
State-Constrained Zero-Sum Differential Games with One-Sided Information

Mukesh Ghimire 1 Lei Zhang 1 Zhe Xu 1 Yi Ren 1

Abstract
We study zero-sum differential games with state
constraints and one-sided information, where
the informed player (Player 1) has a categorical
payoff type unknown to the uninformed player
(Player 2). The goal of Player 1 is to mini-
mize his payoff without violating the constraints,
while that of Player 2 is to violate the state con-
straints if possible, or to maximize the payoff oth-
erwise. One example of the game is a man-to-man
matchup in football. Without state constraints,
Cardaliaguet (2007) showed that the value of such
a game exists and is convex to the common be-
lief of players. Our theoretical contribution is
an extension of this result to games with state
constraints and the derivation of the primal and
dual subdynamic principles necessary for comput-
ing behavioral strategies. Different from existing
works that are concerned about the scalability of
no-regret learning in games with discrete dynam-
ics, our study reveals the underlying structure of
strategies for belief manipulation resulting from
information asymmetry and state constraints. This
structure will be necessary for scalable learning
on games with continuous actions and long time
windows. We use a simplified football game to
demonstrate the utility of this work, where we
reveal player positions and belief states in which
the attacker should (or should not) play specific
random deceptive moves to take advantage of in-
formation asymmetry, and compute how the de-
fender should respond.

1. Introduction
We study fixed-time zero-sum differential games with state
constraints and one-sided information, where Player 1 holds
a private type (e.g., an intent or preference) that defines the
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payoffs of the game. The goal of Player 1 (resp. Player 2)
is to minimize (resp. maximize) the cost. Since violation
of the state constraint results in +∞ penalty to Player 1,
Player 2 resorts to violating the constraints when possible;
and Player 1 resigns when state violation is inevitable. At
the beginning of the game, Nature draws a type from a dis-
tribution known to both players and assigns the type only to
Player 1. Initialized as Nature’s distribution, the common
belief about Player 1’s type is updated dynamically during
the game based on observations, and shared between the
players. A stochastic state trajectory is produced based on
the initial state and belief, the deterministic system dynam-
ics, and the behavioral strategies of the two players. The
value of the game, when exists, follows a Hamilton-Jacobi
(HJ) equation and is a function of time, state, and belief.
Importantly, Player 1 may control the release of information
at the equilibrium to manipulate the common belief and take
advantage of information asymmetry.

We use Hexner’s game (Hexner, 1979) as a minimal example
to demonstrate information control by Player 1: Consider
two players with linear dynamics

ẋi = Aixi +Biui,

for i = 1, 2, where xi(t) ∈ Rdx are system states, ui(t) ∈
U are control inputs belonging to the admissible set U ,
Ai, Bi ∈ Rdx×dx . Let θ ∈ {−1, 1} be Player 1’s type
unknown to Player 21. Let pθ be Nature’s probability distri-
bution of θ. Consider that the game is to be played infinite
many times, the payoff is an expectation over θ:

J(u1, u2) = Eθ

[∫ T

0

(
∥u1∥2R1

− ∥u2∥2R2

)
dt +

∥x1(T )− zθ∥2K1(T ) − ∥x2(T )− zθ∥2K2(T )

]
,

(1)

where z ∈ Rdx , R1 and R2 are positive-definite, continuous
matrix functions, and K1(T ) and K2(T ) are positive semi-
definite matrices. All parameters are common knowledge
except θ. Essentially Player 1’s goal is to get closer to zθ
than Player 2. Since Player 2 can infer the target based
on Player 1’s control, Player 1 may play a non-revealing
strategy for some time, i.e., as if he also only knows pθ
rather than the actual θ, before he eventually reveals.

1Hexner’s analysis is applicable to θ ∈ Rdx , but is not gener-
alizable to games with arbitrary dynamics and payoff functions.
Here we adopt Cardaliaguet’s setting where types are categori-
cal (Cardaliaguet, 2007).
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The equilibrium of this game is as follows: First, it can be
shown that players’ control has a 1D representation, denoted
by θ̃i ∈ R, through:

ui = −R−1
i BT

i Kixi +R−1
i BT

i KiΦizθ̃i,

for i = 1, 2, where Φ̇i = AiΦi with boundary condition
Φi(T ) = I , and

K̇i = −AT
i Ki −KiAi +KT

i BiR
−1
i BT

i Ki.

Then by introducing

di = zTΦT
i KiBiR

−1
i BT

i K
T
i Φiz, (2)

and defining the critical time as

tr = argmin
t

∫ t

0

(d1(s)− d2(s))ds,

one can derive Player 1’s strategy as θ̃1(t) = 0 for t ∈ [0, tr]
and θ̃1(t) = θ for t ∈ (tr, T ], i.e., Player 1 reveals its type
at tr. Player 2’s strategy turns out to be to strictly follow
Player 1: θ̃2(t) = θ̃1(t). The original analysis by Hexner
exploits the fact that both players solve linear-quadratic reg-
ulators parameterized by θ. We will revisit this game after
introducing the differential game theory for one-sided in-
formation games (Cardaliaguet, 2007; 2009), which arrives
at Hexner’s solution but can also solve games with arbi-
trary dynamics and payoff functions, subject to continuity
assumptions. This paper extends the unconstrained settings
in Cardaliaguet (2009) and Souquiere (2010): We prove
that value exists for differential games with state constraints
and one-sided information, and derive the primal-dual HJ
equations necessary for computing player strategies.

Different from existing works that focus on scalable no-
regret learning on imperfect-information games with dis-
crete dynamics (Brown et al., 2020; Perolat et al., 2022),
this paper builds on top of repeated games and incomplete-
information differential games (Cardaliaguet, 2007; 2009)
to reveal the underlying mechanism of belief manipulation
resulted from information asymmetry and state constraints.
Specifically, we show that in any subgame, Player 1 plays a
behavioral strategy (i.e., probability distributions over the
action space for all his types) that convexifies his value with
respect to the common belief. As a result, the common
belief “splits” to vertices of the value convex hull with prob-
abilities that are optimal for Player 1. See Fig. 1 for an
illustration using Hexner’s game. Importantly, the number
of splits for Player 1 is no more than the number of possible
player types. On the other hand, Player 2 counters Player
1 by playing a dual game where her behavioral strategy is
determined by the convexification of the conjugate value.
See Sec. 3 and 4 for details.

Within this context, it becomes clear that understanding
whether and how belief should be manipulated relies on
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Figure 1: Value along belief (p) and time (t) in Hexner’s
game. Belief splits to A (p = 0) and B (p = 1) depending
on the true type of Player 1, when the value becomes con-
cave should Player 1 play a non-revealing strategy. In other
words, Player 1 delays the release of his type until a critical
time. In more general cases, belief splitting may not fully
reveal Player 1’s type, leading to belief manipulation.

knowing the value landscape over the belief space at any
time and state. In addition to the curse of dimensional-
ity (CoD) commonly present for games with non-trivial
state/action/belief spaces and time horizons, we also expe-
rience computational challenges due to value discontinuity
and the need for convexification and splitting. We discuss in
Sec. 5 a set of solutions, including using physics-informed
neural network to characterize the backward reachable set
to smooth value approximation, and using an input con-
vex architecture (Amos et al., 2017) for predicting convex
values.

To summarize, we claim the following contributions:

• We extend the theory of zero-sum differential games
with one-sided information to games with state con-
straints by proving value existence of such games and
deriving the primal and dual subdynamic principles;

• We elucidate, with detailed examples, how the subdy-
namic principles lead to the derivation of behavioral
strategies;

• We develop numerical tools to alleviate CoD in value
approximation and to infer behavioral strategies from
values. In Sec. 6, we solve an 8D man-to-man matchup
game and reveal player positions in which the attacker
can take advantage of information asymmetry by play-
ing specific deceptive moves, and to derive the de-
fender’s best response in the lack of information. See
Fig. 2.
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Figure 2: Trajectories of informed Player 1 (red) and unin-
formed Player 2 (blue) in an 8D Hexner’s game w/ and w/o
a state constraint or information asymmetry. Color shades
indicate probabilities. When constrained, Player 1 stays
away from Player 2 while trying to be closer to the target
(the circle) than Player 2. Diamonds indicate initial states
and stars indicate final states. See Sec. 6 for details.

2. Related Work
Incomplete-information repeated and differential games
Harsanyi (1967) first formalized information asymmetry in
a stage game by introducing a private player types. Aumann
et al. (1995) provided a framework to study repeated games
with incomplete information on one side. De Meyer (1996)
introduced dual games from where strategies of the unin-
formed player can be derived from a recursive structure of
the conjugate value. Extending these results to differen-
tial games with Markov rewards, Cardaliaguet (2007) and
Souquiere (2010) confirmed the structures of incomplete-
information games with one sided information on player
type: (1) the game enjoys a primal-dual decomposition so
that the informed player does not need to know the equilib-
rium of the uninformed player to compute his own; and (2)
the value is convexified by belief splitting at the equilibrium.
Recently, Hu et al. (2023) proposed independently a belief-
space HJ formulation for zero-sum differential games with
one-sided information. While their framework can incorpo-
rate state constraints, it does not reveal the above structure
of the equilibrium strategies of such games.

Imperfect-information dynamic games Since player
types can be considered as static private states, our work
belongs to the category of imperfect-information dynamic
games, where more general dynamics and information struc-
tures (e.g., disturbances, partial observability, and delayed

information sharing) are considered. Nayyar et al. (2013)
showed that the game can be reformulated as perfect-
information by introducing a common belief state, pro-
vided that the belief is strategy independent. This strategy-
independence assumption is relaxed in Kartik and Nay-
yar (2021) for zero-sum dynamic games by introducing
past strategies as part of the players’ information state.
The general setting of Kartik and Nayyar (2021), however,
does not facilitate a value existence proof. A significant
amount of recent work build on top of common belief to ap-
proximate values of imperfect-information dynamic games
(e.g., ReBeL (Brown et al., 2020), DeepNash (Perolat et al.,
2022), and SoG (Schmid et al., 2023)). Following Nay-
yar et al. (2013), these algorithms model behavioral strate-
gies as prescriptions, i.e., belief-conditioned action distribu-
tions. In addition, by taking advantage of the equivalence
between local regret matching and Nash equilibrium in two-
player zero-sum games (Zinkevich et al., 2007), no-regret
algorithms (Brown & Sandholm, 2018; 2019; Brown et al.,
2020) have been developed for more scalably solving games
with large action spaces and long time horizons than lin-
ear programming based methods (Koller & Pfeffer, 1995).
It should be noted that these algorithms scale linearly to
the square-root of the action space, and thus induce high
costs as the action space grows. While often disconnected,
the studies on imperfect-information dynamic (or extensive-
form) games and those on incomplete-information differ-
ential games are consistent in theory. Specifically, regret
matching, i.e., solving subgame minimax problems with
respect to behavioral strategies in the former, leads to strate-
gies that satisfy the subdynamic programming principles
stated in Cardaliaguet (2007), due to the fact that the be-
havioral strategies intrinsically convexify values. The key
difference, however, is that regret matching algorithms do
not enforce belief splitting. In practice, this means that
the resultant strategy, often as a result of manually chosen
action discretization, does not explicitly explain whether a
certain random action is to be taken in a given belief state
in order to delay information release or to manipulate the
belief in a specific way.

3. State Constrained Zero-Sum Differential
Games with One-Sided Information

Preliminaries We consider a time-invariant deterministic
dynamical system that defines the dynamics of the combined
state x of Players 1 and 2, whose control inputs are u and v,
respectively:{

ẋ(t) = f(x(t), u(t), v(t)), u(t) ∈ U , v(t) ∈ V
x(t0) = x0

(3)
The game starts at t0 ∈ [0, T ] with an initial state x0 ∈ Rdx .
Denote gi : Rdx → R the terminal payoff functions for
i ∈ [I], each corresponding to a Player 1 type drawn from
Nature’s distribution p = {p1, ..., pI} ∈ ∆(I), where ∆(I)
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is an I-dimensional simplex; denote C = {x ∈ Rdx |c(x) ≤
0} the set of feasible states. The goal of Player 1 is to mini-
mize the expected payoff while keeping the state in C. Player
1 receives +∞ if state violation occurs; the goal of Player
2 is to maximize the expected payoff and hence may resort
to violating the state constraint. We omit instantaneous pay-
offs (e.g., effort losses due to control) for conciseness, and
discuss in Sec. 4 modifications to the Bellman backup when
common-knowledge instantaneous payoffs exist.

The following assumptions will be used:

1. U and V are compact and finite-dimensional sets;

2. f : Rdx × U × V → Rdx is bounded, continuous, and
uniformly Lipschitz continuous with respect to x;

3. gi : Rdx → R for i = 1, ..., I and c : Rdx → R are
Lipschitz continuous and bounded.

4. Isaacs’ condition holds for the Hamiltonian H : Rdx ×
Rdx → R :

H(x, ξ) := min
u∈U

max
v∈V

f(x, u, v)T ξ

= max
v∈V

min
u∈U

f(x, u, v)T ξ.
(4)

5. Control inputs and states of both players are fully ob-
servable by all. The dynamics, the payoff set, and the
equilibrium strategies are common knowledge to all.

Behavioral strategy Let A(t) (resp. D(t)) be the set of
open-loop controls for Player 1 (resp. Player 2):

A(t) := {α : [t, T ]→ U | Lebesgue measurable},
D(t) := {δ : [t, T ]→ V | Lebesgue measurable}.

Following (Cardaliaguet, 2007), we introduce H(t) (resp.
Z(t)) as the set of non-anticipative pure strategies with
delay for Player 1 (resp. Player 2) (Elliott & Kalton, 1972):

H(t) := {η : D(t)→ A(t) | ∃τ > 0 such that
∀s ∈ (t, T − τ) and δ, δ̄ ∈ D(t), if δ = δ̄ a.e.
in [t, s], then η(δ) = η(δ̄) a.e. in [t, s+ τ ]}.

Z(t) := {ζ : A(t)→ D(t) | ∃τ > 0 such that
∀s ∈ (t, T − τ) and α, ᾱ ∈ A(t), if α = ᾱ a.e.
in [t, s], then ζ(α) = ζ(ᾱ) a.e. in [t, s+ τ ]}

A behavioral (mixed) strategy for Player 1 is defined by a
pair ((Ωη,Fη,Pη), η), where (Ωη,Fη,Pη) is a probability
space and the strategy η : Ωη×D(t)→ A(t) is measurable
and non-anticipative with delay, i.e., there is some τ > 0
such that, for any s ∈ (t, T − τ) and δ, δ̄ ∈ D(t), if δ = δ̄
a.e. in [t, s] then η(ω, δ) = η(ω, δ̄) a.e. in [t, s + τ ] for
any ω ∈ Ωη. We denote the sets of behavioral strategies of
Player 1 by (Hr(t))

I and the behavioral strategy of Player
2 by Zr(t). With mild notational abuse, we will denote by

(ηi) ∈ (Hr(t))
I a particular set of behavioral strategies of

Player 1, and by ζ ∈ Zr(t) a particular behavioral strategy
of Player 2. Lastly, we assume that ηi for i = 1, ..., I are
defined on the same probability space.

Remarks. Nonanticipative strategies with delay are used,
as opposed to ones without delay that are often used in
complete-information games (Elliott & Kalton, 1972), in
order to enable Lemma 1 that associates random strate-
gies with open-loop controls. This association will become
useful in proving the existence of value of incomplete-
information differential games and in value characterization
(see discussions in (Cardaliaguet, 2007)):
Lemma 1. (Lemma 2.2 of (Cardaliaguet, 2007)) For any
pair (η, ζ) ∈ Hr(t) × Zr(t) and any ω := (ω1, ω2) ∈
Ωη × Ωζ , there is a unique pair (αω, δω) ∈ A(t) × D(t)
such that

η(ω1, δω) = αω and ζ(ω2, αω) = δω. (5)

Furthermore the map ω → (αω, δω) is measurable from
Ωη×Ωζ endowed with Fη⊗Fζ intoA(t)×D(t) endowed
with the Borel σ-field associated with the L1 distance.

Backward reachable set Let Xt0,x0,α,δ
τ be the solution

of Eq. (3) at t = τ when starting at (t0, x0) and following
(α, δ). With behavioral strategies (η, ζ) and initials (t0, x0),
we denote by X t0,x0,α,δ

τ the trajectory of states reachable
by (α, δ) within [t0, τ ], and X t0,x0,η,ζ

τ as states reachable
by (η, ζ) within [t0, τ ]:

X t0,x0,η,ζ
τ :=

⋃
ω∈Ωη×Ωζ

X t0,x0,αω,δω
τ

where (αω, δω) is defined by Eq. (5). Introduce ρ(S) = 1
if S ⊆ C, and otherwise ρ(S) = +∞; and the backward
reachable (infeasible) set as

Q̄(t) := {x ∈ Rdx | ∀η ∈ Hr(t),∃ζ ∈ Zr(t), τ ∈ (t, T ],

s.t., ρ
(
X t,x,η,ζ

τ

)
= +∞}.

Q(t) := Rdx \ Q̄(t) is the set of feasible states. Q(T ) = C.
Lastly, we use ρ̄(t, x) = 1 if x ∈ Q(t) and otherwise
ρ̄(t, x) = +∞.

Payoff and value We define the expected payoff of player
type i for taking behavioral strategies (η, ζ) as

Gi(t0, x0, η, ζ) := Eη,ζ

[
gi(X

t0,x0,η,ζ
T )ρ(X t0,x0,η,ζ

τ )
]

=

∫
Ωη×Ωζ

gi
(
Xt0,x0,αω,δω

T

)
ρ(X t0,x0,αω,δω

τ )dPη ⊗ Pζ(ω).

The payoff of Player 1 is
∑I

i=1 piGi(t0, x0, ηi, ζ). With
strategys (ηi) ∈ (Hr(t0))

I and ζ ∈ Zr(t0), the upper value
function is defined by

V +(t0, x0, p) := inf
(ηi)

sup
ζ

I∑
i=1

piGi(t0, x0, ηi, ζ),
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and the lower value function is given by

V −(t0, x0, p) := sup
ζ

inf
(ηi)

I∑
i=1

piGi(t0, x0, ηi, ζ).

The existence of the value While the existence of value
is proven for both zero-sum complete-information state-
constrained differential games (Lee, 2022) and zero-sum
differential games with one-sided information (Cardaliaguet,
2009), the proof for games with both one-sided information
and state constraints is missing. Our main theoretical result
fills in this gap (see Appendix A for the proof):

Theorem 1. If assumptions 1-5 hold, we have
V +(t, x, p) = V −(t, x, p) for all (t, x, p) ∈
[0, T ]× Rdx ×∆(I).

Characterization of the value We need to first character-
ize the value of the unconstrained game since this value will
later appear in that of the state-constrained game.

Let U : [0, T ] × Rdx × ∆(I) → R be the value of the
unconstrained version of the game, and U∗ : [0, T ]×Rdx ×
RI → R its convex conjugate:

U∗(t, x, p̂) := sup
p∈∆(I)

p̂T p− U(t, x, p)

∀(t, x, p̂) ∈ [0, T ]× Rdx × RI .

We have the following properties for U and U∗:

1. U is Lipschitz continuous in (t, x, p) and convex to p.
U(T, x, p) =

∑I
i=1 pigi(x), ∀(x, p) ∈ Rdx × ∆(I).

U∗ is Lipschitz continuous in (t, x, p̂) and convex to p̂.
U∗(T, x, p̂) = maxi∈[I] p̂i − gi(x), ∀(x, p̂) ∈ Rdx ×
RI .

2. For any p ∈ ∆(I), (t, x) → U(t, x, p) is a viscosity
subsolution to the primal HJ equation

wt +H(x,Dw) = 0,

where H is defined by Eq. (4).
3. For any p̂ ∈ RI , (t, x) → U∗(t, x, p) is a viscosity

subsolution to the dual HJ equation

wt +H∗(x,Dw) = 0,

where H∗(x, ξ) = −H(x,−ξ) ∀ (x, ξ) ∈ Rdx × Rdx .

The conjugate U∗ defines the value of a dual game where
Player 2 minimizes her payment, U∗(T, x, p̂), to Player 1
where p̂ is common knowledge. We note that by defini-
tion (see (De Meyer, 1996)), the dual variables p̂ are the
info-state values defined in Brown et al. (2020), i.e., p̂[i]
captures the value of Player 1 if he is of type i and plays
the best response to Player 2’s equilibrium strategy. De
Meyer (1996) showed that when p̂ ∈ ∂pU(0, x, p), Player
2’s strategy in the dual game is her equilibrium in the primal

game. We note that Player 2’s strategy cannot be derived
from the primal subdynamic principle because her best re-
sponse is dependent on Player 1’s type which is unknown to
her. The introduction of the dual game allows us to derive
a subdynamic principle of the conjugate value from where
her equilibrium strategy can be computed.

For the state-constrained game, the following corollary is a
result of the subdynamic principles derived from Theorem 1,
and will guide the numerical approximation of values for
the state-constrained game (Sec. 4):
Corollary 1.1. Under assumptions 1-5, the value function
V := V + = V − (resp. V ∗) is a unique function defined on
[0, T ]× Rdx ×∆(I) (resp. [0, T ]× Rdx × RI ) such that:

1. V is convex respect to p and

V (T, x, p) = ρ(x)U(T, x, p) ∀(x, p) ∈ Rdx ×∆(I);
(6)

V ∗ is convex respect to p̂ and

V ∗(T, x, p̂) = max
i∈[I]

p̂i−ρ(x)gi(x) ∀(x, p̂) ∈ Rdx×RI

(7)
2. For all p ∈ ∆(I), (t, x) → V (t, x, p) is a viscosity

subsolution to the primal HJ equation

min{ρ(x)U(t, x, p)−w,wt +H(x,Dw)} = 0. (8)

3. For all p̂ ∈ RI , (t, x, z)→ V ∗(t, x, z, p) is a viscosity
subsolution to the dual HJ equation

min{ρ(x)U∗(t, x, p̂/ρ(x)), wt +H∗(x,Dw)} = 0.
(9)

4. Bellman Backup and Behavioral Strategies
Discrete-time Bellman backup computes an approximated
value Vτ (tk, ·, ·) : Rdx × ∆(I) → R, with time step τ =
T/L for some large L and tk = kτ for k = 0, ..., L:

(i) At the terminal time, set Vτ (T, x, p) =
ρ(x)

∑
i pigi(x).

(ii) At k ∈ {0, ..., L− 1}

Vτ (tk, x, p) = ρ(x)Vexp

(
min
u

max
v

Vτ (tk+1, x
′, p)

)
,

(10)
where x′ = x+ τf(x, u, v) and Vexp(·) is the convex
hull with respect to p.

Let l : U × V → R be a Lipschitz continuous and bounded
function that represents the instantaneous payoff of the
game. To incorporate l, Eq. (10) becomes

Vτ (tk, x, p) = ρ(x)Vexp

(
min
u

max
v

Vτ (tk+1, x
′, p) + τ l(u, v)

)
(11)

Theorem 2 states that Vτ uniformly converges to V as τ →
0+ (see proof in Appendix B):
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Theorem 2. If assumptions 1-5 hold, Vτ converges uni-
formly to V on compact subsets of [0, T ]× Rdx ×∆(I):

lim
τ → 0+, tk → t,
x′ → x, p′ → p

Vτ (tk, x
′, p′) = V (t, x, p)

∀(t, x, p) ∈ [0, T ]× Rdx ×∆(I).

Behavioral strategy for Player 1 and the belief dynamics
Player 1’s behavioral strategy is a probability distribution
over U conditioned on (t, x, p). At time tk, Player 1 resigns
if xk ∈ Q̄(tk); otherwise, he determines his strategy using
the following steps: First he finds λ = {λ1, ..., λI} ∈ ∆(I)
and pj ∈ ∆(I) for j = 1, ..., I , such that

Vτ (tk, xk, pk) =

I∑
j=1

λj

(
min
u∈U

max
v∈V

Vτ (tk+1, x
′
k, p

j)
)
,

I∑
j=1

λjp
j = pk.

(12)
Then he computes uj as the minimax solution corresponding
to pj , and chooses uk = uj with probability λjp

j [i]/pk[i],
where i is its true type. It is proved that this behav-
ioral strategy of Player 1 is ϵ-optimal for small enough
τ (Cardaliaguet, 2009). Importantly, {pj}Ij=1 are vertices of
the value convex hull. Thus by announcing his strategy, and
by assuming that players use the same Bayes belief update,
Player 1 controls the belief dynamics to follow a martin-
gale that optimizes his gain, i.e., pk+1 = pj if uj is chosen.
Note that the introduction of state constraints changes the
minimax solutions, the value convex hulls, and thus the
behavioral strategies. Lastly, Eq. (12) will be modified ac-
cording to Eq. (11) when instantaneous loss is present.

The dual game and behavioral strategy for Player 2
Player 2’s strategy is determined by a dual game for which
the conjugate value is approximated by V ∗

τ (tk, ·, ·) : Rdx ×
RI → R. Specifically,

(i) At the terminal time, set V ∗
τ (T, x, p̂) = maxi{p̂i −

ρ(x)gi(x)}.
(ii) At k ∈ {0, ..., L− 1}

V ∗
τ (tk, x, p̂) = Vexp̂

(
min
v

max
u

V ∗
τ (tk+1, x

′, p̂)
)
,

(13)
if ρ̄(tk, x) = 1; otherwise V ∗

τ (tk, x, p̂) = −∞.

Similar to Theorem 2, Theorem 3 proves that V ∗
τ uniformly

converges to V ∗ as τ → 0+ (proof omitted).
Theorem 3. If assumptions 1-5 holds, V ∗

τ converges uni-
formly to V ∗ on compact subsets of [0, T ]× Rdx × RI :

lim
τ → 0+, tk → t,
x′ → x, p̂′ → p̂

V ∗
τ (tk, x

′, p̂′) = V ∗(t, x, p̂)

∀(t, x, p̂) ∈ [0, T ]× Rdx × RI .

With instantaneous loss l, the Bellman backup in Eq. (13)
becomes

V ∗
τ (tk, x, p̂) = Vexp̂

(
min
v

max
u

V ∗
τ (tk+1, x

′, p̂− τ l(u, v))
)
(14)

We explain this modification in detail in Appendix C. An
intuitive explanation is as follows: Recall that each element
of p̂ represents Player 1’s value for the corresponding type
in the primal game. Hence p̂ at the next time step should
discount the common instantaneous loss incurred at the
current time step.

The behavioral strategy of Player 2 defines a probabil-
ity distribution over V conditioned on (t, x(t), p̂(t)), with
the dual variable p̂(t0) ∈ ∂pV (t0, x0, p(t0)). At time tk,
if xk ∈ Q̄(tk), Player 2 plays according to a pursuit-
evasion game since she can always catch Player 1 accord-
ing to the definition of Q̄(tk); otherwise, Player 2 deter-
mines her strategy using the following steps: First she
finds λ = {λ1, ..., λI+1} ∈ ∆(I + 1) and p̂j ∈ RI for
j = 1, ..., I + 1, such that

V ∗
τ (tk, xk, p̂) =

I+1∑
j=1

λj

(
min
v∈V

max
u∈U

V ∗
τ (tk+1, x

′
k, p̂

j)

)
,

I+1∑
j=1

λj p̂
j = p̂k.

(15)
Then she computes the minimax solution vj , and chooses
vk = vj with probability λj . It is proved that this behav-
ioral strategy of Player 2 is ϵ-optimal for small enough
τ (Cardaliaguet, 2009). p̂ follows a martingale p̂k+1 = p̂j

if vj is chosen by Player 2, or p̂k+1 = p̂j − τ l(uj , vj) if l
is present, where uj is the best response to vj in the dual
game. Notice that due to her lack of information, Player
2 solves harder value approximation and control synthesis
problems of belief dimension I + 1 rather than I .

To help readers better understand the mechanisms described
in this section, we provide detailed derivation of behavioral
strategies for two sample problems in Appendix D (D.1 for
a zero-sum version of the beer-quiche game and D.2 for
Hexner’s game).

5. Numerical Methods
5.1. Primal and dual value approximation
We use backward induction to solve Eq. (10) and (15), and
discuss treatments that alleviate error propagation. We focus
the discussion on the primal problem for brevity.

Value discontinuity At each time step t, Vτ (t, ·, ·) (resp.
V ∗
τ (t, ·, ·)) can be approximated separately in Q̄(t) and
Q(t): the primal (resp. dual) value in the former is set
to +∞ (resp. −∞) and value in the latter will be approx-
imated using a neural network V̂τ (t, ·, ·) (resp. V̂ ∗

τ (t, ·, ·)).
This avoids fitting the value networks to functions with
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large Lipschitz constants during numerical implementation.
Q̄(t) for t ∈ [0, T ] can be approximated by a physics-
informed neural network (PINN) solver (Bansal & Tom-
lin, 2021) (see details in Appendix E), by recognizing that
Q̄(t) can be defined by pure strategies instead of behav-
ioral ones using Lemma 1. PINN alleviates CoD in solv-
ing HJ equations with Lipschitz continuous solutions (Shin
et al., 2020), and here it results in a separate value net-
work Ṽ (·, ·) : [0, T ] × Rdx that approximates Q̄(t) as
{x ∈ Rdx |Ṽ (t, x) ≤ 0}.

Partially convex values At each tk and for uniformly
sampled S(t) ⊂ Q(t), we scan a lattice P ⊂ ∆(I) to
obtain the minimax solution of the RHS of Eq. (10) (de-
noted by ϑ0(t, x, p) for (x, p) ∈ S(t) × P), resulting
in a dataset {(p, ϑ0(t, x, p))}p∈P . Value convexification
is then obtained by applying the Monotone Chain Con-
vex Hull algorithm to this dataset for each x ∈ S(t)
and taking the lower hull of the resulting convex hull.
Let ϑ(t, x, p)S(t) be the resultant value on the convex
hull. A value network V̂τ (t, ·, ·) is then trained using data
{(x, ϑS(t)(t, x, p)|(x, p) ∈ S(t) × P} so that during the
Bellman backup at t− 1, we can predict convexified values
at previously unvisited states at t. We use a Partially Input
Convex Neural Network (PICNN) (Amos et al., 2017) to
ensure that V̂τ (t, ·, ·) is convex in p. Alg. 1 summarizes the
value approximation algorithm. Optionally, we also train
a separate value network to predict the minimax values us-
ing {(p, ϑ0(t, x, p))}p∈P . This network helps remove the
nested minimax problem during control synthesis.

Convexification error. Backward induction suffers from
error propagation, where errors at each time step are origi-
nated from (i) value approximation through neural networks,
(ii) backward reachable set approximation, (iii) convex hull
approximation, and (iv) finite time discretization (and Eu-
ler method for ODE). Here we discuss control of the error
resulted from convex hull approximation, which is unique
to incomplete-information games. We leave a full analysis
of data complexity for error control to future studies. At
each t ∈ [0, T ] and x ∈ Q(t), let ϑ(t, x, ·) be the RHS of
Eq. (10) after convexification, and the convexification error
be εvex(t, x) := maxp∈∆(I) ∥ϑ(t, x, p)− ϑS(t)(t, x, p)∥∞.
Proposition 1 shows that εvex(t, x) can be controlled by
refining P (see proof in Appendix F):

Proposition 1. For given (t, x), let the Lipschitz constant
of ϑ(t, x, ·) be L, and dP be the minimum distance between
two neighboring nodes of the lattice P . εvex(t, x) ≤ 2dPL.

Approximation of the conjugate value. Recall that
the dual game is initialized by the dual variables p̂ ∈
∂pV (0, x, p) when the primal game starts at (x, p). Since
V̂ (0, x, ·) is a differentiable neural network defined on a
simplex, subgradients can be found using p̂T p = V (0, x, p)
and p̂T q ≤ V (0, x, q) for all q ∈ ∆(I) and q ̸= p. Specific

to the case study where I = 2 and V̂ := V̂τ (0, x, p[1]) is
modeled to be a function of the first element of p to reduce
dimensionality, we have p̂ = (V̂ +∇p[1]V̂ (1− p[1]), V̂ −
∇p[1]V̂ p[1])T .

5.2. Synthesis of strategies
Given (t, x, p) ∈ [0, T ]×Rdx×∆(I), Player 1 computes his
behavioral strategy by finding λ ∈ ∆(I) and splitting beliefs
{pj ∈ ∆(I)}Ij=1 that best satisfy Eq. (12) in L2, if x ∈ Q(t)
(otherwise he surrenders). Given (t, x, p̂) ∈ [0, T ]× Rdx ×
RI , Player 2 finds λ ∈ ∆(I + 1) and {p̂j ∈ RI}I+1

j=1 that
best satisfy Eq. (15) in L2. When I = 2 as in the case
study, the splitting beliefs and resultant strategies for Player
1 can be approximated through sweeping p[1] ∈ [0, 1]. For
Player 2, we use gradient descent to solve a 6D optimization
problem with the initial guess λ = [1/3, 1/3, 1/3]T and
p̂j = p̂ for j = [3].

Algorithm 1 Value Approximation
Inputs: current time step t, time discretization τ , sample
size N , admissible action spaces (U(t),V(t)), value approx-
imation at t+ τ : V̂next(·, ·) := V̂τ (t+ τ, ·, ·), feasible state
set Q(t), instantaneous loss l(·, ·), terminal loss in Eq. (6)
Initialize: V̂τ (t, ·, ·), ϑ0 = ∅

1: S(t)← sample N states from Q(t)
2: for x in S do
3: for p in P do
4: v(x, p) ← minu∈U(t) maxv∈V V̂next(x

′, p) +

τ l(U ,V) {if t+ τ = T , V̂next is given by Eq. (6)}
5: append v(x, p) to ϑ0

6: end for
7: ϑS(t)(t, x, ·)← compute Vexp(ϑ

0(x, ·)) via Eq. (10)
8: end for
9: Update V̂τ to match ϑS(t)

6. Case Study
Setup We study a state-constrained version of Hexner’s
game that represents a simplified football game: Player 1
(P1)’s goal is to move closer to one of the two targets than
P2 without being caught during the interaction (see Fig. 3);
P2’s goal is to catch P1 if possible, or otherwise move close
to P1’s target. Each player has 4 state variables: x- and
y- position and velocity; and their actions encode x- and
y-acceleration. The parameters RA = diag([0.05, 0.025])
and RD = diag([0.05, 0.1]) are chosen so that P1 can af-
ford to accelerate faster in the y-direction than P2. The state
constraint is c(x1, x2) = r − ∥(dx1

, dy1
) − (dx2

, dy2
)∥2,

where r = 0.05. We note that due to the introduction of
an (instantaneous) effort loss, the backward induction is
modified as: Vτ (tk, x, p) = Vexp(minu maxv Vτ (tk+1, x+
τ(f, x, u, v), p) + τ l(u, v)), where l(u, v) is the integral
term in [tk, tk+1] in Eq. (1).
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DA DA

Figure 3: Schematics of a simplified football game with
Player 1 (red) and Player 2 (blue). Left: the initial con-
figuration. Right: equilibrium trajectory. Magenta circles:
two goals. The filled is the current type private to Player 1.
Players move in a 2D space bounded by [−1, 1]× [−1, 1].

Figure 4: Top: Average delay (T ) in information reveal
(left) and average maximum advantage of playing the re-
vealing strategy (right), keeping P2’s location fixed at (-0.5,
0) and changing P1’s location. Bottom: Trajectory with
high delay and advantage (left) and with low delay and ad-
vantage (right). Color shades indicate current belief.

Value network architecture and training The value net-
work uses PICNN with 5 hidden layers and 256 neurons
each and has 9-dimensional inputs (state and belief). We
train 10 separate networks for each time step starting from
t = 0.9 with τ = 0.1, each being trained for 10 epochs. For
each epoch, S(t) includes 5000 states sampled from Q(t).
Since I = 2, value networks can be considered as functions
of p[1] and thus we set P = {p[1] = 0, 0.01, . . . , 0.99, 1}.
V̂τ (t, ·, ·) is trained on data collected from S(t)×P . For the
conjugate V̂ ∗

τ , we set P̂ = {p̂[1] = {−14, . . . , 14}, p̂[2] =
{−14, . . . , 14]}. More details can be found in Appendix G.

Constrained vs. unconstrained strategies Fig. 2 compares
strategies with and without the state constraint, visualizing
the equilibrium strategies of P1 and the best responses of P2
given P1’s strategies. Note that the best responses of P2 give
P2 an advantage since she does not know actions to be taken
by P1 in reality. The analytical solution to the unconstrained
game is given by Hexner’s analysis, where P1’s strategy is

to start moving to the goal after the critical time tr = 0.4.
This strategy no longer holds in the constrained case as it
violates the state constraint. Instead, P1 actively tries to stay
clear of P2 while pursuing the goal (see 2nd col. of Fig. 2).
Note that in this case, P1 resorts to a random strategy with
the presence of incomplete information and state constraints,
as the two contribute to value nonconvexity with respect to
the belief.

Information delay and advantage of random strategies
To understand how P1 uses information asymmetry, we
examine the delay in information reveal, measured by the
time at which the belief converges to the true type, i.e. T =
inf{k ∈ [L] : pk = {0, 1}}. We then take average of T
for each initial state over 10 simulations. In Fig. 4, we
visualize T over the space of P1’s starting positions, while
fixing P2’s starting position and setting both players’ initial
speed to 0. The trajectories represent cases where P1 delays
(bottom left) and does not delay (bottom right) the release of
information. We also compute the advantage of following
a belief manipulating strategy (that convexifies the value)
as opposed to taking the non-revealing strategy (i.e. never
split), expressed as [minu maxv V (t+τ, x′, p)−V (t, x, p)].
Overall, P1 tends to conceal and deceive when it has equal
distances to the possible targets.

Equilibrium strategy of Player 2 Fig. 5 shows sample
trajectories when both players play their equilibrium strate-
gies. Note that compared with P2’s best responses to P1 in
previous examples, P2’s equilibrium strategy is more con-
servative, due to her lack of knowledge about P1’s type. We
also note that P2’s dual game is one dimension higher than
P1’s primal game, and thus encounters higher numerical er-
rors in value and strategy approximation (see Appendix G).

Figure 5: Trajectories where both players use their respec-
tive behavioral strategies. P1 keeps track of p, whereas P2
keeps track of p̂.

7. Conclusion and Future Work
We proved the existence of value for zero-sum differential
games with state constraints and one-sided information and
developed a backward induction scheme to approximate the
value. Our method enables mechanistic synthesis of behav-
ioral strategies and allows explanation of the resultant split-
ting of strategies and beliefs. Future work will investigate
more efficient learning+search methods that take advantage
of value convexity and alleviate error propagation.
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A. Proof of Theorem 1
The following proofs extend results and techniques from Cardaliaguet (2007) to zero-sum differential games with one-sided
information and state constraints. To overview, we start by showing that the upper and lower values V ± are Lipschitz
continuous within the safe and unsafe state sets (Lemma 2) and convex with respect to p (Lemma 3). We then show that:
(1) V −∗ satisfies a subdynamic principle and is therefore a subsolution of a dual HJ equation and hence V − is a dual
supersolution of the corresponding primal HJ (Lemma 4, Lemma 4, Lemma 5); and (2) V + also satisfies a subdynamic
principle (Lemma 6) and is therefore a dual subsolution of the primal HJ (Lemma 7). We can then use a comparison principle
(see (Cardaliaguet, 2007)) to show that since V − is a dual supersolution and V + is a dual subsolution of the primal HJ while
both share the same terminal value, V − ≥ V +. On the other hand, V − ≤ V + by definition and hence V − = V +.

We start with the following regularity result (see proof of Lemma 3.1 in (Cardaliaguet, 2007)):
Lemma 2. (regularity of V ±). V ±(t0, x0, p) are Lipschitz continuous for all x0 ∈ Q(t0). V ±(t0, x0, p) = +∞ for all
x0 ∈ Q̄(t0).

The following convexity result was originally developed for repeated games with incomplete information (De Meyer, 1996)
and was later extended to differential games (Cardaliaguet, 2007). The same convexity result holds for imperfect-information
dynamic games (Brown et al., 2020).
Lemma 3. (convexity property of V ±). For any (t, x) ∈ [0, T ]× Rdx , V ± are convex in p on ∆(I).

Proof. Let pλ = (1 − λ)p0 + λp1 for some p0, p1 ∈ ∆(I). Let ((η0i ), ζ
0) and ((η1i ), ζ

1) be the equilibrial strategies for
V (t, x, p0) and V (t, x, p1), respectively. Introduce a set of “splitting” behavioral strategies (ηλi ) for (t, x, pλ) such that for
any type i, ηλi = η0i with probability (1− λ)p0i /p

λ
i and ηλi = η1i with probability λp1i /p

λ
i . Then we have

sup
ζ

∑
i

pλi Gi(t, x, η
λ
i , ζ)

= sup
ζ

∑
i

(
pλi

(1− λ)p0i
pλi

Gi(t, x, η
0
i , ζ) + pλi

λp1i
pλi

Gi(t, x, η
1
i , ζ)

)
≤(1− λ) sup

ζ

∑
i

p0iGi(t, x, η
0
i , ζ) + λ sup

ζ

∑
i

p1iGi(t, x, η
1
i , ζ).

(16)

Since the inequality in Eq. (16) holds for any “splitting” (ηλi ), we have

V ±(t, x, pλ) ≤ (1− λ)V ±(t, x, p0) + λV ±(t, x, p1) (17)

for any t ∈ [0, T ] and x ∈ Q(t). For x ∈ Q̄(t), the equality holds since V ±(t, x, ·) = +∞.

Remarks. (1) The proof says that by playing a “splitting” strategy, the value at (t, x, pλ) should at least be as good
as a linear interpolation between those at (t, x, p0) and at (t, x, p1). Hence the value is a convex hull in ∆(I) at any
(t, x) ∈ [0, T ]×Rdx . (2) Assuming that the “splitting” strategy of Player 1 is known by Player 2, then the latter can perform
Bayesian inference on Player 1’s type based on his actions. For any type i, let u0

i and u1
i be two distinct actions to be taken

at (t, x) following η0i and η1i , respectively, and let pλ be the current common belief. Then under observation of u0
i (resp.

u1
i ), the common belief becomes p0 (resp. p1) with probability (1− λ) (resp. λ). Since pλ = (1− λ)p0 + λp1, common

belief is a martingale.

Next, we introduce a reformulation of V −∗ to facilitate the derivation of its subdynamic principle. The proof of this
reformulation is extended from Lemma 4.1 of Cardaliaguet (2007) to incorporate the state constraints.
Lemma 4. (reformulation of V −∗). We have

V −∗(t0, x0, p̂) = inf
ζ∈Zr(t0)

sup
η∈Hr(t0)

max
i
{p̂i −Gi(t0, x0, η, ζ)} (18)

Proof. For later use, we first note that

V −(t0, x0, p) = sup
ζ

inf
(ηi)

∑
i

piGi(t0, x0, η, ζ)

= sup
ζ

∑
i

pi inf
η
Gi(t0, x0, η, ζ).

(19)
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Let the right-hand side of Eq. (18) be z = z(t0, x0, p̂). We can show that z is convex with respect to p̂ using a technique
similar to that of Lemma 3.

Then by the definition of z:

z∗(t0, x0, p) = sup
p̂

pT p̂− inf
ζ
sup
η

max
i
{p̂i −Gi(t0, x0, η, ζ)}

= sup
p̂

pT p̂− inf
ζ
max

i

{
p̂i − inf

η
Gi(t0, x0, η, ζ)

}
= sup

ζ
sup
p̂

min
i

{
pT p̂− p̂i + inf

η
Gi(t0, x0, η, ζ)

}
.

(20)

In this last expression, supp̂ is attained by setting p̂i = infη Gi(t0, x0, η, ζ), in which case we have

z∗(t0, x0, p) = sup
ζ

∑
i

pi inf
η
Gi(t0, x0, η, ζ) = V −(t0, x0, p, z). (21)

Since z is convex with respect to p̂, we have V −∗ = z∗∗ = z.

Next, to introduce the subdynamic principle of V −∗, we first introduce

U−∗(t0, x0, p̂) := inf
ζ∈Zr(t0)

sup
η∈Hr(t0)

max
i

{
p̂i − Eη,ζ

[
gi(X

t0,x0,η,ζ
T )

]}
(22)

as the conjugate lower value of the unconstrained version of the game, and U± as the corresponding upper and lower values.
From Lemma 2 and Lemma 4, U−∗ is Lipschitz continuous and convex in p̂.
Lemma 5. (subdynamic principle for V −∗). For any (t0, x0, p̂) ∈ [0, T ) × Rdx × RI and any t1 ∈ (t0, T ], denote
x1 = Xt0,x0,η,ζ

t1 and X1 = X t0,x0,η,ζ
t1 . We have

V −∗(t0, x0, p̂) ≤ inf
ζ∈Z(t0)

sup
η∈H(t0)

min

{
ρ(X1)U

−∗
(
t1, x1,

p̂

ρ(X1)

)
, V −∗ (t1, x1, p̂)

}
(23)

Proof. Denote V −∗
1 (t0, t1, x0, p̂) := infζ∈Z(t0) supη∈H(t0) V

−∗
(
t1, X

t0,x0,η,ζ
t1 , p̂

)
. U−∗

1 is similarly defined. We need
the following preparations for the proof.

Player 1 plays a pure strategy in V −∗. We show below that best responses are always pure. In particular, Player 1 can play
in pure strategies in V −∗, namely,

V −∗(t0, x0, p̂) = inf
ζ∈Zr(t0)

sup
η∈H(t0)

max
i
{p̂i −Gi(t0, x0, η, ζ)} (24)

for any (t0, x0, p̂). First from Theorem 4 and usingH(t) ⊂ Hr(t), we have

V −∗(t0, x0, p̂) = inf
ζ∈Zr(t0)

sup
η∈Hr(t0)

max
i
{p̂i −Gi(t0, x0, η, ζ)}

≥ inf
ζ∈Zr(t0)

sup
η∈H(t0)

max
i

{
p̂i − Eζ

[
gi(X

t0,x0,η,ζ
T )ρ(X t0,x0,η,ζ

T )
]}

.
(25)

For the reverse inequality, we first note that for any η ∈ Hr(t0) and ω1 ∈ Ωη, η(ω1, ·) ∈ H(t0). With a fixed ζ ∈ Zr(t0),
and by using the convexity of maxi (i.e., maxi Eω[fi(ω)] ≤ Eω[maxi fi(ω)]), we have

sup
η∈Hr(t0)

max
i
{p̂i −Gi(t0, x0, η, ζ)}

≤ sup
η∈Hr(t0)

∫
Ωη

max
i

{
p̂i − Eζ

[
gi(X

t0,x0,η(ω1,·),ζ
T )ρ(X t0,x0,η(ω1,·),ζ

T )
]}

dPη(ω1)

≤ sup
η∈Hr(t0)

sup
ω1∈Ωη

max
i

{
p̂i − Eζ

[
gi(X

t0,x0,η(ω1,·),ζ
T )ρ(X t0,x0,η(ω1,·),ζ

T )
]}

≤ sup
η∈H(t0)

max
i

{
p̂i − Eζ

[
gi(X

t0,x0,η(ω1,·),ζ
T )ρ(X t0,x0,η(ω1,·),ζ

T )
]}

.

(26)
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Since Eq. (26) holds for any ζ, together with Eq. (25), we have

V −∗(t, x, p̂) = inf
ζ∈Zr(t0)

sup
η∈H(t0)

max
i

{
p̂i − Eζ

[
gi(X

t0,x0,η,ζ
T )ρ(X t0,x0,η,ζ

T )
]}

. (27)

Note that one can reach the same conclusion for U−∗.

ϵ-optimal strategy of Player 2. Let ϵ > 0 and ζ0 ∈ Z(t0) be some pure ϵ-optimal strategy for V −∗
1 (t0, t1, x, p̂). For

any x1 ∈ Rdx , we can find some ϵ-optimal strategy ζx1 ∈ Zr(t1) for Player 2 in the game V −∗(t1, x1, p̂). Let Bρ(x)
be a ball around x with radius ρ, and let ∂Q(t) be the boundary of Q(t), i.e., for any x ∈ ∂Q(t) and ρ > 0, there exist
y ∈ Bρ(x)

⋂
Q(t) and y′ ∈ Bρ(x)

⋂
Q̄(t).

For x1, y ∈ Q(t1) \ ∂Q(t1), from Lipschitz continuity of the map y → V −∗(t1, y, p̂), ζx1 is also (2ϵ)-optimal for
V −∗(t1, y, p̂) if y ∈ Bρ(x1) for some radius ρ > 0. The same applies to x1, y ∈ Q̄(t1) and y ∈ Bρ(x1) since
V −∗(t1, x, p̂) = +∞ is constant for x ∈ Q̄(t1).

Since the dynamics f is bounded, we also know that the reachable states from (t0, x0) is bounded in some ball BR(0). Let
us set M = ∥f∥∞ and some small σ > 0 such that Mσ ≤ ρ/2. Then we choose (xl)l=1,...,l0 such that

⋃l0
l=1 Bρ/2(xl)

contains BR(0). Let (El)l=1,...,l0 be a Borel partition of BR(0) such that, for any l, El ⊂ Bρ/2(xl). We also require (xl) to
be chosen properly so that El ⊂ Q(t1) or El ⊂ Q̄(t1).

We set
ζl = ζxl , Ωl = Ωζxl , F l = Fζxl , and Pl = Pζxl (28)

for l = 1, ..., l0. We choose some delay τ ∈ (0, σ] for all the strategies ζl. Note that if for some open-loop control
(α, δ) ∈ A(t0)×D(t0) and for some l, we have Xt0,x0,α,δ

t1−τ ∈ El, then

|Xt0,x0,α,δ
t1−τ −Xt0,x0,α,δ

t1 | ≤ ∥f∥∞τ ≤Mσ ≤ ρ/2, (29)

so that Xt0,x0,α,δ
t1 belongs to Bρ(xl). Hence ζl is (2ϵ)-optimal for V −∗ at (t1, X

t0,x0,α,δ
t1 , p̂).

Let us now define a new strategy ζ ∈ Zr(t0) by setting

Ωζ =

l0∏
l=1

Ωl, Fζ = F1 ⊗ ...⊗F l0 , and Pζ = P1 ⊗ ...⊗ Pl0 . (30)

For any ω = (ω1, ..., ωl0) ∈ Ωζ and α ∈ A(t0), set

ζ(ω, α) =

{
ζ0(α)(τ) if τ ∈ [t0, t1)

ζl(ωl, α)(τ) if τ ∈ [t1, T ] and Xt0,x0,α,ζ
0

t1−τ ∈ El.
(31)

For any pure strategy η ∈ H(t0), we have

gi(X
t0,x0,η,ζ
T ) =

l0∑
l=1

gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η,ζl

T

)
1Ol , (32)

where Ol :=
{
Xt0,x0,η,ζ

0

t1−τ ∈ El

}
.

Property of ρ(·). Let ρ0 := ρ
(
X t0,x0,η,ζ

0

t1

)
and ρl1 := ρ

(
X t1,x

l
1,η,ζ

l

T

)
, where xl

1 := Xt0,x0,η,ζ
0

t1 if the state falls in El

following pure strategies (η, ζ0). Then we have

gi

(
Xt0,x0,η,ζ

T

)
ρ
(
X t0,x0,η,ζ

T

)
= gi(X

t0,x0,η,ζ
T )

∑
l

max{ρ0, ρl1}1Ol

=
∑
l

gi(X
t1,x

l
1,η,ζ

T )1Ol

∑
l

max{ρ0, ρl1}1Ol

=
∑
l

gi(X
t1,x

l
1,η,ζ

T )max{ρ0, ρl1}1Ol .

(33)
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For any set (ωl) ∈ (Ωl), let al := gi(X
t1,x

l
1,η,ζ(ω

l,·)
T ) ≥ 0. Also note that ρ0 and ρl1 only take values from {1,+∞}. One

can show that the following always holds:

∑
l

al max{ρ0, ρl1}1Ol = max

{∑
l

alρ01Ol ,
∑
l

alρl11Ol

}
. (34)

Similarly we have

∫
Ωl

∑
l

[
gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η,ζl(ωl,·)

T

)
max{ρ0, ρl1}1Ol

]
dPl(ωl)

=max



∫
Ωl

∑
l

[
gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η,ζl(ωl,·)

T

)
ρ01Ol

]
dPl(ωl),

∫
Ωl

∑
l

[
gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η,ζl(ωl,·)

T

)
ρl11Ol

]
dPl(ωl)


(35)

Now we derive an upper bound of maxi

{
p̂i − Eζ

[
gi(X

t0,x0,η,ζ
T )ρ(X t0,x0,η,ζ

T )
]}

:

max
i

{
p̂i − Eζ

[
gi(X

t0,x0,η,ζ
T )ρ(X t0,x0,η,ζ

T )
]}

,

=max
i

{
p̂i −

∫
Ωl

∑
l

[
gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η,ζl(ωl,·)

T

)
max{ρ0, ρl1}1Ol

]
dPl(ωl)

}
,

≤ sup
η′∈H(t1)

max
i

{
p̂i −

∑
l

[∫
Ωl

gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)
max{ρ0, ρl1}dPl(ωl)1Ol

]}
,

= sup
η′∈H(t1)

max
i


min


p̂i −

∑
l

[∫
Ωl gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)
ρ0dPl(ωl)1Ol

]
,

p̂i −
∑

l

[∫
Ωl gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)
ρl1dPl(ωl)1Ol

]



,

≤min


supη′∈H(t1) maxi

{
p̂i −

∑
l

[∫
Ωl gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)
ρ0dPl(ωl)1Ol

]}
,

supη′∈H(t1) maxi

{
p̂i −

∑
l

[∫
Ωl gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)
ρl1dPl(ωl)1Ol

]}


,

≤min



∑
l

[
ρ0 supη′∈H(t1) maxi

{
p̂i/ρ0 −

∫
Ωl gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)
dPl(ωl)

}
1Ol

]
,

∑
l

[
supη′∈H(t1) maxi

{
p̂i −

∫
Ωl gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)
ρl1dPl(ωl)

}
1Ol

]


.

(36)
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Shorten the first and second terms in the above upper bound min{·, ·} as A and B, respectively. For B:

∑
l

[
sup

η′∈H(t1)

max
i

{
p̂i −

∫
Ωl

gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)
ρl1dPl(ωl)

}
1Ol

]
≤
∑
l

(
V −∗(t1, X

t0,x0,η,ζ
0

t1 , p̂) + 2ϵ
)

1Ol

(because ζl is (2ϵ)-optimal for V −∗ at (t1, x1, p̂) for any x1 ∈ El.)

=V −∗(t1, X
t0,x0,η,ζ

0

t1 , p̂) + 2ϵ

≤V −∗
1 (t0, t1, x0, p̂) + 3ϵ

(because ζ0 is ϵ-optimal for V −∗
1 (t0, t1, x0, p̂).)

(37)

For A, we consider the following scenarios: (1) If infη′∈H(t1)

∑
l ρ

l
11Ol = +∞, i.e., there is always a chance for Player 2

to achieve constraint violation when the game starts at (t1, X
t0,x0,η,ζ

0

t1 ), and ρ0 = 1, i.e., (η, ζ0) does not induce constraint
violation, then

A =
∑
l

[
sup

η′∈H(t1)

max
i

{
p̂i − inf

η′∈H(t1)

∫
Ωl

gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)
dPl(ωl)

}
1Ol

]

>
∑
l

[
sup

η′∈H(t1)

max
i

{
p̂i − inf

η′∈H(t1)

∫
Ωl

gi

(
X

t1,X
t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)
ρl1dPl(ωl)

}
1Ol

]
=B = −∞.

(38)

If infη′∈H(t1)

∑
l ρ

l
11Ol = ρ0 = 1, then A = B. This is the scenario where the game reduces to its unconstrained version.

Applying the same analysis from B to have A ≤ ρ0(U
−∗
1 (t0, t1, x0, p̂/ρ0) + 3ϵ). If infη′∈H(t1)

∑
l ρ

l
11Ol = ρ0 = +∞,

then A = B = −∞.

If infη′∈H(t1)

∑
l ρ

l
11Ol = 1 and ρ0 = +∞, the game starting from (t1, X

t0,x0,η,ζ
0

t1 ) will be played as an unconstrained
one. A < B. Hence A ≤ ρ0(U

−∗
1 (t0, t1, x0, p̂/ρ0) + 3ϵ) = −∞.

Combining these scenarios we have

min{A,B} ≤ min{ρ0(U−∗
1 (t0, t1, x0, p̂/ρ0) + 3ϵ), V −∗

1 (t0, t1, x0, p̂) + 3ϵ}. (39)

Since ϵ can be arbitrarily small, we have

V −∗ (t0, x0, p̂) ≤ min
{
ρ0U

−∗
1 (t0, t1, x0, p̂/ρ0), V

−∗
1 (t0, t1, x0, p̂)

}
= inf

ζ∈Z(t0)
min

{
sup

η∈H(t0)

ρ0U
−∗(t1, X

t0,x0,η,ζ
t1 , p̂/ρ0), sup

η∈H(t0)

V −∗(t1, X
t0,x0,η,ζ
t1 , p̂)

}
(40)

Lastly, if x0 ∈ Q̄(t0), infζ supη ρ0 = −∞ by definition; otherwise, ρ0 = 1 and U−∗ = V −∗ at t1. In both cases, the RHS
of Eq. (40) becomes

inf
ζ∈Z(t0)

sup
η∈H(t0)

min
{
ρ0U

−∗(t0, X
t0,x0,η,ζ
t1 , p̂/ρ0), V

−∗(t0, X
t0,x0,η,ζ
t1 , p̂)

}
. (41)

Theorem 4. (V −∗ is a subsolution of HJ). For any p̂ ∈ RI , the map (t, x)→ V −∗(t, x, p̂) is a viscosity subsolution of the
dual Hamilton-Jacobi equation:

min
{
ρ(x)U−∗(t, x, p̂/ρ(x))− w, wt +H∗(x,Dw)

}
= 0 in [0, T ]× Rdx , (42)

where H is defined by Eq. (4) and H∗(x, ξ) = −H(x,−ξ). ρ̄(t0, x0) = 1 if x0 ∈ Q(t0).
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Proof. Let p̂ ∈ RI be fixed, and let ϕ be a smooth test function such that

ϕ(t, x) ≥ V −∗(t, x, p̂) ∀(t, x) ∈ [0, T ]× Rdx , (43)

with an equality at (t0, x0), where t0 ∈ [0, T ). For any v ∈ V , define a pure strategy ζ ∈ Z(t0) by setting

ζ(α)(t) = v ∀α ∈ A(t0), t ∈ [t0, T ]. (44)

Since V −∗ satisfies the subdynamic programming principle of Lemma 5, these exist ϵ > 0, h > 0, and a pure strategy
ηh ∈ H(t0) such that

V −∗(t0, x0, p̂) ≤ min
{
ρ
(
X t0,x0,ηh,ζ

t0+h

)
U−∗

(
t0 + h,Xt0,x0,ηh,ζ

t0+h , p̂/ρ
(
X t0,x0,ηh,ζ

t0+h

))
,

V −∗
(
t0 + h,Xt0,x0,ηh,ζ

t0+h , p̂
)}

+ ϵh,
(45)

or equivalently

ρ
(
X t0,x0,ηh,ζ

t0+h

)
U−∗

(
t0 + h,Xt0,x0,ηh,ζ

t0+h , p̂/ρ
(
X t0,x0,ηh,ζ

t0+h

))
− V −∗ (t0, x0, p̂) + ϵh ≥ 0, (46)

and
V −∗

(
t0 + h,Xt0,x0,ηh,ζ

t0+h , p̂
)
− V −∗(t0, x0, p̂) + ϵh ≥ 0. (47)

Set the open-loop control αh(s) := ηh(v)(s) and the trajectory xh(s) = Xt0,x0,ηh,β
s = Xt0,x0,αh,v

s . Then

xh(t0 + h) = x0 +

∫ t0+h

t0

f(xh(s), αh(s), v)ds = x0 +

∫ t0+h

t0

f(x0, αh(s), v)ds+ hϵ(h), (48)

where ϵ(h)→ 0 as h→ 0+. For Eq. (46), let ϵ→ 0+ and h→ 0+, we have

ρ(x0)U
−∗(t0, x0, p̂/ρ(x0))− ϕ(t0, x0) ≥ 0. (49)

For Eq. (47), we have

0 ≤ V −∗
(
t0 + h,Xt0,x0,ηh,ζ

t0+h , p̂
)
− V −∗(t0, x0, p̂) + ϵh

≤ ϕ

(
t0 + h, x0 +

∫ t0+h

t0

f(x0, αh(s), v)ds+ hϵ(h), z

)
− ϕ(t0, x0) + ϵh

≤ hϕt(t0, x0) +

∫ t0+h

t0

Dϕ(t0, x0)
T f(x0, αh(s), v)ds+ hϵ1(h) + ϵh

≤ hϕt(t0, x0) + h sup
u∈U

Dϕ(t0, x0)
T f(x0, u, v) + hϵ1(h) + ϵh,

(50)

where ϵ1(h) → 0 as h → 0+. Dividing the last inequality by h, letting h → 0+, ϵ → 0+, and taking the infimum over
v ∈ V to have

ϕt(t0, x0) + inf
v∈V

sup
u∈U

Dϕ(t0, x0)
T f(x0, u, v) ≥ 0. (51)

Now notice that by definition

H∗(x,Dϕ) = −H(x,−Dϕ) = inf
v∈V

sup
u∈U

f(x, u, v)TDϕ. (52)

Hence
ϕt(t0, x0) +H∗(x0, Dϕ(t0, x0)) ≥ 0. (53)

Hence
min

{
ρ(x)U−∗(t, x, p̂/ρ(x))− ϕ, ϕt +H∗(x,Dϕ)

}
≥ 0 in [0, T ]× Rdx . (54)
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Using the same proof techniques we can derive the subdynamic principle for V + (Lemma 6) and prove that V + is a viscosity
subsolution to the primal HJ (Lemma 7):

Lemma 6. (subdynamic principle for V +). We have for any (t0, x0, p) ∈ [0, T )× Rdx ×∆(I) and any t1 ∈ (t0, T ]

V +(t0, x0, p) ≤ inf
η∈H(t0)

sup
ζ∈Z(t0)

max
{
ρ(X t0,x0,η,ζ

t1 )U+
(
t1, X

t0,x0,η,ζ
t1 , p

)
,

V +
(
t1, X

t0,x0,η,ζ
t1 , p

)} (55)

Lemma 7. (V + is a subsolution of HJ). For any p ∈ ∆(I), the map (t, x)→ V +(t, x, p) is a viscosity subsolution of the
primal Hamilton-Jacobi equation:

min
{
ρ(x)U+(t, x, p)− w, wt +H(x,Dw)

}
= 0 in [0, T ]× Rdx , (56)

where H is defined by Eq. (4).

B. Proof of Theorem 2
Proof. The following proof follows that of (Cardaliaguet, 2009), with the additional treatment of the state constraint. Note
that in numerical approximation, we use K > 0 to replace infinite values so that we can introduce bounded test functions.
The HJ equations thus become {

wt +H(x,Dw) = 0 (t, x) ∈ Ω
min{K − w,wt +H(x,Dw)} = 0 (t, x) ∈ Ω̄,

where Ω (resp. Ω̄) contains all (t, x) such that V (t, x) < K (resp. V (t, x) = K).

Consider w be any cluster point in the topology of uniform convergence on compact subsets of [0, T ]× Rdx ×∆(I) of Vτ

as τ → 0+. w is convex with respect to p and satisfies:

w(T, x, p) =

I∑
i=1

pigi(x), (57)

for any (T, x, p) ∈ Ω × ∆(I) and w(T, x, p) = K for any (T, x, p) ∈ Ω̄ × ∆(I). Let ϕ be a test function such that
w(·, ·, p) − ϕ has a strict local maximum at (t0, x0), and w(t0, x0, p) = ϕ(t0, x0). Then there are (tk, xk) converging to
(t0, x0) such that Vτ (·, ·, p)− ϕ has a local maximum at (tk, xk).

First consider (tk, xk) ∈ Ω. For any x ∈ Rdx ,

Vτ (tk+1, x, p)− ϕ(tk+1, x) ≤ Vτ (tk, xk, p)− ϕ(tk, xk)

Then, rearranging (10) to have

0 = Vexp

(
min
u

max
v

Vτ (tk+1, xk + τf(xk, u, v), p)
)
− Vτ (tk, xk, p)

≤ min
u

max
v

Vτ (tk+1, xk + τf(xk, u, v), p)− Vτ (tk, xk, p)

≤ min
u

max
v

ϕ(tk+1, xk + τf(xk, u, v))− ϕ(tk, xk)

Then, from standard arguments (see (Cardaliaguet, 2009) and references therein)

∂ϕ

∂t
(t0, x0) + min

u∈U
max
v∈V

f(x0, u, v)
∂ϕ

∂x
(t0, x0) ≥ 0. (58)

Now consider (tk, xk) ∈ Ω̄, in which case ϕ(tk, xk) = Vτ (tk, xk, p) = K. When τ → 0+,

min
u

max
v

ϕ(tk+1, xk + τf(xk, u, v)) = K,

17



State-Constrained Zero-Sum Differential Games with One-Sided Information

hence
∂ϕ

∂t
(t0, x0) + min

u∈U
max
v∈V

f(x0, u, v)
∂ϕ

∂x
(t0, x0) = 0.

Then we have
min {K − ϕ, ϕt +H(x,Dϕ)} = 0 in Ω̄.

Hence, w is a dual subsolution of the HJI. We can follow the same technique to show that w is a supersolution in the dual
sense, and therefore w = V .

C. Bellman Backup of the Conjugate Value with the Presence of Instantaneous Loss
Here we extend the subdynamic principle for V −∗ (Lemma 5) when instantaneous loss is present. Since we will use letter l
to index possible states reached at t1 from t0, we denote the instantaneous loss for pure strategies (η, ζ) at time s as L(η, ζ, s)
instead. For conciseness, let us consider t0 ∈ [0, T ] and (x0, p̂) ∈ Q(t0)× RI , i.e., states for which Player 1 can play to
avoid state constraint violation. To recap, let η be a pure strategy of Player 1; let ζ be such that ζ = ζ0 in [t0, t1] where ζ0

is pure and ϵ-optimal for V −∗
1 (t0, t1, x0, p̂) :=:= infζ∈Z(t0) supη∈H(t0) V

−∗
(
t1, X

t0,x0,η,ζ
t1 , p̂−

∫ t1
t0

L(η, ζ, s)ds
)

, and

ζ = ζl in [t1, T ] where ζl is mixed and (2ϵ)-optimal for V −∗ at (t1, x1, p̂) for any x1 ∈ El.

By definition and using the fact that Player 1 plays a pure strategy in the dual game, we have

V −∗(t0, x0, p̂) = inf
ζ
sup
η

max
i

{
p̂i −

∫
ω

(
gi(X

t0,x0,η,ζ(ω,·)
T ) +

∫ T

t0

L(η, ζ(ω, ·), s)ds

)
dP(ω)

}
. (59)

Here

max
i

{
p̂i −

∫
ω

(
gi(X

t0,x0,η,ζ(ω,·)
T ) +

∫ T

t0

L(η, ζ(ω, ·), s)ds
)
dP(ω)

}
=max

i

{
p̂i −

∑
l

(∫
ωl

(
gi(X

t1,X
t0,x0,η,ζ0

t1
,η,ζl(ω,·)

T ) +

∫ t1

t0

l(η(s), ζ0(ω, ·)(s))ds+
∫ T

t1

L(η, ζl(ω, ·), s)ds

)
dPl(ωl)

)
1Ol

}

≤
∑
l

sup
η′

max
i

{
p̂i −

(∫
ωl

gi(X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T ) +

∫ t1

t0

L(η, ζ0, s)ds+

∫ T

t1

L(η′, ζl(ωl, ·), s)dsdPl(ωl)

)}
1Ol

≤
∑
l

(
V −∗

(
t1, X

t0,x0,η,ζ
0

t1
, p̂−

∫ t1

t0

L(η, ζ0, s)ds

)
+ 2ϵ

)
1Ol

(because ζl is (2ϵ)-optimal for V −∗ at (t1, x1, p̂) for any x1 ∈ El.)

=V −∗
(
t1, X

t0,x0,η,ζ
0

t1
, p̂−

∫ t1

t0

L(η, ζ0, s)ds

)
+ 2ϵ

≤V −∗
1 (t0, t1, x0, p̂) + 3ϵ

(because ζ0 is ϵ-optimal for V −∗
1 (t0, t1, x0, p̂).)

(60)
Since ϵ can be arbitrarily small, we have

V −∗(t0, x0, p̂) ≤ inf
ζ∈Z(t0)

sup
η∈H(t0)

V −∗(t1, X
t0,x0,η,ζ
T , p̂−

∫ t1

t0

L(η, ζ, s)ds) (61)

D. Examples of Zero-Sum Games with One-Sided Information
Here we discuss two games in detail, namely, the zero-sum beer-quiche game which is extensive-form with sequential
actions, and Hexner’s game (Hexner, 1979) which is differential and with simultaneous actions. Both games have one-sided
information and all analytically solved. We show that the characterization of value proposed by Cardaliaguet (Cardaliaguet,
2007) leads to the true equilibrium behavioral strategies for both games.
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Q q

B b

1
3

2
3

IQ

IB

Tough Weak

(1, -1) (0, 0)

x 1− x

(-1, 1) (2, -2)

x 1− x

(2, -2) (1, -1)

y 1− y

(-2, 2) (0, 0)

y 1− y

Figure 6: Zero-Sum Variant of the Beer-Quiche Game

D.1. Zero-sum beer-quiche game

We present a zero-sum variant of the classic beer-quiche game 2, which is an incomplete-information game with a perfect
Bayesian equilibrium.

Game settings. In this sequential game, Player 1 first chooses to take either quiche (Q) or beer (B), and based on his
choice, Player 2 chooses to either defer (d) or bully (b). Player 1 has a probability of pT to be tough (T) and pW = 1− pT
to be weak (W). The exact type is unknown to Player 2 but p = [pT , pW ]T is common knowledge. The payoffs to be
maximized by Player 1 follow Table 1. For example, if Player 1 is tough and chooses to eat quiche (Q) while Player 2
chooses to bully (b), then Player 1 receives a payoff of 1.

Table 1: Payoff table for a zero-sum beer-quiche game

Tough

b d
B 2 1
Q 1 0

Weak

b d
B -2 0
Q -1 2

Perfect Bayesian equilibrium. The standard approach finds the behavioral strategies of both players for a particular p.
Consider the extensive form of the game as shown in Fig. 6. Dotted lines represent info sets that Player 2 cannot distinguish.
Here, Player 1 has pT = 1

3 to be Tough. The behavioral strategies for each player are derived as follows:

Let Q,B, q, b represent probabilities of Player 1 choosing quiche given he is tough, beer given he is tough, quiche given
he is weak, and beer given he is weak, respectively. Assume x and y be the probability of Player 2 bullying Player 1 who
chooses quiche and beer, respectively. First, we find the beliefs of Player 2 when Player 1 chooses quiche or beer (info-set
IQ and IB, respectively):

if (Q, q) ̸= (0, 0), µ2(T |IQ) =
1
3Q

1
3 (Q) + 2

3 (q)
=

Q

Q+ 2q
and

µ2(W |IQ) =
2
3q

1
3Q+ 2

3q
=

2q

Q+ 2q

if (B, b) ̸= (0, 0), µ2(T |IB) =
B

B + 2b
, and µ2(W |IB) =

2b

B + 2b

2For more information about the original beer-quiche game, please see https://gametheory101.com/courses/game-theory-101/the-beer-
quiche-game/
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Then, the expected payoffs for bully and defer at IQ are:

E2(bully|IQ) =
Q

Q+ 2q
(−1) + 2q

Q+ 2q
(1) = −Q− 2q

Q+ 2q

E2(defer|IQ) =
Q

Q+ 2q
(0) +

2q

Q+ 2q
(−2) = − 4q

Q+ 2q

Given Player 2’s strategy at IQ, his expected payoff can be expressed as:

E2(IQ) = −
Q− 2q

Q+ 2q
x− (1− x)

4q

Q+ 2q

=
−(Q− 6q)x− 4q

Q+ 2q

The value of x that maximizes E2(IQ) is:

x =


any if (Q, q) = (0, 0)

1 if Q < 6q

any if Q = 6q

0 if Q > 6q

Applying the same reasoning to info-set IB, we find the value of y that maximizes E2(IB) as:

y =


any if (B, b) = (0, 0)

0 if 4b < B

any if 4b = B

1 if 4b > B

Given Player 2’s strategy, the expected payoffs to Player 1 for his strategies are:

E1(Q) = x, E1(B) = y + 1, E1(q) = 2− 3x, E1(b) = −2y

As a result the expected value for each of P1’s type are:

E1(T ) = B(1 + y) + (1−B)x

E1(W ) = b(−2y) + (1− b)(2− 3x)

Assume B ≥ 4b. Then,

1−Q = B ≥ 4b = 4(1− q)

=⇒ 1−Q ≥ 4− 4q

=⇒ 4q ≥ Q+ 3

=⇒ 6q > Q

Hence, x = 1. Thus, E1(Q) = 1 < E1(B) = y + 1. As a result, B = 1, and Q = 0.

Assuming B > 4b, following the process as above, we reach to a contradiction. Therefore,

B = 4b =⇒ b =
B

4
=

1

4
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Then,
∂E1(W )

∂b
= 1− 2y

Hence, for b = 1/4 to be feasible, we need:

y =
1

2

Therefore, we find an equilibrium with

x = 1, y =
1

2
, q =

3

4
, b =

1

4
, and B = 1, Q = 0

To summarize, Player 2 always bullies the person who eats quiche and bullies the person drinking beer half the time. The
tough guy always drinks beer while the weak guy drinks beer a quarter of the time and eats quiche three-quarters of the time.
One can easily check that the B < 4b case also leads to a contradiction, resulting in a unique equilibrium for the game.

Solution using primal and dual backward induction. Now we solve the game through backward induction of its primal
and dual values (denoted by V and C respectively). Here we introduce discrete-time t = 0, 1, 2: Players 1 and 2 make their
respective decisions at t = 0 and t = 1, and the game ends at t = 2. We describe the states of the game as the decisions
being made up to the corresponding time, e.g., x = (B, b) at t = 2 means that Player 1 has chosen beer and Player 2 to
defer. Primal game: At the terminal time step (t = 2), based on the payoff table, we have

V (2, x, p) =


4pT − 2 if x = (B, b)
pT if x = (B, d)
2pT − 1 if x = (Q, b)
2− 2pT if x = (Q, d)

. (62)

At the intermediate time step (t = 1), we have

V (1, x, p) = min
v∈{b,d}

V (2, (x, v), p). (63)

We can find the best responses of Player 2 for both actions of Player 1. This leads to

V (1, x, p) =


pT if x = B, 3pT − 2 ≥ 0 (v∗ = d)
4pT − 2 if x = B, 3pT − 2 < 0 (v∗ = b)
2− 2pT if x = Q, 4pT − 3 ≥ 0 (v∗ = d)
2pT − 1 if x = Q, 4pT − 3 < 0 (v∗ = b)

. (64)

Note that since Player 1 does not take an action in this time step, we do not need to take a concave hull of V (1, x, ·). At the
beginning of the game (t = 0), we have

V (0, ∅, p) = Cav
(

max
u∈{B,Q}

V (1, u, p)

)
. (65)

By taking the concave hull with respect to pT (see Fig. 7), we get

V (0, ∅, p) =
{

5pT /2− 1 if pT < 2/3
pT if pT ≥ 2/3

. (66)

Note that from Fig. 7, when pT ∈ [0, 2/3), V (0, ∅, p) = λmaxu V (1, u, p1)+(1−λ)maxu V (1, u, p2), where p1 = [0, 1]T ,
p2 = [2/3, 1/3]T , and λp1 + (1− λ)p2 = p. When pT = 1/3, λ = 1/2, Player 1’s strategy is thus

Pr(u = Q|T ) = λp1[1]

p[1]
= 0, Pr(u = Q|W ) =

λp1[2]

p[2]
= 3/4,

Pr(u = B|T ) = (1− λ)p2[1]

p[1]
= 1, Pr(u = B|W ) =

(1− λ)p2[2]

p[2]
= 1/4.

(67)
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Figure 7: Primal value V (0, ∅, pT ) at t = 0.

This result is consistent with the true perfect Bayesian equilibrium we previously derived.

Dual game: To solve for Player 2’s equilibrium, we first derive the dual variable p̂ ∈ ∂pV (0, ∅, p) for p = [1/3, 2/3]T . By
definition, p̂T p defines the concave hull of V (0, ∅, p), and therefore we have

[1/3, 2/3]p̂ = V (0, ∅, p) = −1/6
[0, 1]p̂ = V (0, ∅, [0, 1]) = −1.

(68)

This leads to p̂ = [3/2,−1]T .

At the terminal time, we have

C(2, x, p̂) = min{p̂[1]− gT (x), p̂[2]− gW (x)}

=


min{p̂[1]− 2, p̂[2] + 2} if x = (B, b)
min{p̂[1]− 1, p̂[2]} if x = (B, d)
min{p̂[1]− 1, p̂[2] + 1} if x = (Q, b)
min{p̂[1], p̂[2]− 2} if x = (Q, d)

(69)

At t = 1, we have
C(1, u, p̂) = Cavp̂

(
max

v
C(2, (u, v), p̂)

)
. (70)

When u = B, the conjugate value is a concave hull of a piece-wise linear function:

C(1, B, p̂) = Cavp̂




p̂[1]− 1 if p̂[2] ≥ p̂[1]− 1 (v∗ = d)
p̂[2] if p̂[2] ∈ [p̂[1]− 2, p̂[1]− 1) (v∗ = b)
p̂[1]− 2 if p̂[2] ∈ [p̂[1]− 4, p̂[1]− 2) (v∗ = d)
p̂[2] + 2 if p̂[2] < p̂[1]− 4 (v∗ = b)


=

 p̂[1]− 1 if p̂[2] ≥ p̂[1]− 1 (v∗ = d)
2/3p̂[1] + 1/3p̂[2]− 2/3 if p̂[2] ∈ [p̂[1]− 4, p̂[1]− 1) (mixed strategy)
p̂[2] + 2 if p̂[2] < p̂[1]− 4 (v∗ = b)

(71)
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Figure 8: Conjugate value maxv C(2, B, p̂) at t = 2.

Fig. 8 visualizes C(1, B, p̂). For p̂ = [3/2,−1]T which satisfies p̂[2] ∈ [p̂[1] − 4, p̂[1] − 1), Player 2 follows a mixed
strategy determined based on {λ1, λ2, λ3} ∈ ∆(3) and p̂j ∈ R2 for j = 1, 2, 3 such that

(i) At least one of p̂j for j = 1, 2, 3 should satisfy p̂[2] = p̂[1]− 1 (denoted as line 1) and another p̂[2] = p̂[1]− 4 (denoted
as line 2). The last could be on either line 1 or 2. These conditions are necessary for C(1, B, p̂) to be a concave hull:

C(1, B, p̂) =

3∑
j=1

λj max
v

C(2, (B, v), p̂j). (72)

Without loss of generality, we will set p̂1 on line 1 and both p̂2 and p̂3 on line 2;

(ii)
∑3

j=1 λj p̂
j = p̂.

These conditions leads to λ1 = 1/2 and λ2 + λ3 = 1/2. Therefore Player 2 chooses to defer and bully with equal chance
when Player 1 takes beer.

When u = Q, we similarly have

C(1, Q, p̂) =

 p̂[1] if p̂[2] ≥ p̂[1] + 2 (v∗ = d)
... if p̂[2] ∈ [p̂[1]− 2, p̂[1] + 2) (mixed strategy)
p̂[2] + 1 if p̂[2] < p̂[1]− 2 (v∗ = b)

(73)

We omitted the derivation of the concave hull when p̂[2] ∈ [p̂[1]− 2, p̂[1] + 2) because for p̂ = [3/2,−1]T , C(1, Q, p̂) =
p̂[2] + 1 = 0 while v∗ = b, i.e. if Player 1 takes quiche, Player 2 chooses to bully with certainty.

The value and its conjugate provide behavioral strategies for Player 1 (informed) and Player 2 (non-informed), respectively,
for arbitrary initial belief p. Moreover, the convexity of the value reveals subsets of p where Player 1 should use a mixed
strategy that manipulates the belief in order to improve its value. Similarly, the convexity of the conjugate value reveals
subsets of dual variables p̂ where Player 2 should use a mixed strategy to mitigate risks due to its uncertainty about Player 1.
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D.2. Hexner’s game

Here we discuss the solution to Hexner’s game using Cardaliaguet’s method based on the reformulation proposed by Hexner.
To recap, the payoff to be minimized by Player 1 is

J(t, θ̃1, θ̃2) = Eθ

[∫ T

τ=t

(θ̃1(τ)− θ)2d1(τ)− (θ̃2(τ)− θ)2d2(τ)dτ

]
, (74)

where d1, d2, pθ are common knowledge; θ is only known to Player 1; the scalar θ̃1 (resp. θ̃2) is Player 1’s (resp. Player 2’s)
strategy. We consider two player types θ ∈ {−1, 1} and therefore pθ ∈ ∆(2). Since the reformulation contains no system
state, the strategies are functions of only time. Hexner’s solution is as follows:

θ̃1(s) = θ̃2(s) = 0 ∀s ∈ [0, tr] (75)

θ̃1(s) = θ̃2(s) = θ ∀s ∈ (tr, T ], (76)

where

tr = argmin
t

∫ t

0

(d1(s)− d2(s))ds, (77)

and (d1, d2) are defined in Eq. (2).

We will need the following preparation before introducing Cardaliaguet’s solution. First, introduce time stamps [Tk]
2r
k=1 as

roots of the time-dependent function d1 − d2, with T0 = 0, T2q+1 = tr, and T2r+1 = T . Without loss of generality, we
assume that:

d1 − d2 < 0 ∀t ∈ (T2k, T2k+1) ∀k = 0, ..., r, (78)
d1 − d2 ≥ 0 ∀t ∈ [T2k−1, T2k] ∀k = 1, ..., r. (79)

We also introduce Dk :=
∫ Tk+1

Tk
(d1 − d2)ds and

D̃k =

{
D̃k+1 +Dk if D̃k+1 +Dk < 0
0 otherwise

, (80)

with D̃2r+1 = 0.

Lemma 8. (Properties of Dk and D̃k) The following properties will be useful:

1.
∫ 2q+1

k
(d1 − d2)ds =

∑2q
k Dk < 0, ∀k = 0, ..., 2q;

2.
∫ k

2q+1
(d1 − d2)ds =

∑k−1
2q+1 Dk > 0, ∀k = 2q + 2, ..., 2r + 1;

3. D̃2q+2 +D2q+1 > 0;

4. D̃k < 0, ∀k < 2q + 1.

Proof. Properties 1 and 2 are results directly from the definition of Dk.

For property 3, if D̃2q+2+D2q+1 ≤ 0, then D̃2q+2 = D̃2q+3+D2q+2 ≤ −D2q+1, then D̃2q+3 ≤ −(D2q+2+D2q+1) < 0

(property 2). This leads to D̃2q+k ≤ −
∑k−1

i=1 D2q+i < 0 for k = 1, ..., 2r − 2q. Thus D̃2r < 0. Contradiction.

For property 4, first we have D̃2q+1 = 0 (property 3). Since D2q < 0 (property 1), D̃2q = D2q < 0.

Primal game. We start with V (T, p) = 0 where we use p := pθ[1] as the probability of θ = −1. The Hamiltonian can be
derived as

H(p) = min
θ̃1

max
θ̃2

Eθ

[
(θ̃1 − θ)2d1 − (θ̃2 − θ)2d2

]
= 4p(1− p)(d1 − d2).
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The optimal actions for the Hamiltonian are θ̃1 = θ̃2 = 1− 2p. From Bellman backup, we can get

V (Tk, p) = 4p(1− p)D̃k.

Therefore, at T2q+1, we have

V (T2q+1, p) = V exp (V (T2q+2, p) + 4p(1− p)D2q+1)

= V exp

(
4p(1− p)(D̃2q+2 +D2q+1)

)
.

Notice that D̃2q+2 +D2q+1 > 0 (property 3) and D̃k < 0 for all k < 2q + 1 (property 4), T2q+1 is the first time such that
the right-hand side term inside the convexification operator, i.e., 4p(1− p)(D̃2q+2 +D2q+1), becomes concave. Therefore,
splitting of belief happens at T2q+1 with p1 = 0 and p2 = 1. Player 1 plays θ̃1 = −1 (resp. θ̃1 = 1) with probability 1 if
θ = −1 (resp. θ = 1), i.e., Player 1 reveals its type. This result is consistent with Hexner’s.

Dual game. To find Player 2’s strategy, we need to derive the conjugate value which follows

C(t, p̂) =


maxi∈{1,2} p̂[i] ∀t ≥ T2q+1

p̂[2]− D̃t

(
1− p̂[1]−p̂[2]

4D̃t

)2
∀t < T2q+1, 4D̃t ≤ p̂[1]− p̂[2] ≤ −4D̃t

p̂[1] ∀t < T2q+1, p̂[1]− p̂[2] ≥ 4D̃t

p̂[2] ∀t < T2q+1, p̂[1]− p̂[2] < 4D̃t

Here p̂ ∈ ∇pθ
V (0, pθ) and V (0, pθ) = 4p[1]p[2]D̃0. For any particular p∗ ∈ ∆(2), from the definition of subgra-

dient, we have p̂[1]p∗[1] + p̂[2]p∗[2] = 4p∗[1]p∗[2]D̃0 and p̂[1] − p̂[2] = 4(p∗[2] − p∗[1])D̃0. Solving these to get
p̂ = [4p∗[2]

2D̃0, 4p∗[1]
2D̃0]

T . Therefore p̂[1]− p̂[2] = 4D̃0(1− 2p∗[1]) ∈ [4D̃0,−4D̃0], and

C(0, p̂) = p̂[2]− D̃0

(
1− p̂[1]− p̂[2]

4D̃0

)2

.

Notice that C(t, p̂) is convex to p̂ since D̃0 < 0 (property 4) for all t ∈ [0, T ]. Therefore, there is no splitting of p̂ during the
dual game, i.e., θ̃2 = 1− 2p. This result is also consistent with Hexner’s.

E. Backward Reachable Tube
The computation of the Backward Reachable Tube (BRT) allows us to classify the state space into feasible and infeasible
regions at different times from Player 1’s perspective.

Computation of BRT. For the simplified football game, the state constraint is defined as c(x) := ∥(dx1 , dy1) −
(dx2

, dy2
)∥2 − r, and C = {x : c(x) ≤ 0}. The Hamilton-Jacobi-Isaacs Variational Inequality (HJI VI) is denoted

by L and satisfies the boundary condition D (Bansal & Tomlin, 2021):

L(Ṽ , t, x) = min{∇tṼ (t, x) +H(t, x), c(x)− Ṽ (t, x)} = 0,

D(Ṽ , x) = Ṽ (T, x)− c(x) = 0,
(81)

where H is the Hamiltonian:
H(t, x) = max

u
min
v
⟨∇xṼ (t, x), f(x, u, v)⟩. (82)

We use Physics-Informed Neural Network (PINN) to learn the value function Ṽ (t, x), the sub-zero level set of which
represents the BRT:

Q̄(t) = {x ∈ Rdx : Ṽ (t, x) ≤ 0}. (83)

We denote PINN dataset D =
{(

t(k), x(k)
)}K

k=1
containing uniformly sampled data points in [0, T ]× Rdx and define the

loss function as:

min
Ṽ

L
(
Ṽ
)
=

K∑
k=1

∥∥∥L(Ṽ (k), t(k), x(k))
∥∥∥
1
+ C1

∥∥∥D(Ṽ (k), x(k))
∥∥∥
1
, (84)

where Ṽ (k) is an abbreviation for Ṽ
(
t(k), x(k)

)
and C1 is the hyperparameter that balances the loss term ∥L∥1 and ∥D∥1.
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Figure 9: A visualization of safe/unsafe initial position for the attacker when the defender is fixed at (−0.05, 0). The initial
velocities for both players are zero in the beginning. The red (blue) region represents unsafe (safe) states.

Training. We uniformly sample 60k input states x ∈ [−1, 1] (specifically, 10k states x ∈ C) and use curriculum learning
proposed in (Bansal & Tomlin, 2021) to improve the training convergence. The rest of the dynamics parameters are chosen
as: T = 1, r = 0.05, ux ∈ [−6, 6], uy ∈ [−12, 12], vx ∈ [−6, 6], vy ∈ [−4, 4], velocities are sampled as mentioned in
Sec. G.2 and are normalized between [−1, 1]. The PINN utilizes a fully-connected network with 3 hidden layers, each
comprising 512 neurons with sin activation function. The network adopts the Adam optimizer with a fixed learning rate of
2× 10−5. We first pretrain the network over 10k iterations to satisfy the boundary condition D and then refine the network
through 100k gradient descent steps, with states sampled from an expanding time window starting from the terminal. Fig. 9
shows the visualization of BRT in a 2D frame given t = 0 and fixed states except (dx1 , dy1).

F. Proof of Proposition 1
Proof. Let f0 : [0, 1]I−1 → R be a bounded and Lipschitz continuous function, P ⊂ [0, 1]I−1 be a lattice, and f be a
convex hull computed from the data {f(p), p}p∈S . Let the true convex hull of f0 be V ex(f0): V ex(f0)(p) ≤ f(p) for all
p ∈ [0, 1]I−1, with equality reached at least for p ∈ S.

Introduce a set P 0 = {p(i) ∈ S}Ii=1 and a space P0 = {p ∈ [0, 1]I−1 | ∃λ ∈ ∆(I) s.t. p =
∑I

i=1 λ[i]p
(i), p(i) ∈ P 0} so

that f(p) =
∑I

i=1 λ[i]f(p
(i)) for all p ∈ P0, i.e., P 0 are vertices of a segment P0 of [0, 1]I−1 within which f is affine.

Let U := {u(i)}Ni=1 = P
⋂
P0 be the set of lattice nodes contained in P0. Since f is a convex hull of f0, we have f(u(i)) ≤

f0(u(i)) for all i = 1, ..., N . U defines a segmentation E of P0: Each e ∈ E is associated with Ue := {u(ei)}Ii=1 ⊂ U such
that e = {p ∈ [0, 1]I−1 | ∃λ ∈ ∆(I) s.t. p =

∑I
i=1 λ[i]u

(ei), u(ei) ∈ Ue} and u /∈ e for any u ∈ U \ Ue.

For any p ∈ e, we have the following loose lower bound on f0(p):

f0(p) ≥ min
i

f0(uei)−∆L ≥ min
i

f(uei)−∆eL, (85)

where ∆ := maxi,j ∥uei − uej∥2, and L is the Lipschitz constant of f0. ∆ is a constant for a given lattice P .

Therefore within e, the convexification error is lower bounded by

max
λ∈∆(I)

{
f(
∑
i

λ[i]u(ei))−min
i

f(uei) + ∆L

}
= max

i
f(uei)−min

i
f(uei) + ∆L ≤ 2∆L. (86)

Since this error is constant, and f − 2∆L is a convex lower bound of V ex(f0), we have εvex ≤ 2∆L.

G. Details on Case Studies
The code for the implementation is available at https://github.com/ghimiremukesh/OSIIG.

26

https://github.com/ghimiremukesh/OSIIG


State-Constrained Zero-Sum Differential Games with One-Sided Information

G.1. Hexner’s Strategy

For the unconstrained simplified football game discussed in Sec. 6, the strategies depend on the trajectory of the d1 − d2. In
Fig.10, we plot the trajectory and determine the critical time from Eq.(77). For the choices of parameters, we determine
tr = 0.4s. We set RA = diag(0.05, 0.025), and RD = diag(0.05, 0.1).
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Figure 10: Plot of d1 and d2 along time. The critical time tr occurs at t ≈ 0.4. The attacker will conceal its type until tr and
reveal it after tr.

G.2. Data Sampling

Unconstrained Game. For the unconstrained game, we sample positions (dx, dy) and velocities (ḋx, ḋy) for both players.
As the arena is bounded between [−1, 1] in both x and y directions, we sample the positions of the two players in [−1, 1].
However, when it comes to velocities, we experimentally determine the range from the LQR problem as the following:
ḋx1 ∈ [−6, 6], ḋy1 ∈ [−4, 4], ḋx2 ∈ [−6, 6], and ḋy2 ∈ [−4, 4]. We then normalize the velocities between [−1, 1] and
compute the values as described in algorithm 1. The resulting normalized joint states (X ) and values (V ) are stored for
training the value network. At each time step we sample 10000 states and set |P| = 100. This brings the total training data
at each time step to 1M for the unconstrained case.

Constrained Primal Game. For the constrained game, we sample the positions between [−1, 1] and all velocities between
the ranges discussed above. As in the unconstrained case, these are normalized to [−1, 1] before computing the values and
storing the training data. With the same P , we sample 5000 states from the feasible set Q(t), resulting in 500,000 training
data at each time step. Solving constrained game requires evaluating minu maxv V (t, x+ τf(x, u, v), p) over all possible
pairs of x′(i.e. x+ τf(x, u, v)), which is memory intensive. Based on the available resources we set the total number of
initial states to be sampled to 5000. To speed up the calculation, and capture a wide range of data, we divide the state space
into 50 uniform intervals, and distribute the computation to 56 CPU cores, with 515,271 MB of total memory. Each minimax
computation is independent and hence can be evaluted in parallel.

Constrained Dual Game. In the dual game, the uninformed player keeps track of the process p̂ ∈ RI . As a result, the
dual value is a 10-D function, which increases the complexity of the computation due to the need for convexification of the
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value along I dimensions (here, I = 2). We follow the same procedure as in the primal game and collect 250,000 samples
for training. The range of p̂ was determined to be [−14, 14] based on the primal value at the initial time as discussed in
Sec. 5. Furthermore, due to the additional input dimension in the dual value network, the dual value approximation suffers
from relatively higher error compared to the primal value. Ultimately this affects the strategy of the uninformed player
(Player 2). We compare the resulting strategy of Player 2 from the dual value with that of the ground truth strategy in the
unconstrained game.
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Figure 11: Comparison between the P2’s ground truth strategy and the strategy synthesized from the dual value. P1’s
trajectory is shown red and P2’s in blue. Solid trajectories correspond to that obtained when P2 plays its equilibrium strategy.
Dotted trajectories represent the ground truth solution.
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