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Abstract

Sensory systems are robust to many types of corrupting noise. However, the neural1

mechanisms that drive robustness are unclear. Empirical evidence suggests that2

top-down predictions are important for processing noisy stimuli, and the substantial3

feedback connections in primate sensory cortices have been proposed to facilitate4

these predictions. Here, we implement predictive dynamics in a large scale model5

of the human auditory system. Specifically, we augment a feedforward deep6

neural network trained on noisy speech classification with a recently introduced7

predictive feedback scheme. We find that predictive dynamics improve speech8

identification across several types of corrupting noise. These performance gains9

were associated with denoising of network representations and alterations in layer10

dimensionality. Finally, we find that the model captures brain data outside of11

the speech domain. Overall, this work demonstrates that predictive dynamics12

are a candidate mechanism for human auditory robustness and provides a testbed13

for hypotheses regarding the dynamics of auditory representations. Additionally,14

we discuss the potential for this framework to provide insight into robustness15

mechanisms across sensory modalities.16

1 Introduction17

Our ability to process complex sensory information requires the isolation of stimuli of interest from18

background noise. For instance, we can pick out a friend’s voice in a crowded coffee shop or spot a19

predator in a grassy field. To distinguish these stimuli of interest, your sensory system must somehow20

become robust to background noise. A long standing goal in the field of sensory neuroscience is to21

understand the neural mechanisms that enable human sensory systems to solve these problems [1–3].22

A large body of experimental evidence suggests that top-down predictions play an important role in23

processing stimuli in noisy contexts [4–6]. Feedback connections are abundant in sensory cortices24

[7, 8], and have been hypothesized to carry predictive signals [9] but are often omitted in large25

scale models. In the visual neuroscience literature, imbuing computational models with biologically-26

inspired predictive dynamics has been found to increase performance in noisy object recognition27

tasks [10–12]. These insights offer a promising indication that predictive dynamics play a role in28

enabling noise robustness.29

Here, we explore noise robustness in the context of auditory perception. We augmented a deep30

neural network of the human auditory system with predictive dynamics and explored how these31

dynamics affected network representations and performance. We find that predictive dynamics32

improve robustness across several types of real-world noise. We explore different mechanisms33

that support this robustness. Finally, we discuss how the intrinsically temporal nature of auditory34
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Figure 1: A. Schematic of network and predictive dynamics. FF: feedforward, FB: feedback, ER:
error correction, MEM: memory. Each block indicates a convolutional layer. Error is not depicted in
the diagram. (B) Clean sounds were embedded in three background noises of varying difficulty, with
different grades of SNR.

perception lends itself to interesting sensory perception problems that are general across many35

modalities.36

2 Model37

2.1 Predictive dynamics in a deep neural network are introduced with the Predify framework.38

We use the Predify framework [10] to incorporate predictive dynamics into a feedforward network.39

Briefly, given input into the network at time 0, the activity of each layer i at some time t is a linear40

combination of four terms (Fig 1A; see Appendix A.1): (1) Feedforward drive taking activity from41

layer i − 1 as input, (2) Feedback from layer i + 1 that predicts the activity at layer i, (3) Error42

correction that computes the gradient of the prediction error of layer i to correct the activity at layer i,43

(4) Memory that integrates over the activity from time t− 1.44

Under this framework, higher-order regions predict and correct the activity of lower-order regions.45

Each layer has a set of hyperparameters that control the proportional strength of each of these terms.46

Note that hyperparameters for feedforward, feedback, and memory are constrained to sum to 1.47

Different settings of the hyperparameters can capture a variety of known dynamics, from purely48

feedforward to classical predictive coding [10].49

2.2 Feedforward weights are learned in a supervised auditory classification task50

We use the feedforward neural network introduced by [13] to define the feedforward weights of the51

predictive network. This network was trained to classify words given cochleagram inputs (time-52

frequency decomposition of sounds modeled after the human cochlea, Appendix A.2). Inputs were53

embedded in real-world background noise of varying signal-to-noise ratio (Fig 1B).54

We evaluate the performance of the network on speech classification with speech embedded in pink55

noise, auditory scene, and 8-speaker babble (Fig 1B). These backgrounds were chosen because56

humans show variable speech recognition performance across these conditions ([13]).57

This network was chosen because of its behavioral similarity to humans and ability to capture human58

auditory cortical responses more accurately than other models [13].59

2.3 Feedback weights are learned in an unsupervised reconstruction task60

Consistent with [10], we froze the feedforward weights and trained the feedback connections in an61

unsupervised fashion. Each feedback layer i was trained to reconstruct the activity at layer i−1 given62

the activity at layer i. Importantly, the inputs used for this training step have no background noise.63

Finally, the hyperparameters are optimized as in [12]. Optimization was performed for each com-64

bination of background noise and SNR to maximize classification performance on the task from65

[13].66
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Figure 2: (A) Relative increase in performance from the original feedforward on test set for various
levels of SNR. 4 timesteps of predictive dynamics were used. SEM is shown for 10 different
random initializations of hyperparameter training for each background noise/SNR combination. (B)
Hyperparameter values of the networks shown in (A). The last (5th) layer of the network does not
have feedback by definition.

Figure 3: (A) Layer representations were compared when the network input was a sound with
background noise versus the same sound with no noise. (B) Normalized correlation for each layer
during the initial feedforward pass. Correlations were normalized at each layer by random shuffles
of sound labels. (C) Difference in normalized correlation from (B) as predictive time steps are
incorporated. (D) As in (C), but averaging over all layers and comparing the most noisy (SNR= −9)
and least noisy (SNR= 3) conditions. (E) Area under the curve (AUC) of the cumulative singular
value spectrum of activity at each layer for feedforward pass alone. (F) As in (E), but with predictive
timesteps incorporated and comparing the most noisy and least noisy conditions.

3 Results67

3.1 Predictive dynamics improve performance on an auditory classification task.68

We found that predictive dynamics improved classification performance relative to the feedforward69

network alone (Fig 2A). This improvement was more dramatic for more corrupted sounds (i.e. lower70

SNR) and varied across background noise types (see Appendix A.3).71

To better understand the contribution of each model component to this performance improvement, we72

analyzed fitted hyperparameters across layers (Fig 2B). We found that predictive feedback contributed73

to dynamics for all layers (i.e. feedback weight > 0) and that this contribution increased in deeper74

layers. Note that a feedforward weight of 1 for all layers is equivalent to the feedforward network.75

Interestingly, the error correction term (a key element of the canonical predictive coding model [14])76

does not play a significant role in network dynamics. In fact, ablating this term had limited impact on77

the performance of the network (Appendix A.4).78
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Figure 4: (A) Network representations of each layer were compared for less stationary (e.g. ringtone)
and more stationary (e.g. air conditioner) sounds. Response ratio was calculated as the mean response
to less stationary sounds divided by the response to more stationary sounds. (B) Response ratio for
each layer of the network, across predictive timesteps.

3.2 Noise robustness is associated with denoising of neural representations and altered79

dimensionality.80

Next, we sought to explore the mechanism driving this performance improvement. We hypothesized81

that predictive dynamics denoise by pushing network representations towards a manifold of clean82

sounds learned by the feedback weights [10]. To test this hypothesis, we measured network responses83

to noisy sounds and their clean counterparts. Consistent with the experimental literature [15], we84

defined denoising as an increase in correlation between responses to clean and noisy sounds across85

layers (Fig. 3A).86

We found that the feedforward network alone shows denoising across layers (Fig. 3B). However,87

predictive dynamics still appear useful in this denoising process. Across predictive timesteps, there is88

an additional, albeit smaller, denoising effect (Fig 3C). Consistent with our performance findings,89

this effect is stronger for inputs that are noisier (Fig 3D).90

We also examined the dimensionality of network activity across each layer, a related measure to91

denoising. Specifically, we computed the cumulative singular value spectrum of the output at each92

layer. We summarize the dimensionality by computing the area under the curve of this function93

(AUC). A low AUC corresponds to high dimensionality. We found that the dimensionality of94

representations increase across layers in the feedforward network alone (Fig 3E). This is consistent95

with the observation that increasing the dimensionality of representations is useful for classification96

performance [16]. However, the introduction of predictive dynamics causes dimensionality to decrease97

with more predictive timesteps, particularly for noisier conditions (Fig 3F). These findings could98

be consistent with a mechanism by which the initial feedforward weights are trained to maximize99

separability of representations, predictive dynamics will contract the representations towards a learned100

clean manifold.101

3.3 Network activity recapitulates neural data in a non-speech task.102

A potentially complementary hypothesis suggests that sensory systems denoise by developing sta-103

tistical summaries of complex scenes [17–19]. Given that background sounds tend to have more104

stationary statistics while foreground sounds tend to have less stationary statistics, it has been pro-105

posed that the auditory cortex could leverage these statistical differences to distinguish them [20]. A106

recent fMRI study found support for this hypothesis [13]. Specifically, authors found that early layers107

of the auditory hierarchy respond similarly to stationary and non-stationary sounds while deeper108

layers have a higher response ratio of non-stationary to stationary sounds.109

We test if our model captures this finding by comparing the responses at each layer to a set of natural110

sounds with varying stationarity. In the feedforward network, we see a modest increase in response111

ratio across layers of the network. This effect becomes more dramatic with predictive timesteps112

(Fig 4B). Consistent with neural data [13], these findings suggest that our model is sensitive to the113

temporal statistics of natural sounds.114
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4 Discussion115

In this work, we sought to evaluate the potential mechanistic role of predictive dynamics in noise116

robustness using a large scale model of the human auditory system. We found that predictive dynamics117

improved classification performance across timesteps and that this improvement was most dramatic118

for more difficult conditions (i.e. lower SNR). The dependence of performance improvement on task119

difficulty is consistent with other modeling results [10, 12] as well as and empirical findings that120

that observers rely more on predictions as sensory input becomes less reliable [6]. Additionally, we121

probed the model by ablation and found that the removal of the error correction term had limited122

impact on performance. In contrast, the balance of feedforward drive and feedback are essential for123

performance suggesting more consistency with alternative theories of sensory predictions [21] than124

canonical predictive coding [14]. This network architecture provides a promising bridge between125

circuit-level and normative theories of sensory processing.126

We probed the mechanism underlying this performance improvement through analyses of network127

representations. We found evidence that predictive dynamics denoise representations and decrease128

dimensionality. These findings are consistent with a mechanism by which predictive dynamics129

denoise by pushing network representations towards a manifold of clean sounds learned by the130

feedback weights [10]. In future work, we aim to more rigorously evaluate this mechanism through131

manipulations of the manifold learned by feedback weights.132

Finally, we evaluated the extent to which this modeling framework captures findings in literature133

beyond speech tasks. Specifically, we evaluated model responses to stationary (i.e. background) and134

non-stationary (i.e. foreground) natural sounds. Consistent with brain data [13, 22, 23], we found135

that later layers of the model responded preferentially to non-stationary sounds and that this effect136

became more dramatic across predictive timesteps. Intriguingly, we recapitulate these results despite137

the fact that the network was only trained on speech and was not exposed during training to other138

types of natural sounds. This suggests that background invariance could be a general consequence of139

predictive dynamics.140

We acknowledge several limitations on the interpretation of our work. First, training occurred in141

a step-wise fashion with weights being frozen after each step. While this approach is common in142

machine learning, it is possible that end-to-end training would yield different solutions. Second,143

in this predictive coding scheme, uncertainty is not taken into account in the updating process. In144

Bayes-optimal predictive coding, the integration of sensory evidence with top-down priors is weighted145

by their respective uncertainty. Allowing for this weighting based for individual stimuli could also146

yield a different solution. Finally, while we have shown that our model qualitatively captures some147

findings in the literature, quantitative comparisons between model and human data are needed to148

demonstrate that this model can provide insight into the human auditory system.149

5 Broader Implications150

Alterations in predictive sensory processing have been widely documented in disease states, such151

as hallucinations [24–26]. While modeling approaches have provided insight into the cognitive152

mechanisms that may be disrupted in these states [27, 28], alterations in cortical processing are153

unclear. Our network model provides a way to probe how circuit-level alterations in predictive154

dynamics may give rise to pathological states.155

We further propose that studies of auditory processing can provide insight into general sensory156

processing principles. In vision, predictive dynamics are often considered in the context of static157

images [11, 10, 12]. However, many visual problems require information integration over time. For158

instance, recognition of a well-camouflaged predator likely requires temporal integration of visual159

(e.g. motion of predator relative to surroundings). Insights into how the human visual system solves160

this problem could come from findings in audition, an inherently temporal problem.161
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A Appendix272

A.1 Predictive dynamics are integrated into feedforward activity over many timesteps273

We use the recently introduced Predify framework [10, 12]. A schematic is shown in Fig 5. Under
this framework, the network receives input at time t = 0. The activity e of layer i at time t is defined
as:

ei(t+ 1) = γfi + βdi+1 − α∇ϵi + µei(t)

The feedforward term fi = Fi(ei−1(t + 1);W f
i ) is the output of a convolutional layer F pa-274

rameterized by weights W f
i . The feedback term di+1 = Di+1(ei+1(t);W

b
i+1) is the output275

of a deconvolutional layer D parameterized by weights W b
i . Finally, the error correction term276

∇ϵi = ∇eiMSE(di, ei−1). Each term is weighted by hyperparameters γ, β, α, µ. Importantly, there277

is the constraint γ + β + µ = 1.278

Figure 5: (A) Schematic of the first two layers of the network and the predictive dynamics equation.
The activity of layer i at time t+ 1 is denoted as ei(t+ 1) and is computed as a linear combination
of feedforward, feedback, error correction, and memory terms. In the schematic, blue blocks
represent convolution layers (parameterized by weights W f

i for layer i), while green blocks represent
deconvolution layers (parameterized by weights W b

i for layer i).

A.2 Training details for predictive deep network model of auditory processing279

Here we provide more details of the training for the predictive network (Fig 6). Speech for the280

word classification task was sampled from the Wall Street Journal corpus [29]. The sounds are281

converted to cochleagrams as in [13] using pyCocleagram (https://github.com/mcdermottLab/282

pycochleagram). Cochleagrams are time-frequency decomposition of sounds with frequency283

dependent bandwiths and compressive non-linearities similar to the human cochlea.284

Background noise is added as in [13]. Additionally, we introduce pink noise as a new background285

noise type to establish a particularly easy noise condition with highly stationary statistics. The286

feedforward network is trained for word classification only on noisy sounds [13]. Feedback weights287

are trained on an unsupervised reconstruction task with clean sounds [10]. Finally, hyperparameters288

are learned via backpropagation to maximize performance on word classification on noisy sounds289

[12]. Importantly, hyperparameters are trained separately for each combination of background noise290

and SNR level [12]. All analyses are performed on a held-out validation set not seen in any of the291

training procedures. All error bars and error shading shown are standard error.292
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Figure 6: (A) Schematic of dataset generation and how it is split amongst the different training
procedures. Each square represents some 2-second sound from the WSJ corpus. The color represents
the SNR of the sound. Sounds either have no added noise (black) or have added noise of SNR
−9,−6,−3, 0, 3 decibels (red through blue).

A.3 Model performance, split across each background type293

Figure 7: (A) Hyperparameter values of the trained networks, but only for the networks trained on
pink noise. (B) As in (A), but only for auditory scene. (C) As in (A), but only for 8-speaker babble.
(D) Feedforward accuracy on held-out data set, split by background noise. (E) Ratio change of
accuracy from feedforward across predictive timesteps, evaluated on held-out data set and separated
by background type.

A.4 Model performance with error correction term ablated294

To test how crucial the error ablation term is, we set the associated hyperparameter α to 0 during the295

hyperparameter training and during the network evaluation. We find that the hyperparameter values296

and performance of the network do not appear to be impacted by this ablation (Fig 8).297

A.5 Potential societal impacts298

We do not foresee negative societal impacts from this study, as we are focused on basic neuroscience299

contributions.300
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Figure 8: (A) As in Fig. 2B but with error correction term ablated. (B) As in Fig. 2A, but with error
correction term ablated. (C) As in Fig. 7E, but with error correction term ablated.
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