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Abstract

Electrocardiogram (ECG) recordings are essen-
tial for cardiac diagnostics but require large-scale
annotation for supervised learning. In this work,
we propose a supervised pre-training framework
for multimodal ECG representation learning that
leverages Large Language Model (LLM) based
clinical entity extraction from ECG reports to
build structured cardiac queries. By fusing ECG
signals with standardized queries rather than cate-
gorical labels, our model enables zero-shot clas-
sification of unseen conditions. Experiments on
six downstream datasets demonstrate competitive
zero-shot AUC of 77.20%, outperforming state-of-
the-art self-supervised and multimodal baselines
by 4.98%. Our findings suggest that incorporating
structured clinical knowledge via LLM-extracted
entities leads to more semantically aligned and
generalizable ECG representations than typical
contrastive or generative objectives.1

1. Introduction
Supervised learning (eSL) methods have proven effective
in classifying cardiac conditions using Electrocardiogram
(ECG), a widely utilized clinical tool for monitoring the
heart’s electrical activity (Huang et al., 2023; Huang & Yen,
2022). However, eSLs typically rely on large-scale, expert-
annotated datasets, which are costly and difficult to scale.

To reduce annotation dependence, recent advances in ECG
self-supervised learning (eSSL) use contrastive or generative
pretext tasks to learn signal-level features from unlabelled
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data (Eldele et al., 2021; Kiyasseh et al., 2021; Na et al.,
2024). While promising, these methods often rely on hand-
crafted augmentations that distort physiological semantics
and require non-trivial task engineering, thus may lack clin-
ical interpretability and generalizability (Liu et al., 2024;
Kiyasseh et al., 2021). ECG-Text Multimodal approaches
attempt to incorporate the rich context of free-text ECG
reports to improve representation learning. However, the un-
structured nature of clinical narratives introduces linguistic
noise, inconsistencies, and limited diagnostic coverage (Liu
et al., 2024; Li et al., 2024; Wu et al., 2023). ECG introduc-
tion and related works are detailed in Appendix A, B.
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Figure 1. Overall framework including (a) ECG clinical entity ex-
traction with LLMs, (b) supervised ECG-Text multimodal pre-
training, and (c) zero-shot prompted evaluation.

We address these limitations by introducing a supervised
multimodal pre-training framework that leverages structured
clinical entities extracted by LLMs in Figure 1. Instead of
relying on noisy free-text or proxy tasks, we align ECG
signals with standardized diagnostic concepts, further en-
abling zero-shot classification of unseen cardiac conditions.
Our contributions are threefold: (a) A scalable pipeline
that extracts structured entities from noisy free-text ECG re-
ports using an instruction-tuned LLM enriched with domain
knowledge. Entities are then mapped to a curated set of
standardized diagnostic terms using medical databases (e.g.,
SNOMED CT, UMLS), producing fine-grained, clinically
meaningful supervision cardiac query labels without hu-
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Constraints
- Format

Knowledge Few-shot Samples
- Example 0

- Report: "sinus rhythm likely normal ECG"
- Entites: {"Global": {"Normal": ["sinus rhythm"],
"Abnormal": [], "Uncertain": ["likely normal ECG"]}}

- Example 1
- Report: "sinus rhythm left-sided incomplete right 
bundle branch block otherwise normal ECG"
- Entites: {"Global": {"Normal": ["sinus rhythm"], "A-
bnormal": ["left-sided incomplete right bundle bran-
ch block"], "Uncertain": ["otherwise normal ECG"]}}

- Example ...

- Pathophysiology

- SCP & Abbreviation
NSR, PAC, PVC, AVNRT, AFL, VT, LAFB, 
LVCD, AMI, LVH, RVH, NSTEMI, AVB, ...

Ventricular tachycardia, Sinus Arrhythmia, 
Supraventricular Tachycardia, Myocardial 
Infarction, First-degree AV Block, ...

- Waveform Abnormalities
QRS Complex, ST Segment, T-Wave 
Inversion, Low Voltage QRS Amplitude, 
Prolonged QT Interval, ...

{"Global": {
    "Normal": [...],
    "Abnormal": [...],
    "Uncertain": [...],
}}

- Explanation
Normal
sinus rhythm, ...
Abnormal
atrial fibrillation, 
tachycardia,...
Uncertain
likely normal, ...- Instruction

1. Learn the ECG domain-specific knowledge
2. Extract all entities at first and then classify
3. Remove duplicated entity in the same report

Meta LLaMA-3.1 70B

Sinus bradycardia
with occasional PVCs.

Left ventricular hyp-
ertrophy, normal rhythm.

Extended QT inter-
val, possible MI.

Sinus bradycardia, 
otherwise normal ECG.

Prolonged QT inter-
val, inferior myocard-
ial infarction.
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(a) ECG report entity extraction with (i) knowledge-enhanced prompt
engineering, and (ii) candidate entity deduplication and mapping.
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(b) ECG 1D ViT encoder with lead-wise and
position embedding.
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(c) Architecture of the Cardiac Fusion Net-
work (CFN) in the framework.

Figure 2. Implementation of the clinical NER and supervised ECG-Text multimodal pre-training framework: (a) ECG report entity
extraction, (b) ECG 1D ViT encoder, and (c) architecture of the Cardiac Fusion Network.

man annotation; (b) A supervised multimodal pre-training
framework that fuses ECG signals with clinical queries us-
ing a Cardiac Fusion Network (CFN) without the need for
signal-level augmentations or handcrafted contrastive losses,
thus directly learning noiseless semantics from structured
supervision; (c) Extensive pre-training on 771,500 ECGs
paired with 295 global cardiac queries from MIMIC-IV-
ECG (Gow et al., 2023), and evaluation on six downstream
datasets (e.g., PTB-XL, CPSC-2018, Chapman-Shaoxing-
Ningbo; Appendix C). Our approach achieves a state-of-
the-art zero-shot AUC (77.20%), outperforming leading
eSSL and multimodal baselines, even those fine-tuned with
10–100% labeled data. Our model also shows strong data
efficiency and generalization, with performance under only
20% pre-training data surpassing fully fine-tuned eSSLs.

2. Methodology
Our framework extracts clinical entities using LLMs to
form cardiac queries, which are fused with ECG signals
via Cardiac Fusion Network (CFN) in a shared latent space
for zero-shot diagnosis.

Clinical Entity Extraction with LLMs. We employ an
instruction-tuned LLM to extract entities from unstruc-
tured ECG reports (Figure 2(a)). To enhance accuracy, we
use structured prompts and few-shot examples with medi-
cal terminologies from clinician-validated resources (e.g.,
SNOMED CT, UMLS, SCP-ECG) (Bodenreider, 2004;
Donnelly et al., 2006; Rubel et al., 2016). The model identi-
fies diagnostic phrases (e.g., “sinus rhythm”) and their cer-
tainty (e.g., “abnormal”). Uncertain Entities are discarded.

To standardize entities with variations, we compile a cardiac
vocabulary from SNOMED CT and UMLS via LLM filter-
ing ECG terminologies. Both extracted and reference terms
are encoded using MedCPT, a BERT model initialized from
PubMedBERT, and clustered using cosine similarity (Jin
et al., 2023; Gu et al., 2021). Entities with high intra-cluster
similarity are grouped, and then mapped to standard terms if
the average similarity to the reference exceeds threshold set
with clinician verification. The resulting deduplicated terms
form a global query set for supervised pre-training. Prompts,
statistics and case study are included in the Appendix D.

Supervised ECG Multimodal Learning. ECG signals
exhibit temporal and structural patterns analogous to the
spatial relationships in images. We thus adapt the archi-
tecture of Vision Transformer (ViT) by dividing ECG time
series into fixed-size patches, as shown in Figure 2(b).

Given ECG signals x ∈ RB×L×T with B batches, L leads,
and T time steps, we segment each lead independently into
N = T/P non-overlapping patches of length P . This yields
xi,j ∈ RB×P for lead i and patch j. Each patch is linearly
projected by Wp ∈ RP×D into a D-dim embedding:

zi,j = xi,jWp z′i,j = zi,j + ei + pj

Z = [z′1,1, . . . , z
′
1,N , . . . , z′L,N ] ∈ RB×(L·N)×D

(1)

Here, ei ∈ RD and pj ∈ RD are learnable lead and posi-
tional embeddings. The enriched tokens z′i,j are concate-
nated into a full sequence Z, which is processed by stacked
Transformer encoders with residual connections, layer nor-
malization, and stochastic depth dropout. The output is then
passed through a modality-specific two-layer MLP with in-
termediate activation, yielding FECG ∈ RB×(L·N)×D′

for
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multimodal fusion in shared D′-dim.

Rather than relying on fixed per-sample labels, we con-
struct a global query list of M standardized diagnostic terms
derived from the entity extraction pipeline. Each query
qi is encoded independently using the MedCPT query en-
coder. All M query embeddings are also passed through
a modality-specific MLP to obtain projected embeddings
FQuery ∈ RM×D′

in the shared D′-dim.

E[i, :] = QEnc(qi) = Trm([CLS] qi [SEP]) ∈ R768 (2)

To align ECG features with cardiac queries, we employ
a Cardiac Fusion Network (CFN) composed of Trans-
former decoder layers. Given ECG features FECG ∈
RB×(L·N)×D′

and cardiac queries FQuery ∈ RM×D′
, the

CFN performs cross-attention between queries (input) and
ECG features (memory), producing a fused representation
H ∈ RB×M×D′

. This output is passed through a shared
classification head to yield M binary logits per ECG sample:

Logits = MLPCFN(H) ∈ RB×M (3)

During pre-training, each sample is weakly supervised by
a binary vector indicating which global queries match its
extracted diagnostic entities. A label of 1 is assigned if a
query aligns with a mapped report entity, 0 otherwise. To
prevent data leakage, raw reports are excluded from model
input, and the global query list is reused across all samples,
supporting scalable and decoupled multi-label learning. For
further details on the ECG backbone, projection layers, and
CFN setup, please refer to Appendix E.

Zero-shot Prompted Classification. To enable generaliza-
tion to unseen cardiac conditions without fine-tuning, we
convert SCP-ECG codes from downstream datasets into con-
cise, clinically meaningful textual prompts (e.g., “left bundle
branch block” for LBBB), forming a dataset-specific prompt
set aligned with the query space used during pre-training.
Following Clinical Knowledge-Enhanced Prompt Engineer-
ing (CKEPE) (Liu et al., 2024), we adopt a simplified variant
that avoids verbose LLM-generated descriptions (e.g., “a
condition characterized by prolonged QRS complex...” for
LBBB), instead using compact expressions. This reduces
redundancy and allows CFN to focus on cross-modal fusion
rather than memorizing textual artifacts.

At inference, ECG signals and cardiac prompts are indepen-
dently encoded by the ECG encoder and frozen MedCPT
text encoder. Let EmbECGs ∈ RB×N×D and EmbQueries ∈
RM×D denote the embeddings. These are fused via CFN to
produce logits over cardiac conditions:

Pred = σ(CFN(Feval
ECG,F

eval
Query)) (4)

We apply sigmoid activation for multi-label classification
and report AUROC (AUC) per condition, followed by
macro-averaging. Evaluation details are in Appendix F.

3. Experiments
3.1. Configurations

Clinical Entity Extraction. Following Section 2, we ex-
tract and normalize clinical entities from MIMIC-IV-ECG
using Llama3.1-70B-Instruct with structured prompts to
ensure high-quality annotations. Entities are deduplicated
via MedCPT embeddings (cosine similarity > 0.8) and
mapped to UMLS/SNOMED CT if average similarity ex-
ceeds 0.752. Experiments are run on 8 NVIDIA A100-
SMX4-80GB GPUs using vLLM (Kwon et al., 2023).

Supervised Pre-training. We use a 1D ViT-tiny encoder
(patch size = 125, i.e., 0.25s) and a frozen MedCPT text
encoder. Training employs AdamW (LR=1× 10−3, weight
decay=1× 10−8) with cosine annealing (T0=5000, Tmult=1,
min LR=1× 10−8), for up to 50 epochs with early stopping
(patience=10, best AUC at epoch 16). We train with batch
size 256 on 4 NVIDIA A100-PCIE-40GB GPUs3.

Downstream Classification. We evaluate on six un-
seen datasets (e.g., PTB-XL, CPSC-2018, Chapman; Ap-
pendix C) in zero-shot settings. Ablations test the effect of
ECG/text backbones and CFN. We also benchmark main-
stream eSSLs via linear probing (1%, 10%, 100% label use),
freezing the ECG encoder. All tasks are evaluated by aver-
age AUC across classes and datasets (splits in Appendix G).

3.2. Evaluation Results

The performance evaluation is carried out against 11 ECG-
only or multimodal eSSLs on six downstream ECG datasets
covering 106 unique cardiac conditions. Comparisons are
made under two settings: (i) zero-shot inference, and (ii)
linear probing with varying data proportions.

Table 1(a) shows the performance of our framework and
eSSLs. Our framework achieves the highest zero-shot AUC
of 77.20%, outperforming most eSSLs even when those are
fine-tuned with 100% labeled data, showcasing its strong
generalization capabilities. Without the CFN module in
linear probing (detailed in Appendix H)), it also outperforms
all ECG-only eSSLs and achieves competitive performance
with MERL4 (with explicit contrastive objectives), while
requiring significantly fewer training epochs (16 vs. 50).

Figure 3(a) presents dataset-wise comparisons. our frame-
work excels on challenging benchmarks such as PTB-XL-
Rhythm, CPSC-2018, and CSN. The gap is narrower on
PTB-XL-Superclass, likely due to its limited label granular-
ity (5 broad classes). All methods perform poorly on PTB-

2Verified by cardiologists with 10+ years of experience.
3Compact checkpoint (ViT-tiny + frozen MedCPT) runs on

single GPU with ≥24GB memory, making it deployable in clinical
or low-resource settings without pre-training.

4Former SOTA model, ViT backbone for fair comparision.
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Table 1. Performance evaluation and ablation study of our framework across model components and training configurations. Reported
values are zero-shot AUC (%).
(a) Overall performance with ’Z’ for zero-shot and ’L’ for linear
probing. Best results are bolded and second best gray -flagged.

Evaluation Zero-shot Linear Probing
Framework Approach 0% 1% 10% 100%

From Scratch

Random Init (CNN) L - 55.09 67.37 77.21
Random Init (Transformer) L - 53.53 65.54 75.52

ECG Only

SimCLR (Chen et al., 2020) L - 58.24 66.71 72.82
BYOL (Grill et al., 2020) L - 55.78 70.61 74.92
BarlowTwins (Zbontar et al., 2021) L - 58.92 70.85 75.39
MoCo-v3 (Chen et al., 2021) L - 57.92 72.04 75.59
SimSiam (Chen & He, 2021) L - 59.46 69.32 75.33
TS-TCC (Eldele et al., 2021) L - 54.66 69.37 76.95
CLOCS (Kiyasseh et al., 2021) L - 56.67 70.91 75.86
ASTCL (Wang et al., 2023) L - 57.53 71.15 75.98
CRT (Zhang et al., 2023a) L - 56.62 72.03 76.65
ST-MEM (Na et al., 2024) L - 56.42 63.39 69.60

Multimodal Learning

MERL (Liu et al., 2024) Z & L 73.54 63.57 78.35 83.68

Our Framework Z & L 77.20 63.24 72.34 84.48

(b) LLM for entity extraction.

LLM Size Zero-shot AUC

Llama3.1-8B-Instruct 72.89 ± 0.49

Llama3.1-70B-Instruct (Ours) 77.20 ± 0.21

(c) Entity deduplication.

Deduplication Zero-shot AUC

Not Deduplicated 65.94 ± 0.49

Deduplicated (Ours) 77.20 ± 0.21

(d) ECG backbone
encoders.

Backbone Zero-shot AUC

ResNet 64.96 ± 0.20

ViT (Ours) 77.20 ± 0.21

(e) Language model
encoders.

Language Model Zero-shot AUC

BioClinicalBERT 62.95 ± 0.53

PubMedBERT 62.51 ± 2.21

MedCPT (Ours) 77.20 ± 0.21

(f) Cardiac Fusion
Network.

Module Zero-shot AUC

w/o CFN (Linear) 72.70 ± 0.42

CFN (Ours) 77.20 ± 0.21

(g) Zero-shot cardiac query
prompts.

Prompt Strategy Zero-shot AUC

GPT-4o Generated 60.83 ± 0.26

CKEPE Detailed 69.16 ± 1.94

CKEPE Simplified (Ours) 77.20 ± 0.21

(h) Pre-train dropout ra-
tios.

Dropout Ratio Zero-shot AUC

0.05 75.98 ± 0.56

0.10 (Ours) 77.20 ± 0.21

0.15 75.63 ± 0.63

PTB-XL
Form

PTB-XL
Subclass

PTB-XL
Superclass

CSNCPSC-2018

PTB-XL
Rhythm

60.67

PTB-XL
Form

PTB-XL
Subclass

PTB-XL
Superclass

CSN

PTB-XL
Rhythm

86.79

79.83 80.17

78.20

77.52
60.67

86.79

80.17

78.20

77.52

CPSC-2018
79.83

(a) Comparison of our framework (zero-shot) and eSSLs (linear
probing with 1% data on the left and 10% data on the right).

Average AUC axis folded for better visualization.

(b) Data efficiency of our framework (zero-shot) and eSSLs
(MERL in zero-shot, others in linear probing).

Figure 3. Visualization of comparison of our framework with mainstream eSSLs, including both unimodal and multimodal baselines.

XL-Form, which defines waveforms that lack strong clinical
specificity, reducing semantic alignment with queries.

We also evaluate the data efficiency of our framework un-
der varying pre-training set sizes (Figure 3(b)). Even with
20% of the pre-train data, it exceeds eSSLs fine-tuned with
10% labeled data; it also achieves performance on par with
multimodal baseline MERL, demonstrating strong data ef-
ficiency and robustness under limited resource conditions.
More evaluations of our framework including unseen-query
metrics, different ECG encoders (ResNet vs. ViT), and the
effect of CFN are reported in Appendix I, J.

3.3. Ablation Studies

We conduct ablation studies on key components of our
framework, summarized in Table 1(b–h). Using Llama3.1-
70B-Instruct for entity extraction yields the highest zero-
shot AUC (77.20%), outperforming its 8B variant (72.89%),
suggesting large LLMs produce higher-quality annotations,
while smaller models remain viable lightweight alternatives.
Replacing our 295 standardized queries with the duplicated
1,095 terms drops AUC to 65.94%, indicating the effec-
tiveness of semantic deduplication. Substituting ViT with
ResNet18 degrades performance by 12.24%, highlighting
the benefit of self-attention for temporal modeling. Among
text encoders, MedCPT achieves the best AUC, surpass-
ing BioClinicalBERT and PubMedBERT by up to 14.69%,

likely due to its contrastive training. Removing the CFN and
using a linear head reduces AUC to 72.70%, underscoring
the importance of multimodal attention. Simplified CKEPE
prompts outperform GPT-generated or verbose versions by
at least 8.04%, demonstrating the value of concise, clini-
cally focused queries. Finally, a dropout rate of 0.10 offers
the best generalization, with both lower and higher values
leading to minor performance declines.

4. Conclusion
We present a novel LLM-based method for ECG clini-
cal entity extraction and introduce a scalable supervised
pre-training framework for multimodal ECG representation
learning that fuses ECG signals with fine-grained, standard-
ized cardiac queries rather than free-text reports. Its Cardiac
Fusion Network (CFN) and Clinical Knowledge-Enhanced
Prompt Engineering (CKEPE) eliminate the need for further
fine-tuning, enabling robust zero-shot classification with
concise cardiac queries. Benchmarked on six downstream
datasets, our framework achieves superior zero-shot perfor-
mance against 11 eSSLs, underscoring both data efficiency
and diagnostic precision. Our results highlight the value
of explicit entity-level supervision over raw text alignment
in ECG-Text multimodal learning, providing a strong basis
for clinically oriented ECG representation learning. Discus-
sions and limitations are presented in Appendix K, L.
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els trained on a single-centre dataset may encode demo-
graphic or device-specific biases; misclassification could
lead to delayed or inappropriate care if the system is de-
ployed without rigorous external validation and clinician
oversight. All code and checkpoints will therefore be re-
leased under a research-only licence, and we strongly advise
prospective users to conduct site-specific audits, fairness
analyses and human-in-the-loop evaluations before any clin-
ical integration. No additional privacy concerns arise, as all
data are fully de-identified, and the large-language-model
component operates only on those public texts.
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A. Electrocardiogram (ECG)
In the medical field, electrocardiogram (ECG) is an important tool for recording and analyzing patients’ cardiac activities,
which helps healthcare professionals identify various kinds of cardiac problems by detecting the electrical changes in
different leads. The standard 12-lead ECG is the most common method of recording ECGs, and it can capture relatively
comprehensive range of cardiac signals through placing electrodes at different locations on the body, providing information
of the heart’s health conditions.

Figure 4. Standard 12-lead Electrocardiogram (ECG) showing ’sinus rhythm’.

The basic components of the 12-lead ECG include the limb leads and the precordial leads. The limb leads contain I, II, III,
aVR, aVL, and aVF, each of them consists of a combination of electrodes located primarily in the right arm, left arm, left
leg, and right leg (as shown in Figure 4). The precordial leads contain V1, V2, V3, V4, V5, and V6, which all correspond to
specific single electrodes at different locations on the chest, and are used to observe in detail the electrical activity of the
anterior, lateral, and posterior walls of the heart.

B. Related Work
ECG Supervised Learning. ECG supervised learning (eSL) methods, using CNNs or Transformers, achieve high accuracy
in cardiovascular disease diagnosis. CNNs excel at capturing spatial and temporal patterns in 1D ECG signals or 2D ECG
images (Tesfai et al., 2022; Degirmenci et al., 2022; Mashrur et al., 2019; Huang et al., 2022), while Transformers use
attention mechanisms to model global dependencies (Natarajan et al., 2020; Jiang et al., 2021; He et al., 2023). Despite their
strengths, eSLs rely heavily on large-scale datasets with expert-verified annotations, making them costly and impractical for
pre-training tasks (Strodthoff et al., 2020). This dependence limits their scalability and generalizability, particularly when
addressing diverse datasets or unseen cardiac conditions.

ECG Self-supervised Learning. To overcome the annotation bottleneck, ECG self-supervised learning (eSSL) methods
have been introduced, enabling representation learning from unannotated ECG signals. Contrastive learning frameworks,
such as CLOCS and ASTCL (Kiyasseh et al., 2021; Wang et al., 2023), explore temporal and spatial invariance in ECG
data (Eldele et al., 2021; Chen et al., 2020; 2021). Generative eSSL techniques reconstruct masked segments to capture
signal-level features (Zhang et al., 2022; Sawano et al., 2022; Na et al., 2024; Jin et al.). Despite their successes, eSSLs fail
to incorporate clinical semantics from associated medical reports and require fine-tuning for downstream tasks (Liu et al.,
2023d;c; He et al., 2022), limiting their utility in zero-shot scenarios.

ECG Multimodal Learning. Multimodal learning has advanced significantly in biomedical applications, especially in
vision-language pre-training (VLP) frameworks for radiology (Liu et al., 2023b;a; Wan et al., 2024; Zhang et al., 2023b; Wu
et al., 2023), which align radiology images with structured knowledge from reports to reduce noise and improve robustness.
However, ECG-Text multimodal learning holds substantial potential for further development. Methods like MERL (Liu et al.,
2024) and ECG-LM (Yang et al.) integrate ECG signals and raw text reports but struggle with noise and inconsistencies
in unstructured reports. Others, such as KED (Tian et al., 2024), use structured labels and contrastive learning strategies
but face challenges from label noise and LLM-generated knowledge hallucinations. Our approach addresses these issues
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by structuring reports into meaningful entities, reducing noise, and aligning them with ECG signals without reliance on
LLM-augmented content, minimizing hallucination risks while enabling efficient representation learning and downstream
flexibility.

C. Datasets and Models
C.1. Pre-train Dataset

MIMIC-IV-ECG. MIMIC-IV-ECG5 is a comprehensive database containing 800,035 diagnostic ECG samples from 161,352
unique patients, with 12-lead recordings in 10 second length and sampled at 500 Hz (Gow et al., 2023). These data have
been matched with patient records in the MIMIC-IV clinical database, allowing for the association of waveforms with
reports when a cardiologist’s report is available through provided linking information. To enhance the usability of the data,
we exclude empty reports as well as reports containing fewer than 3 words, and replace ’NaN’ and ’Inf’ values in the ECG
records with the average of 6 neighboring points. Ultimately, the dataset used for clinical entity extraction tasks includes
771,500 samples, each comprising 18 machine-generated ECG reports based on rules and the corresponding ECG data.
After clinical NER and deduplication on the 18 ECG reports of each sample, the dataset holds 295 labels of professional
medical terminologies.

C.2. Downstream Dataset

PTB-XL. PTB-XL6 is a large open-source ECG dataset, comprising 21,799 clinical ECG records from 18,869 patients,
with each lead sampled at a rate of 500 Hz and a duration of 10 seconds (Wagner et al., 2020). A total of 71 different ECG
reports are SCP-ECG compliant, covering diagnostic, form and rhythm reports. PTB-XL also provides a recommended
train-test split and includes multi-level ECG annotations, covering Superclass (5 categories), Subclass (23 categories), Form
(19 categories), and Rhythm (12 categories). Notably the 4 subsets have different sample sizes.

CPSC-2018. The CPSC-20187 dataset originates from the China Physiological Signal Challenge (CPSC) 2018, including
6,877 records from 9,458 patients, with durations ranging from 6 to 60 seconds (Liu et al., 2018). The standard 12-lead
ECG data is sampled at a rate of 500 Hz, collected from 11 hospitals and categorized into 9 different labels: 1 normal type
and 8 abnormal types.

Chapman-Shaoxing-Ningbo (CSN). The CSN8 12-lead ECG dataset is created with the support of Chapman University,
Shaoxing People’s Hospital and Ningbo First Hospital, which includes 12-lead ECGs from 45,152 patients, with a sampling
rate of 500 Hz and a duration of 10 seconds (Zheng et al., 2020; 2022). It contains expert annotated features that cover variety
of common heart rhythms and other cardiovascular conditions. We exclude ECG records with ”unknown” annotations and
get 23,026 ECG records with 38 different labels.

C.3. Llama3.1-70B-Instruct Model

Llama3.1-70B-Instruct9 is a 70-billion parameter large language model released by Meta AI as part of the Llama 3 family.
Built on a transformer decoder architecture, it is optimized for instruction following and few-shot generalization through
extensive supervised fine-tuning and reinforcement learning from human feedback (RLHF). Compared to its predecessors,
Llama3.1-70B-Instruct demonstrates substantial improvements in reasoning, factuality, and alignment with user intent across
a wide range of NLP tasks.

In our framework, we leverage Llama3.1-70B-Instruct to extract fine-grained diagnostic entities from free-text ECG reports
in the MIMIC-IV-ECG dataset. The scale and instruction-tuning of this model make it well suited for domain-specific
named entity recognition (NER) in noisy clinical narratives. Our objective is to construct a high-quality, large-scale set
of cardiac entities and their mapped terminologies, enabling robust supervision for ECG-text multimodal learning and
promoting reproducibility in future research.

Although smaller models can provide acceptable results (see Section 3.3), we adopt Llama3.1-70B-Instruct to maximize

5MIMIC-IV-ECG is available at https://physionet.org/content/mimic-iv-ecg/1.0/.
6PTB-XL is available at https://physionet.org/content/ptb-xl/1.0.3/.
7CPSC-2018 is available at http://2018.icbeb.org/Challenge.html.
8Chapman-Shaoxing-Ningbo is available at https://physionet.org/content/ecg-arrhythmia/1.0.0/.
9Llama3.1-70B-Instruct is available at https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct.
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annotation quality, particularly for downstream applications in clinical and low-resource settings that rely on precise
structured supervision.

D. LLM-based Clinical Entity Extraction
D.1. Prompt for Medical Database Terminology Filtering

1 system_message = """\
2 You are a clinical NLP assistant specializing in identifying ECG related terminologies

from medical databases.↪→
3

4 Your primary task is to serve as a strict terminology filter that judges whether the
provided terminology is related to ECG or not, and output your judgement in a
**strictly formatted JSON object** that conforms exactly to the following schema:

↪→
↪→

5

6 {
7 "IS_ECG_TERM": true/false,
8 }
9

10 **Strict constraints**:
11 - Return **only** the JSON object. Do not include any natural language explanation or

commentary.↪→
12 - Do not hallucinate or invent fields not specified above.
13

14 Your output will be used in real-life clinical settings. Any deviation from this format
may cause serious issues in downstream applications. Be precise and compliant.↪→

15 """
16

17 def get_prompt(row):
18 return f"""\
19 Please read and give your judgement on the following terminology.
20

21 Terminology:
22 \"{row["ENG_TERM"]}\"
23 """

D.2. Prompt for Report Entity Extraction

1 system_message = """\
2 You are a clinical NLP assistant specializing in information extraction from medical ECG

(electrocardiogram) reports. Your role is to serve as a strict, schema-aware entity
extractor that produces structured annotations for downstream machine learning and
clinical data analysis tasks.

↪→
↪→
↪→

3

4 Please learn the knowledge including common ECG terminologies and abbreviations first:
5

6 **Common ECG terminologies**:
7 Normal: "normal sinus rhythm", "normal ecg", "sinus rhythm", "within normal limits", "no

abnormalities detected", ...↪→
8 Abnormal: "atrial fibrillation", "ventricular tachycardia", "left ventricular

hypertrophy", "right bundle branch block", "ST elevation, "T wave inversion",
"prolonged QT interval", "first degree AV block", "pacemaker rhythm", ...

↪→
↪→

9 Uncertain: "possible infarction", "borderline ecg", "nonspecific ST-T changes", "probable
left ventricular hypertrophy", "cannot rule out ischemia", ...↪→

10

11 **Demo Abbreviations**:
12 NSR: "Normal Sinus Rhythm",
13 AFIB: "Atrial Fibrillation",
14 AFL: "Atrial Flutter",
15 VT": "Ventricular Tachycardia",
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16 PVC: "Premature Ventricular Contraction",
17 PAC: "Premature Atrial Contraction",
18 LVH: "Left Ventricular Hypertrophy",
19 RVH: "Right Ventricular Hypertrophy",
20 RBBB: "Right Bundle Branch Block",
21 LBBB: "Left Bundle Branch Block",
22 AVB1: "First Degree AV Block",
23 AVB2: "Second Degree AV Block",
24 AVB3: "Third Degree AV Block",
25 STEMI: "ST-Elevation Myocardial Infarction",
26 NSTEMI: "Non-ST-Elevation Myocardial Infarction",
27 TW": "T Wave Inversion",
28 QTc: "Corrected QT Interval",
29 BBB: "Bundle Branch Block",
30 LAD: "Left Axis Deviation",
31 RAD: "Right Axis Deviation",
32 SA: "Sinoatrial",
33 PVCs: "Premature Ventricular Contractions",
34 PACs: "Premature Atrial Contractions"
35

36 Your primary task is to identify all relevant entities in an ECG report and then classify
based on diagnosis certainty, afterwards output them in a **strictly formatted JSON
object** that conforms exactly to the following schema:

↪→
↪→

37

38 ```json
39 {
40 "global": [...], # All ECG entities from the provided report
41 "classification": {
42 "normal": [...], # Entities confidently labeled as clinically "normal" (e.g.,

"normal ECG", "sinus rhythm")↪→
43 "abnormal": [...], # Entities labeled as clinically "abnormal" (e.g., "atrial

fibrillation", "ST elevation")↪→
44 "uncertain": [...] # Entities with uncertainty or ambiguity in the report

context (e.g., "possible LVH", "undetermined".)↪→
45 }
46 }
47 ```
48

49 **Strict constraints**:
50

51 - Return **only** the JSON object. Do not include any natural language explanation or
commentary.↪→

52 - Do not hallucinate or invent fields not specified above.
53 - Do not extract adjectives or modifiers (e.g., "nonspecific", "mild", "marked",

"possibly", "likely") as standalone entities. If a descriptive modifier qualifies an
entity (e.g., "nonspecific ST-T changes", "likely normal ecg"), include it in the
full entity string.

↪→
↪→
↪→

54 - Do not extract entire sentences or diagnostic phrases as a single entity. If a sentence
contains multiple medical concepts, extract each as a separate entity.↪→

55 - If an entity contains conjunctions (e.g., "and", "or", "and/or"), causal phrases (e.g.,
"due to", "with"), or multiple anatomical locations (e.g., "inferior/lateral"), you
must split it into separate entities.

↪→
↪→

56 - If there are entities with clinically same meanings in the given report, only retain
one with better expression.↪→

57

58 **Some examples**:
59

60 - [Modifier + Entity]:
61 Input: "lateral st-t changes are probably due to ventricular hypertrophy"
62 Output: {"global": ["lateral st-t changes", "ventricular hypertrophy"],

"classification": {"normal": [], "abnormal": ["lateral st-t changes", "ventricular
hypertrophy"], "uncertain": []}}

↪→
↪→

63

64 - [Entity A with/and/or/'/' Entity B]:
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65 Input: "sinus rhythm with pacs. hypertrophy and/or ischemia. inferior/lateral st-t
changes."↪→

66 Output: {"global": ["sinus rhythm", "pacs", "hypertrophy", "ischemia", "inferior st-t
changes", "lateral st-t changes"], "classification": {"normal": ["sinus rhythm"],
"abnormal": ["pacs", "hypertrophy", "ischemia", "inferior st-t changes", "lateral
st-t changes"], "uncertain": []}}

↪→
↪→
↪→

67

68 - [Entity + Further Description]:
69 Input: "inferior infarct - age undetermined. pacemaker rhythm - no further analysis.

poor r wave progression - probable normal variant."↪→
70 Output: {"global": ["inferior infarct", "age undetermined", "pacemaker rhythm", "poor r

wave progression", "probable normal variant"], "classification": {"normal": [],
"abnormal": ["inferior infarct", "pacemaker rhythm", "poor r wave progression"],
"uncertain": ["age undetermined", "probable normal variant"]}} # "no further
analysis" is not a medical entity

↪→
↪→
↪→
↪→

71

72 Your output will be used in real-life clinical settings. Any deviation from this format
may cause serious issues in downstream applications. Be precise and compliant.↪→

73 """
74

75

76 def get_prompt(row):
77 return f"""\
78 Please extract all relevant clinical entities from the following ECG report.
79

80 Return the output strictly in the JSON format described in the system prompt.
81 Do not include any explanation or additional text.
82

83 ECG report text:
84 \"{row["total_report"]}\"
85 """

D.3. Statistics of Extracted MIMIC-IV-ECG Entities

We extract over 3.4 million clinical entities from free-text ECG reports in the MIMIC-IV-ECG dataset using an instruction-
tuned LLM. At the term level, this results in 1,168 unique raw entities (Table 2). Among these, 93.75% remain after filtering
out uncertain or ambiguous expressions. To resolve redundancy and lexical variation, we apply embedding-based clustering
using MedCPT representations, reducing the vocabulary to 341 cluster representatives. Further manual verification and
mapping to UMLS/SNOMED CT terminologies yield a final set of 295 standardized cardiac entities used as global queries
during supervised pre-training.

Table 2. Statistics of unique cardiac entities: Extraction, Filtering, Deduplication, and Mapping.

Entity Type Count Proportion

Raw extracted entities 3,419,064 100% (sample-level)
Unique raw extracted entities 1,168 100% (term-level)
Terms after uncertainty filtering 1,095 93.75% (vs. 1,168)
Entity cluster representatives (post-deduplication) 341 29.20% (vs. 1,168)
Final unique standardized entities (post-mapping) 295 25.26% (vs. 1,168)

Table 3 provides additional statistics on the clustering process. The average cluster contains 3.39 entities, with some clusters
merging up to 29 semantically similar terms. In total, 86.51% of clusters are successfully mapped to standardized terms.
The distribution of standardized entity frequencies is illustrated in Figure 5. The left panel shows a log-scaled histogram of
the most common cardiac terms, with ”normal”, ”abnormal”, and ”myocardial infarction” being the most frequent. The right
panel presents a word cloud that qualitatively reflects term prevalence and semantic variety. Together, these visualizations
confirm that while a few diagnostic terms dominate the corpus, a long tail of clinically significant but less frequent entities is
preserved, supporting robust coverage in downstream classification.
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Table 3. Clustering statistics of extracted cardiac entities on MedCPT embeddings.

Clustering Metric Value

Number of clusters formed 341
Average number of entities per cluster 3.39
Maximum / Minimum cluster size 29 / 1
Proportion of clusters mapped to standard terms 86.51%

101 102 103 104 105

Figure 5. Frequency distribution of standardized ECG entities after deduplication and mapping in MIMIC-IV-ECG.

D.4. Case Study of Deduplication and Mapping

To address concerns about how descriptive cardiac queries are constructed and how they reduce noise compared to raw NER
outputs, we present a representative case study from the MIMIC-IV-ECG dataset.

Original Clinical Report:

“Sinus rhythm w/ PACs, QTc prolonged, Left axis deviation, RBBB with left anterior fascicular block, Infe-
rior/lateral T changes may be due to myocardial ischemia, Low QRS voltages in precordial leads.”

Extracted Raw Entities (via LLM-based NER):

"sinus rhythm", "PACs", "QTc prolonged", "Left axis deviation",
"RBBB", "Left anterior fascicular block", "Inferior/lateral T changes",
"Myocardial ischemia", "Low QRS voltages in precordial leads"

Mapped and Standardized Queries (after Deduplication and Mapping):

Table 4. Example mapping from raw NER entities to standardized cardiac query labels.

SCP Code Standardized Query Matched Raw Entities (Cosine Similarity)

SR sinus rhythm sinus rhythm (1.0000)
PAC premature atrial complex PACs (0.8976)
LNGQT prolonged QT interval QTc prolonged (0.9434)
ALS axis left shift Left axis deviation (0.8723)
RBBB right bundle branch block RBBB (1.0000)
LAFB left anterior fascicular block Left anterior fascicular block (1.0000)
NT non-specific T wave changes Inferior/lateral T changes (0.7751)
MI myocardial infarction Myocardial ischemia (0.9231)
LVOLT low QRS voltages Low QRS voltages in precordial leads (0.8919)

This example illustrates how the same clinical concept may be expressed in different lexical forms (e.g., “PACs” vs.
“premature atrial complex”) or contain verbose phrasing (e.g., “Low QRS voltages in precordial leads”), leading to noisy or
redundant supervision if used directly. By clustering and mapping using MedCPT embeddings and similarity thresholds
(Table 4), these expressions are unified under concise, standardized queries aligned with SCP codes.
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Table 5. Example Clusters of Raw NER Entities Mapped to Standardized Cardiac Queries.

SCP Code Standard Cardiac Query Mapped Raw NER Entities (Cosine Similarity)

NORM normal Normal (1.000), of normal (0.995), Normal result (0.979), Nor-
mal interest (0.953), percent of normal (0.942)

IMI inferior myocardial infarction Inferior myocardial ischemia (0.956), Inferior MI on ECG
(0.935), ECG shows inferior MI (0.928), Myocardial infarction
(0.923), Old inferior MI (0.907)

LVH left ventricle hypertrophy Left ventricular hypertrophy (0.992), Severe LVH (0.967), Hy-
pertensive LVH (0.948), Acquired LVH (0.940), Congenital LVH
(0.904)

In Table 5 we show parts of the clustering and deduplication results on the pre-train dataset MIMIC-IV-ECG. This process
prevents redundant terms from introducing duplicate supervision, normalizes entities with modifiers (e.g., “in precordial
leads”), and enforces semantic consistency across ECG samples. These standardized queries form the global label set used
for training, enabling clean multimodal supervision and robust generalization in zero-shot settings.

E. Pre-training Framework Implementation
E.1. Transformer Block Structure.

The Transformer architecture (Vaswani, 2017) is widely used for seq2seq modeling, learning global dependencies via
self-attention instead of recurrent or convolutional structures. It consists of an encoder-decoder design, where both the
encoder and decoder utilize stacked self-attention and feed-forward layers, as shown in Figure 6.

Figure 6. Encoder-decoder structure of Transformer, quoted from (Vaswani, 2017).

Each encoder block applies a residual connection around its multi-head self-attention (MHA) and position-wise feed-
forward (FF) sublayers, followed by layer normalization:
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Z(k,1) = Z(k−1) + Drop(MHA(Norm(Z(k−1))))

Z(k,2) = Z(k,1) + Drop(FF(Norm(Z(k,1))))

Znorm = Norm(Z(final))

(5)

where Z(k−1) is the input to the k-th Transformer block, Z(k,1) represents the intermediate state after multi-head attention
and residual connection, and Z(k,2) is the output after the feed-forward network. The final normalized representation Znorm

is used for downstream ECG classification.

The decoder extends the encoder structure by introducing an additional multi-head attention sublayer that attends to encoder
outputs, while also incorporating masked self-attention to ensure autoregressive sequence modeling. These layers collectively
enable flexible cardiac feature extraction in our framework.

E.2. Projection of ECG Embeddings

Following the Transformer encoder stack in the Vision Transformer (ViT) backbone, the resulting ECG token sequence
Z ∈ RB×(L·N)×D is passed through a modality-specific projection head to align its dimensionality with the shared
multimodal latent space used in fusion.

The projection head is implemented as a two-layer multilayer perceptron (MLPECG), consisting of:

• A linear transformation from the ViT output width D to an intermediate hidden size Dh;

• A non-linear activation function (ReLU);

• A linear transformation from Dh to the final projected dimension D′, shared with the text modality.

Formally, the projection can be written as:

Embhidden
ECG = ZdropoutW1 + b1

Emb′hidden
ECG = ReLU(Embhidden

ECG )

FECG = Emb′hidden
ECG W2 + b2

(6)

where ReLU is the activation function, b1 and b2 bias terms, and W1 ∈ RD×Dh and W2 ∈ RDh×D′
are learnable

parameters.

This projection layer serves to improve non-linear representational capacity before multimodal alignment, and to map
ViT-specific features to a dimensionally consistent space with text query embeddings, enabling efficient cross-modal attention
in the Cardiac Fusion Network (CFN).

E.3. Projection of Text Query Embeddings

To align cardiac query embeddings with ECG features in the multimodal latent space, we apply a modality-specific projection
head to the output of the MedCPT query encoder (QEnc). Given M queries encoded into a matrix E ∈ RM×768, the
projection head transforms each 768-dimensional embedding into a D′-dimensional representation compatible with ECG
tokens.

The projection is implemented as a two-layer multilayer perceptron (MLPQuery) as well, consisting of:

• A linear transformation from 768 to a hidden dimension Dh;

• A non-linear activation function (GELU);

• A linear transformation from Dh to the target fusion dimension D′.
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Formally, the operation is defined as:

Embhidden
Query = EdropoutW3 + b3

Emb′hidden
Query = GeLU(Embhidden

Query )

FQuery = Emb′hidden
Query W4 + b4

(7)

where GeLU is the activation function, b3 and b4 bias terms, and W3 ∈ R768×Dh and W4 ∈ RDh×D′
are learnable

parameters.

This projection head enables cross-modal alignment by transforming domain-specific textual semantics into a shared feature
space used by the Cardiac Fusion Network (CFN). The structure mirrors the ECG-side projection to maintain architectural
symmetry and training stability.

E.4. Initialization of Cardiac Fusion Network

All weights in linear layers and attention modules are initialized with a normal distribution, W ∼ N (0, 0.02). To support
batch processing, the text embeddings Ftext are expanded to match the batch size B. Both ECG and text embeddings undergo
layer normalization to improve training stability and convergence.

F. Zero-shot Evaluation Analysis
F.1. Classification Mechanism

During zero-shot evaluation, the class set (i.e., diagnostic query set Q) is dynamically specified per downstream dataset but
remains fixed for all samples within that dataset. The model computes one score per query in Q for a given ECG sample.
These scores are produced via a sigmoid-activated MLP head following the Cardiac Fusion Network (CFN) output, where
each query representation attends over the ECG feature sequence. Importantly, this design supports variable-sized query sets
across datasets, and prediction is always performed over the currently defined Q. The classifier weights are not pre-defined
or fixed, but learned representations aligned to query embeddings through cross-modal attention, ensuring full flexibility
across unseen classes.

F.2. Simplified Clinical Knowledge-Enhanced Prompt Engineering

In our implementation of simplified CKEPE query construction, we follow the general design principle introduced in
MERL (Liu et al., 2024). The original CKEPE pipeline in MERL employs GPT-4 with web browsing to retrieve attributes
and subtypes of each cardiac condition from clinical knowledge sources such as SNOMED CT and SCP-ECG. The prompt
typically used is:

"Which attributes and subtypes does <cardiac condition> have?"

The responses are then validated against the external databases to avoid hallucination and finally organized into detailed
clinical descriptions used as prompts for downstream evaluation (see MERL Section 3.4 and Figure 3).

In contrast, we adopt a simplified version of this process (Section 2) aimed at reducing verbosity while preserving clinical
specificity. Specifically, we use GPT-4o with the following style of prompt:

"Provide the standard clinical definition of <SCP diagnostic code> based
on the SCP-ECG protocol."

The generated responses are then automatically validated by external databases as well to reduce hallucinated content. Rather
than expanding into all potential attributes or phenotypes (as done in MERL), we retain only the concise, high-precision
diagnostic phrase for each class, enabling cleaner alignment with the downstream label space.

Take a simple case study as example, for the diagnostic class LBBB (Left Bundle Branch Block), MERL would produce a
long-form prompt such as:
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“A conduction abnormality characterized by delayed depolarization of the left ventricle, typically resulting in a
widened QRS complex (>120 ms), often associated with underlying structural heart disease or ischemia.”

In contrast, our simplified prompt (after GPT-4o generation and medical verification) becomes:

“left bundle branch block”

This compact form reduces potential noise in query encoding while retaining diagnostic specificity. It aligns with our
hypothesis that multimodal fusion benefits more from semantically discriminative labels than verbose natural language
definitions.

F.3. Dataset Overlap Analysis

We analyze the cardiac query overlap between the pre-train dataset and six downstream datasets specified in Section 3.1, as
well as among the downstream datasets themselves, as illustrated in Figure 7. Specifically, we embed all entities from the
pre-train dataset and cardiac queries from the downstream datasets, compute their cosine similarity, and apply a threshold of
0.95 verified by cardiologists with 10+ years of experience as well to filter overlapping queries.

Figure 7. Overlap between ECG datasets, with left panel showing pairwise overlap counts between downstream datasets, and right panel
showing the distribution of overlapping and non-overlapping classes between each downstream dataset and the pre-training dataset.

The heatmap on the left shows that pairwise overlaps among downstream datasets are generally limited, reflecting the
diversity of cardiac query prompts. The bar chart on the right reveals that 57 cardiac queries overlap between the pre-train
dataset and the downstream datasets. Despite the pre-train dataset shares some similar queries, a substantial portion of
queries remains unique to the downstream datasets, allowing the pre-train process to establish robust general-purpose
representations while leaving room for downstream-specific adaptation.

Table 6 shows the overlap between entities from the pre-train dataset and cardiac queries from the downstream datasets,
filtered using a cosine similarity threshold of 0.95.

F.4. Evaluation Metrics

We use zero-shot learning and linear probing to evaluate the performance of our framework and mainstream eSSL frameworks.
The primary metric is Area Under the Receiver Operating Characteristic (AUROC, also referred to as AUC). AUROC is
widely used to evaluate the performance of binary classification models. The ROC curve plots the True Positive Rate (TPR)
on the vertical axis against the False Positive Rate (FPR) on the horizontal axis. By varying the classifier’s threshold, TPR
and FPR are calculated and then plotted to form the curve, where TP refers to True Positive, FN refers to False Negative,
FP refers to False Positive, and TN refers to True Negative.:

TPR =
TP

TP+ FN

FPR =
FP

FP+TN

(8)
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Table 6. Overlap between pre-train dataset queries and downstream dataset queries (similarity ≥ 0.95), shown side-by-side.

Pre-train Entity Downstream Query Sim. Pre-train Entity Downstream Query Sim.

atrial fibrillation atrial fibrillation 1.0000 atrial flutter atrial flutter 1.0000
supraventricular tachycardia supraventricular tachycardia 1.0000 Sinus Tachycardia sinus tachycardia 1.0000
ventricular preexcitation ventricular preexcitation 1.0000 Sinus Bradycardia sinus bradycardia 1.0000
right bundle branch block right bundle branch block 1.0000 first degree AV block first degree av block 1.0000
myocardial infarction myocardial infarction 1.0000 premature complex premature complex 1.0000
atrial premature complex atrial premature complex 1.0000 ST-T change st-t changes 0.9968
Prolonged QT interval prolonged qt interval 1.0000 premature atrial complex atrial premature complex 0.9961
T wave abnormalities t wave abnormalities 1.0000 left ventricle hypertrophy left ventricular hypertrophy 0.9924
ST depression st depression 1.0000 right ventricle hypertrophy right ventricular hypertrophy 0.9920
AV block av block 1.0000 Q wave present q wave 0.9903
T wave Changes t wave changes 1.0000 complete right bundle branch block right bundle branch block 0.9891
sinus bradycardia sinus bradycardia 1.0000 high QRS voltage high qrs voltages 0.9878
left anterior fascicular block left anterior fascicular block 1.0000 complete left bundle branch block left bundle branch block 0.9861
sinus arrhythmia sinus arrhythmia 1.0000 second degree AV block(Type one) second degree av block 0.9817
left bundle branch block left bundle branch block 1.0000 anteroseptal myocardial infarction anteroseptal infarction 0.9809
sinus tachycardia sinus tachycardia 1.0000 ischemic ischemia 0.9804
abnormal Q wave abnormal q wave 1.0000 second degree AV block(Type two) second degree av block 0.9795
ventricular premature complex ventricular premature complex 1.0000 third degree av block second degree av block 0.9795
Prolonged PR interval prolonged pr interval 1.0000 low amplitude T wave high t wave amplitude 0.9741
Atrial Tachycardia atrial tachycardia 1.0000 abnormal QRS abnormal qrs morphology 0.9737
Supraventricular Tachycardia supraventricular tachycardia 1.0000 suggests digitalis-effect digitalis effect 0.9726
left posterior fascicular block left posterior fascicular block 1.0000 supraventricular arrhythmia supraventricular tachycardia 0.9684
normal normal 1.0000 anterolateral myocardial infarction anterolateral infarction 0.9667
second degree AV block second degree av block 1.0000 paroxysmal supraventricular tachycardia supraventricular tachycardia 0.9611
anterior myocardial infarction anterior myocardial infarction 1.0000 left front bundle branch block left bundle branch block 0.9537
incomplete left bundle branch block incomplete left bundle branch block 1.0000 inferior myocardial infarction inferior infarction 0.9512
incomplete right bundle branch block incomplete right bundle branch block 1.0000 right atrial hypertrophy right atrial enlargement 0.9570
ST elevation st elevation 1.0000

AUROC is the area under the ROC curve, with values ranging from 0 to 1, reflecting the overall classification ability of the
model. AUROC = 0.5 indicates that the model’s classification ability is equivalent to random guessing, while AUROC >
0.5 and values closer to 1 indicate that the model is able to classify with greater accuracy.

G. Downstream Task Configuration
G.1. Data Split

For PTB-XL, we adopt the official train-test split recommended by the dataset authors (Wagner et al., 2020), ensuring
consistency with prior works and a balanced distribution of ECG categories. This split is directly applied across the
Superclass, Subclass, Form, and Rhythm subsets of PTB-XL. For CPSC-2018 and CSN, we follow the data splitting
approach used by (Liu et al., 2024), which randomly divides the datasets into training, validation, and testing subsets in a
70%:10%:20% ratio.

Details of the splits, including the specific number of samples allocated to each subset, are summarized in Table 7.

Table 7. Data splits and sample distribution for downstream datasets.

Dataset Category Number Train Set Validation Set Test Set

PTB-XL

Superclass 5 17,084 2,146 2,158
Subclass 23 17,084 2,146 2,158
Form 19 7,197 901 880
Rhythm 12 16,832 2,100 2,098

Others

CPSC-2018 9 4,950 551 1,376
CSN 38 16,546 1,860 4,620
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Table 8. Downstream dataset information and split proportions.

Hyperparameter PTB-XL-Superclass PTB-XL-Subclass PTB-XL-Form PTB-XL-Rhythm CPSC-2018 CSN

Optimizer

Type AdamW AdamW AdamW AdamW AdamW AdamW
Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Weight Decay 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8

Scheduler

Type Cosine Anealing Cosine Anealing Cosine Anealing Cosine Anealing Cosine Anealing Cosine Anealing
Warmup Steps 5 5 5 5 5 5

General

Batch Size 16 16 16 16 16 16
Epochs 100 100 100 100 100 100

Table 9. Specific linear probing performance of our framework and eSSLs across six downstream datasets. Best results are bolded and
second best gray -flagged.

PTB-XL-Superclass PTB-XL-Subclass PTB-XL-Form PTB-XL-Rhythm CPSC-2018 CSN
Framework 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

From Scratch

Random Init (CNN) 70.45 77.09 81.61 55.82 67.60 77.91 55.82 62.54 73.00 46.26 62.36 79.29 54.96 71.47 78.33 47.22 63.17 73.13
Random Init (Transformer) 70.31 75.27 77.54 53.56 67.56 77.43 53.47 61.84 72.08 45.36 60.33 77.26 52.93 68.00 77.44 45.55 60.23 71.37

ECG Only

SimCLR 63.41 69.77 73.53 60.84 68.27 73.39 54.98 56.97 62.52 51.41 69.44 77.73 59.78 68.52 76.54 59.02 67.26 73.20
BYOL 71.70 73.83 76.45 57.16 67.44 71.64 48.73 61.63 70.82 41.99 74.40 77.17 60.88 74.42 78.75 54.20 71.92 74.69
BarlowTwins 72.87 75.96 78.41 62.57 70.84 74.34 52.12 60.39 66.14 50.12 73.54 77.62 55.12 72.75 78.39 60.72 71.64 77.43
MoCo-v3 73.19 76.65 78.26 55.88 69.21 76.69 50.32 63.71 71.31 51.38 71.66 74.33 62.13 76.74 75.29 54.61 74.26 77.68
SimSiam 73.15 72.70 75.63 62.52 69.31 76.38 55.16 62.91 71.31 49.30 69.47 75.92 58.35 72.89 75.31 58.25 68.61 77.41
TS-TCC 70.73 75.88 78.91 53.54 66.98 77.87 48.04 61.79 71.18 43.34 69.48 78.23 57.07 73.62 78.72 55.26 68.48 76.79
CLOCS 68.94 73.36 76.31 57.94 72.55 76.24 51.97 57.96 72.65 47.19 71.88 76.31 59.59 77.78 77.49 54.38 71.93 76.13
ASTCL 72.51 77.31 81.02 61.86 68.77 76.51 44.14 60.93 66.99 52.38 71.98 76.05 57.90 77.01 79.51 56.40 70.87 75.79
CRT 69.68 78.24 77.24 61.98 70.82 78.67 46.41 59.49 68.73 47.44 73.52 74.41 58.01 76.43 82.03 56.21 73.70 78.80
ST-MEM 61.12 66.87 71.36 54.12 57.86 63.59 55.71 59.99 66.07 51.12 65.44 74.85 56.69 63.32 70.39 59.77 66.87 71.36

Multimodal Learning

MERL 78.64 83.90 85.27 61.41 77.55 82.98 56.32 69.11 77.66 52.16 78.07 81.83 69.25 82.82 89.44 63.66 78.67 84.87

Our framework 73.58 79.07 87.67 66.30 74.20 84.84 58.94 58.93 74.06 56.92 76.27 84.42 58.28 70.51 86.74 65.42 75.08 89.16

G.2. Experiment Configuration

The training configurations for downstream tasks, including optimizer, scheduler, and relevant hyperparameters, are detailed
in Table 8.

H. Performance on Linear probing.
Table 9 shows the linear probing AUC performance of our framework’s and other eSSLs’ ECG encoders on specific six
downstream datasets.

I. Performance of Non-overlapped Cardiac Conditions
While evaluating performance exclusively on non-overlapping (i.e., unseen) downstream classes is not a standard practice in
existing ECG literature, including MERL and other multimodal or self-supervised frameworks, we acknowledge its value in
assessing true generalization. To address this, we conduct an additional analysis where we evaluate zero-shot AUC only on
downstream classes that do not appear in the pre-training dataset.

Table 10 presents the comparison between AUC scores on all downstream classes versus only non-overlapping ones. As
expected, performance on unseen classes is moderately lower, yet remains strong across datasets, confirming our framework’s
ability to generalize beyond pre-trained diagnostic categories. This analysis complements our main results and provides
deeper insights into model robustness.
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Table 10. Zero-shot AUC on downstream datasets using only non-overlapping (unseen) classes vs. using all classes.

Setting PTB-XL-Super PTB-XL-Sub PTB-XL-Form PTB-XL-Rhythm CPSC-2018 CSN Overall

Non-overlapping Classes 75.97 69.30 61.36 83.83 – 75.73 73.24
All Classes 78.20 77.52 60.67 86.79 79.83 80.17 77.20

J. Performance of Architecture Varients
Beyond comparisons with eSSLs, we directly assess our framework’s zero-shot classification performance by varying
its core modules, including the ECG backbone and CFN. Table 11 reports the results for our framework and its variants,
where the ViT + CFN architecture achieves the highest average AUC of 77.20%, with particularly strong performance on
PTB-XL-Rhythm and CSN.

Table 11. Zero-shot classification AUC performance of our framework and its variants on six downstream ECG datasets, with best results
bolded.

Linear Classification Cardiac Fusion Network

Dataset ResNet ViT ResNet ViT

PTB-XL-Superclass 67.55 68.37 68.75 78.20
PTB-XL-Subclass 73.77 74.25 68.02 77.52
PTB-XL-Form 64.34 63.46 58.85 60.67
PTB-XL-Rhythm 75.68 76.20 68.69 86.79
CPSC-2018 83.35 79.71 60.38 79.83
CSN 72.61 74.22 65.07 80.17

Overall 72.88 72.70 64.96 77.20

Under the linear classification setup, ResNet slightly outperforms ViT across few datasets (e.g. PTB-XL-Form, CPSC-
2018), demonstrating its effectiveness in extracting essential features without contextual mechanisms. However, the CFN
significantly improves performance, with ViT + CFN achieving a notable boost in AUC, particularly on PTB-XL-Superclass
(78.20%), PTB-XL-Rhythm (86.79%), and CSN (80.17%). Figure 8 highlights the strength of ViT’s attention mechanisms
combined with CFN, which excels at capturing complex temporal and spatial dependencies in ECG signals.

By employing prompts to generate meaningful class queries, the CFN enables a more flexible and adaptable approach to
classification, allowing flexible adaptation to diverse downstream class structures. Unlike linear classification, our framework
dynamically aligns pre-trained knowledge with new cardiac conditions, eliminating the need for explicit class mapping
between pre-training and downstream datasets and improving generalization.

Notably, the ResNet + CFN combination performs worse than ViT + Linear in several cases. The performance difference
is primarily due to the intrinsic architectural mismatch between ResNet-based encoders and the design of our Cardiac
Fusion Network (CFN). Specifically, the CFN is designed to leverage fine-grained, structured token representations to
facilitate flexible cross-modal query fusion. This design aligns naturally with ViT-based ECG encoders, which output a
sequence of patch-level embeddings that can be effectively interacted with text queries at the token level. In contrast, ResNet
produces globally pooled feature vectors without fine-grained temporal tokenization. Such representations inherently lack
the structural granularity required for effective token-level cross-modal fusion, limiting the potential benefit of the CFN.
In this case, a simple linear classifier can more directly exploit the coarse-grained ResNet features without introducing
additional complexity. We would like to emphasize that this observation reflects the architectural characteristics of ResNet
rather than a limitation of the CFN itself. As demonstrated in Table 11, when paired with a ViT encoder that naturally
provides tokenized representations, the CFN significantly improves zero-shot performance across all datasets (e.g., Overall
AUC: 77.20 vs. 72.70).

We further analyze performance on specific cardiac conditions in PTB-XL-Subclass, shown in Figure 9. Our framework
consistently achieves high AUC scores, particularly for critical conditions like LAFB/LPFB, CRBBB, CLBBB, IRBBB, and
RVH (AUC > 90). In contrast, other variants show lower performance, especially for conditions requiring nuanced spatial
and temporal patterns. ResNet + Linear performs competitively on simpler cases but struggles with complex conditions.
ResNet + CFN exhibits significant drops, particularly for IMI, AVB, RAO/RAE, ISCA, and IRBBB, highlighting its
limitations in effectively capturing intricate dependencies.
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Figure 8. Specific zero-shot performance of our framework and its variants across downstream datasets.

Figure 9. Specific zero-shot classification AUC performance of our framework and its variants on selected detailed categories in PTB-XL-
Subclass.

Other condition-wise performance is shown below.

PTB-XL-Superclass. Figure 10 records the AUC performance of our framework on specific cardiac conditions in PTB-XL-
Superclass dataset.

PTB-XL-Subclass. Figure 11 records the AUC performance of our framework on specific cardiac conditions in PTB-XL-
Subclass dataset.

PTB-XL-Form. Figure 12 records the AUC performance of our framework on specific cardiac conditions in PTB-XL-Form
dataset.

PTB-XL-Rhythm. Figure 13 records the AUC performance of our framework on specific cardiac conditions in PTB-XL-
Rhythm dataset.

CPSC-2018. Figure 14 records the AUC performance of our framework on specific cardiac conditions in CPSC-2018
dataset.

CSN. Figure 15 records the AUC performance of our framework on specific cardiac conditions in CSN dataset.
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Figure 10. Zero-shot learning performance of our framework and its variants on specific categories in PTB-XL-Superclass.
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Figure 11. Zero-shot learning performance of our framework and its variants on specific categories in PTB-XL-Subclass.

Figure 12. Zero-shot learning performance of our framework and its variants on specific categories in PTB-XL-Form.
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Figure 13. Zero-shot learning performance of our framework and its variants on specific categories in PTB-XL-Rhythm.

Figure 14. Zero-shot learning performance of our framework and its variants on specific categories in CPSC-2018.
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Figure 15. Zero-shot learning performance of our framework and its variants on specific categories in CSN.

K. Further Discussion
K.1. Offline Use of Large-sized LLM for Clinical NER

While we employ LLaMA3.1-70B-Instruct for clinical entity extraction, this step is performed offline only once during
dataset construction and is not part of our framework’s pre-train & inference pipeline. The motivation for using a larger
model is to ensure high annotation quality for the pre-training dataset. Once entities are extracted and mapped, they form a
standardized query list used throughout training and evaluation. Therefore, clinical deployments do not require access to
large LLMs, and the our framework itself remains simple and lightweight during pre-training and inference.

K.2. Computation Cost and Practical Deployment

Data Processing (Offline NER). To obtain high-quality supervision labels, we extract and normalize diagnostic entities
from MIMIC-IV-ECG reports using LLaMA3.1–70B-Instruct with structured prompts. This step is performed only once as
described above before pre-training our framework. The output is a cleaned, deduplicated dataset of standardized diagnostic
labels, which serves as global cardiac queries for training. The annotation process takes approximately 6 hours on 8 NVIDIA
A100-SMX4-80GB GPUs, and the tested minimum reproducing resources are 4 NVIDIA A100-PCIE-40GB GPUs without
parallelized LLM inference. The resulting standardized dataset is reused across training and downstream evaluation.

Model Pre-training. Our proposed ECG-Text framework consists only of a ViT-based ECG encoder, query-based
supervision, and a lightweight Cardiac Fusion Network (CFN). Training is efficient, around 1.5 hours on 4 NVIDIA
A100-PCIE-40GB GPUs achieving best AUC performance (16 epochs), and does not require contrastive sampling or further
fine-tuning in deployment.
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Deployment and Inference Once pre-trained, our framework supports zero-shot ECG classification via a set of concise
cardiac query prompts. Inference only involves a forward pass through the ECG encoder and CFN, taking milliseconds per
ECG sample. No LLMs or textual reports are needed at test time, making our framework highly practical for deployment
in real-world clinical settings. We empirically verify that inference can be efficiently performed on a single NVIDIA
A5000-PCIE-24GB GPU or NVIDIA RTX4090-PCIE-24GB GPU.

K.3. Similarity Threshold Determination

The similarity thresholds in our entity deduplication and mapping pipeline were determined in consultation with experienced
cardiologists (over 10 years of clinical practice), based on joint analysis of the results under various threshold settings in
each phase.

Through this process, we observed that setting the thresholds too high (e.g., above 0.9 in entity mapping) would exclude
valid clinical variants due to minor wording differences, while setting them too low (e.g., below 0.7 in entity mapping) could
introduce semantic ambiguity by incorrectly matching unrelated conditions (Table 12).

Table 12. Incorrect matching examples between standard terminology and report entities.

Standard Terminology Report Entity Similarity Score

left ventricle hypertrophy Ventricular fibrillation 0.6400
non-specific ST changes ST elevation 0.6343
inferior myocardial infarction anterior wall abnormality 0.5717

”left ventricle hypertrophy” and ”ventricular fibrillation” shows a similarity score of 0.64, but are entirely unrelated - one
refers to structural enlargement of the left ventricle, while the other refers to a life-threatening arrhythmia. The selected
thresholds reflect a balance between preserving clinically meaningful variants and minimizing noise.

K.4. On the Effectiveness of CFN with Different Backbones

To address concerns regarding the effectiveness of the Cardiac Fusion Network (CFN), particularly its relatively lower
performance when paired with a ResNet backbone (cf. Table 11), we conduct statistical analyses to better understand the
interaction between backbone architecture and the CFN module.

∆ AUC Comparison. We compare the AUC improvement brought by CFN over linear classification for both ViT and
ResNet backbones across six downstream datasets. As shown in Figure 16, CFN brings consistent performance gains when
combined with ViT, with average improvement of +5.97 AUC. In contrast, CFN shows little to negative improvement with
ResNet, indicating that the quality of the underlying feature representations plays a critical role in effective cross-modal
fusion.
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Figure 16. CFN vs. linear classification (∆ AUC) for ViT ECG backbone.
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Statistical Significance. To verify this trend, we perform a paired t-test and Wilcoxon signed-rank test on the ∆ AUC
values. Both tests confirm that CFN yields significantly greater improvements on ViT than ResNet:

• Paired t-test: t = 4.99, p = 0.0021

• Wilcoxon test: W = 21.0, p = 0.0156

These results provide strong statistical evidence that ViT synergizes better with CFN compared to ResNet, likely due to
ViT’s superior capacity in capturing global temporal dependencies in ECG signals.

CFN is designed to align high-level ECG features with cardiac queries via cross-attention. However, ResNet provides only
local, convolutional features with limited contextual depth, especially compared to ViT’s global receptive field. As a result,
the decoder lacks sufficient global representations to effectively condition on query semantics. This bottleneck explains the
performance drop observed in ResNet + CFN.

Two-Way ANOVA. We further conduct a two-way ANOVA with Backbone (ResNet vs. ViT) and Module (Linear vs. CFN)
as factors. As shown in Table 13, the interaction term is statistically significant (F = 6.60, p = 0.018), confirming that
the effect of CFN depends on the choice of backbone. Notably, neither factor alone is significant, suggesting that their
combination determines performance.

Table 13. Two-way ANOVA results on AUC with backbone and module as factors.

Source Sum of Squares df F-value p-value

Backbone 167.06 1 3.79 0.066
Module 5.57 1 0.13 0.726
Backbone × Module 290.65 1 6.60 0.018
Residual 881.22 20 - -

Takeaway. These findings reinforce CFN’s role as a powerful fusion mechanism when paired with a backbone (like
ViT) that produces expressive feature sequences. The drop in performance with ResNet may stem from its less structured
output, which lacks the sequential token-style organization needed for effective query-based attention. Thus, the CFN is not
inherently ineffective, but its utility hinges on a compatible encoder design.

K.5. Comparing Our framework with MERL

To assess the relative effectiveness of our supervised multimodal framework, we compare our framework against MERL (Liu
et al., 2024), a recent multimodal contrastive learning baseline that utilizes clinical reports and enhanced prompt engineering
(17). While MERL employs contrastive objectives and handcrafted prompts, our framework leverages fine-grained diagnostic
supervision through LLM-extracted entities and multimodal fusion via the Cardiac Fusion Network (CFN).
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Figure 17. Per-dataset AUC difference between our framework and MERL.

As shown in Table 14, our framework achieves consistently higher AUCs across all but one dataset. On average, it improves
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Table 14. Zero-shot AUC comparison between our framework and MERL.

Framework PTB-XL-Superclass PTB-XL-Subclass PTB-XL-Form PTB-XL-Rhythm CPSC-2018 CSN Avg

MERL 73.89 74.32 61.54 79.89 76.01 75.61 73.54
Our framework 78.20 77.52 60.67 86.79 79.83 80.17 77.20

zero-shot performance by 3.66% absolute. Statistical testing confirms this improvement is significant: a paired t-test across
the six datasets yields t = 3.51, p = 0.0171.

Table 15. Average zero-shot AUC and standard deviation across six datasets.

Framework Zero-shot AUC (%)

MERL 73.54± 2.30
Our framework 77.20± 0.21

Moreover, our framework demonstrates significantly lower performance variance across datasets. While MERL exhibits a
standard deviation of 2.30, our framework achieves a much smaller deviation of 0.21, indicating greater robustness and
stability across diverse cardiac classification tasks. These results collectively support the effectiveness of our proposed
supervised pre-training framework and its entity-level modality fusion strategy, even when compared to a strong multimodal
baseline.

K.6. Domain Scope and Generalization Potential

While our framework is evaluated on 12-lead ECG data, we believe that this modality represents a highly impactful and
widely applicable domain in clinical practice. ECG is routinely used across diverse medical contexts—including emergency
rooms, intensive care units (ICUs), outpatient cardiology clinics, and even home-based healthcare monitoring—due to its
low cost, non-invasiveness, and real-time ability to reflect cardiac electrical activity. As such, improving automated ECG
interpretation has direct clinical relevance across resource settings and specialties.

Moreover, although this work focuses on ECG, the core methodology of our framework, namely multimodal learning
between biomedical signals and clinically meaningful queries, can be generalized to other physiological signal domains such
as EEG (electroencephalogram) or PPG (photoplethysmography). These modalities are similarly structured (multi-channel,
time-series signals) and increasingly available in clinical and wearable settings. However, to the best of our knowledge,
there is currently a lack of large-scale, publicly accessible datasets that pair these signals with detailed, free-text clinical
reports suitable for training our entity extraction module.

We hope our work can inspire future efforts toward building such paired datasets for other biomedical signals, enabling the
broader application of query-based multimodal learning frameworks beyond ECG.

L. Limitations
Although our framework achieves state-of-the-art zero-shot performance, several aspects merit closer scrutiny. First, the
clinical entity extraction pipeline relies on a large language model that has not been fine-tuned on cardiology-specific corpora;
consequently, highly specialised or context-dependent terms, for example, vernacular descriptions of rare channelopathies,
may be missed or hallucinated, potentially propagating noise into subsequent stages. Second, our framework implicitly
assumes that the pre-trained model will generalise well across diverse clinical contexts like different institutions, devices
and patient demographics. Real-world data often contain higher artefact levels and markedly imbalanced class distributions;
preliminary experiments already indicate that performance on infrequent rhythms can lag behind that on common diagnoses,
suggesting room for improvement under distribution shift.

Moreover, because the ECG backbone is optimized jointly with CFN rather than via an explicit contrastive objective, its
features along do not always yield superior linear-probe accuracy; in our own experiments, it only achieves comparative
linear probing (use ECG backbone only) performance with MERL. Despite that we centre our study on the zero-shot setting,
which reflects many anticipated deployment scenarios where high-quality ECG annotations are scarce or prohibitively
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expensive, exploring end-to-end or contrastive-hybrid objectives remains a promising direction for future work, as such
strategies could further enhance performance when a modest amount of supervision becomes available. Finally, open
zero-shot baselines for ECG classification remain limited: apart from MERL, most existing methods are single-modal and
were not designed for zero-shot evaluation, underscoring the need for broader public benchmarks to facilitate systematic
comparison.

From a representation learning perspective, our evaluation is predominantly quantitative. As future work, incorporating
qualitative analyses could provide additional insights into the structure and separability of the learned features. Furthermore,
presenting realistic inference examples (e.g., how the system might behave in deployment or how predictions appear to
clinicians, researchers, or engineers) could help illustrate practical impact.
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