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ABSTRACT

Climate change exacerbates riverine floods, which occur with higher frequency
and intensity than ever. The much-needed forecasting systems typically rely on ac-
curate river discharge predictions. To this end, the SOTA data-driven approaches
treat forecasting at spatially distributed gauge stations as isolated problems, even
within the same river network. However, incorporating the known river network
topology into the prediction model has the potential to leverage the adjacency
relationship between gauges. Thus, we model river discharge for a network of
gauging stations with a GNN, and compare the forecasting performance achieved
by different adjacency definitions. Our results show that the model fails to benefit
from the river network topology information, regardless of the number of layers
and, thus, propagation distance. The learned edge weights correlate with neither
of the static definitions and exhibit no regular pattern. Furthermore, a worst-case
analysis reveals that the GNN struggles to predict sudden discharge spikes. This
work may serve as a justification for the SOTA treating gauges independently and
suggests that more improvement potential lies in anticipating spikes.

1 INTRODUCTION
Global reported natural disasters by type, 1970 to 2022
The annual reported number of natural disasters, categorised by type. This includes both weather and non-weather
related disasters.
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Figure 1: Historical occurrence of natural dis-
asters by disaster type. The number of events
increased over time, with floods being the most
common. (Ritchie et al., 2022).

Floods are among the most destructive natu-
ral disasters that occur on Earth, causing ex-
tensive damage to infrastructure, property, and
human life. They are also the most common
type of disaster, accounting for almost half of
all disaster events recorded (cp. Figure 1). In
2022 alone, floods affected 57.1 million people
worldwide, killed almost 8000, and caused 44.9
billion USD in damages (CRED, 2022). With
climate change ongoing, floods have become
increasingly frequent over the last decades and
are expected to be even more prevalent in the
future (United Nations, 2022). Thus, early
warning systems that can help authorities and
individuals prepare for and respond to impend-
ing floods play a crucial role in mitigating fatal-
ities and economic costs.
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Operational forecasting systems such as Google’s Flood Forecasting Initiative (Nevo et al., 2022)
typically focus on riverine floods, which are responsible for the vast majority of damages. A key
component in these systems is the prediction of future river discharge1 at a gauging station based on
environmental indicators such as past discharge and precipitation. The state-of-the-art data-driven
approaches are based on Kratzert et al. (2019b) and consist in training an LSTM variant on multiple
gauges jointly to exploit the shared underlying physics. However, even when some of those gauges
are in the same river network, this topology information is not taken into account. One reason might
be that the main benchmarking dataset family CAMELS-x (Addor et al., 2017; Alvarez-Garreton
et al., 2018; Coxon et al., 2020; Chagas et al., 2020; Fowler et al., 2021) does not contain such
information. Recently, Klingler et al. (2021) published a new benchmarking dataset LamaH-CE that
follows the CAMELS-x framework but includes topology data.

In this work, we investigate the effect of river network topology information on discharge predictions
by employing a single end-to-end GNN to allow the network structure to be utilized during the
prediction process. We train GNNs on LamaH-CE and, to assess the merit of incorporating the
graph structure, compare the effect of different adjacency definitions:

(1) no adjacency, which is equivalent to existing approaches with cross-gauge shared parame-
ters but isolated gauges,

(2) binary adjacency of neighboring gauges in the network,

(3) weighted adjacency according to physical relationships like stream length, elevation differ-
ence, and average slope between neighboring gauges, and

(4) learned adjacency by treating edge weights as a model parameter.

Furthermore, we inspect how the learned edge weights from (4) correlate with the static weights
in (3). We also explore the role of information propagation distance on predictive capabilities and
analyze the model’s behavior on the worst-performing gauge. Our source code is publicly available
at https://add-link-after-review .

2 RELATED WORK

Classical approaches towards river discharge prediction stem from finite-element solutions to partial
differential equations such as the Saint-Venant shallow-water equations (Vreugdenhil, 1994; Wu,
2007). However, these models suffer from scalability issues since they become computationally
prohibitive on larger scales, as required in the real world (Nevo et al., 2020). Furthermore, they
impose a strong inductive bias by making numerous assumptions about the underlying physics.

On the other hand, data-driven methods and in particular deep learning provide excellent scaling
properties and are less inductively biased. They are increasingly being explored for a plethora of hy-
drological applications, including discharge prediction (see surveys by Mosavi et al., 2018; Chang
et al., 2019; Sit et al., 2020), where they tend to achieve higher accuracy than the classical mod-
els. The vast majority of studies employ Long Short-Term Memory models (LSTM; Hochreiter &
Schmidhuber, 1997) due to their inherent suitability for sequential tasks and reliability in predicting
extreme events (Frame et al., 2022). Whereas these studies usually consider forecasting for a single
gauging station, Kratzert et al. (2019a;b) demonstrate the generalization benefit of training a single
spatially distributed LSTM model on multiple gauging sites jointly. Their approach exploits the
shared underlying physics across gauges but is still agnostic to the relationship between sites.

Incorporating information from neighboring stations or even an entire river network into a spatially
distributed model may improve prediction performance. Upstream gauges could ”announce” the
advent of significantly increased water masses to downstream gauges, which in turn could provide
forewarning about flooding already ongoing further downstream. The input then becomes a graph
whose vertices represent gauges and edges represent flow between gauges. The corresponding deep
learning tool to capture these spatial dependencies is Graph Neural Networks (GNN). Kratzert et al.
(2021) employ such a GNN as a post-processing step to route the per-gauge discharge predicted by
a conventional LSTM along the river network, but it does not perform the actual prediction.

1amount of water volume passing through a given river section per unit time
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3 METHODOLOGY

3.1 DATA PREPROCESSING

Figure 2: Geographical overview of LamaH-CE.
Circle color indicates gauge elevation; circle size
indicates catchment size. (Klingler et al., 2021)

The LamaH-CE2 dataset (Klingler et al., 2021)
contains historical discharge and meteorologi-
cal measurements on an hourly resolution for
859 gauges in the broader Danube river net-
work shown in Figure 2. Covering an area of
170 000 km2 with diverse environmental con-
ditions, Klingler et al. expect that results from
investigations on this dataset carry over to other
river networks. One caveat is that LamaH-CE
does not provide any flood event annotations,
so that we can only model continuous discharge
but not floods as discrete events.

The river network defined by LamaH-CE nat-
urally forms a directed acyclic graph (DAG)
G = (V, E). The nodes V represent gauges,
and the edges E represent flow between a gauge
and the next downstream gauges. Hence, G is
anti-transitive, i.e., no skip connections exist.
We preprocess G to distill a connected subgraph
with complete data.

Region Selection. Figure 2 shows that G contains four different connected components, of which we
restrict ourselves to the largest one, ”Danube A”. Its most downstream gauge close to the Austrian-
Hungarian border has complete discharge data for the years 2000 through 2017. Starting at this
gauge, we determine all connected gauges of the Danube A region by performing an inverse depth-
first search given by Algorithm A.1. Overall, 608 out of the original 859 gauges belong to this
connected component.

Gauge Filtering. While the meteorological data is complete, the discharge data contains gaps.
Klingler et al. have filled any consecutive gaps of at most six hours by linear interpolation and left
the remaining longer gaps unaltered. We only want to consider gauges that (a) do not have these
longer periods of missing values and (b) provide discharge data for at least the same time frame
(2000 to 2017) as the most downstream gauge. To this end, we remove all gauges that violate these
requirements from the graph using Algorithm A.2. Predecessors and successors of a deleted node
get newly connected so that network connectivity is maintained. Note that thanks to antitransitivity,
a duplicate check is unnecessary when inserting the new edges. After this preprocessing step, we
are left with 375 out of the previously 608 gauges.

Overall, the reduced graph G now consists of n := |V| = 375 gauges with T hours of discharge
measurements for the years 2000 to 2017, which we can conceptually represent as a node signal
Q =

[
q(1) | q(2) | . . . | q(T )

]
∈ Rn×T . This cleaned dataset needs to be prepared for training.

Normalization. As is common practice in deep learning, we normalize the data to surrender all
gauges to the same scale and accelerate the training process (LeCun et al., 2002). In particular, we
normalize per gauge (i.e., element-wise) using the standard score:

µ =
1

T

T∑
t=1

q(t), σ2 =
1

T − 1

T∑
i=1

(q(t) − µ)2, q(t) ← q(t) − µ

σ

Train-test splits. To robustly assess the performance of a trained model on unseen data via cross-
validation, we randomly partition the 18 available years of observations into six folds of three years.
By choosing one fold as the test set and the remaining folds as the training set, we obtain six different
train-test splits that we keep constant throughout experiments.

2LArge-SaMple DAta for Hydrology for Central Europe
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3.2 THE FORECASTING TASK

We task the model with an instance of supervised node regression. Assume we are given a certain
amount of W (”window size”) most recent hours of discharge and meteorological measurements, in
particular precipitation, topsoil moisture, air temperature, and surface pressure, for all gauges. Our
goal is to predict the discharge L (”lead time”) hours in the future. For simplicity, we restrict the
following illustrations to the discharge data in the input since the meteorological data can be trivially
added in an extra dimension.

Features & Targets. To conduct supervised learning, we extract input-output pairs from the time
series represented by Q (cp. Section 3.1). For t = W,W + 1 . . . , T − L, we define the feature
matrix at time step t and the corresponding target vector as

X(t) :=

[
q(t−W+1)

∣∣∣∣∣ . . .

∣∣∣∣∣ q(t−1)

∣∣∣∣∣ q(t)

]
∈ Rn×W , y(t) := q(t+L) ∈ Rn.

We collect all samples into the set D = {(X(t),y(t))}T−L
t=W and partition it according to a given

train-test split into D = Dtrain ∪· Dtest. The extraction process can be illustrated as follows:

time−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ga
ug

es
←
−−
−−
−−
−−
−−
−−


Q X(t) L←−→ y(t) . . .


︸ ︷︷ ︸

W

Adjacency. Besides the input and target measurements, we feed the river network topology to
the GNN in the form of an adjacency matrix A ∈ Rn×n. For the definition of matrix entries
corresponding to an edge (i, j) ∈ E (the rest being zero), we consider the following choices:

(1) isolated: Ai,j := 0 equates to removing all edges and results in the augmented normalized
adjacency matrix to be a multiple of the identity so that each GNN layer degenerates to a
node-wise linear layer.

(2) binary: Ai,j := 1 corresponds to the unaltered adjacency matrix as it comes with the
LamaH-CE dataset.

(3) weighted: Ai,j := w(i,j) quantifies a physical relationship, for which LamaH-CE provides
three alternatives:

• the stream length along the river between i and j,
• the elevation difference along the river between i and j, and
• the average slope of the river between i and j.

(4) learned: Ai,j := ω(i,j) where ω ∈ R|E| is a learnable model parameter.

The first two variants allow us to compare the effect of introducing the river network topology into
the model at all. The last two variants enable insights into what kind of relative importance of edges
is most helpful. As usual in GNNs, we define the normalized augmented adjacency matrix

Ā := (Din + diag(λ))−
1
2 (A+ diag(λ))(Din + diag(λ))−

1
2

where self-loops for node i with weight λi are added and everything is symmetrically normalized
based on the diagonal in-degree matrix Din. We generally set λi as the mean of all incoming
edge weights at node i to make self-loops roughly equally important to the other edges. The only
exception to this is option (1) above, where that mean would be zero and thus result in no information
flow whatsoever, so that in this case, we set the self-loop weights to one instead.
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Model. Our desideratum is a GNN fθ : Rn×W → Rn parameterized by θ which closely ap-
proximates the mapping of windows X to targets y, i.e., ŷ := fθ(X) ≈ y. All our models
have a sandwich architecture: a linear layer EncoderΘ0

: Rn×W → Rn×d embeds the W -
dimensional input per gauge into a d-dimensional latent space. On this space, a sequence of
N layers GNNLayerΘi

: Rn×d × Rn×n → Rn×d are applied. Finally, another linear layer
DecoderΘN+1

: Rn×d → Rn projects from the latent space to a scalar per gauge. In symbols:

H(0) := EncoderΘ0(X)

H(i) := GNNLayerΘi
(H(i−1), Ā) for i = 1, . . . , N

ŷ := DecoderΘN+1
(H(N)).

We consider three choices for GNNLayer, with σ = ReLU as activation function:

GCNLayerΘ(H, Ā) := σ(Ā⊤HΘ) (Kipf & Welling 2017)

ResGCNLayerΘ(H, Ā) := H+GCNLayerΘ(H, Ā)

GCNIILayerΘ(H, Ā) := σ(
(
(1− α)Ā⊤H+ αH(0)

)(
(1− β)I+ βΘ

)
) (Chen et al. 2020)

where α, β ∈ (0, 1)

While the vanilla GCNLayer is the simplest definition, it famously suffers from a phenomenon
known as oversmoothing (Oono & Suzuki, 2020) where the features of adjacent nodes converge
with increasing depth. To alleviate this undesirable behavior, ResGCNLayer adds a residual con-
nection, whereas GCNIILayer introduces the notions of initial connection and identity mapping via
weighted averages.

Optimization Objective. To measure the error between a model prediction ŷ and the target y, we
use the multi-dimensional square loss L(ŷ,y) := 1

n∥ŷ−y∥
2. Training is then defined as optimizing

the expected loss over the empirical distribution of training samples in Dtrain, i.e., the optimal model
parameters are given by

argmin
θ

E(X,y)∼Dtrain [L(fθ(X, Ā),y)].

Metrics. Recall that we perform training on normalized samples. For evaluation, we must calculate
metrics on the unnormalized version of the predictions and targets:

ŷorig := σ ⊙ ŷ + µ, yorig := σ ⊙ y + µ.

The most intuitive regression metric is the Mean Squared Error (MSE). In our multi-dimensional
regression problem, it is defined as the error vector

MSE := 1
|Dtest|

|Dtest|∑
i=1

(ŷ
(ti)
orig − y

(ti)
orig )

2 = σ2 ⊙ 1
|Dtest|

|Dtest|∑
i=1

(ŷ(ti) − y(ti))2.

Next to the MSE, a standard metric in hydrology is the Nash-Sutcliffe Efficiency (NSE; Nash &
Sutcliffe, 1970). It compares the sum of squared errors of the model to the sum of squared errors of
the constant mean-predictor and subtracts this value from one to obtain a percentage score in [0, 1].
An NSE of zero means that the model’s predictive capability is no better than that of the empirical
mean, while an NSE of one means that all model predictions are perfect.

NSE := 1−
∑|Dtest|

i=1 (ŷ
(ti)
orig − y

(ti)
orig )

2∑|Dtest|
i=1 (µ− y

(ti)
orig )

2
= 1− MSE

σ2

We straightforwardly obtain summary metrics for our experiments by averaging across gauges:

MSE :=
1

n

n∑
g=1

MSEg, NSE :=
1

n

n∑
g=1

NSEg .
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The code to reproduce our experiments is publicly available3. Table 1 lists the relevant hyperparam-
eters we use throughout all experiments unless stated otherwise, categorized into data, model, and
training parameters.

Table 1: Default hyperparameter choices for our
experiments.

HYPERPARAMETER VALUE

D
A

TA

WINDOW SIZE (W ) 24 h
LEAD TIME (L) 6 h
NORMALIZATION? YES

M
O

D
E

L

ARCHITECTURE [RES]GCN, GCNII
NETWORK DEPTH (N ) 20
LATENT SPACE DIM (d) 128
EDGE DIRECTION BIDIRECTIONAL
ADJACENCY TYPE BINARY

T
R

A
IN

IN
G INITIALIZATION GLOROT

OPTIMIZER ADAM
# EPOCHS 20
BATCH SIZE 64
LEARNING RATE 5× 10−4

On the data side, we choose a window size of
W = 24 hours as a compromise between suf-
ficiently many past observations and computa-
tional efficiency. We set the lead time to L = 6
hours, which is a realistic choice.

On the model side, we consider all three
choices of layer definition detailed in Sec-
tion 3.2, resulting in three model architectures
GCN, ResGCN, and GCNII. We choose a depth
of N = 20 layers to allow information propaga-
tion along the entire river graph, given that the
longest path in the preprocessed graph consists
of 19 edges. The latent space dimensionality of
d = 128 was chosen large enough to allow an
injective feature embedding but small enough
to avoid memory issues. The edge direction
and adjacency type hyperparameters will be ex-
plored in detail in Section 4.2.

On the optimization side, all neural network parameters are randomly initialized using the standard
Glorot initialization scheme (Glorot & Bengio, 2010). We then perform 20 epochs of stochastic
mini-batch gradient descent, which is enough for the process to converge. The descent algorithm
is Adaptive Moments (Adam) (Kingma & Ba, 2015) with a base learning rate of 5 × 10−4, which
results in stable training. To prevent overfitting, we randomly hold out 1/5 of the training set, which
corresponds to three years of observations, and select the parameters from the epoch in which the
loss calculated over this holdout set was the lowest.

4.2 RIVER TOPOLOGY COMPARISON

Our main experiment compares the impact of the six different gauge adjacency definitions detailed
in Section 3.2 on forecasting performance. In addition, we also consider three alternative edge
orientations, which determine the direction of information flow in the GNN, as none of the options
is a priori preferable. The downstream orientation is given by the dataset, the upstream orientation
results from reversing all edges, and the bidirectional orientation from adding all reverse edges to
the forward ones. We six-fold cross-validate all 18 topology combinations using the train-test splits
established in 3.1 and the average MSE and NSE metrics defined in Section 3.2 and report the results
for ResGCN and GCNII in Table 2. As the vanilla GCN suffers heavily from oversmoothing, we
disregard it in the remaining discussions and only provide its results in Table A.2 for completeness.

Surprisingly, model performance for ResGCN and GCNII shows almost no sensitivity to the choice
of graph topology. Isolating the gauges does not harm performance beyond the standard deviation,
and no combination outperforms a 20-layer MLP baseline by a margin. This indicates that the
forecasting task for a gauge mainly benefits from the past discharge at that gauge but not from the
discharge at neighboring gauges. The river graph topology makes no difference. Even when the
model is allowed to learn an optimal edge weight assignment, it does not manage to outperform
the baseline. However, a consistent pattern is that the GNNs achieve their best average NSE for a
bidirectional edge orientation.

3https://add-link-after-review
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Table 2: Forecasting performance on different river network topologies, given as mean and standard
deviation of the respective metrics across folds. MSE is not scale-normalized per gauge, while NSE
is (cp. Section 3.2). A 20-layer MLP baseline achieves an NSE of 85.62%± 4.90%. Bold indicates
the best value per column. Note that results for the isolated adjacency type are not affected by the
choice of edge orientation due to the absence of edges in this case.

(a) ResGCN

DOWNSTREAM UPSTREAM BIDIRECTIONAL

ADJACENCY TYPE MSE ↓ NSE ↑ MSE ↓ NSE ↑ MSE ↓ NSE ↑

ISOLATED 899.80
±1329.17

80.85%
±11.66%

899.80
±1329.17

80.85%
±11.66%

899.80
±1329.17

80.85%
±11.66%

BINARY 353.54
±80.90

83.53%
±5.63%

372.67
±61.11

84.99%
±5.10%

741.20
±166.26

85.34%
±4.86%

STREAM LENGTH 524.03
±100.46

83.42%
±5.59%

435.66
±60.49

84.74%
±5.02%

785.38
±171.49

85.31%
±4.92%

ELEVATION DIFFERENCE 407.67
±95.16

83.46%
±5.60%

456.32
±63.80

83.76%
±4.80%

773.95
±182.22

85.16%
±4.93%

AVERAGE SLOPE 327.22
±75.81

83.45%
±5.60%

425.95
±86.43

84.10%
±5.18%

656.52
±170.12

85.23%
±4.92%

LEARNED 345.57
±199.76

83.50%
±5.40%

366.94
±80.72

85.63%
±4.65%

567.39
±160.84

85.94%
±4.52%

(b) GCNII

DOWNSTREAM UPSTREAM BIDIRECTIONAL

ADJACENCY TYPE MSE ↓ NSE ↑ MSE ↓ NSE ↑ MSE ↓ NSE ↑

ISOLATED 289.71
±50.01

85.95%
±4.97%

289.71
±50.01

85.95%
±4.97%

289.71
±50.01

85.95%
±4.97%

BINARY 277.50
±33.57

86.17%
±4.69%

312.31
±43.98

85.75%
±5.03%

355.95
±65.61

86.44%
±4.64%

STREAM LENGTH 343.86
±29.33

86.17%
±4.66%

311.32
±43.91

85.72%
±5.01%

393.39
±81.15

86.37%
±4.67%

ELEVATION DIFFERENCE 302.76
±48.07

86.11%
±4.69%

314.72
±42.75

85.35%
±5.28%

411.96
±80.55

86.33%
±4.71%

AVERAGE SLOPE 276.88
±40.39

86.08%
±4.67%

279.22
±41.44

85.44%
±5.32%

364.96
±79.10

86.26%
±4.79%

LEARNED 169.93
±33.40

86.14%
±4.87%

280.07
±46.97

86.03%
±4.80%

323.54
±83.12

86.48%
±4.69%

Table 3: Pearson correlation between learned and physical edge weights.

LEARNED EDGE WEIGHTS

DOWNSTREAM UPSTREAM BIDIRECTIONAL

PHYSICAL EDGE WEIGHTS RESGCN GCNII RESGCN GCNII RESGCN GCNII

STREAM LENGTH 0.221
±0.098

−0.23
±0.012

0.042
±0.008

−0.14
±0.006

−0.002
±0.016

0.054
±0.034

ELEVATION DIFFERENCE 0.100
±0.021

−0.17
±0.003

−0.308
±0.015

0.027
±0.007

−0.235
±0.014

−0.103
±0.035

AVERAGE SLOPE 0.168
±0.038

−0.04
±0.007

−0.293
±0.009

0.090
±0.009

−0.24
±0.012

−0.163
±0.012
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Figure 3: Model performance with varying depth, averaged over folds. Shaded areas correspond to
95% confidence intervals across folds.

4.3 LEARNING THE WEIGHTS

The case of learned edge weights is of particular interest. They were initialized by drawing from
the uniform distribution in [0.9, 1.1] to arrange them neutrally around one while still introducing
sufficient noise to break symmetry. Whenever learned weights get negative during training, we clip
them to zero. The distribution of the learned weights (cp. Table A.3) is still centered around one
with minima close to zero and maxima below ten.

To see if the learned weights exhibit any similarities with the physical weights, we calculate Pearson
correlation coefficients for all topology combinations. Table 3 shows that none of the physical
weight assignments correlate much with the learned weights. In multiple instances, the sign even
flips when using a different model architecture. For instance, the largest positive correlation occurs
with stream length for ResGCN, but in this same case GCNII achieves a negative correlation of the
same magnitude. Hence, we conclude that none of the physical edge weights from the datasets are
optimal context information for the predictor.

4.4 THE ROLE OF GNN DEPTH

The rationale for setting the number of layers to N = 20 was to allow information to propagate
across the entire river network. However, since removing all edges from the graph does not deteri-
orate the performance (cp. Table 2), we can also consider shallower neural networks. In particular,
we want to exclude the possibility that the considerable depth is causing the GCN to not outper-
form the baseline MLP due to more general issues with training very deep networks. In this case,
a GCN with fewer layers could profit more from the graph structure despite not achieving global
information propagation. Hence, we train ResGCN and GCNII with the default hyperparameters
from Table 1 where we only vary the number of layers in steps of one from 1 to 20. The resulting
average MSE and NSE scores are shown in Figure 3.

The experiment provides two insights. First, the inability of both GCN architectures to outperform
the MLP baseline is consistent across network depths, so that we can rule out training issues. Second,
the performance is independent of model depth, which means that the larger receptive field achieved
by more layers does not help. Both corroborate the previous observations that GNNs fail to take
advantage of the graph structure.

4.5 WORST GAUGE INVESTIGATION

The performance on gauge #80 of all trained models is considerably below the mean. For instance,
the best overall performing model according to NSE (bidirectional-learned GCNII) achieves its
worst NSE of only 24.78% on this outlier gauge. To better understand the scenarios that are chal-
lenging for the model, we determine the top disjoint time horizons of 48 hours (24 hours for past
and future) in terms of deviation of model prediction from the ground truth. The resulting plots
in Figure 4 reveal that the outlier gauge is characterized by sudden spikes, which are inherently
hard to forecast for any predictor. The gauge might be located behind a floodgate. As a result, the
forecasting performance is mediocre, with the forecast often missing spikes.
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Figure 4: Worst predictions of bidirectional-learned GCNII on its overall worst gauge #80. Negative
time indicates past, and positive time indicates future discharge.

5 CONCLUSION

In this work, we explored the applicability of GNNs to holistic flood forecasting in a river network
graph. Based on the LamaH-CE dataset, we framed a supervised node regression task for predict-
ing future discharge at all gauging stations in the graph given past observations. By modifying the
adjacency matrix, we compared the impact of different adjacency definitions on the prediction per-
formance. Our results reveal that the impact of river topology is negligible. The GNN performs
equally well even when all edges are removed from the graph, which makes it act like an MLP. It
does not benefit from weighted edges that resemble physical relationships between gauges. When
the model is allowed to jointly learn the edge weights along with the other parameters, they corre-
late with neither constant weights nor any of the physical weightings given by the dataset. A depth
study shows that the results are not caused by issues with training deep models but prove consistent
throughout any number of layers. Investigations on a challenging outlier gauge show that the GNNs
struggle to predict sudden discharge spikes.

On a high level, future work is encouraged to investigate under which conditions including graph
topology in neural predictors actually helps, which is not clear a priori. While the key could lie
in employing more specialized model architectures such as DGCN (Tong et al., 2020), MagNet
(Zhang et al., 2021), and DAGNN (Thost & Chen, 2021) for the dataset at hand, there might be
more fundamental limitations to the use of GNNs for large-scale regression problems. Moreover, for
the application of flood forecasting, our results suggest that focusing on accurate spike prediction
is more promising than incorporating river network topology information. To this end, there is a
broader issue: we used a river network dataset from central Europe as discharge measurements
are readily available there for long time periods. However, the regions most affected by floods are
typically in low-income countries where data is scarce. More gauges need to be installed in those
high-risk regions, and large-scale datasets collected to enable more relevant studies and save lives.
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A APPENDIX

A.1 PREPROCESSING ALGORITHMS

Algorithm A.1: Inverse depth-first search
Input: DAG G = (V, E), start node v0 ∈ V
Output: All direct and indirect predecessors of v0 in G

inverseDFS(G, v0)
1 Vin ← {v ∈ V | (v, v0) ∈ E}
2 if Vin = ∅ then
3 return {v0}
4 else
5 return {v0} ∪

⋃
v∈Vin

invDFS(v)

Algorithm A.2: Rewire-removal of a node
Input: antitransitive weighted DAG G = (V, E , w), moribund node vRIP ∈ V
Output: G without vRIP where its predecessors and successors are rewired

rewireRemove(G, vRIP)
1 Vin ← {v ∈ V | (v, vRIP) ∈ E}
2 Vout ← {v ∈ V | (vRIP, v) ∈ E}
3 V ← V \ {vRIP}
4 E ← E \ (Vin × {vRIP}) \ ({vRIP} × Vout) ∪ (Vin × Vout)
5 for (vin, vout) ∈ Vin × Vout do
6 w(vin, vout)← w(vin, vRIP) + w(vRIP, vout)

A.2 RESULTS FOR VANILLA GCN

Table A.2: Forecasting performance of a vanilla GCN on different river network topologies, given
as mean and standard deviation of each metric across folds. A 20-layer MLP baseline achieves an
NSE of 85.61% ± 4.90%. Note that results for the isolated adjacency type are not affected by the
choice of edge orientation due to the absence of edges in this case.

DOWNSTREAM UPSTREAM BIDIRECTIONAL

ADJACENCY TYPE MSE ↓ NSE ↑ MSE ↓ NSE ↑ MSE ↓ NSE ↑

ISOLATED 354.45
±71.39

85.56%
±4.93%

354.45
±71.39

85.56%
±4.93%

354.45
±71.39

85.56%
±4.93%

BINARY 4871.21
±3464.82

28.79%
±21.49%

5444.81
±1363.50

33.98%
±17.36%

4715.03
±1359.65

69.80%
±8.08%

STREAM LENGTH 3184.44
±752.60

33.87%
±18.94%

5041.33
±1397.70

47.14%
±17.37%

3778.37
±575.68

76.74%
±5.75%

ELEVATION DIFFERENCE 5316.44
±3411.55

28.74%
±21.42%

5577.10
±1259.32

35.71%
±18.25%

3132.41
±799.16

78.17%
±5.87%

AVERAGE SLOPE 9436.05
±4272.67

10.32%
±30.85%

5060.77
±1535.16

34.76%
±19.29%

4257.56
±1619.34

72.59%
±8.65%

LEARNED 1067.59
±325.14

34.99%
±18.23%

4750.12
±1299.36

37.87%
±19.49%

1868.82
±533.35

75.48%
±7.22%
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A.3 LEARNED EDGE WEIGHTS STATISTICS

Table A.3: Key statistics of the learned edge weights, accumulated across folds.

LEARNED EDGE WEIGHTS

DOWNSTREAM UPSTREAM BIDIRECTIONAL

STATISTIC RESGCN GCNII RESGCN GCNII RESGCN GCNII

MEAN 0.989
±0.013

0.768
±0.002

0.666
±0.011

0.793
±0.008

0.917
±0.006

0.955
±0.008

STD 0.511
±0.212

0.665
±0.025

0.537
±0.006

0.825
±0.022

0.635
±0.036

0.630
±0.026

MIN 0.109
±0.268

0.000
±0.000

0.000
±0.000

0.000
±0.000

0.000
±0.000

0.000
±0.000

25% 0.624
±0.160

0.279
±0.028

0.201
±0.022

0.227
±0.022

0.451
±0.032

0.473
±0.021

MEDIAN 1.042
±0.019

0.599
±0.021

0.588
±0.026

0.570
±0.015

0.851
±0.024

0.919
±0.017

75 % 1.365
±0.151

1.172
±0.031

1.049
±0.027

1.134
±0.037

1.298
±0.036

1.306
±0.027

MAX % 3.257
±0.983

5.463
±0.895

2.217
±0.052

6.772
±0.489

3.197
±0.256

3.515
±0.286
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