produces a softmax distribution over roughly two thousand possible chess moves, and we can test
if the model has indeed learned the rules of chess by checking if model assigns high probability to
valid moves, and low probability to invalid moves. While we evaluate the model’s behavior on actual
human games, it is also important to test if the model can generalize to out-of-distribution positions
that are rare in human games but are nevertheless valid: a model that has learned the rules of chess
should play legal moves in randomly generated games as well. Beyond testing the model behavior in
the aggregate, we further examine the model’s behavior when special chess rules restricting valid
moves (e.g., check) are in effect.11

In Table 2, we report how often the top move from the model distribution is valid. On both the human
and random evaluation sets, we find that the top move is almost always valid: 100% of the time on
human games, and 99.9% of the time on random games. Softmax distributions by definition assign

10A rating of 2500 is typically considered as the threshold for grandmaster level play.
11See Appendix A for a glossary of chess terms.
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Figure 2: Adaptive search enables matching human moves at expert levels. Move-matching accuracy
of ALLIE-POLICY, ALLIE-ADAPTIVE-SEARCH, MAIA and GPT-3.5 are reported across skill levels.
ALLIE-SEARCH has virtually the same move matching accuracy as ALLIE-ADAPTIVE-SEARCH and
is omitted from the figure.

non-zero probabilities to all (including invalid) moves, but this probability is vanishingly small: 0.2%
in both human and random games (see Table 7 in Appendix C.1). In positions where the king is under
check,12 the model still only assigns 0.2% of probability to all invalid moves. Our results suggest that
the model has indeed learned the rules of chess from observing human chess games, and generalizes
reasonably well to out-of-distribution positions.

5.2 HOW WELL DOES ALLIE MODEL HUMAN GAMEPLAY?

The ideal human-aligned chess bot should behave indistinguishably from a human chess player. A
major aspect of humanlikeness is in the moves played: for a given game state, a humanlike chess bot
should play the same move as a human would in the same position. Beyond moves played, we argue
that it is important to match the time humans ponder their moves before taking them, and resign when
appropriate—these are also essential components of how humans play chess.

Moves. On the Lichess evaluation set, we compare how often ALLIE, GPT-3.5, and the MAIA
models play the same moves as humans. Following McIlroy-Young et al. (2020), we consider the
move-matching accuracy metric, defined as the fraction of top-1 moves under the model distribution
that matches human moves at the same positions. Over the entire test set, the top move produced by
ALLIE matches human moves 55.7% of the time, compared to MAIA⋆’s 51.6% and GPT-3.5’s 53.7%
(Table 3).Shown in Figure 2, we find that ALLIE matches human moves more accurately than MAIA
and GPT-3.5 models across almost the entire skill spectrum. Notably, ALLIE-ADAPTIVE-SEARCH
outperforms ALLIE-POLICY at 2300 Elo and above, providing evidence that search is crucial for
modeling the behavior of expert-level human players (Jacob et al., 2022).

We further report move-matching accuracy of special moves such as castling, en passant, pawn
promotion, and threefold repetition in Table 3. ALLIE reaches higher move-matching accuracy than
MAIA⋆ for all four types of special moves, and is competitive with GPT-3.5 overall.

Pondering time and resignation. Additional dimensions of human behavior, including pondering
time and resignation, are also key aspects in humanlike gameplay. We find a strong correlation
between the model’s predicted think time and human think time, with Pearson’s r = 0.697. This
suggests that ALLIE successfully learns to predict when humans do and do not ponder in a position.
Figure 3 shows the distribution of ALLIE’s predicted think time for different amounts of time spent
by humans. There is a clear monotonic relationship, but interestingly ALLIE tends to predict lower

12This is a game state where the set of valid moves is more restricted than usual; the player must make a move
that prevents the opponent from capturing their king piece.
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Figure 3: ALLIE’s time predictions are strongly
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creasingly predictable as the game progresses.

pondering times than humans do. This is probably because of the skew in pondering time distribution:
the majority of moves in blitz games is played under 5 seconds, and the model is incentivized to
“hedge” its prediction and output shorter pondering times.

We further evaluate whether ALLIE can resign in losing positions like humans. We define resignation
as when a special resignation token <resign> is assigned higher likelihood than all valid moves on
the board, and the predicted board value is below -0.9 from the perspective of ALLIE. We focus our
analysis on both the true positive rate (TPR), i.e., the number of positions where the model resigns
when humans resign, and false positive rate (FPR), i.e., the number of positions where the model
resigns when humans do not resign. Over the evaluation set, we observe a TPR of 86.4%, indicating
ALLIE usually resigns when a human would. ALLIE almost never resigns when a human wouldn’t,
with a FPR of 0.1%. Our results highlight that ALLIE models human chess play holistically, not only
in terms of moves played, but also in pondering time and resignation when approriate.

Reliable board value estimate. Before applying a search algorithm such as Monte-Carlo tree
search (MCTS), we need a value function that guides exploration of promising game states. Recall
that ALLIE is trained to predict the outcome of games at each position—which can be conveniently
interpreted as a board value function. In Figure 4, we show how well ALLIE’s value function and an
oracle value function correlate with game outcomes.13 By observing only outcomes of games without
additional supervision, we find that ALLIE learns to assign surprisingly reliable value estimates to
chess board states: ALLIE’s value estimates closely match that of the oracle, and predicts game
outcomes just as well. Notably, ALLIE has access to game metadata (in particular, player skill levels)
that Stockfish does not, which may explain why it even outperforms Stockfish sometimes. Our
results suggest that ALLIE learns credit assignment in chess by observing game outcomes alone, and
provides the foundation for applying value-guided search methods such as MCTS.

5.3 EVALUATING SKILL CALIBRATION VIA GAMES WITH HUMANS

Our offline evaluations suggest that ALLIE predicts human behavior well, but to study whether ALLIE
could calibrate to strength of human players, we had ALLIE play against real humans at a variety
of skill levels. A chess engine that is perfectly skill-calibrated should win 50% of games against
players regardless of their skill level. Inspired by the expected calibration error metric (Naeini et al.,
2015; Guo et al., 2017), we define a skill calibration error (SCE) metric. Games between the chess
engine and humans are first partitioned into equally spaced bins based on skill level (player Elo). For
a bin of games B between the evaluated system and human players, we take the absolute difference
between the system’s estimated performance on the set of games, and the average Elo of the human

13We use evaluations of Stockfish (Romstad et al., 2008) after 106 nodes searched.
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Table 4: Adaptive search enables remarkable skill calibration. Mean and maximum skill calibration
errors are computed by binning human players into 200-Elo groups. We also report systems’ estimated
performance against players at the lower and upper Elo ends of the skill spectrum.

Skill Calibration Error Online performance vs. ...
System Mean ↓ Max ↓ 1100-rated 2500-rated

Search-free
MAIA⋆ 146 336 1251 2138
ALLIE-POLICY 127 351 1134 2136
ALLIE-GREEDY 328 677 1799 2260

Search-based
ALLIE-SEARCH 80 166 1180 2318
ALLIE-ADAPTIVE-SEARCH 49 95 1196 2528

players as the calibration error:14

SCE(B) = |SystemElo(B)−HumanElo(B)| .

Search-free methods do not match the strength of experts. In Figure 5, we show estimated
ratings of the systems against human players across different strength levels, and well-calibrated
systems should have a rating difference close to 0. Mean and maximum skill calibration errors are
reported in Table 4. We find that ALLIE-POLICY, ALLIE-GREEDY and MAIA⋆ are not calibrated to
opponent strength. ALLIE-POLICY and MAIA are more or less evenly matched against players below
2100 Elo, but against players above 2400 Elo, both models perform poorly, with ALLIE-POLICY
scoring 11.1% and MAIA⋆ scoring 12.5% on average. ALLIE-GREEDY is considerably stronger
than weak players (< 2100 Elo), and yet still loses 75% of games to players above 2400 Elo. All
search-free systems perform progressively worse against stronger players, suggesting that strength
conditioning, sampling temperature (ALLIE-GREEDY) or multiple expert models for different skill
levels (MAIA⋆) may not be sufficient to match the strength of strong human players.

Skill-calibrated chess play with adaptive search. Despite being a strong human move prediction
model, search-free ALLIE configurations do not match the level of gameplay of strong (≥ 2000
Elo) players. Qualitatively, models blunder pieces and make suboptimal moves in ways that strong
players do not (see online players’ feedback in Figure 11, Section D.2). In this section, we discuss
how we can improve the skill calibration of ALLIE—in particular its performance against strong
players—and maintain humanlike play by incorporating an adaptive search method. Recall that

14We follow rules of the International Chess Federation for computing performance Elo and report evaluation
details in the appendix D.1.
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Table 5: Some examples of the qualitative feedback we received in our post-game survey.

System Feedback
ALLIE-
ADAPTIVE-
SEARCH

I liked the fact Allie plays like a human, and makes human mistakes. She’s not like,
let’s say, Stockfish level 1 making absurd mistakes, nor an inhuman AI with perfect
play, but a humanlike player that fights for a win and makes human-reasonable moves.
Honestly, I’m not a top player, but I like to play with similar opponents and I’m also a
programmer with interest in AI, and I feel satisfied with Allie’s behaviour. Great job :)

ALLIE-
POLICY

I really felt like I was playing against a human, but I have some opinions on this robot:
Firstly, I noticed that he plays the opening well, which is a very good thing Secondly,
I also noticed that in the middle of the game his accuracy decreases somewhat, he
makes mistakes and inaccurate moves, and this is just like a human.

ALLIE-ADAPTIVE-SEARCH uses an adaptive search budget allocated linearly according to predicted
human pondering time at each position, and we compare it with an equal-compute MCTS baseline,
ALLIE-SEARCH.

We find that ALLIE-ADAPTIVE-SEARCH improves skill calibration remarkably, achieving an average
skill calibration error of 49 Elo, and a maximum skill calibration error of 95 Elo. Figure 5 helps
contextualize this finding, where we see the performance ratings of ALLIE-ADAPTIVE-SEARCH
exhibit a near-linear relationship with opponent ratings. This is a substantial improvement over all
search-free systems, all of which underperform ≥ 2400 Elo players by at least 200 Elo points.

More surprisingly, ALLIE-ADAPTIVE-SEARCH outperforms standard AlphaZero-like MCTS (ALLIE-
SEARCH), in both overall skill calibration and performance against 2500 Elo human players. Our
findings suggest that humanlike reasoning at “critical” positions is useful for reaching expert-level
chess. Crucially, ALLIE-SEARCH and ALLIE-ADAPTIVE-SEARCH maintain humanlike play, both
achieving a move-matching accuracy of 55.9% compared to 55.7% for ALLIE-POLICY and 51.6%
for MAIA⋆.

6 DISCUSSION

In this work, we demonstrate a method for training a state-of-the-art chess AI that models how
humans play chess: our system ALLIE exhibits remarkable precision in playing humanlike moves,
as well as pondering and resigning like humans. Through a time-adaptive Monte-Carlo tree search
algorithm, ALLIE can be evenly matched with players from beginner (1100 Elo) to expert level
(2500 Elo) with almost no skill gap, by learning chess exclusively from humans without the need of
distilling from a strong chess engine. We believe the techniques developed in this paper have broad
applicability for other settings where aligning AI models with imperfect human reasoning is crucial,
and we look forward to future explorations in other complex settings, such as the alignment and
oversight of superhuman AI systems.

While offline evaluation metrics and quantitative analysis of games with real human players reveal
ALLIE’s strengths, especially relative to prior approaches, more progress is still necessary to fully
realize our goal of a human-aligned chess engine. In qualitative feedback, many players were positive
about ALLIE (see Table 5), but several shortcomings were also repeatedly emphasized. Players
especially noted ALLIE’s propensity toward late-game blunders and that its pondering times were
sometimes long in positions where there is only one reasonable move. However, since players all
knew they were playing against a bot, it is hard to disentangle their perspectives from this knowledge.
For example, contrasting with the qualitative feedback, we empirically observed that move prediction
accuracy actually improves as games progress, especially in the last few turns (see Figure 6). For
future work, it would be interesting to conduct a proper Turing test, where players do not know
whether they are playing against an AI or a human-player of a similar Elo level.

Our approach relies on pre-training, which is limited by available data: the vast majority of online
chess games are played at fast time controls, and therefore it is more challenging to use data-driven
methods to model human behavior in slower games. Future work should explore methods to model
human reasoning in slower games, where players have more time to think and make more accurate
moves, and test the generalization of our approach to different time controls and game formats.
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A GLOSSARY OF CHESS TERMS

In this section, we provide a glossary of chess terms that are used throughout the paper. The terms
are summarized in Table 6.

Table 6: Chess glossary.

Chess term Definition
Check A situation in which a player’s king is under direct attack by an oppo-

nent’s piece. The player must resolve the check on their next move.
Check limits the number of valid moves in a position.

Castling A special move involving the king and either rook. The king moves
two squares towards the rook, and the rook moves to the square the
king crossed.

En passant A special pawn capture that can occur immediately after a pawn makes
a double-step move from its starting position. The opposing pawn can
capture it as if it had only moved one square.

Pawn promotion When a pawn reaches the opposite end of the board, it can be promoted
to any other piece (usually a queen) of the same color, except a king.

Threefold repetition A rule that states a player can claim a draw if the same position occurs
three times during a game, with the same player to move each time.

B GPT-3.5 EVALUATION

Following the implementation of Carlini (2023), we encode chess move sequences in a PGN format
(see Figure 7) and feed them as prompt to GPT-3.5-turbo-instruct for evaluation. Note that we were
unable to use the latest OpenAI models like GPT-4 since this evaluation requires access to a non-chat
language model API. We use greedy decoding to generate the next move, and in the rare case when
the model does not output a legal move, a random move is played.

[White "Garry Kasparov"]
[Black "Magnus Carlsen"]
[Result "1/2-1/2"]
[WhiteElo "2900"]
[BlackElo "2800"]

1. e4 e5 2. Nf3

Figure 7: Prompt for GPT-3.5-turbo-instruct evaluation.
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C OFFLINE EVALUATION

C.1 LEGAL MOVES

In Table 7, we show that ALLIE not only learns to assign high probability to valid moves in human
games but also in out-of-distribution, randomly generated games. Under a softmax distribution, the
probability mass of all invalid moves is low, indicating that the model is capable of distinguishing
between valid and invalid moves.

Table 7: ALLIE learns to play valid chess moves. 95% confidence intervals are shown.

Evaluation set Top move is valid (%) Probability mass of all invalid moves (%)

Lichess 100.0± 0.0 0.2± 0.0
Lichess (under check) 100.0± 0.0 0.2± 0.0
Random 99.9± 0.0 0.2± 0.1
Random (under check) 96.6± 0.0 4.1± 0.2

C.2 HUMAN MOVE PREDICTION

Overall, we find ALLIE outperform state-of-the-art methods in human move prediction (Table 8).
Similar to the findings of Jacob et al. (2022), we find that, adding Monte-Carlo tree search (ALLIE-
ADAPTIVE-SEARCH) improves upon a pure imitation learning policy (ALLIE-POLICY). Another
interesting observation is that as the game progresses, human moves become increasingly predictable,
as shown in Figure 6.

Table 8: ALLIE outperforms state-of-the-art methods in human move prediction. Move prediction
accuracy with 95% confidence intervals are reported.

Human plays... ALLIE-POLICY (%) ALLIE-ADAPTIVE-SEARCH (%) Maia⋆ (%) GPT-3.5 (%)

All moves 55.7± 0.1 55.9± 0.1 51.6± 0.1 53.7± 0.1
Castling 74.3± 0.5 74.3± 0.5 73.3± 0.6 72.4± 0.6
En passant 70.4± 4.1 71.0± 4.0 67.7± 4.2 71.4± 4.0
Pawn promotion 86.9± 1.7 87.5± 1.6 85.1± 1.8 86.0± 1.7
Threefold repetition 92.0± 4.6 90.6± 4.9 87.0± 5.7 92.8± 4.4

C.3 ANALYSIS OF ALLIE’S VALUE PREDICTIONS

ALLIE’s supervision on human game outcomes is designed to teach the model to assign high values
to positions that a human can convert, as opposed to positions that are theoretically winning under
perfect play. This section explores the correlation between ALLIE’s value predictions and human
game outcomes. We also qualitatively analyze a few positions where ALLIE diverges from Stockfish
in its value predictions.

C.3.1 ROLE OF METADATA IN VALUE PREDICTION

To investigate the role of player Elo in value prediction, we compared the accuracy of ALLIE’s value
predictions against Stockfish evaluations in predicting game outcomes at various stages of the game.
The analysis was conducted on decisive games, excluding draws.

Table 9: Game outcome prediction accuracy with a ≤10 Elo gap between players

Game Phase Stockfish ALLIE

Opening 50.4% 55.2%
Midgame 62.9% 65.6%
Endgame 73.9% 74.3%
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Table 10: Game outcome prediction accuracy with a >100 Elo gap between players

Game Phase Stockfish ALLIE

Opening 65.2% 76.8%
Midgame 69.9% 79.3%
Endgame 82.5% 83.7%

8rZbl0a0s
7opo0Zkop
60ZnZ0m0Z
5Z0ZPZ0Z0
40ZBZ0Z0Z
3Z0Z0Z0Z0
2POPO0OPO
1SNAQJ0ZR

a b c d e f g h

Figure 8: Opening position where value predictions of ALLIE and Stockfish diverge.

Elo provides significant information about the likely winner. In games with at least a 100 Elo gap,
ALLIE outperforms Stockfish by 9.4% in the midgame, compared to 2.3% in games with a 10 Elo gap.
However, even in games with minimal skill differences, ALLIE consistently outperforms Stockfish
across all phases. Taken together, these results suggest that ALLIE’s value predictions are more
reliable in human games than Stockfish’s, even without information about the players’ skill level.

C.3.2 QUALITATIVE ANALYSIS OF POSITION CONVERSION

In this section, we qualitatively analyze several positions from the test set, where ALLIE and Stockfish
diverged in the sign of their value predictions.

In an opening position (Figure 8), black has a knight for two pawns but cannot castle. Black is
objectively winning (Stockfish assigns a 77.0% probability of winning to black), while ALLIE favors
white with a 78.8% probability, since the position requires a series of precise moves to convert. In the
actual game, black misplayed the position and lost the game within five moves, suggesting ALLIE
may be able to better value positions that are objectively winning but challenging for humans to
convert.

In an endgame position (Figure 9), ALLIE surprisingly considers black winning with a 75% probabil-
ity, despite white having an extra queen (Stockfish assigns 98% to white). ALLIE likely inferred time
pressure on white from the move history, as black’s predicted advantage began several moves ago
when white blundered a rook.

However, ALLIE exhibits blindspots with evaluating checkmates and sacrifices, which strong human
players can calculate. In a midgame position (Figure 10), ALLIE gives black a 67% probability of
winning, but white is objectively winning with the queen sacrifice Qe7. The human player finds this
move and wins, as Stockfish predicted. This inability to predict checkmates and sacrifices is not
surprising, since reliable position evaluation without search is very challenging.
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80Z0Z0Z0Z
7Z0L0Z0Z0
6pZ0Z0Z0Z
5Z0Z0Z0o0
4PZ0O0Zko
3Z0Z0O0Z0
20Z0ZKZ0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure 9: Endgame position where value predictions of ALLIE and Stockfish diverge.

80Z0ZrZkZ
7Z0o0Zpop
6pZPZ0O0Z
5ZpZ0Z0lb
40L0Z0Z0Z
3ZBO0Z0Z0
2PO0Z0OpO
1Z0ZRZ0J0

a b c d e f g h

Figure 10: Midgame position where ALLIE ignores a critical queen sacrifice.

D ONLINE EVALUATION

D.1 ESTIMATION OF PERFORMANCE ELO

Our estimation of performance Elo ratings follows guidelines of the International Chess Federation
(FIDE). Let r denote the average Elo rating of the opponents, and p represent the player’s average
score against these opponents. FIDE provides a table of estimated rating differences dp corresponding
to various values of p. For example, if p = 0.5, then dp = 0, and if p = 0.75, then dp = 193. These
values indicate that a player scoring 50% against their opponents is performing at the same Elo
level, while a 75% score suggests a performance 193 Elo points above the opposition’s average. The
complete table of estimated rating differences can be found in the FIDE Handbook15. To calculate
the performance rating, one would add the rating difference dp to the average opponent rating r. This
method provides a standardized approach to estimate a player’s performance level based on their
results against opponents of known strength.

D.2 SURVEY RESULTS

In Figure 11, we show the results of a post-game survey where human players were asked to rate
the humanlikeness and enjoyability of the systems. We find that ALLIE is rated as more humanlike

15See https://handbook.fide.com/chapter/B022024 for the full rating difference table.
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(28.9% of participants strongly agree) compared to MAIA (24.8%) and more enjoyable to play against
(38.6% vs. 27.5%).
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Figure 11: Survey responses.

D.3 QUALITATIVE FEEDBACK

We provide additional examples of the qualitative feedback we received in our post-game survey in
Table 11.
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Table 11: Additional examples of the qualitative feedback we received in our post-game survey.

System Player Elo Feedback

ALLIE-
POLICY

1640 Played very human-like, resigned at the exact time a human would, and
got weaker and sort of “demotivated” as she was losing just like a human.
Amazing chess bot

ALLIE-
POLICY

1940 It’s very close to being human-like. The thing I will say is that sometimes
it appears to take non-obvious moves with no clear ”plan” and I have yet
to get it to resign. It also seems to be quite a bit weaker than I am, and I
don’t really play Blitz so I can’t imagine I’m very good.

ALLIE-
POLICY

2038 As in the last game I won against Allie, the dropped piece seemed to come
out of nowhere. It wasn’t a missed tactic or anything like that, but a bad
sacrifice. Sometimes of course this will happen against humans, but both
of the games I played where this happened to me, it was hard to see any
lines (where I didn’t outright blunder two or more moves in a row) where
the sacrifice would lead to anything. I also expected a resignation at the
end.

ALLIE-
GREEDY

1139 Felt human - sometimes when I play Lichess’s implementation of Stock-
fish at a level appropriate for my skill, it makes really bizarre moves, even
catastrophic. Maybe they’re calculated blunders for noobs like myself,
but they’re unrealistic. A novice might miss an obvious fork or skewer,
but they would never give up their queen for no reason. They would at
least try to save it, even if ultimately impossible. Allie doesn’t seem to do
that.

ALLIE-
GREEDY

912 It seemed at the end that the bot’s goal was to clean out my pieces and
promote a pawn for a second queen to checkmate rather than just go for a
checkmate. (I suppose it’s possible that the promotion would have been
fewer turns–I’d have to go back and check.) But I feel like a human player
would have just gone for a QK v K-style checkmate rather than clean out
several of my pawns to make an easy promotion.

ALLIE-
GREEDY

2008 did not take the pawn on e4. Then played what it feels like a pretty
accurate series of moves later on in the game. From move 21 the bot
played all the best moves some of which feel pretty strong.

ALLIE-
ADAPTIVE-
SEARCH

1637 The bot is plays very much like a human. It understood when it had to
move fast and when it had to take time. The opening was a little inaccurate
but other than that the bot is really good.

ALLIE-
ADAPTIVE-
SEARCH

1998 I’d say all moves up until 26. Qc6 were human. Qc6 is slightly unexpected
but not that bad.
It was a bit strange that it took a few seconds to take the rook on move 30,
because a real human would have understood what they were doing by
29... Be3 and taken immediately to finish the combination.
Just like Maia I don’t think it knows what to do in the endgame, which
probably contributed to the blunder.
I slightly expected the bot to do 49... Be4 or Ra2 or something to stop the
pawn, but no.

ALLIE-
ADAPTIVE-
SEARCH

2004 In terms of play I think what I found the least human like was it’s will-
ingness to trade when it was down a full piece. My intuition is that these
very low level concepts like that even very suboptimal moves being prac-
tically better because it increases the long term probability of blunders, is
something bots of all strengths struggle with.
However, my opinion is obviously affected by me knowing that I was
playing a bot and I’m pretty sure I wouldn’t have suspected anything if
this was just a normal game! Very cool project!
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E TRAINING AND INFERENCE

E.1 PRE-TRAINING HYPERPARAMETERS

ALLIE is a GPT-2-style (Brown et al., 2020) transformer decoder model with 355M parameters,
trained on a dataset of 6.6 billion tokens. We use a global batch size of 131,072 tokens, a learning
rate of 6 × 10−4, decaying to 1 × 10−5 using cosine annealing (Loshchilov & Hutter, 2017), and
a maximum sequence length of 512 tokens. The model is trained for 2 million steps, which took
approximately 2 weeks on 8 NVIDIA A6000 GPUs using bfloat16 precision.

E.2 MCTS IMPLEMENTATION DETAILS

Our MCTS implementation and hyperparameters follow a variant of AlphaZero (Silver et al., 2017)
proposed by Grill et al. (2020). A way to view MCTS is KL-regularized policy optimization (Grill
et al., 2020): in the limit, MCTS produces an optimized policy π that maximizes search Q values
with KL regularization towards the model policy pθ learned from humans:

π = argmax
π

∑
a

Q(s, a)π(s, a)− λDKL (π ∥ pθ) . (1)

This regularization is key to prevent the search from diverging from the model policy (Jacob et al.,
2022), and the KL-regularization strength λ ∼ c/

√
Nsim, where c is a hyperparameter. In standard

MCTS (ALLIE-SEARCH) with fixed number of rollouts, Nsim is fixed, and λ is a constant. In adaptive
MCTS (ALLIE-ADAPTIVE-SEARCH), we scale c by the square root of the search budget to achieve
the same effect of a constant regularization strength. We refer the interested reader to (Silver et al.,
2017; Grill et al., 2020) for more details on the MCTS algorithm and its implementation.
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F ABLATIONS

To assess the impact of the training, data, and model decisions on ALLIE’s capability to play
humanlike chess, we conduct ablation studies with the following scenarios:

• Half data: ALLIE trained on 50% of the dataset for the same number of steps.
• Half compute: ALLIE trained on the full dataset for 50% of the steps.
• Half parameters: A smaller ALLIE model (124M) with roughly half the parameters,

keeping the training data and steps unchanged.
• Double parameters: A larger ALLIE model (774M) with roughly double the parameters,

keeping the training data and steps unchanged.
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Figure 12: Left: Validation loss of ALLIE and ablations throughout training. Right: Move-matching
accuracy of ALLIE and ablations on the evaluation set.

Training data and compute. We find that the size of the training dataset has a measurable impact
on the final loss and move-matching accuracy of the model. Halving the training data leads to a
1.0% decrease in move-matching accuracy over the entire dataset, with signs of overfitting emerging
towards the end of training.16 Conversely, halving the compute (training tokens) minimally affects
the final model performance, likely because the model still undergoes approximately 20 epochs
of training over the dataset. These observations suggest that the scaling of our training setup is
data-constrained (Muennighoff et al., 2023), making substantial gains challenging without additional
data. Notably, our dataset contains an entire year of blitz games on Lichess, representing a substantial
portion of publicly available internet games, thus creating a 10x larger dataset would be difficult.

Model size. Another factor affecting ALLIE’s performance is the model size. Halving the model
size moderately impacts performance, resulting in a 1.2% decrease in move-matching accuracy. Con-
versely, doubling the model size yields minimal gains, with only a 0.3% increase in move-matching
accuracy. The diminishing returns on model size suggest that further performance improvements
through scaling up the model size may be limited without additional data.

We report individual validation losses of ALLIE and ablations throughout training in Figure 13. We
find that the language modeling loss and the time prediction loss are stable across ablations and
decrease throughout training. Notably when trained on half the data, the model overfits to the value
prediction objective towards the end of training.

16Overfitting is only observed in the value prediction objective (Appendix F).
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Figure 13: Validation losses of ALLIE and ablations throughout training. Top: language modeling
loss. Middle: value prediction loss. Bottom: time prediction loss.
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