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Abstract

We study the computational complexity of ap-
proximating general constrained Markov deci-
sion processes. Our primary contribution is the
design of a polynomial time (0, €)-additive bi-
criteria approximation algorithm for finding op-
timal constrained policies across a broad class
of recursively computable constraints, including
almost-sure, chance, expectation, and their any-
time variants. Matching lower bounds imply our
approximation guarantees are optimal so long as
P # NP. The generality of our approach re-
sults in answers to several long-standing open
complexity questions in the constrained reinforce-
ment learning literature. Specifically, we are the
first to prove polynomial-time approximability
for the following settings: policies under chance
constraints, deterministic policies under multi-
ple expectation constraints, policies under non-
homogeneous constraints (i.e., constraints of dif-
ferent types), and policies under constraints for
continuous-state processes.

1. Introduction

Constrained Reinforcement Learning (CRL) is growing in-
creasingly crucial for managing complex, real-world appli-
cations such as medicine (Coronato et al., 2020; Paragli-
ola et al., 2018; Kolesar, 1970), disaster relief (Fan et al.,
2021; Wu et al., 2019; Tsai et al., 2019), and resource
management (Mao et al., 2016; Li et al., 2018; Peng and
Shen, 2021; Bhatia et al., 2021). Various constraints, in-
cluding expectation (Altman, 1999), chance (Xu and Man-
nor, 2011), almost-sure (Castellano et al., 2022), and any-
time constraints (McMahan and Zhu, 2024b), were each
proposed to address new challenges. Despite the rich-
ness of the literature, most works focus on stochastic,
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expectation-constrained policies, leaving many popular set-
tings with longstanding open problems. Even chance con-
straints, arguably a close second in popularity, still lack any
polynomial-time, even approximate, algorithms despite be-
ing introduced over a decade ago (Xu and Mannor, 2011).
Other settings for which polynomial-time algorithms are
open include deterministic policies under multiple expec-
tation constraints, policies under non-homogeneous con-
straints (i.e., constraints of different types), and policies
under constraints for continuous-state processes. Conse-
quently, we study the computational complexity of general
constrained problems to resolve many of these fundamental
open questions.

Formally, we study the solution of Constrained Markov
Decision Processes (CMDPs). Here, we define a CMDP
through three fundamental parts: (1) an MDP M that accu-
mulates both rewards and costs, (2) a general cost criterion
C, and (3) a budget vector B. Additionally, we allow the
agent to specify whether they require their policy to be de-
terministic or stochastic, formalized through a goal policy
class II. The agent’s goal is to solve max, 7 Vyy subject
to C7; < B, where V[ denotes the agent’s value and C7;
denotes the agent’s cost under 7. This model can capture
very general problems, including minimum time routes for
self-driving vehicles that must satisfy 1) an anytime con-
straint on fuel consumption, 2) an expectation constraint on
CO2 consumption, and 3) a chance constraint on vehicle
wear and tear. Our main question is the following:

Can general CMDPs be approximated in polyno-
mial time?

Hardness. Solving general CMDPs is notoriously chal-
lenging. When restricted to deterministic policies, solving
a CMDP with just one constraint is NP-hard (Feinberg,
2000; Xu and Mannor, 2011; McMahan and Zhu, 2024b;
McMahan, 2024). This difficulty increases with the num-
ber of constraints: with at least two constraints, finding a
feasible deterministic policy, let alone a near-optimal one,
becomes NP-hard (McMahan and Zhu, 2024b). Even if we
relax the deterministic requirement, this hardness remains
for all constraint types other than expectation. Computa-
tional hardness aside, standard RL techniques fail to apply
due to the combinatorial nature induced by many constraint
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types. Adding in additional constraints with fundamentally
different structures further complicates the problem.

Past Work. A few works have managed to derive provable
approximation algorithms for some cases of CRL. McMa-
han (2024) presented a fully polynomial-time approxima-
tion scheme (FPTAS) for the computation of deterministic
policies of a general class of constraints, which includes
expectation, almost-sure, and anytime constraints. Although
powerful, their framework only works for one constraint
and fails to capture anytime-expectation constraints along
with chance constraints. Similarly, Khonji et al. (2019)
achieves an FPTAS for expectation and chance constraints,
but only in the constant horizon setting. In contrast, McMa-
han and Zhu (2024b) develops a polynomial-time (0, €)-
additive bicritiera approximation algorithm for anytime and
almost-sure constraints. However, their framework is spe-
cialized to those constraint types and thus fails for our
purpose. In contrast, Xu and Mannor (2011) developed
a pseudo-polynomial time algorithm for finding feasible
chance-constrained policies, but their methods do not lead
to polynomial-time solutions.

Our Contributions. We design a polynomial-time (0, €)-
additive bicriteria approximation algorithm for tabular, SR-
criterion CMDPs. An SR criterion is required to satisfy a
generalization of the policy evaluation equations and in-
cludes expectation, chance, and almost-sure constraints
along with their anytime equivalents. Our framework im-
plies the first positive polynomial-time approximability re-
sults for (1) policies under chance constraints, (2) determin-
istic policies under multiple expectation constraints, and
(3) policies under non-homogeneous constraints — each of
which has been unresolved for over a decade. We then ex-
tend our algorithm into a polynomial-time (¢, €)-additive
bicriteria approximation algorithm for continuous-state CM-
PDs under a general class of constraints, which includes
expectation, almost-sure, and anytime constraints.

Our Techniques. Our algorithm requires several key tech-
niques. First, we transform a constraint concerning all re-
alizable histories into a simpler per-time constraint. We
accomplish this by augmenting the state space with an ar-
tificial budget and augmenting the action space to choose
future budgets to satisfy the constraint. However, Bellman
updates then become as hard as the knapsack problem due
to the large augmented action space. For tabular cMDPs,
we show that the Bellman updates can be approximately
computed using dynamic programming and rounding. By
strategically rounding the artificial budget space, we achieve
a (0, €)-bicriteria approximation for tabular CMDPs. By
appropriately discretizing the continuous state space, our
method becomes a (¢, €)-bicriteria approximation algorithm
for continuous state CMDPs.

1.1. Related Work

Constrained RL. It is known that stochastic expectation-
constrained policies are polynomial-time computable via lin-
ear programming (Altman, 1999), and many planning and
learning algorithms exist for them (Paternain et al., 2019;
Vaswani et al., 2022; Borkar, 2005; HasanzadeZonuzy et al.,
2021). Some learning algorithms can even avoid violation
during the learning process under certain assumptions (Wei
et al., 2022; Bai et al., 2023). Furthermore, Brantley et al.
(2020) developed no-regret algorithms for cMDPs and ex-
tended their algorithms to the setting with a constraint on
the cost accumulated over all episodes, which is called a
knapsack constraint (Brantley et al., 2020; Cheung, 2019).

Safe RL. The safe RL community (Garcia et al., 2015;
Gu et al., 2024) has mainly focused on no-violation learning
for stochastic expectation-constrained policies (Chow et al.,
2018; Bossens and Bishop, 2022; Alshiekh et al., 2018;
Cheng et al., 2019; Berkenkamp et al., 2017) and solving
chance constraints (Wang et al., 2023; Zhao et al., 2023),
which capture the probability of entering unsafe states. Per-
forming learning while avoiding dangerous states (Zhao
et al., 2023) is a special case of expectation constraints that
has also been studied (Roderick et al., 2021; Thomas et al.,
2021) under non-trivial assumptions. In addition, instanta-
neous constraints, which require the immediate cost to be
within budget at all times, have also been studied (Li et al.,
2021; Fisac et al., 2019; Gros et al., 2020).

2. Constraints

Cost-Accumulating MDPs. In this work, we consider
environments that accumulate both rewards and costs.
Formally, we consider a (finite-horizon, tabular) cost-
accumulating Markov Decision Process (caMDP) tuple
M = (H,S,A,P,R,C,sg), where (i) H € Z> is the fi-
nite time horizon, (ii) Sy, is the finite set of states, (iii) A ()
is the finite set of available actions, (iv) Pr(s,a) € A(S) is
the transition distribution for a given state s € S and action
a € A (note, A(S) represents the probability simplex over
S), (v) Rp(s,a) € A(R) is the reward distribution, (vi)
Ch(s,a) € A(R™) is the cost distribution, and (vii) so € S
is the initial state.

To simplify notation, we let r4(s,a) &f E[Rn(s,a)] de-

note the expected reward, ¢, (s, a) represent the cost func-
tion when costs are deterministic (which will be the case

. def

throughout the main text), S = |S| denote the number
def - .

of states, A = |.A| denote the number of joint actions,

[H] &ef {1,..., H}, M be the set of all caMDPs, and | M |
be the total description size of the caMDP. We also use the

. def
Iverson Bracket notation [P] = 1{p=7rue} and the char-
acteristic function x p which is co when P is False and 0
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otherwise.

Agent Interactions. The agent interacts with M using a
policy m = {m, }_, . In the fullest generality, 7, : Hs —
A(A) is a mapping from the observed history at time h
(including costs) to a distribution of actions. Often, re-
searchers study Markovian policies, which take the form
7+ S — A(A), and deterministic policies, which take the
form 7y, : Hp — A. We let IT denote the set of all policies
and ITP denote the set of all deterministic policies.

The agent starts in the initial state sg with observed history
71 = (o). Forany h € [H], the agent chooses a joint action
ap, ~ (1) Then, the agent receives immediate reward
rp, ~ Rp(s,a) and cost vector ¢;, ~ C(s,a). Lastly, M
transitions to state s,1 ~ Pr(sp, ap), prompting the agent
to update its observed history to 7,41 = (71, Qn, Ch,y Sht1)-
This process is repeated for H steps; the interaction ends
once sy 41 is reached.

Constrained Processes. Suppose the agent has a cost
criterion C : M x II — R™ and a corresponding budget
vector B € R™. We refer to the tuple (M,C, B) as a
Constrained Markov Decision Process (CMDP). Given a
CMDP and desired policy class IT € {II”, II}, the agent’s
goal is to solve the constrained optimization problem:
max Vyy
mell
st. Oy < B

(CON)

def
In the above, Vi, = EF,

value of a policy 7, EF, denotes the expectation defined
by P7,, and P}, denotes the probability law over histories
induced from the interaction of 7w with M. Lastly, we let
V* denote the optimal solution value to (CON). In the main
paper, we focus on the case where II = II7.

[ZhH:1 Th(Sm ah)} denotes the

SR Criteria. We study cost criteria that generalize the
standard policy evaluation equations to enable dynamic pro-
gramming techniques. In particular, we require the cost of a
policy to be recursively computable with respect to the time
horizon. For our later approximations in Section 5, we will
also need key functions defining the recursion to be short
maps, i.e., 1-Lipschitz, with respect to the infinity norm.
Definition 2.1 (SR). We call a cost criterion shortly recur-
sive (SR) if for any caMDP M and any policy 7 € II”, 7’s
cost decomposes recursively into CF; = CT(so), where
Chyr = Oand for all b € [H] and 7, € Hj, letting
s = sp(m) and a = wp(73),

Cr(mh) = cen(s,a) + f/ g (Pn(s']s,a)Chy (th,a,s).

(SR)
Here, f,, is the finite extension of an associative, non-
decreasing, binary function f, and ¢ is a [0, 1]-valued

function rooted at 0. Moreover, we require that f is a
short map when either of its inputs are fixed, satisfies
f(0,2) = f(x,0) = x for all z, and when combined with
g1, fo g(Pr(s'|s,a))xs,isashort map in x.
Remark 2.2 (Stochastic Variants). Our results generalize to
both stochastic policies and stochastic costs as well. The
algorithmic approach is identical, but the definitions and
analysis are more complex. Consequently, we focus on the
deterministic cases in the main text.

Constraint Formulations. The fundamental constraints
considered in the CRL literature are Expectation, Chance,
and Almost-sure constraints. Each of these induces a natural
anytime variant that stipulates the required constraint must
hold for the truncated cost 3 _, ¢, at all times h € [H].
We give the formal definitions in Figure 1. Importantly, each
constraint is equivalent to C, < B’ for some appropriately
chosen SR criteria.

Proposition 2.3 (SR Modeling). The classical constraints
can be modeled by SR constraints of the form C7, < B’ as
follows:

1. Expectation Constraints — f(z,y) Yot vy, () “ .,

and B' ¥ B.

2. Chance Constraints — (f, g) defined as above and

d
B’ =] 0. Here, we assume M’s states are aug-
. . _ d
mented with cumulative costs and that cp,((s, ¢), a) Y

[cn(s,a) + € > B] for the anytime variant and
cn((s,c),a) 4 [cn(s,a) + ¢ > B|[h = H] otherwise.

3. Almost-sure Constraints — f(x,y) &« max(x, y),

g(x) =4 [x > 0], and B’ “ B, Anytime variant —

f(z,y) d:efmax((), max(z,y)) while g and B’ remain
the same.

General anytime variants, including anytime expectation
- ™
constraints, can be modeled by {C M.t <B }te[ H where

N4 IS the original SR criterion but defined for the
truncated-horizon process with horizon t.

Computational Limitations. It is known that comput-
ing feasible policies for CMDPs is NP-hard (McMahan,
2024; McMahan and Zhu, 2024b). As such, we must relax
feasibility for any hope of polynomial-time algorithms. Con-
sequently, we focus on bicriteria approximation algorithms.
Definition 2.4 (Bicriteria). A policy 7 is an («, 3)-additive
bicriteria approximation to a CMDP (M, C, B) if V[, >
V* —aand C}; < B + 3. We refer to an algorithm as
an («, 8)-bicriteria if for any CMDP it outputs an («, 3)-
additive bicriteria approximation or correctly reports the
instance is infeasible.
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Con/Time Expectation Chance Almost-Sure
Classical Exs Z ch| < B iy Z c, >B| <6 | Py Z cp, <B| =1
Lh=1_ | Lh=1 i Lh=1 i
7 7 7
Anytime (V¢ € [H]) | B3 | en| <B | Pi [> en>B| <6 | Py | en<B| =1
lh=1 | Lh=1 i Lh=1 _

Figure 1. The Constraint Landscape

The existence of a polynomial-time bicriterion for our gen-
eral constrained problem implies brand-new approximabil-
ity results for many classic problems in the CRL literature.
For clarity, we will explicitly state the complexity-theoretic
implications for each classical setting.

Theorem 2.5 (Implications). A polynomial-time (e, €)-
bicriteria implies that in polynomial time it is possible to
compute a policy € 1 satisfying Viy > V* — € and any
constant combination of the following constraints:

L B [ a] <5
H

2. Py [Zh:lchSBthf} =1

3. Py [ZhH:1Ch>B+€} <d+e

In other words, polynomial-time approximability is possible
for each of the settings described in Section | when the
number of constraints is constant.

Remark 2.6 (Extensions). All of our results hold for Markov
games and infinite discounted settings.

3. Reduction

In this section, we present a general solution approach to SR-
criterion CMDPs. Our approach revolves around converting
the general cost constraint into a per-step action constraint.
This leads to the design of an augmented MDP that can be
solved with standard RL methods.

Augmentation. State augmentation is the known approach
for solving anytime-constrained MDPs (McMahan and Zhu,
2024b). The augmentation permits the problem to be solved
by the following dynamic program:

max

a€A,
c+cp(s,a)<B

+ Z Pu(s" | s,a)Vipi(s,c+ cn(s,a)).

Vi (s,c) = rp(s,a)

ey

When moving to other constraints, the cumulative cost may
no longer suffice to determine constraint satisfaction. For
example, the expected cost depends on the cumulative cost
of all realizable branches, not just the current branch.

Expectation Constraints. Instead, we can exploit the
recursive nature of the expected cost to find a solution.
Suppose at stage (s, h) we impose an artificial budget b
on the expected cost of a policy 7 from time h onward:

E™ [Zi h ct} < b. By the policy evaluation equations, we
know this equates to satisfying:
Cl(s) = cp(s,a) + ZPh(s’ | s,a)C7 1(s") <b. (2)

For this invariant to be satisfied, it suffices for the agent to
choose future artificial budgets b,/ for s’ € S satisfying,

cn(s,a) + ZPh(s’ | s,a)by <.

S

3

and ensure the future artificial budgets are obeyed induc-
tively: Cf, 1 (8", bsr) < byr.

General Approach. We can apply the same reasoning for
general recursively computable cost criteria. If C' is SR,
then we know that CT (s) obeys (SR). Thus, to guarantee
that C7 (s) < b it suffices to choose by ’s satisfying,

cn(s,a) + f/ g (Pn(s' | s,a))by <0, 4)

and inductively guarantee that C7_ , (s") < by

We can view choosing future artificial budgets as part of
the agent’s augmented actions. Then, at any augmented
state (s, b), the agent’s augmented action space includes all
(a,b) € A x R satisfying (3). When M transitions to 5" ~
Pp(s,a), the agent’s new augmented state should consist
of the environment’s new state in addition to its chosen
demand for that state, (s’, by ). Putting these pieces together
yields the definition of the reduced, action-constrained MDP,
Definition 3.1.

Definition 3.1 (Reduced MDP). Given any SR-criterion

CMDP (M, C, B), we define the reduced MDP M =
(H,S, A, P, R, 5) where,

def

1. S = S, X B where B =
U‘rreHD Uhe[H+1] UrhGHh {C}T(Th)}

2. An(s,b) & {(a,b) € An(s) x RS | ¢u(s,a) +
fs’ g(Ph(S/ | 87@)7b8') < b}
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Algorithm 1 Reduction
Require: (M,C,B)
1: M < Definition 3.1(M, C, B)
7, V* < SOLVE(M)
if V* = —oo then
return “Infeasible”
else

return 7w
end if

»

RN s

Algorithm 2 Augmented Interaction
Require: 7
S§1 = (307 B)
: for h <+ 1to H do
(a,b) < n(5n)
Sht1 ~ Pr(sn,a)
§h+1 = (Sh+1’ b5h+1>
end for

SANEANE

3. By((s', 1) | (5,b), (a,b)) & Pyu(s | 5,a)[b) = by]

4. Ru((s,b), (a,b)) & Ry(s,a)

5. 50 déf (So, B)

5 def
We also re-define the base case value to Vi (s,b) =

—X{v>0}- Note, the reduced MDP has a non-stationary
state and action set, unlike the base MDP.

Reduction. Importantly, M’s augmented action space en-
sures constraint satisfaction. Thus, we have effectively re-
duced a problem involving total history constraints to one
with only standard per-time-step constraints. So long as our
cost is SR, M can be solved using fast RL methods instead
of the brute force computation required for general CMDPs.
These properties ensure our method, Algorithm 1, is correct.

Lemma 3.2 (Value). Forany h € [H + 1], 7, € Hp, and
be B, ifs=sy(m), then,

Vi (s,0) = sup V()
el )
s.t. Cy(mh) <b.
Lemma 3.3 (Cost). Suppose that w € 11P. Forall h € [H+
1] and (s,b) € S, if V7 (s,b) > —oc, then Cf (s,b) < b.
Theorem 3.4 (Reduction). If SOLVE is any finite-time MDP

solver, then Algorithm 1 correctly solves (CON) in finite
time for any SR-criterion CMDP.

Remark 3.5 (Deployment). Given a budget-augmented pol-
icy m output from Algorithm 1, the agent can execute 7
using Algorithm 2.

4. Bellman Updates

In this section, we discuss efficient methods for solving
M. Our approach relies on using (SR) to break down the
Bellman update so that it is solvable using dynamic pro-
gramming. We then use dynamic rounding to achieve an
efficient approximation algorithm.

Bellman Hardness. Even a small set of artificial bud-
gets, B, needed to be considered, solving M would still
be challenging due to its exponentially large, constrained
action space. Just one Bellman update equates to solving
the constrained optimization problem:

Vi (s,b) = 1211}( ru(s,a) + Z,Ph(SI | s,a)Viyy (8, bsr)

st.en(s,a) + f g(Pn(s'|s,a)) by <b.
S (BU)

Above, we used the fact that (s,0) €
Supp(Pi((s,b), (a,b))) iff s € Supp(Pu(s,a)) and
b = by. In fact, even when each by only takes on
two possible values, {0, ws }, this optimization problem
generalizes the knapsack problem, implying that it is
NP-hard to solve.

Dynamic Programming. To get around this computa-
tional bottleneck, we must fully exploit Definition 2.1. For
any fixed (h, (s,b),a), the key idea is to treat choosing
b's as its own sequential decision-making problem. Sup-

pose we have already chosen by, .. ., b;_ leading to partial

cost F & fot g(Pu(s’ | s,a))by. Since f is associa-

tive, we can update our partial cost after choosing b; to
F(F, g(Pn(t | s,a))b;). Once we have made a choice for
each future state, we can verify if (a,b) € Aj(s,b) by
checking the condition: ¢ (s,a) + F < b. By incorporat-
ing the value objective, we design a dynamic program for
computing (BU).

Definition 4.1 (DP). For any h € [H], (s,b) € S,a € A
and ' € R, we define V,fy’;(S +1,F) = —X{cn(s,a)+F<b}>
and for any ¢ € [5],

Viiy (. F) € max Pi(t | ,a) Vil (1 b+

Vo (t+ 1, (F, g(Pu(t | s,0))by)) .

Q)

Lemma 4.2 (DP Correctness). For any h € [H] and
(5,0) € S, we have that V;*(s,b) = maxasearn(s,a) +
Vi (1,0).

Dynamic Rounding. Although a step in the right direc-
tion, solving Definition 4.1 can still be slow due to the expo-
nential number of considered partial costs. We resolve this
issue by rounding each partial cost to an element of some
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small set F. Since f need not be linear, using rounding in
a preprocessing step does not suffice: we must re-round at
each step to ensure inputs are a valid element of our input
set.

For any ¢ > 0, we view £ as a new unit length. Our rounding
function maps any real number to its closest upper bound
in the set of integer multiples of ¢. We use upper bounds
to guarantee that the rounded partial costs are always larger
than the true partial costs. Smaller ¢ ensures less approxi-
mation error, while larger ¢ ensures fewer considered partial
costs. Thus, ¢ directly controls the accuracy-efficiency trade-
off.

Definition 4.3 (Rounding Functions). For any ¢ > 0 and

x € R, we define [2], & [£] ¢ to be the smallest integer

multiple of £ that is larger than 2. We also define x¢(x) &f

x+£(S+1). Note, when considering vectors, all operations
are performed component-wise.

Since we round up the partial costs, the approximate partial
cost of a feasible b could exceed b. To ensure all feasible
choices of b are considered, we must also relax the budget
comparison. Instead, we compare partial costs to a carefully
chosen upper threshold «(b). Putting these pieces together
yields our approximate Bellman update method.

Definition 4.4 (Approximate Update). Fix any £ > 0 and
function x : R™ — R™. For any h € [H], (s,b) € S,
a € Aand F € R™, we define Vhs;(S +1,F) &f

“X{en (s.0)+F<r(®)} and for any ¢t € [S],

Vi (6, F) & max Pyt | 5.0) Vi (1) +
) o (ADP)
Vi (t+1, |1 (Fog(Patt 5,000 ] )

We then define the approximate update by,

Vi (s,b) & max (s, a) + Vii(1,0). (AU)

ac
Overall, solving the ADP yields an approximate solution.
Lemma 4.5 (Approximation). For any h € [H], (s,b) € S,
a€ A FeR™ andt €[S+ 1], we have that,

S

be%lsa—)i-u Z:tph(s, | 570’)‘7};—1(5/3[)3/)
s/=

Vit F) =
st cp(s,a) +]A‘2:?D(t, F) < k(b),
(N

where f;’f;(t,ﬁ ) is the dynamic rounding of
f(ﬁ’,ff,:t g(Pr(t | s,a),bt)). Moreover, if [], and

K are replaced with the identity function, (AU) is equivalent
to (BU).

Algorithm 3 Approximate Backward Induction

Require: M
: VIZ‘,H(S, b) < X{v>0y forall (s,b) € S
: for h < H downto 1 do
for (s,b) € S do
a, Vi (s,b) « (AU)
7h(8,b) < @
end for
end for
return 7, v

AN A A e

Remark 4.6 (DP details). Technically, to turn this recursion
into a true dynamic program, we must also precompute
the inputs to any subproblem. Unlike in standard RL, this
computation must be done with a forward recursion. If we
let F % (t) denote the set of possible input rounded partial
costs for state ¢, then the set satisfies the inductive relation-
ship F“(1) &' {0} and for any ¢ € [9), Foot+1) &f
UbteB UFeﬁ,j'“(f,) {TfF(F,+ g(Pu(t | s, a))bt]e} This re-
lationship translates directly into an iterative algorithm for
computing all needed inputs. Using this gives a complete
DP algorithm for solving (ADP)'.

Theorem 4.7 (Approx Solve). When []|, and r are
replaced with the identity function, Algorithm 3
correctly solves any M produced from Defini-
tion 3.1. Moreover, Algorithm 3 runs in time

0] (Hm+15m+2A‘B‘2 lemaz — Cmiﬂ“i /em)

5. Bicriteria

Algorithm 3 allows us to approximately solve M in finite
cases much faster than traditional methods. However, when
|B| is large, the algorithm still runs in exponential time. Sim-
ilarly to the partial cost rounding in Definition 4.4, we can
reduce the size of |B| by considering a smaller approximate
set based on rounding. Since we still desire optimistic bud-
gets, we use the same rounding function from Definition 4.3
but with a different choice of /.

Budget Rounding. Rounding naturally impacts the state
space, but has other consequences as well. To avoid
complex computation, we consider the approximate set
BE {61, | b € [Brnin: bmaz]} Where [buin, bmaz] 2 Bis
a superset of all required artificial budgets that we formalize
later. As before, rounding the budgets may cause originally
feasible choices to now violate the constraint. To ensure all
feasible choices are considered and that we can use Algo-
rithm 3 to get speed-ups, we define the approximate action
space to include all vectors that lead to feasible subproblems

'We use the notation x, 0 < min, z(z) to say that z is the
minimizer and o the value of the optimization.
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Algorithm 4 Bicriteria
Require: (M,C,B)
: Hyperparameter: /
M <« Definition 5.1(M, (f, ), B, ?)
7, V* < Algorithm 3(M, (f, g), /)
if Vi*(s0, [ B],) = —oc then
return “Infeasible”
else
return 7
end if

PRDIN AR

of (ADP).A From Lemma 4.5, we kpow this set is gxactly the
setof (a, b) satisfying cx (s, a)+ f,"2 (1,0) < r(b). Putting
these ideas together yields a new, approximate MDP.

Definition 5.1 (Approximate MDP). Given any SR-

criterion CMDP (M, C, B), we define the approximate

mpp M (H,S, A P R, S0) where,

1. S, €S), x Bwhere BE {[b], | b € [bmin, bmaz]}-

def >

2. .:Zlqa(s,l;) = {(Aa,b) € An(s) x BS | en(s,a) +
Frp(1,0) < k(b)}

3. Pu((s, ) ] (5,0), (a,0) & Pu(s' | 5,a)[) = by

7 7 def

4. Ry((s,b),a) = Ry(s,a)

5. 80 £ (s, [B],)

. 3 5\ def
We again re-define the base case value to Vy,,(s,0) =

~X{izo0}

Since we always round budgets up, the agent can make even
better choices than originally. It is then easy to see that
policies for M always achieve optimal constrained value.
We formalize this observation in Lemma 5.2.

Lemma 5.2 (Optimal Value). For any h € [H + 1] and
(s,0) € 5, Vi (s, [b] ) = Vi (s, ).

Time-Space Errors. To assess the violation gap of Algo-
rithm 4 policies, we must first explore the error accumulated
by our rounding approach. Rounding each artificial bud-
get naturally accumulates approximation error over time.
Rounding the partial costs while running Algorithm 3 accu-
mulates additional error over (state) space. Thus, solving
M using Algorithm 4 accumulates error over both time and
space, unlike standard approximate methods in RL. As a
result, our rounding and threshold functions will generally
depend on both H and S.

Arithmetic Rounding. Our approach is to round each
value down to its closest element in an /-cover. Using
the same rounding as in Definition 4.3, we guarantee that
b < [b], < b+ (. Thus, [b], is an overestimate that is
not too far from the true value. By setting ¢ to be inversely
proportional to SH, we control the errors over time and
space. The lower bound must also be a function of S since
it controls the error over space.

Lemma 5.3 (Approximate Cost). Suppose that w € P,
Forallh € [H+1] and (s,b) € S, if V;"(s,b) > —o0, then
CT(s,b) <b+4(S+1)(H—h+1).
Theorem 5.4 (Bicriteria). For

CMDP with polynomially-bounded costs and ¢
the choice of ¢ &

is a

any SR-criterion

> 0,

m ensures Algorithm 4

0, €)-bicriteria running in polynomial
8 p

o) <H6m+154m+2A ||c’max _ CminHi;n /€3m>.

time

Corollary 5.5 (Relative). For any € > 0, the choice of

(¥

(0,1 + €)-relative bicriteria for the class of polynomial-
budget-bounded-cost CMDPs with SR-cost criteria. This
includes all SR-criterion CMDPs with non-negative costs.

m ensures Algorithm 4 is a polynomial time

Remark 5.6 (Chance Constraints). Technically, for chance
constraints, we first create a cost-augmented MDP that is
initially passed into the input. This allows us to write chance
constraints in the SR form. Consequently, the S term in
Theorem 5.4 is really a larger augmented S. To achieve €
cost violation, (McMahan and Zhu, 2024b) showed that an
augmented space of size O(SH? ||¢maz — Cminll o, /€) is
needed, which still results in a polynomial-time complexity.

Remark 5.7 (Approximation Optimality). (McMahan and
Zhu, 2024b) showed that our assumptions on cost bounds
are necessary to achieve polynomial-time approximations.
Thus, our approximation guarantees are the best possible.
Moreover, we can show that our dependency on the number
of constraints is also unavoidable. This is formalized in
Proposition 5.8.

Proposition 5.8 (Multi-Constraint Hardness). If m =
Q(nl/ ) for some constant d, then computing an e-feasible
policy for a CMDP is NP-hard for any € > 0.

5.1. Continuous MDPs

We also show that approximations are possible in infinite
state settings under certain continuity assumptions.

Assumption 5.9 (Continuity). We assume the caMDP M
is Lipschitz continuous. Formally, we require that (1)
S = [Smin, Smaz], (2) the reward function is A, Lipschitz,
(3) the cost function is A, Lipschitz, (4) the transitions are
Ap Lipschitz — each with respect to the state input, and (5)
each of these quantities is polynomial-sized in the input rep-
resentation. For SR-criterion CMDPs, we also assume that
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f has a natural finite equivalent denoted f g is a sublinear
short map, and f ., 2 < (Syaxz — Smin) for any constant z.

All we need to do is discretize the state space, and run our
previous algorithm on the following discretized CMDP.

Definition 5.10 (Discretized CMDP). Given any SR-
criterion CMDP (M, C, B), we define the discretized
CMDP (M,C, B) where M = (H,S, A, P,R,C,3) is
the discretized caMDP defined by,

1.8, & {[s],|s€8}

2. By(3 | 5,0) %[5

s'=35

Py(s' | §,a)ds’
3. 50 = ([s0],, B)

and C is the cost criterion defined by replacing f,, with its
natural finite equivalent f.

We see that discretization results in a small impact to both
the value and cost that depend on the continuity parameters.

Lemma 5.11 (Discretization). Forall h € [H+1], 7, € Hp,
and € TIP, we let 71, denote 1, with each state s, rounded
to [s¢), Then, we have that V;¥ () > Vi (1h) — £\ +
M) H oz (Smaz — Smin)(H — b + 1) and CJ () <
Ci(mh) + (e + Ap)Hemaz (Smaz — Smin)(H — R+ 1).
For almost-sure/anytime constraints, the cost incurs an ad-
ditional factor of 1/Dmin, Where Ppin, denotes the smallest
non-zero transition probability for M.

Overall, using our previous bicriteria on M yields our ap-
proximation results.

Theorem 5.12 (Continuous Bicriteria). For any
SR-criterion CMDP  satisfying  Assumption 5.9
and any € > 0, the choice of discretization
¥ dzef c/2

(Ar+Xc+2Ap) H max(Cmaz Tmaw) (Smaz —Smin)

. . def
approximation {, =

and

% ensures Algo-

rithm 4(M) is a (e, €)-bicriteria running in time
O (HE™ 1592 A ey = conin 30 /€™, where § =

O((A\r + Ac + A\p) H max(Cmaz, Tmaz ) (Smaz — Smin)2/€)-
This time is polynomial so long as |Smaz — Smin| = O(|M|).
Moreover, almost-sure/anytime constraints enjoy the same
guarantee with an additional factor of Dpin, in S.
Corollary 5.13 (Simplified). For continuous-state SR-
criterion CMDPs satisfying Assumption 5.9, there exist
polynomial-time (¢, €)-bicriteria solutions for expectation
constraints, almost-sure constraints, anytime-almost-sure
constraints, and any combinations of these constraints.

6. Conclusion

In this work, we studied the question of whether polynomial-
time approximation algorithms exist for many of the clas-

sic formulations studied in the CRL literature. We con-
clude that for the vast majority of constraints, including
all the standard constraints, polynomial-time approxima-
bility is possible. We demonstrated this phenomenon by
developing polynomial-time bicriteria approximations with
the strongest possible guarantees for a general class of con-
straints that can be written in a form that satisfies general
policy evaluation equations. Overall, our work resolves the
polynomial-time approximability of many settings, some
of which have lacked any polynomial-time algorithm for
over a decade. In particular, we are the first to develop a
polynomial-time algorithm with any kind of guarantee for
chance constraints and non-homogeneous constraints.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs for Section 2
A.1. Proof of Proposition 2.3
Proof.

Expectation Constraints. We define C7; “E M {Zthl c H} Under this definition, the standard policy evaluation

equations imply that,

Cr(mh) = cn(s,a)+ Y Pu(s' | 5,a)CF 4 (Thia)- (8)
It is then clear that this can be written in (f, g)-form for f being summation and g being the identity. It is easy to see that
these functions have the desired properties.

def

Chance Constraints. Let M° denote the initial caMDP. We define C7,, = PJ, {Zth cp, > B|. We see that the

probability can be recursively decomposed as follows for the anytime variant:

Ci(th,€) = [en(s,a) + &> B+ > Pu(s' | 5,a)CF 1 (Thg1, cn(s, a) + 0. ©)
For the general invariant, we only include the indicator term at step H. To write this into the desired form, we can define a

cost-augmented MDP M that keeps track of the cumulative cost at each step as in (McMahan and Zhu, 2024a). In particular,

the anytime variant has the immediate cost defined to be ¢, ((s, ¢), a) & [en(s,a) + & > B]. Then, it is clear that the

expected cost for the new M exactly corresponds to the probability cost. Thus, the claim holds.

. def . ..

Almost-sure Constraints. We define C7; = max T {Zthl c H} to be the worst case cost. Under this definition,
PR [T 4+1]>0

it is known that the worst-case cost decomposes into,

CT () = cn(s,a) + HlSE/lX[P}L(S, | s,a) > 0]CT 1 (Th1)- (10)
It is then clear that this can be written in (f, g)-form for f being maximum and g being the indicator. Properties of maximum

imply that max, (C(s") 4+ €) < maxy C(s’) + €. Thus, the total combination is a short map, and the rest of the needed
properties can be seen to hold. The anytime variant follows similarly.

O
A.2. Proof of Theorem 2.5
Proof. The theorem follows immediately by translating the results on the SR-criterion into their original forms in the proof
above. O
B. Proof for Section 3

B.1. Helpful Technical Lemmas

Definition B.1 (Budget Space). For any s € S, we define Bry1(s) &ef {0}, and for any h € [H],

B(s) défU U {ch(s,a) +£g(P;L(s' | s,a),bs/)} . (11)

a beX, Bnyi(s')

We define B & Un.s Br(s).
Lemma B.2 (Budget Space Intution). Forall s € S and h € [H + 1],
Br(s) = {b € R? | 37 € 0P, m, € Ha, (s = sp(th) NCH(Th) = b)} , (12)

and |By(s)| < AZE0 5" Thus, B can be computed in finite time using backward induction.
Proof. We proceed by induction on h. Let s € S be arbitrary.

12
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Base Case. For the base case, we consider h = H + 1. In this case, we know that for any 7 € TP and any T € Hy41,
CHi1(tay1) = 0 € {0} = Br41(s) by definition. Furthermore, (s)|=1=A°= AZEna S

Inductive Step. For the inductive step, we consider & < H. In this case, we know that for any 7 € 1P and any 7, € Hp,
if s = sp(m3,) and a = 7, (77,), then the policy evaluation equations imply,

CF (1) = cn(s, a) +f/g(Ph(s’ | s,a),Cf 1 (Th,a,s)).

We know by the induction hypothesis that V;", | (74, a,s") € B, 11(s"). Thus, by (11), C} (73,) € Bp(s). Lastly, we see by
(11) and the induction hypothesis that,

|Bh(5)| < AH |Bh+1(5')‘ < AHAZf:h+1 — A1+Szt hi1S . Azt th—f,'

This completes the proof. O

B.2. Proof of Lemma 3.2

Proof. First, let V¥ (73, b) denote the supremum in (5). We proceed by induction on h.

Base Case. For the base case, we consider h = H + 1. Definition 2.1 implies that CF; (7 41) = 0 for any 7 € b,
Thus, there exists a 7 € TP satisfying CF, 4+1(ta41) < bif and only if b > 0. We also know by definition that any policy 7

satisfies V7| 1 (Tar+1) = 0 and if no feasible policy exists Vi, (T#4+1,b) = —oo by convention. Therefore, we see that
Vi1 (TH41,0) = —X{v>0}- Then, by definition of V7, ,, it follows that,

Vﬁﬂ(&b) = —X{p>0} = V1§+1(TH+17b)-

Inductive Step. For the inductive step, we consider any h < H. If V;*(75,,b) = —oc, then trivially V}*(s, ) > Vi (n, b).
Instead, suppose that V;* (74,b) > —oo. Then, there must exist a 7 € II? satisfying CJ(7,) < b. Let a* = m,(73,). By
(SR), we know that,

Cl(mh) = cn(s,a®) + f/ g (Pn(s"| s,a")Cl 1 (Th,a",s").
For each s’ € S, define b}, o Cl,1(mh,a*,s') and observe that b%, € B. Thus, we see that (a*,b*) € A x B and
cn(s,a) + fo g(Pu(s' | s,a))bs < b, s0 (a*,b*) € Ap(s, ) by definition.

Since 7 satisfies C7 | (7, a*,s") < b}, we see that V", | (s',0%,) > V)™ (7h,a*,s"). Thus, the induction hypothesis

implies V;*, (s, b%) > Vh+1(s bi) > ViT 1 (Th,a*,s"). The optimality equations for M then give us,

Vi (5,0) = e Tl(sb),8) + Y P8 ] (s,0), @) Vi (5)
a h{S, —/

= max rp(S,a) + Py, rd s, a v S/,bsl
(a,b)EAR(s,b) (s,0) ; (s"| ) h+1( )

> rus,0%) + S P(s' | 5,0 (5, 82)
> (s, a®) + Z Pu(s"| s,a*)V 1 (h,a,s")

=V (7).

The second line used the definition of each quantity in M. The first inequality used the fact that (a*, b*) € Ay (s, b). The
second inequality used the induction hypothesis. The final equality used the deterministic policy evaluation equations.

Since 7 was an arbitrary feasible policy for the optimization defining V;* (75, b), we see that V;* (s, b) > V;*(75,, b). This
completes the proof.

O

13



Polynomial-Time Approximability of Constrained Reinforcement Learning

B.3. Proof of Lemma 3.3

Proof. We proceed by induction on h.

Base Case. For the base case, we consider h = H + 1. By definition and assumption, V;Ir+1($, b) = —X{p>0} > —00.
Thus, it must be the case that b > 0 and so by Definition 2.1 CF;, ,(s,b) =0 < b.

Inductive Step. For the inductive step, we consider any h < H. We decompose 7,(s,b) = (a,b) where we know
(a,b) € A(s,b) since V;™(s,b) > —oc 2. Moreover, it must be the case that for any s’ € S with Py, (s" | s,a) > 0 that

Vir 1 (8", bs) > —oo otherwise the average reward would be —oco which would imply a contradiction:

VhTr(S’b) = rh(&a’) + ZPh(s/ | S,G)V;Zr+1 (SlvbS’)

=rp(s,a) + ...+ Pp(s' | s,a)(—00) + ...

= —00.
Thus, the induction hypothesis implies that CT, | (s',bs) < by for any such s’ € S. By (SR), we see that,

C_ffTLr(Sv b) = Ch(87 (l) + f g(Ph(S/ | S, a’))c;:+1(s/a bs’)
S/

< Ch(S7CL) + f g(Ph(Sl | S, a))bs/

<b.
The second line used the fact that f is non-decreasing and g is a non-negative scalar. The third line used the fact that
(a,b) € Ap(s,b). This completes the proof. O
B.4. Proof of Theorem 3.4
Proof. 1f V{*(s9, B) = —o0, then we know by Lemma 3.2 that,

—o0 = Vi*(s0, B) > sup Vi (s0)

mellpP (13)
S.t. C?(So) <B.

In other words, no feasible 7 exists, so Algorithm | reporting “Infeasible” is correct. On the other hand, suppose
that Vi*(sg, B) > —oo and let 7* be any solution to the optimality equations for M. By Lemma 3.3, we know that
CT(s0, B) < B implying that 7* is a feasible solution. Moreover, Lemma 3.2 again tells us that,

Vl’r*(so,B) = V*(s0,B) > sup V{"(sp)
rell? (14)
S.t. CT(So) <B

Thus, 7* is an optimal solution to (CON) and Algorithm 1 correctly returns it. Therefore, in all cases, Algorithm 1 is

correct. O

C. Proofs for Section 4

Formally, ]A‘z(; can be defined recursively byffbﬁ)(t, e fz(:) (t +1, {f(}%, g(Pu(t] s, a))bt)-‘ e) with base case f2’7?3(5+
Ay def ~

1L,E)EF.

sz convention, we assume max & = —oo

14
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C.1. Proof of Lemma 4.2

Proof. First, we show that,

S

Vit F) = max > Pu(s' | 5,a)V;y (s, ba)
=t

beBs-i 4 (15)

st en(s,a) + fryp(t, F) <D,
For notational simplicity, we define V y (¢) &f Zf,:t Py(s" | s,a)Vy, (s, bs). We proceed by induction on ¢.

Base Case. For the base case, we consider ¢t = S + 1. By definition, we know that I_/,f”b“(t, F)= —X{cn(s,a)+F<b}- We
just need to show that the maximum in (15) also matches this expression. First, observe objective is the empty summation,
which is 0. Also, f;'s(S + 1, F') = F, so the constraint is satisfied iff c; (s, a) + F' < b. Thus, the maximum is 0 when
cn(s;a) + F < band is —oo due to infeasibility otherwise. In other words, it equals —X ¢, (s,a)+F<b} s Was to be shown.

Inductive Step. For the inductive step, we consider any ¢ < S. From (6), we see that,

Vit F) = ma Pu(t |, @)V (6,00 + Vi (04 1.f (Fg(Pa(t | 5,0)h)

= Py(t Vi (L, b VoAt +1

max Pu(t | 5,0) Vi (8,00) + phax, o (t+1)
e (5,0)+ i (t+1.f (F.g(Pa (t]5,0))b,)) <b

= max _mex Py(t | s,a)Vii (t.0e) + Vg (t+1)

t eB” ",
en(s,a)+ fm (t+1.f (F,g (Pu (t]5,0))be)) <b

- B, Pu(t|s,a)Viyq (8,6) + Ve (t41)
en(5,0)+F 8 (4L (F.g(Pr (t]5,a))b:)) <b

= o Pu(t|s,a)Viq (b)) + Vi (E 4 1)
cn(s,a)F £ (4 F)<b

_ (75,0

B beg}&)fﬂ Vib (1)

ch(sﬁa)+fi:g(t7F)§b

The second line used the induction hypothesis. The third line used the fact that the first term is independent of future b
values. The fourth line used the properties of maximum. The fourth line used the recursive definition of f;"y (¢, F'). The last

line used the recursive definition of V;’} (¢).

For the second claim, we observe that,

Vi (s,b) = max rn(s,a) + Z Po(s" | s,a) Vi (s by)

en(5:0)+f o 9(P(s'|5,0))b,s b o

= 1{1117a>7< rp(s,a) + Z Py(s" | s,a) Vi1 (s, byr)
en(s,a)+fn(1,0)<b s

_ / [/ * / ,

= max max ru(s,a) + ZPh(s | s,a)Vi 1 (s, bsr)

en(5,0)+ 7 (1,0)<b s
Smacm(a) b om0 B | s @)

cn(s,a)+fot(1,00<b

= max (s, a) + V, 3 (1,0).

15
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C.2. Proof of Lemma 4.5

Proof. Recall, as in the proof of Lemma 4.2, we define V;’y (¢) & Zf,:t Pi(s" | s,a)Vy, (s, by) to simplify expressions.
We proceed by induction on ¢.

Base Case. For the base case, we consider ¢t = S + 1. By definition, we know that Vhsf(t, F’) = ~X{en(s,0)+F<r(b)} Ve
Just need to show that the maximum in (7) also matches this expression. First, observe objective is the empty summation,
which is 0. Also, f;y (S + 1, F') = F\, so the constraint is satisfied iff ¢, (s, a) + F' < £(b). Thus, the maximum is 0 when

cn(s,a) + F < k(b) and is —oo due to infeasibility otherwise. In other words, it equals “X{en(s.0)+ F<r(p)} S Was to be
shown. B

Inductive Step. For the inductive step, we consider any ¢ < S. From (ADP), we see that,

Vi (6, F) = max P(t | 5,0)Viiy (1, b0) + Vi (t 4, [f (F g(Pu(t | 5, a))bt)u

= Pyt Vi (t,b VRt +1
max Py(t | 5, a)Vya (f be) + phax, o+ 1)
cn(s,a)+fs (41, [F(F.g(Pa(tls,a))be) ], ) <w(b)
= Py(t]s,a)Vir (b)) + V22 (t+ 1
{,?2’)3{ bgllg%)ft7 w(t] s, a)Vii(t,be) + h7b( +1)
cn(s,0)+firn (41, [ (Frg(Putls,a)be) ], ) <r(b)
= max Pu(t|s,a)Viiq (t,by) + Vit +1)
bepS ittt ’
en(s,0)+Fin (t+1,[F(F.g(Pa(t]s,a)be)],) <r(b)
= pomax, Pu(t]s,a)Vigq(t,be) + Vi (E+1)

ch(s,a)Jrf;:ﬁ(t,F)gn(b)
max
beBS-t+1
en(s,a)+fie (4,F) <k(b)
The second line used the induction hypothesis. The third line used the fact that the first term is independent of future b

values. The fourth line used the properties of maximum. The fourth line used the recursive definition of f;:%(u F). The last
line used the recursive definition of V;’ . (¢).

For the second claim, we simply observe without rounding that (ADP) is the same as (6). Thus, Lemma 4.2 yields the
result. O
C.3. Proof of Theorem 4.7

Proof. The fact that Algorithm 3 correctly solves any M follows from the fact that (AU) is equivalent to (BU) via Lemma 4.5.

For the time complexity claim, observe that the number of subproblems considered is O(H S?A|B||F|) and the time needed
per subproblem is O(|B]) to explicitly optimize each artificial budget. Thus, the running time is O(H S2 A|B|2|F]). We can
further analyze |]:' | in terms of the original input variables. First, we claim that FC [bmin, Dmaz + €S]. To see this, observe
that the rounded input at state ¢ 4 1 is,

JE b)) 2 F(Fb) = f g(Pu(s' | s,0))be >

s'=1 s’

I e
i

g(Ph(Sl | Saa))bmin > bppin.-

Here, we used the fact that f is non-decreasing and the weighted combination is a short map rooted at 0. Similarly, we see,

FOE bl g) < F(E [bi]y) + £(E = 1)

< f 9P )b+ )+ £ )

t
< .f g(Ph(S/ ‘ 57a))bmax + 0t
1

s'=

< bma:z: + 1t

16
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Under this assumption, it is clear that the number of integer multiples of ¢ residing in this superset
is O((bmaz + €S — bmin)/f) per constraint. When considering all constraints at once, this becomes
O(||bmaz + €S = binll /€™) = O(||bmaz — bminlloy /€™ + S™). Incorporating this bound into the runtime then
gives O(HS™ 2 A|BJ? ||bmaz — bminllos /€™).

Similar to the reasoning above, we can see the cost of any policy, and thus the artificial budget set, is contained within
[H Cmin, Hmaz). Using this fact, we get the final running time O(H™ ' S™2A|B|? | ¢inas — Cmin || /0™).

O
D. Proofs for Section 5
D.1. Time-Space Error Lemmas
Lemma D.1 (Time Error). Forany h € [H], a € A ifb’ < b + , then,
n(1,0) < [ (1,0) < frp(1,0) + . (16)

Here, we translate a scalar x > 0 into the vector (z, ..., T).
Proof. By definition of f;"},,
Tu (1,0) = £(0, f 9(Pu(s" | 5,a))bl,)
= [ 9(Pu(s" | 5, )b
> [ 9(Ba(s"| 5,0))bw
= (0.1 g(Ph(s" [ 5,0))b)
= frp(1,0).

The second and fourth lines used the fact that f is identity preserving. The inequality uses the fact that f is non-decreasing
and g is a non-negative scalar, so the total weighted combination is also non-decreasing.

Similarly, we see that,
T (1,0) = £(0.f g(Pu(s” | 5,a))bly)
9(Pu(s" | s,a))by
g( w(s' | s,a))(bs + )
if 9(Pu(s" | s,0))bs +
f(0 f 9(Pu(s" | s,0))bs) + @
hb(1,0) +

The second and fifth lines used the fact that f is identity preserving. The first inequality again uses the fact that the weighted
combination is non-decreasing. The second inequality follows since the weighted combination is a short map with respect to
the infinity norm.

I/\ IA
% “\&s

In particular, since |o(y) —a(2)| < ||y — || , holds for any infinity-norm short map «, we see that |a(y+2)—a(y)| < |||,
Moreover, if « is non-decreasing and z is a positive scaler treated as a vector, we further have a(y + z) — a(y)
la(y + z) — a(y)|] < ||#]l, = 2. This final inequality immediately implies that a(y + z) < a(y) + z. When « is
vector-valued, this inequality holds component-wise. O

Since f is associative, we can define f;% (t, F)) = f(F,f5_, g(Pu(s" | 5,a))bs) either forward recursively or backward
recursively.

17



Polynomial-Time Approximability of Constrained Reinforcement Learning

Lemma D.2 (Space Error). Forany h € [H],a € A, b€ R™*S 4 € R™, andt € [S + 1],
frnltu) < frp(tu) < frp(tu) + (S —t+ 1)L (17)
Proof. We proceed by induction on .

Base Case. For the base case, we consider ¢ = S + 1. By definition, we have that f;ﬁ(S +1u) =u= frp(S+1,u).
Thus, the claim holds.

Inductive Step. For the inductive step, we consider any ¢ < S. The recursive definition of f;jg implies,

frptou) = frp(t+1,[f (u, g(Pult | s,a))be)],)
> fup+1,[f(u, g(Pu(t | 5,a))be)],)

([ (g (Pult ] 5.0)b)) T g(Pals’ | 5,0)be))

s'=t+1
> g (Pule [ sa)b), £ o(Pals' [ sa)b)
—F(o(Pale [ s.ab T 9P | 5.0)b)

= f}f:g(t U)

The first inequality used the induction hypothesis to replace f with f, and the second inequality used that f is non-decreasing
in either input and [b;], > b;. The other lines use f’s associativity.

Similarly, we see that,

Fin(tu) = frn(t 4+ 1, [f (u, g(Pa(t | 5,0))b)1,)
S f}ji](;(t + la ’—f(uvg(Ph(t | 87a))bt)12) =+ (S - t)é

= (9Pt [ 5.a)b)les T a(Pals' [sa)bu) + (5 = )8

< O g(Pult | s,a)be) + 6 T g(Pu(s’ | s,a)be)) + (S — )0

s/'=t+1
< g (Palt [ 5.0t T (P | s,ba) + (S = £+ 1
= Fu Pt 5.0 T a(PH(S 5. ab)) 4 (5 — 1+ 1)

= fip(t,u) + (S —t+ 1)L
The first inequality used the induction hypothesis to replace f with f. The second inequality used that f is non-decreasing

in either input and [z], < x + £. The third inequality used that f is a short map in the first input. The other lines use f’s
associativity.

This completes the proof. O

D.2. Proof of Lemma 5.2

Proof. We proceed by induction on h.
Base Case. For the base case, we consider h = H + 1. Since [b] ¢ > b, we immediately see,
V1§+1(57 [b],) = ~X{161,>0} > —Xg>0y = Virgi(s,b). (18)

18
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Inductive Step.  For the inductive step, we consider any h < H. If V;* (s, b) = —oo, then trivially Vs (s, [b] ) > Vi(s,b).
Now, suppose that V' (s, b) > —oco. Let 7 be a solution to the optimality equations for M. Consequently, we know that
Vi (s,b) = V;*(s,b) > —oo, which implies (a*,b*) = m,(s,b) € Ap(s,b). By definition of Aj(s,b),

cn(s,a%) + frpe (1,0) = ea(s,a”) + [ g(Pu(s’ [ 5,a"))b5 < b < [b],. (19)

For each s’ € S, define b7, &f (6%, We show (a*,b%,) € Ay (s, [b],) as follows:

Ch(sv a*) + f;’g*(lv O)

IN

cn(s,a®) + f0 (1,0) + €S
n(s,a) + frpe(1,0) +£(S +1)
bl, + (S +1)

(T61,)-

VANRVAY
- O

I
=

The first inequality follows from Lemma D.2. The second inequality follows from Lemma D.1 with b* < b* + £. The third
inequality follows from (19). The equality follows by definition of . Thus, (a*, b}/) € Ax(s, [b],).

Since b*, € B by definition, the induction hypothesis implies that V;* (8 b)) >V 1 (81,0%) = Vim(s',b%). The
optimality equations for M then imply that,

Vi(s.[b]) =  max  ru(s,a)+ > Pals' | s,a) Vi, (sb)
(a,b)eAL(s,b) o

> rp(s,a*) + ZPh(s’ | s,a)Viry (s',l;:/)

>rp(s,a”) + Z Pr(s" | 5,a) Vi (s, 03)
s’

The first inequality used the fact that (a*, B*) € fth(s, b). The second inequality follows from the induction hypothesis. The
last two equalities follow from the standard policy evaluation equations and the definition of 7, respectively. This completes
the proof.

O
D.3. Proof of Lemma 5.3
Proof. We proceed by induction on h.
Base Case. For the base case, we consider h = H + 1. By definition and assumption, VIZITH(& ?)) = _X{B>0} > —00.

Thus, it must be the case that b > 0 and so by definition CA'IT;—H (s,b) =0 <b.

Inductive Step. For the inductive step, we consider any & < H. As in the proof of Lemma 3.3, we know that (a, B) =
mh(s,b) € Ap(s,b) and for any s € S with Py, (s’ | s,a) > 0 that Vj7, | (s",bs/) > —o0. Thus, the induction hypothesis
implies that CA’;;+1(S/, by) < by + £(S +1)(H — h) for any such s'. For any other s, we have g(Py,(s' | s,a)) = g(0) =0
by assumption.

Thus, the weighted combination of C" 41(8, b./) is equal to the weighted combination of b’ where b/,, o cr (8", by ) if
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Pn(s' | s,a) > 0and l;;, &1 () otherwise. Moreover, we have b’ < b + ¢(S + 1)(H — h) since £ > 0. Thus, by (SR),

Cri(s,0) = en(s,a) + f g(Pu(s' | 5,0)Cf1 (s, by)

s,a) + Z:g,(l,O)
n(s,a) + 5 (1,0) +£(S + 1)(H — h)
k() + (S + 1)(H — h)
+

b+0(S+1)(H—h+1).

IN

Ch(
C

IN

The first inequality used Lemma D.1. The second inequality used the fact that (a,b) € Ay (s,b). The last line used the
definition of . This completes the proof. O

D.4. Proof of Theorem 5.4

Proof. If (CON) is feasible, then inductively we see that V;*(so, [B],) > —oo. The contrapositive then implies if
Vi (s0, [ B] ;) = —00, then (CON) is infeasible. Thus, when Algorithm 4 outputs “Infeasible”, it is correct.

On the other hand, suppose 171*(50, [B],) > —oo and that 7 is an optimal solution to M. By Lemma 5.2 and Lemma 3.2, we
know that V" (so, [B],) > V" (s0, B) > V*. Also, by Lemma 5.3, we know that CJ (so, [B],) < [B], + (S + 1)H <
B+ (1 + (S+1)H). Our choice of £ = TrTa then implies that C™ = Cf(s0,[B],) < B + ¢. Thus, 7 is an
(0, €)-additive bicriteria approximation for (CON).

Both cases together imply that Algorithm 4 is a valid (0, ¢)-bicriteria.

Time Complexity. We see immediately from Theorem 4.7 that the running time of Algorithm 4 is at most
@) <H2m+152m+2A|l§\2 lemaz — Cmin || e /em) To complete the analysis, we need to bound |B|. First, we note |B|
is at most the number of integer multiples of £ in the range [byin, bmaz] € [H Cmin, H Cmaz|™. For any individual constraint,
this number is at most O(H (¢paz — Hemin)/f) < O(H?S(Cmaz — Cmin)/€) using the definition of £ = m Thus,
the total number of rounded artificial budgets is at most O((H2S ||¢maz — Cminl| /€)™). Squaring this quantity and plugging

it back into our original formula yields: O (H 6mALGAME2 A Cpman — Cmin ||‘z;” / e3m).

O

D.5. Proof of Proposition 5.8

Proof. We consider a reduction from the Hamiltonian Path problem. The transitions reflect the graph structure, and the
actions determine the edge to follow next. To determine if a Hamiltonian path exists, we can simply make an indicator
constraint for each node that signals that node has been reached. It is then clear that relaxing the budget constraint does not
help since we can always shrink the budget for any given e-slackness. Thus, the claim holds. O

D.6. Proof of Lemma 5.11

Proof. We proceed by induction on h.

Base Case. For the base case, we consider h = H + 1. By definition, we have Vﬁﬂ(ﬁq“) =0=Vji (tH41)and

C?I+1(7~'H+1) =0= CIT—FIH(THH)-
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Inductive Step. For the inductive step, we consider any h < H. For simplicity, let def L+ 2p)Hr iz (Smaz — Smin)-
The standard policy evaluation equations imply that,

Vir (7n) = r([s]ys +ZPh (5" | [s1;>@)Vir (Fasa)

§’+£

= ’rh Z ,a —|— Z/ )dSIV}ZT+1(7~'h+1)

r—=3!

= r([slva) [ PG| 3 Vi G

> ra([s]y,a) +/ Pu(s" [ [s]y,a)(Viia (Thga) — (H — h))ds’

s’

=7rn([s],,a) Jr/ Py(s" | (sb,a)vhfr+1(7h+1)ds’ —xz(H —h)

s/

> ru(s,a) — A, Jr/ (Pu(s" | s,a) — ) Vi1 (Thyr)ds’ — x(H — h)

s/

= Vi (1h) — O\ — X / Vi (T )ds' — z(H — h)

> Vi () — v — O Hrimaw (Smaz — Smin) — ©(H — h)
2 V}T(Th) ( )Hrmaw(smaw - Smin) - (H - h)
=V () — (H h+1).

If we let y &ef L(Ae + Ap)Hmaz (Smaz — Smin ), We also see that,

Ch(Th) = Ch(|—3-|e ,a) +J~C§/Ph(§/ ‘ |—3-|g ) a)ég+1(7~'h+1)
B 5'+¢ ~
=cn([slg,a) +fs [ Pu(s"|[s],,a)ds'Ch (Thir)

=cn([s]ya) +£Ph28'8| [51¢,0)Chia (Tae1)

< cn([slp,a) + 1 Puls’ | 5]y, ) (Clya(har) +y(H = h))
[s1;,a) +fPh( | [s1¢:a)Chyr(Thea) + y(H — h)

< cn(s,a) + A +f(Ph(S |'s,a) +LAp)Chyr (Thia) + y(H — h)

= cn(s,a) + f Ph(s | s, a)Cthl(Tthl) + A+ LAy f/ Cszr+1(Th+1) +y(H —h)

< CH(mh) + LA+ LA, f Hepar +y(H — h)

S CZLT(Th) + E)\C + eAp(smaI - Smin)Hcmaa: + y(H - h)
S C}T(Th) + f()\ + A )(Smam - Smin)HCmaz + y(H - h)
=Cp(m) +y(H — h+1).

We note the above also holds if P is replaced with a g(P) for a sublinear short map g.

For almost-sure constraints, the proof is slightly different since we need to keep the inner integral by definition of the
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. . def .
worst-case cost for continuous state spaces. Letting y = L(Ae + Xp)Hmaz (Smaz — Smin)/Dmin. the bound then becomes,

Ch(7n) = en([s],,a) +H1§%X[15h(§' | [s1,a) > 01CFy 1 (Faga)

5+ B
= an([slva) +maxl [ Pa | [s], @)ds’ > 01CF ()

§'=3'

[ Pu(s' | [51,,a)ds’ -

=cn([s],,a) + max §'=§ . Chi1(Ther)
540 N
—an([slva) +max [P [51,00) G (Frea)d s
S s/ =35’
544
< anl[sl,va) +max [ P | [5],00) (O () + (H = B[
5
<enlfsl o) +mpx [ P (5], )G () ds' e+ y(H 1)
- 3+
<cp(s,a)+ 0.+ mﬁz}x/ Pu(s"| s,a)Chy  (The1)ds' /s
§+e -
+ 0\, m_a}x/  Chya(Ther)ds’ /ps' +y(H — h)
5= b
< cp(s,a) + max MC’;{H(MH)CZS’ + e + XNy Heman /Pmin
S'CS S’ s

+y(H —h)

= O () + ¢ + LN\ Hemaz /[ Brmin + y(H — h)

< 0}777 (Th) + é(/\c + /\p)(smax - Smin)Hcmax/f)min + y(H - h)
=Cp(mn) +y(H — h+1).

D.7. Proof of Theorem 5.12

Proof. The theorem follows immediately from Theorem 5.4 and Lemma 5.11. O

E. Extensions

Markov Games. It is easy to see that our augmented approach works to compute constrained equilibria. For efficient
algorithms, using —oo to indicate infeasibility becomes problematic. However, we can still use per-stage LP solutions and
add a constraint that the equilibrium value must be larger than some very small constant to rule out invalid —oo solutions.
Alternatively, the AND/OR tree approach used in (McMahan and Zhu, 2024a) can be applied here to directly compute all
the near-feasible states.

Infinite Discounting. Since we focus on approximation algorithms, the infinite discounted case can be immediately
handled by using the idea of effective horizon. We can treat the problem as a finite horizon problem where the finite
horizon H is defined so that >~ ; Y emar < €. By choosing ¢ and e small enough, we can get equivalent feasibility
approximations. The discounting also ensures the effective horizon H is polynomially sized, implying efficient computation.

Stochastic Policies. For stochastic policies, our approximate results follow from simply replacing each max, and maxp,
with a general linear program over a finite distribution, which can be solved in polynomial time.
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Stochastic Costs. For finitely-supported cost distributions, all results remain the same except for almost-sure/anytime
constraints, which now must be written in the form:

Cr(m) = max ¢ +max|[Py(s" | s,a) > 0|Cy (1, a,c,s"). (20)
c€Supp(Ch (s,a)) s’

Also, note that histories must now be cost-dependent.

Now, we have that future budgets depend on both the next state and the realized cost, so our (ADP) must now be dependent
on both states and immediate costs for subproblems. The construction is similar to the approach in (McMahan, 2024).
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