AI4X 2025, Singapore, 8-11 July 2025

Automated Benchmarking of LLMs: Applying Regression to Estimate LLM Accuracy

Suryaansh Jain®, Umair Z. Ahmed b , Shubham Sahai b , Ben Leong b

2 Indian Institute of Technology Hyderabad cs21btech11057@iith.ac.in

b National University of Singapore umair@nus.edu.sg, shubham@nus.edu.sg, benleong@comp.nus.edu.sg

1. Introduction

The frequent release of new Large Language Mod-
els (LLMs) necessitates reliable and efficient bench-
marking techniques to guide adoption decisions.
Application developers have to constantly decide
whether they should switch to a newer model or con-
tinue with an existing one. Different pricing struc-
tures and varying strengths across models further
complicates this decision [1]. It is not enough to know
whether one model is better over another [2]; devel-
opers need to know how much better it is to make the
correct price-performance trade-off.

In this paper, we examine how to benchmark LLMs
for a class of problem where many different answers
could be correct. Human evaluation, while ideal, is
too resource-intensive for it to be practical at scale.
We need automated methods to reliably estimate cor-
rectness of LLM generated output.

Recent research has explored using LLMs them-
selves as evaluators for correctness. However, our
experiments reveal a critical flaw with this approach:
while LLMs excel at recognizing correct answers, they
are surprisingly poor at identifying when other LLMs
produce incorrect output, with their accuracy in iden-
tifying inaccurate output hovering around mere 25%.
This finding has significant implications on using
LLMs to benchmark LLMs.

To address this challenge, we introduce a novel
regression-based approach that combines LLM eval-
uator predictions with a small set of human validated
data to achieve more reliable benchmarking results
at scale.

2. Related Work

Automatically evaluating LLMs on tasks with clear
right or wrong answers, such as multiple-choice ques-
tions, is straightforward [3, 4]. The challenge arises
when dealing with open-ended tasks where multi-
ple different responses could be valid. Approximate
matching techniques like BLEU [5] and ROUGE [6] at-
tempt to address this by measuring similarity with ref-
erence answers. However, these approaches often fall
short in aligning with human judgment, especially
for tasks with multiple valid outputs that require deep
semantic understanding [4].

The current state-of-the-art relies on using other
LLMs as evaluators [7], typically through a pair-wise
comparison of two different model outputs for the
same task [8]. While studies show correlation be-
tween LLM-based and human evaluations [9], there
are inherent reliability issues [10, 11]. Hence we need

Table 1: Predicted and actual precision of generators

Validators
Generators Mean Ensemble || Human

GPT 3.5T 73.0% 65.5% 69.6%
GPT-4 90.8% 91.8% 87.1%

GPT 40-M 94.1% 95.2% *
GPT 40 90.9% 92.5% 93.5%
Opus3 96.1% 97.0% 95.3%

Sonnet 3.5 96.6% 97.1% *

Gl.5flash 96.3% 97.5% *
GlL5pro 96.3% 97.5% 92.9%
Qwen 95.3% 95.5% 92.8%
Deepseek 94.8% 95.4% 93.2%

Mean Error 2.6% 3.0% -

Max Error 3.7% 4.7% -

more accurate estimation methods for benchmarking
that can be validated against human expert judgment.

3. Baseline Approach

Recent works have explored the feasibility of us-
ing LLMs as validators [7, 8, 9], raising a fundamental
question: how accurate are LLMs at estimating the cor-
rectness of outputs produced by other models?

Dataset. We used a dataset of 366 incorrect stu-
dent programs from 69 diverse high school program-
ming assignments [12]. The well-defined task being:
determine whether the feedback output generated
by LLM correctly addresses issues in the students’
code (see Appendix A). We generated feedback on
the incorrect student submissions using 10 LLMs and
manually annotated the output of 7 of them (see Ap-
pendix B). Although manual annotation provides a
reliable ground truth, it is unscalable due to being
time-intensive task, which motivates the need for re-
liable automated evaluation methods.

LLM as Validators. Our findings reveal a surpris-
ing observation: LLM evaluators exhibit a strong pos-
itive bias. In other words, while LLMs are excellent
at identifying valid outputs from other LLMs, achiev-
ing a True Positive Rate (v;-“) of 93.5%, they perform
poorly when it comes to recognizing invalid outputs,
achieving a True Negative Rate (v;) of only 25.2%.
The results for the 10 LLM evaluators are provided in
Appendix C.

This problem is masked in typical evaluations be-
cause there are far more correct outputs than incor-
rect ones, leading to an illusion of high overall accu-
racy. To the best of our knowledge, we are the first to
highlight this critical limitation in LLM-based evalua-

https://orcid.org/0000-0002-2203-7301
https://orcid.org/0000-0002-3434-6937
https://orcid.org/0000-0003-1738-5958
mailto:cs21btech11057@iith.ac.in
mailto:umair@nus.edu.sg
mailto:shubham@nus.edu.sg
mailto:benleong@comp.nus.edu.sg

AI4X 2025, Singapore, 8-11 July 2025

20.0 —$— Regression
Individual LLM

——- Ensemble

---- Mean Prediction

Maximum Error
= - [[
T A N
w o w o w o w

o
o

~ WA

Fig. 1: Max error for estimating generator precision.

tion, raising concerns about the reliability of current
automated benchmarking approaches.

Using an Ensemble of LLMs. A natural exten-
sion to address the limitations of using a single
LLM for evaluation is to instead use an ensemble
of LLMs [13, 2], where a majority vote determines
whether an output is valid. However, given our obser-
vation that LLMs overestimate correctness and strug-
gle to identify incorrect outputs, a naive majority-
voting approach is unlikely to be effective.

To overcome this issue, we investigated a Simple
Voting Invalid (SVI) approach, where an output is
labeled invalid if at least n LLMs agree that it is in-
correct. By allowing even a small minority of LLMs
to classify an output as invalid, SVI compensates for
the positive bias exhibited by LLMs and provides a
more reliable way to detect invalid responses. Table 1
presents the predicted precision obtained using our
ensemble-based approach. Notably, SVI with n = 3
(out of total 10 LLM validators) achieves a higher True
Negative Rate of 30.4% when compared to individual
LLMs. Which shows that while the “wisdom of the
crowd” can help to improve performance, it is limited
by the capability of the strongest LLMs in the pool.
This raises the question: Can we overcome this limita-
tion and provide a more accurate estimate of the precision
of a new model?

4. Regression-based Approach

To addresses the fundamental limitation of LLMs
being too agreeable, we propose a novel regression-
based method. Instead of relying solely on LLMs to
evaluate each other, our approach models the rela-
tionship between the true quality and LLM-perceived
quality. Our solution is based on two key insights: (i)
LLMs consistently overestimate the correctness of
outputs, and (ii) we typically have access to at least
some human-validated ground truth data for a few
LLMs. By leveraging this limited human-validated
data, we can calibrate LLM evaluations for improved
accuracy estimates for new models.

Our approach uses a probabilistic model that ac-
counts for both the generator’s ability to produce valid
outputs, and the validator’s ability to identify valid
and invalid outputs.

For a generator model, its precision is defined as

the probability that generator produces a valid output,
represented by g;. For a validator model, we define
True Positive Rate (v") and True Negative Rate (vj_)
as the probability that the validator correctly identi-
fies valid and invalid outputs, respectively. When a
validator evaluates an output, the probability it will
judge the output as valid is given by

gi.vf +(1—gi)-(1—v;)

In other words, either the output is valid and the
validator identifies it correctly, or the output is invalid
and the validator makes a mistake. By using predic-
tion data from multiple validators, we use regression
techniques to solve for the unknown probabilities
that best explain the observed results. We refer the
reader to Appendix D for more details.

Regularization. Our basic regression approach
resulted in a systematic offset, with the estimated
precision values tending to be higher than the true
values. This is likely due to the bias that already exists
within LLM validator predictions. In order to counter
this bias, we incorporate a small amount of human-
validated ground truth data as anchor points.

This is achieved by adding regularization terms to
our regression loss function, where (a) one term min-
imizes the difference between estimated and known
generator precision g;, and (b) two terms are used
to minimize the loss between estimated and actual
validator TPR (vj*) and TNR (v;). This loss function
is detailed in Appendix D.

Results. In Figure 1, we compare the maximum
cross-validation error in estimating generator preci-
sion between individual LLM evaluators (blue region),
mean of all LLM evaluators (black dotted line), LLM
evaluator ensemble (red dashed line), and regression
using k = 0,1, 2,... ground truth datasets (black solid
line).

Our regression approach, with just one ground
truth dataset provided (k = 1), reduces the maximum
error from over 20% for basic regression (k = 0) to
less than 5%, with the help of regularization. This re-
sult outperforms an ensemble of ten different state-of-
the-art LLM evaluators. Furthermore, as we continue
to increase the amount of ground truth data used for
training, our testing error continues to decrease, out-
performing the mean of all LLM evaluators starting
from k = 3 and beyond. Our experiments reveal that
with just a few sets of human-annotation for genera-
tor models (3 or more), we can dramatically improve
the accuracy of our estimates for all the other unseen
models.

5. Conclusion

We have uncovered a critical blind spot in how AI
systems evaluate each other: LLMs struggle to de-
tect incorrect outputs from other LLMs, which under-
mines current benchmarking approaches that rely on
them. Our regression-based approach addresses this
gap by combining the scalability of LLM evaluations
with the accuracy of human judgment.

AI4X 2025, Singapore, 8-11 July 2025

Acknowledgments

This research is supported by the National Re-
search Foundation Singapore under the AI Singa-
pore Programme (AISG Award No: AISG2-TC-2023-
009-AICET).

References

[1] Huu Tan Mai, Chu Cuong Xuan, and Heiko Paul-
heim. Do LLMs really adapt to domains? An
ontology learning perspective. Lecture Notes in
Computer Science, 15231:126-143, 2025.

[2] Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin.
Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. In
The 61st Annual Meeting Of The Association For
Computational Linguistics, 2023.

[3] Dan Hendrycks, Collin Burns, Steven Basart,
Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring Massive Multitask
Language Understanding. In International Con-
ference on Learning Representations, 2021.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. Evaluating Large
Language Models Trained on Code. arXiv preprint
arXiv:2107.03374, 2021.

[5] Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. Bleu: a method for automatic eval-
uation of machine translation. In Pierre Isabelle,
Eugene Charniak, and Dekang Lin, editors, Pro-
ceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 311-318,
Philadelphia, Pennsylvania, USA, July 2002. As-
sociation for Computational Linguistics.

[6] Chin-Yew Lin. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81, 2004.

[7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton,
Reiichiro Nakano, et al. Training Verifiers
to Solve Math Word Problems. arXiv preprint
arXiv:2110.14168, 2021.

[8] Meriem Boubdir, Edward Kim, Beyza Ermis, Sara
Hooker, and Marzieh Fadaee. Elo Uncovered: Ro-
bustness and Best Practices in Language Model
Evaluation. In Proceedings of the Third Workshop
on Natural Language Generation, Evaluation, and
Metrics (GEM), pages 339-352, 2023.

[9] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng,
Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing,
et al. Judging LLM-as-a-Judge with MT-Bench
and Chatbot Arena. Advances in Neural Informa-
tion Processing Systems, 36:46595-46623, 2023.

[10] Ruiyang Zhou, Lu Chen, and Kai Yu. Is LLM
a Reliable Reviewer? A Comprehensive Evalua-
tion of LLM on Automatic Paper Reviewing Tasks.
In Nicoletta Calzolari, Min-Yen Kan, Veronique
Hoste, Alessandro Lenci, Sakriani Sakti, and
Nianwen Xue, editors, Proceedings of the 2024
Joint International Conference on Computational
Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pages 9340-9351, Torino,
Italia, May 2024. ELRA and ICCL.

[11] Hui Wei, Shenghua He, Tian Xia, Andy Wong,
Jingyang Lin, and Mei Han. Systematic evalua-
tion of llm-as-a-judge in llm alignment tasks: Ex-
plainable metrics and diverse prompt templates.
arXiv preprint arXiv:2408.13006, 2024,

[12] Shubham Sahai, Umair Z Ahmed, and Ben Leong.
Improving the Coverage of GPT for Automated
Feedback on High School Programming Assign-
ments. In NeurIPS’23 Workshop Generative Al
for Education (GAIED). MIT Press, New Orleans,
Louisiana, USA, volume 46, 2023.

[13] Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen
Zhu, Rui Xia, and Jiajun Zhang. Merge, Ensem-
ble, and Cooperate! A Survey on Collaborative
Strategies in the Era of Large Language Models.
arXiv e-prints, pages arXiv-2407, 2024.

[14] Roger Fletcher. Practical Methods of Optimization.
John Wiley & Sons, 2000.

Appendix A. Problem Definition

We define task ¢ € T to be a task for which there exist
well-defined solutions that can be deterministically
classified as valid or invalid using an objective pre-
defined criteria. The challenge is that for this set
of tasks T, there is effectively an unbounded set of
solutions and there is no computationally efficient
method to check that the solution is correct.

As a motivating example, consider the example
of a typical CS1 (introductory programming) course,
where given a problem description and test cases,
and a buggy program written by students, we want
to generate feedback to help students identify and
fix their mistakes effectively. In this instance, our set
of tasks, T, comprises of the dataset of 366 incorrect
Python program submissions spanning 69 different
programming assignments [12]. The task ¢ is defined
as “given a student’s incorrect code, description of
the problem and a list of failing test cases, we want
to generate correct feedback that will help a student
fix the mistake(s) in the code.”

Like Sahai et al. [12], we use a Large Language
Model (LLM) G; € G (set of all available LLMs) to gen-
erate the solution for ¢ € 7. A human expert can
manually classify the output o for task¢ as valid or
invalid, represented by H(t,0) = 1 and H(t,0) = 0,
respectively. If we annotate the output for allt € T,

AI4X 2025, Singapore, 8-11 July 2025

we can determine the precision g; of G; for 7. How-
ever, human annotation is resource-intensive and not
scalable. Our goal is to estimate g, for a new genera-
tor G, € G without requiring more human annotation.

Appendix B. Manual Annotation

In their original data set, Sahai et al. [12] only anno-
tated the outputs for LLMs GPT-3.5 Turbo (GPT-3.5T)
and GPT-4. We have since used annotated the outputs
for 5 more modern LLMs: (i) OpenAl GPT-4o, (ii) An-
thropic Claude Opus 3; (iii) Google Gemini-1.5 pro; (iv)
Qwen Coder Plus and (v) DeepSeek Chat. In each case,
we provided the 366 tasks to each LLM, which gen-
erated appropriate feedback for the student. Given
that we are dealing with novice programmers, the
feedback provided is granular and tied to a particular
line of code. Hence it is possible for an LLM to gener-
ate multiple lines of feedback for a given submission.
Human experts then classified each line of feedback
as valid or invalid to compute the precision g; of each
LLM as a generator GG;, which we present in Table Al.

Note that LLMs may sometimes fail to generate
any feedback for some submissions, either due to
complexity of the task or violation of expected output
format. Except for GPT-3.5T, the number of failures
is generally small and does not affect our results. We
define the precision g, to be the proportion of valid
feedback within the set of feedback that were success-
fully generated by an LLM G,,. For now, we exclude
the tasks for which G, fails to generate valid output.
The count of such failure cases are presented in Ta-
ble Al for reference.

Table Al presents the manual annotation of our
dataset. There are sub-categories among the valid or
invalid feedback. In particular, valid feedback that
either identify issues or suggest fixes are labeled as
true positive (TP); feedback that propose improve-
ments in code quality are labeled as true positive with
extra suggestions (TP-E); and feedback that provide
redundant information such as code explanation are
labeled as true positive redundant (TP-R). Conversely,
invalid feedback was categorized as either incorrect
suggestions (FP-I) or hallucinated feedback (FP-H)
that should not have been generated in the first place.

While human experts provide a reliable way to
classify and evaluate feedback, manually analyzing
them requires significant time, effort and domain
expertise, making this approach inherently limited
in scalability. It took us an estimated 200 man-hours
to annotate the output for the 5 additional LLMs.

Appendix C. LLM as Validators

LLMs have been used by the community to validate
the output of other LLMs [9]. So the first natural ques-
tion is: how good are LLMs in estimating the accuracy of
other LLMs?

Table Al: Feedback classification by human experts.

Valid Invalid Precision

Generators TP TP-E TP-R | FP-I FP-H || gi

GPT 3.5T* 263 61 5 66 78 69.6%
GPT-4* 633 123 8 75 38 87.1%
GPT 40 734 188 24 54 12 93.5%
Opus 3 693 89 12 32 7 95.3%
G 1.5 pro 978 103 49 81 6 92.8%
Qwen 717 98 15 61 3 92.8%
Deepseek 793 160 20 49 22 93.2%

*original data set published at GAIED 2023 [12].

In addition to the 7 LLMs for which we have fully
human-annotated outputs, we used 3 more LLMs
(OpenAI GPT-40-Mini, Anthropic Claude Sonnet 3.5
and Google Gemini-1.5 Pro) to generate feedback for
our set of 366 buggy programs. Then we used all 10
LLMs to validate the output for all 10 LLMs. The re-
sults are shown in Table A2. In other words, Table A2
presents a view of how LLMs think of the outputs of
other LLMs.

We make the following 2 observations from Ta-
ble A2: first, the diagonal is not 100% as expected. In
other words, sometimes an LLM surprisingly some-
times consider what it generated to be invalid. Sec-
ond, the mean value across all the LLMs deviates
quite substantially from the ground truth data for g;.
In particular, there seems to be a significant positive
bias, i.e. LLMs generally over-estimate the correct-
ness of other LLMs (except for GPT 40).

Since we have the ground truth of the validity of
the outputs for 7 LLMs, we investigated the accuracy
of the various LLMs as validators (v;). While the over-
all accuracy of the LLMs as validators was relatively
high (= 93%), we realized that the accuracy of the
validation accuracy for valid and invalid outputs was
substantially different. In particular, while the vali-
dation accuracy for valid outputs (U;F) was more than

90%, the validation accuracy for invalid outputs (vj_)
was often below 20%!
To illustrate this issue, we have produced the cor-

responding True Positive Rate (vj*) and True Negative

Rate (v;’) when the output for Opus 3 is validated
by the various LLMs in Table A3. Due to space con-
straints, only results for Opus 3 output and the mean
for all LLM outputs are shown.

The reason for the high overall accuracy in spite
of the low v;” was because as we can see in Table Al,
there is a much larger number of valid outputs (794)
than invalid outputs (39), which skews the overall ac-
curacy. Given this revelation, there is likely a need to
revisit previous research using LLMs as validators to
determine the impact of this phenomenon. In other
words, an LLM cannot easily tell when other LLMs make
mistakes. This observation seems hold for all 10 of the
LLMs we studied.

Table A2 seems to suggest that Gemini-1.5 Pro pro-
duces the best estimate of the precision g;. However,
if we look at the accuracy of Gemini-1.5 Pro as a val-
idator in Table A3, we see that the performance of

AI4X 2025, Singapore, 8-11 July 2025

Table A2: Predicted precision of generators by validators P’;; , along with actual precision g; assigned by

humans
Validators (V)

Generators GPT3.5T GPT4T GPT40-M GPT40 Opus3 Sonnet3.5 GL5flash GL5pro Qwen Deepseek | mean || g
GPT 3.5T 79.8% 72.0% 75.2% 70.1% 70.3% 69.9% 80.5% 70.6% 66.9% 74.7% | 73.0% 69.6%
GPT-4 87.7% 90.8% 90.2% 88.2% 90.6% 92.0% 95.3% 91.1% 87.7% 93.9% | 90.8% 87.1%
GPT 40-M 92.1% 94.4% 94.6% 94.1% 92.1% 94.6% 96.7% 94.0% 92.4% 96.2% | 94.1%

GPT 40 92.1% 97.4% 83.6% 81.9% 77.6% 87.4% 97.9% 97.0% 96.1% 98.3% | 90.9% | 93.5%
Opus 3 93.2% 96.2% 95.3% 97.1% 97.8% 96.8% 97.8% 95.5% 94.2% 974% | 96.1% 95.3%
Sonnet 3.5 93.6% 97.0% 96.1% 96.8% 95.8% 98.3% 98.0% 96.2% 96.0% 98.0% | 96.6%

G 1.5 flash 95.4% 94.5% 96.6% 95.8% 97.0% 95.6% 98.6% 96.7% 94.7% 97.8% | 96.3%

G 1.5 pro 94.3% 96.2% 95.4% 95.8% 96.8% 97.0% 97.6% 97.5% 95.3% 96.9% | 96.3% || 92.9%
Qwen 93.3% 96.1% 93.8% 95.6% 95.4% 96.1% 96.6% 93.7% 95.0% 97.7% | 95.3% || 92.8%
Deepseek 92.3% 95.1% 94.9% 95.6% 94.9% 93.7% 97.1% 947% 92.6% 96.8% | 94.8% || 93.2%
Min Error 0.5% 0.9% 0.0% 0.5% 0.7% 0.4% 2.5% 0.2% 0.6% 2.0% | 0.8% -
Mean Error 2.4% 2.8% 34% 3.3% 4.4% 3.0% 5.5% 2.2% 1.8% 4.5% | 2.6% -
Max Error 10.2% 3.9% 9.8% 11.6% 15.9% 6.1% 11.0% 4.6% 2.7% 6.7% | 3.7% -

Table A3: True Positive Rate (vj*) and True Negative Rate (v;) of different LLM validators in predicting the valid

and invalid label, respectively. We also report the overall (weighted) accuracy (v;) for reference.

Validators (V)

Generators GPT3.5T GPT4T GPT40-M GPT40 Opus3 Sonnet3.5 Gl5flash GL5pro Qwen Deepseek
v;f 93.4% 97.3% 96.6% 98.0% 98.5% 97.5% 98.3% 96.7% 95.5% 98.4%

Opus 3 v; 10.3% 27.8% 32.4% 21.6% 15.4% 17.9% 13.5% 28.2% 33.3% 23.1%
v 89.4% 94.3% 93.7% 94.5% 94.6% 93.8% 94.5% 93.4% 92.6% 94.8%

’U;— 91.2% 94.8% 92.5% 92.1% 91.6% 93.9% 96.2% 93.9% 92.6% 95.9%

mean vy 14.8% 25.7% 31.6% 31.7% 29.1% 30.6% 14.1% 249% 29.1% 20.5%

v 83.8% 88.7% 86.7% 86.8% 86.0% 88.5% 88.6% 87.8% 874% 89.0%

Gemini-1.5 Pro is only roughly 88% and comparable to
the other LLMs. Delving into the data, what we found
was that the apparent high accuracy for Gemini-1.5
Pro reflected in Table A2 could potentially be due to
validation mistakes.

For instance, while validating the 833 lines of out-
put generated by Claude Opus 3, we found that both
GPT-4T and Gemini-1.5 Pro exhibited similar valida-
tion accuracy as shown in Table A3. However, the
final precision estimates are different because of mis-
classification. In particular, GPT-4T correctly clas-
sifies 23 valid and 3 invalid inputs that Gemini-1.5
Pro misclassified; on the other hand, Gemini-1.5 Pro
correctly identified 12 valid and 17 invalid outputs
that GPT-4T misclassified. Some misclassifications
will move reduce the estimation error, while other
misclassifications might increase the error.

3.1 Using an Ensemble of LLMs.

Instead of using a single LLM to determine
whether the output for an LLMs is correct, a natu-
ral approach used by many researchers is to use an
ensemble of LLMs [13, 2] and do implement a voting
mechanism, i.e. have an odd number of LLMs judge
an outcome; if the majority agree that the answer is
correct, then we conclude that the outcome is correct.

Given our observation that LLMs tend to have
a very poor record at judging that other LLMs are
wrong, a naive majority-vote-based scheme [2] will
likely not to perform. Instead, we propose a modified
scheme that consider the following 2 criteria:

1. atleast m out of N LLMs agree that the output is

valid (Simple Voting Valid); and

2. atleast n out of N LLMs agree that the output is
invalid (Simple Voting Invalid).

suchthatl <n< ¥ <m < Nandn+m < N.In
some instances, both criteria would agree. Where
the 2 criteria do not agree, an output is considered
invalid. In other words, to mitigate the bias that LLMs
have for agreeing with other LLMs, a small minority
of the LLMs must be empowered to declare that an
output is invalid.

Given that we have a set of human-annotated out-
puts (ground truth) and a set of LLMs G, we can enu-
merate all possible values for n and m to determine
the thresholds that yield the highest precision v; for
the available ground truth data set. We can also seek
to minimize the harmonic mean of v and v; toad-
dress the skewness in the sample data.

In Table A4, we plot the predicted precision for
different ensemble-based strategies. We also repro-
duce the ground truth precision g; for the annotated
outputs for reference. It is clear from these results
that the pareto superior strategies are either m = 7 or
n = 4 for naive voting strategies, or m = 6,n = 4 for
the mixed strategy that we proposed. The difference
between them will be a trade-off between the mini-
mum, mean and maximum errors in the estimated
precision values.

If we examine the validation accuracy of ensemble-
based strategies in Table A5, we can clearly see that
the True Negative Rates (v) for these 3 strategies are
comparable and on average much higher than that
for the individual LLMs. In fact, both m = 7and m =

AI4X 2025, Singapore, 8-11 July 2025

Table A4: Predicted precision of generators with ensemble-based strategy.

Simple Voting Valid

Simple Voting Invalid

Both Criteria

m =26 m=7 m=38 n=3 n=4

m =6
n=4

m =6
n=3

m =4
n=4

n=>5 m=7 9i

n=3

63.8%
91.0%
93.4%
87.7%
96.5%
94.6%
94.5%
96.9%
94.3%
93.4%

59.4%

87.1%
91.9%
79.2%
94.7%
93.5%
92.0%
94.2%
91.9%
90.2%

61.7%
88.6%
93.2%
83.6%
96.0%
96.0%
95.9%
95.8%
93.8%
93.6%

65.5%
91.8%
95.2%
92.5%
97.0%
97.1%
97.5%
97.5%
95.5%
95.4%

GPT 3.5T
GPT-4
GPT 40-M
GPT 40
Opus 3
Sonnet 3.5
G 1.5 flash
G 1.5 pro
Qwen
Deepseek

70.0%
93.2%
95.0%
97.0%
97.6%
95.9%
95.4%
97.9%
96.1%
96.7%

69.6%
87.1%

73.2%
94.0%
96.1%
98.0%
97.8%
98.0%
98.1%
98.3%
97.8%
97.2%

65.1%
91.8%
94.3%
92.5%
97.0%
95.2%
95.2%
97.5%
95.3%
95.3%

61.3%
88.5%
92.3%
83.5%
96.0%
94.2%
93.6%
95.8%
93.5%
93.5%

64.9%
91.6%
94.3%
92.0%
96.9%
95.2%
95.2%
97.5%
95.2%
95.3%

61.1%
88.3%
92.1%
82.8%
95.9%
94.1%
93.4%
95.5%
93.1%
92.0%

93.5%
95.3%

92.9%
92.8%
93.2%

0.2%
3.2%
5.7%

0.0%
4.3%
14.2%

0.4%
3.4%
6.0%

0.4%
3.5%
9.9%

1.0%
3.0%
4.7%

Min Error
Mean Error
Max Error

2.5%
4.5%
6.8%

1.0%
3.0%
4.7%

0.2% -
3.6% -
10.7% -

0.3%
3.5%
10.0%

1.5%
3.0%
4.7%

Table A5: True Positive Rate (vj) and True Negative
Rate (v;’) of different LLM ensembles.

Ensemble
m=7 mn=4 m=6®&n=4
of 92.6% 94.0% 92.6%
All Outputs 7 347% 304% 34.7%
Vg 87.9% 88.7% 87.9%

6,n = 4 matches the best v for the individual LLMs
(GPT-40). This demonstrates that while the “wisdom
of the crowd,” can help to improve v, it is limited by
the best among the available LLMs (31.7%). We need

to do more to increase vy .

Appendix D. Regression

To recap, given a new LLM G,, we want to estimate
the precision g, without requiring additional human
annotation. We had shown in §C.1 that an empirical
ensemble-based approach is still not sufficiently ac-
curate. We hence propose a novel regression-based
approach that is based on 2 key insights: (i) existing
LLMs tend to significantly over-estimate the correct-
ness of invalid outputs; and (ii) we will generally have
a set of annotated outputs for some subset of LLMs
(i.e. we have the ground truth data for some outputs).

Validation Prediction Model. For generator G; €
G, we assume that it has a probability g; of generating
a valid output. For a validator V; € V, we assume
that it has a probability v;" of validating a valid output
correctly and a probability v; of validating an invalid
output correctly. Suppose V; is used to validate the
output for G;, then the probability that V; will declare
that the output is correct will be g; - v;-“ +(1—g)-
(1 — ;). In other words, the generation was correct
and the validation was correct, or the generation was
wrong and the validation was also wrong.

Given this model and a set of probabilities g; for all
the generators G; € G, and the sets of probabilities
v and v; for the validators V; € V, we can derive the
expected prediction matrix P of dimension |G| x | V).
Each cell P;; represents the precision of generator G;
as measured by the validator V;. We can also obtain

the prediction matrix P directly by running exper-
iments. In fact, the prediction matrix P for the 10
LLMs that we investigated is shown in Table A2.

Let g;, ﬁj ,and v;” denote our estimates for the pre-
cision of generator i, True Positive Rate of validator
Jj, and True Negative Rate of validator j, respectively.
It remains for us to determine the set of probabili-
ties g;, @* ,and v; that will minimize the discrepancy
between the observed values in P and the estimated
values in P. In other words, we have formulated our
problem as a regression problem to estimate a total
of |G| + 2|V| variables using |G| x |V| values from P.

Loss Function. Given that we employ a form of
gradient descent in our optimization and both P and
P are class probabilities of the valid label, we em-
ploy the standard binary cross-entropy loss function

Epred:

L e R
Ere = — T Pllo Pl
pred =~ g7 2 2o P o8P

i=1 j=1

Fixed Points. In practice, we observed that per-
forming the minimization with £,,.4 alone still re-
sults in a systematic offset in precision estimates, i.e.
the predicted precision values still tend to be higher
than the true values. This is likely due to the inher-
ent biases in empirical validator predictions. This
is where we employ our second key insight: we will
generally already have available a set of ground truth
data. Instead of estimating the prediction matrix P
without constraints, we can use known ground truth
values in the loss minimization to reduce the effective
number of free variables. In other words, instead of
fitting |G| + 2|V| variables using |G| x |V| values, we
are fitting a reduced number of variables.

Hence, we modify the loss function by addition
terms (similar to regularization) to minimize the dis-

AI4X 2025, Singapore, 8-11 July 2025

Table A6: Mean error for estimating generator preci-
sion g.

k 0 1 2 3 4 5 6
Min 5.4% 1.8% 1.7% 1.4% 1.3% 0.6% 0.5%
Mean 54% 23% 23% 24% 23% 22% @ 2.2%
Max 5.4% 3.1% 3.0% 3.6% 3.1% 3.3% 3.3%

Table A7: Maximum error for estimating generator
precision g.

k 0 1 2 3 4 5 6
Min 20.8% 3.3% 3.1% 3.0% 2.2% 1.1% 0.5%
Mean 20.8% 3.8% 3.5% 3.5% 33% 3.0% 2.2%
Max 20.8% 47% 4.3% 4.4% 3.7% 3.6% 3.3%

crepancies with known model parameters:

1 ~
Lrcg= M| > (06— 3)°
‘H‘ G,eH

Ly

1 2
+ A2 m Z (v;'fvj')

e X) @)

where H is a subset of LLMs for which we have access
to the ground truth, such that # C G. We incorporate
these corrections in our final loss function given by:

L= ‘Cpred + Lreg

where, L,,cq and L, are formally defined in Equa-
tions (A1) and (A2) respectively. These additional
terms in £, effectively penalize large deviations be-
tween the estimated probabilities and known ground
truth probabilities.

Appendix E. Evaluation Results

In this section, we evaluate the accuracy of our
regression-based approach for estimating generator
precision g; using our annotated data set for 7 LLMs.
We compare its effectiveness against the performance
of individual LLMs and best-case ensemble-based
baselines.

5.1 Basic Regression

Our basic regression approach relies minimizing
the prediction loss £,,.qs between the measured pre-
diction matrix P and our model’s estimated predic-
tion matrix P. In other words, we attempt to estimate
|G| + 2|V| variables (|G| generator precision values
g; and 2|V| validator performance values 6;7 and v;)
using |G| x |V| values from the measured prediction
matrix P.

—$— Regression

51 Individual LLM
——- Ensemble
44 ---- Mean Prediction

Mean Error

A WA

Fig. Al: Mean error for estimating generator preci-
sion g.

We use BFGS algorithm [14] with a default toler-
ance threshold of AL,cq < 10~°. Generator preci-
sion values g; were initialized to the mean values of
the predictions for the LLMs, while ﬁ and v; were
set to a neutral starting point of 0.5. The mean is ob-
tained directly from the measured prediction matrix
P. To ensure our results are robust against local min-
ima, we conducted 10 experiment runs with random
initialization offsets.

The performance of this naive formulation of the
regression problem is very poor. As shown in Ta-
bles A6 and A7 (under k£ = 0), the observed mean
error was 54% and the maximum error was 20.8%.
These results compare unfavorably to the use of indi-
vidual LLMs (c.f. Table A2), or the use of ensembles.

5.2 Exploiting Ground Truth Information with L.,

If we have a set of the outputs for £ LLMs, we can
exploit this ground truth in an additional loss term
L,cq (see Equation (A2)). In Tables A6 and A7, we
plot the mean and maximum errors in the estimated
precision values g;, respectively. We have 7 annotated
sets of LLM outputs. For & = 1, we just use 1 set out of
7, but repeat the process for each set. Hence we have
a range of possible values for each attempt; similar,
for larger values of k, i.e. [, we repeat this process
(’l‘) times to determine the range. We estimate the
estimation error using the remaining annotated data
sets, not used in the regression. This approach is not
ideal, but annotated data is expensive and we only
have limited sets of annotated data. The key insight
in these experiments is that the use of just one data
set (i.e. k = 1) dramatically reduces both the mean
and maximum error rates.

Tuning “Regularization” Constants (A1, A2, & A3).
We use repeated fold cross-validation across & € [0, 6],
with different values of \; tuned using grid search.
We found that higher weights for generator precision
(A1 = 10) and True Negative Rate (A3 = 10) led to bet-
ter estimates, compared to True Positive Rate weight
(A2 = 1), which supports our key insight that accu-
rately determining v, values, will result in a better
estimate of precision g;.

AI4X 2025, Singapore, 8-11 July 2025

5.3 Comparison with State of the Art

In Figures Al and 1, we present the data in Ta-
bles A6 and A7 in a graphical format to allow for easy
comparison with previous approaches. In particular,
we consider the following three competing strategies:

1. use an individual LLM,;

2. use the simple mean of all available (10) LLMs;
and

3. use an ensemble-based strategy (§C.1).

If we pick an individual LLMs, both the mean and
maximum errors can vary considerably as we can see
in Table A2 and we are expected to operate in the blue
region. Even if we pick what seems to be validator
that achieves a low error rate, the good result could
arise from random chance because v; is relatively
low (§3).

A simple mean of the predictions of all the LLMs
(black dotted line) achieves surprisingly good perfor-
mance. An ensemble-based strategy (§C.1) can im-
prove the v;” and achieve comparable and consistent
performance. The red dotted line in Figures Al and 1
plot the best ensemble-based strategies for each case
that we obtained by enumeration. Surprisingly, the
error rates achieved with an ensemble is worse than
that for the mean.

We see in Figures Al and 1, that our regression-
based technique can perform better than the state-of-
the-art for k > 1. Performance is generally better if
we use more ground truth data sets, i.e. if k is larger.
In summary, our results demonstrate that even with
a small set of ground truth annotations, we can ef-
fectively mitigate validator bias to significantly im-
prove v; estimates and thus the final result for our
regression-based model. In particular, our results
seem to suggest that we only need one or 2 sets of
annotated LLM outputs, to achieve good results.

54 Discussion

Model Assumption. We have assumed in our
model that each LLM validator has a fixed True Posi-
tive Rate (’U;_) and True Negative Rate (v;). When we
investigate the vj’ and v; for the various validators
for different LLM output sets, we found that there
are could be significant variations. However, if we
did not make this simplifying assumption, then we
would not be able to perform regression. Even if it
were true that the there was true v;.r and v}, the ob-
served v and v; observed for different LLM output
sets could also be different because the outputs could
potentially be biased. The validity of the assumptions
for our regression model requires further investiga-
tion. What is interesting is that our technique seems
to work relatively well even though observed v;-r and
v; for different LLM output sets are different.

Impact of Prompt. We used the same prompts for
both generation and validation for all LLMs. In par-
ticular, we have found that LLMs would occasionally
not follow instructions. For example, they might not

validate all the given lines, or worse, invent and sug-
gest new lines. We have not had the opportunity to
investigate the impact of the prompts used on both
generation and validation accuracy. If a model seems
to perform well or poorly, it could potentially be due
to the prompt. Investigating the sensitivity of predic-
tions and our regression technique to the prompts
used and tuning prompts to improve validator output
is left as future work.

Metric for Goodness. The current to estimate g;
by determining the validity of the LLM output natu-
rally gives more weight to v;". Instead of using g; to
determine the goodness of a new model, it might be
helpful to consider the harmonic mean of v;" and v;”
instead. This would be similar to the F1 score.

Weighted Ensemble. Since some validators can
be less reliable than others, a possible approach is to
determine weights depended on the assessed relia-
bility of each validator and using a weighted mean as
the estimate. If we can weight LLMs with higher v;”
more heavily, we could potentially improve overall
v; . This exploration is left for future work. We did
not prioritize this approach because it does not ad-
dress the low v;” problem directly and we did not feel
such an approach could surpass the best performing
LLM. Our current ensemble-based approach can al-
ready achieve on average the performance of the best
performing LLM in the ensemble.

Correlation between Generation & Validation.
We observed during our analysis that there was cor-
relation between the validator’s and generator’s per-
formance. In particular, when a generator struggled
to produce an invalid output, and the validators also
seem to have difficult validating the output correctly.
For example, for the task of String checking, both
LLM generators and validators struggled with escap-
ing the string correctly. This suggests that difficulty of
detecting invalid output is correlated to the difficulty
of the task.

	Introduction
	Related Work
	Baseline Approach
	Regression-based Approach
	Conclusion
	Appendices
	Appendix Problem Definition
	Appendix Manual Annotation
	Appendix LLM as Validators
	Using an Ensemble of LLMs.

	Appendix Regression
	Appendix Evaluation Results
	Basic Regression
	Exploiting Ground Truth Information with Lreg
	Comparison with State of the Art
	Discussion

