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ABSTRACT

Text embeddings enable numerous NLP applications but face severe privacy risks
from embedding inversion attacks, which can expose sensitive attributes or recon-
struct raw text. Existing differential privacy defenses assume uniform sensitivity
across embedding dimensions, leading to excessive noise and degraded utility. We
propose SPARSE, a user-centric framework for concept-specific privacy protection
in text embeddings. SPARSE combines (1) differentiable mask learning to identify
privacy-sensitive dimensions for user-defined concepts, and (2) the Mahalanobis
mechanism that applies elliptical noise calibrated by dimension sensitivity. Unlike
traditional spherical noise injection, SPARSE selectively perturbs privacy-sensitive
dimensions while preserving non-sensitive semantics. Evaluated across six datasets
with three embedding models and attack scenarios, SPARSE consistently reduces
privacy leakage while achieving superior downstream performance compared to
state-of-the-art DP methods.

1 INTRODUCTION

Text embeddings are general representations of textual data that enable various downstream learning
tasks without utilizing the raw text. Recent advances in pre-trained models like Sentence-T5 (Ni
et al., 2022a) and SentenceBERT (Reimers & Gurevych, 2019) enable the generation of high-quality
embeddings that power numerous NLP applications. A prominent example is retrieval-augmented
generation (RAG) systems (Lewis et al., 2020), which have led to the widespread adoption of online
embedding database services such as Chroma1 and Faiss (Johnson et al., 2019).

However, recent research has uncovered critical vulnerabilities in text embeddings through embed-
ding inversion attacks (Huang et al., 2024; Pan et al., 2020; Song & Raghunathan, 2020). These
attacks can extract sensitive attributes or even reconstruct the original text. For example, prior
work (Coavoux et al., 2018) showed that demographic information can be inferred directly from
embeddings, while GEIA (Li et al., 2023) demonstrated that full sentences can be recovered. Most
strikingly, Vec2Text (Morris et al., 2023) reported that adversaries can reconstruct up to 92% of a
32-token input from T5-based embeddings.Such vulnerabilities pose significant risks in domains
handling sensitive data, such as patient notes in medical RAG system. Thus, developing robust
defenses against embedding inversion has become a critical challenge.

Differential privacy (DP) (Dwork et al., 2006) is a widely adopted framework for protecting sensitive
information due to its rigorous guarantees. However, most existing DP-based defenses implicitly
assume that all information in embeddings is equally privacy-sensitive. This assumption has two
drawbacks. First, privacy concerns are inherently user- and context-dependent (Brown et al., 2022):
one individual may prioritize protecting health conditions, while another may care more about
political views or personal relationships. Second, to cover all possible sensitive information, DP
mechanisms typically inject substantial noise across all embedding dimensions, which inevitably
leads to significant utility degradation. Therefore, it is crucial to develop a defense mechanism that
can provide concept-specific protection—allowing users to specify which attributes to protect while
preserving embedding quality for non-sensitive content. This work aims to address a key research
question:

1https://docs.trychroma.com/
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Figure 1: Illustration of embedding inversion attack and different defense strategies. (a) Sensitive
information can be easily identified from non-protected text embeddings. (b) Adding spherical
noise mitigates privacy leakage but harms textual semantics. (c) Our approach applies elliptical
noise guided by a user-defined privacy concept, selectively adding stronger perturbations to privacy-
sensitive dimensions while preserving non-sensitive semantics. A real-world case study is presented
in Appendix J.

Research Question: Can we selectively obfuscate user-defined private concepts in embeddings while
preserving non-sensitive semantics for downstream tasks?

However, designing such a defense mechanism is non-trivial. The central challenge lies in the
mismatch between existing DP methods and the heterogeneous nature of embedding dimensions.
Current approaches add the same level of noise to every embedding dimension, implicitly assuming
that all dimensions carry equal amounts of sensitive information. However, our preliminary analysis
(see Appendix A) reveals that embedding dimensions exhibit varying degrees of privacy sensitivity
with respect to specific concepts. Some dimensions may be highly sensitive to particular privacy
attributes (e.g., medical conditions), while others primarily encode non-sensitive semantic features.

To address this challenge, an ideal defense mechanism should accomplish two key objectives: (1)
identify which embedding dimensions are privacy-sensitive for a given privacy concept, and (2)
design a differential privacy mechanism that calibrates noise injection based on dimension sensitivity
while maintaining theoretical guarantees.

We propose SPARSE (Sensitivity-guided Privacy-Aware Representations for better SEmantic-
preserving), a novel user-centric framework that improves privacy in text embeddings through
sensitivity-guided perturbations. To achieve the first goal, we present a differentiable mask learning
framework to estimate the sensitivity of embedding dimensions with respect to a user-defined privacy
concept. To achieve the second goal, we introduce the Mahalanobis mechanism, an extension of the
generalized Laplace mechanism, which injects elliptical noise calibrated by dimension sensitivity.
As illustrated in Figure 1, while traditional methods apply spherical noise that uniformly perturbs
all dimensions (panel b), our approach first identifies privacy-sensitive dimensions associated with
user-specified concepts (e.g., symptom or age) and then applies elliptical noise with larger perturba-
tions to these sensitive dimensions while minimally affecting others (panel c). We summarize our key
contribution as follows:

• Novel defense paradigm. We introduce SPARSE, a sensitivity-guided framework for user-defined
privacy protection in embeddings, and introduce the Mahalanobis mechanism—an extension of
differential privacy that provides rigorous theoretical guarantees.

• Better privacy-utility tradeoffs. We evaluate SPARSE against two state-of-the-art differential
privacy methods across six datasets. Experimental results show that SPARSE consistently reduces
privacy leakage while achieving better downstream performance.

• Robust generalization. We assess the generalizability of SPARSE using three different embed-
ding models and three attack models. Experimental results demonstrate that SPARSE remains
consistently effective regardless of the specific embedding method or threat model used.

• Comparable performance to white-box defense. We further design a white-box variant of
SPARSE with full access to the threat model. Despite lacking prior knowledge of the attack
model, SPARSE achieves performance close to the white-box defense, demonstrating its ability to
accurately identify privacy-sensitive dimensions.
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2 PRELIMINARIES

2.1 BACKGROUND ON DIFFERENTIAL PRIVACY

Differential Privacy (DP) (Dwork et al., 2006) is a rigorous privacy guarantee that ensures a random-
ized mechanismM behaves similarly on any two inputs. There are two common models of DP:
central and local. In this work, we focus on Local Differential Privacy (LDP)(Kasiviswanathan et al.,
2011), where each user perturbs their data locally before sharing it. This approach offers stronger
privacy guarantees in settings where the data collector cannot be trusted, as it removes the need for a
trusted aggregator.
Definition 1 (Local Differential Privacy). A randomized mechanismM satisfies ϵ-local differential
privacy if for all pairs of possible user inputs x, x′ ∈ X and any output set O ⊆ Range(M),

Pr[M(x) ∈ O] ≤ eϵ · Pr[M(x′) ∈ O],

where ϵ ≥ 0 is a privacy parameter and Range(M) denotes the set of all possible outputs ofM. The
mechanismM outputs a random sample from a probability distribution over possible outputs, rather
than a deterministic value. The ϵ parameter, termed the privacy budget, controls the similarity in the
output, with a smaller ϵ indicating higher privacy protection, and vice versa.

Generalization with distance metrics. Local differential privacy (LDP) requires a mechanism to
produce nearly indistinguishable outputs for any two possible inputs, regardless of how different the
inputs are. While this provides a strong privacy guarantee, it often leads to significant utility loss,
especially in continuous or semantic domains such as text embeddings (Feyisetan et al., 2019). To
address this limitation, we adopt metric local differential privacy (metric LDP) (Chatzikokolakis
et al., 2013; Alvim et al., 2018), a generalization of LDP to metric spaces. Metric LDP relaxes the
indistinguishability requirement by incorporating a distance function d over the input space. This
allows the privacy guarantee to degrade gracefully as the dissimilarity between inputs increases.
Definition 2 (Metric Local Differential Privacy). Let ϵ ≥ 0 be the privacy parameter, and d be a
distance metric for the input space. A mechanismM satisfies ϵd-LDP, if for any two inputs x, x′ and
any output set O ⊆ Range(M),

Pr[M(x) ∈ O] ≤ eϵ·d(x,x
′) · Pr[M(x′) ∈ O].

The key idea is that the privacy guarantee depends on how similar the inputs are: closer inputs
must yield nearly indistinguishable outputs, while distant inputs may produce more distinguishable
ones. Although the privacy budget ϵ remains fixed, the output bound varies with the input distance.
To instantiate a mechanism satisfying metric LDP under ℓ2 distance, we introduce the generalized
Laplace mechanism, which is widely used for embedding sanitization against adversarial attacks.
Definition 3 (Generalized Laplace Mechanism (Wu et al., 2017)). Let ϵ ≥ 0 be the privacy budget.
The generalized Laplace mechanismMLap : Rn → Rn perturbs any input x ∈ Rn as

MLap(x) = x+ ZLap, ZLap ∼ fZ(z) ∝ exp (−ϵ ∥z∥2) .

We note two important properties of the generalized Laplace mechanism: (1) it satisfies ϵd-LDP
with respect to the ℓ2 norm (Du et al., 2023); and (2) it adds isotropic (spherical) noise, implicitly
assuming that privacy sensitivity is uniformly distributed across all embedding dimensions.

2.2 PROBLEM STATEMENT

Attack Scenario. In this work, we focus on a specific embedding inversion attack scenario where the
adversary aims to reconstruct the input text from the corresponding text embedding. Formally, given
a sequence of tokens s and the text embedding model Φ : s→ Rn, where n denotes the embedding
dimension, the attacker seeks to find a function g to approximate the inversion function of Φ as:
g(Φ(s)) ≈ Φ−1(Φ(s)) = s. These inversion attacks can be classified into two categories based on
their target: (i) token-level inversion (Pan et al., 2020; Song & Raghunathan, 2020), which focuses
on retrieving individual tokens from the original text, and (ii) sentence-level inversion (Li et al., 2023;
Morris et al., 2023), which attempts to reconstruct the entire ordered sequence of text. Regardless of
the attack model employed, our study prioritizes understanding whether private information (e.g.,
names, diseases) within the original text is revealed.
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Privacy Definition. Privacy is inherently context-dependent (Brown et al., 2022). While many prior
works adopt a narrow operational definition centered on personally identifiable information (PII) such
as names or identification numbers (Sousa & Kern, 2023), such a fixed notion is often insufficient.
In practice, users may care about protecting different types of sensitive attributes—for instance,
health conditions, political views, or personal relationships. To capture this variability, we adopt a
user-centric privacy definition, where the data owner specifies a privacy concept C representing the
set of tokens or attributes to be protected. In our experiments, we instantiate C primarily with named
entities and PII tokens, but the framework naturally generalizes to other user-defined concepts.

Defense Scenario. Our goal is to develop privacy-preserving embeddings that satisfy two objectives:

• Goal 1 (Defending against sensitive token inference attack): For the threat model A and text
embedding Φ(s), where s is a sentence that contains sensitive information. The data owner defines
a privacy concept C = {t1, t2, . . . , t|C|}, which is a set of sensitive tokens (e.g., names, medical
conditions) that must be protected. The objective is to generate an obfuscated embedding Φ′(s)
that prevents the threat model A from accurately reconstructing the tokens in C.

• Goal 2 (Maintaining downstream utility): The secondary objective is to ensure that the protective
measures, while securing the embeddings from inversion attacks, do not compromise the utility of
the embeddings in downstream tasks.

3 SPARSE FRAMEWORK

3.1 IDENTIFYING PRIVACY-SENSITIVE DIMENSION THROUGH NEURON MASK LEARNING

To quantify the sensitivity of individual dimensions with respect to a privacy concept C, we propose a
neuron mask learning framework that estimates a relaxed binary mask over the embedding dimensions.
The goal is to learn a mask vector m ∈ [0, 1]n that approximates a binary selection: assigning values
close to 1 for dimensions relevant to C, and close to 0 otherwise. Given an embedding Φ(s), the
masked representation is denoted by Φ(s)⊙m, where ⊙ indicates the Hadamard product.

Differentiable Neuron Mask Learning. Although the ultimate goal is to approximate a binary
mask, direct optimization over discrete values is not feasible due to non-differentiability. Therefore,
we resort to a practical method that employs a smoothing approximation of the discrete Bernoulli
distribution (Maddison et al., 2017). Under this framework, we assume each mask mi follows a hard
concrete distribution HardConcrete(logαi, βi) with location αi and temperature βi (Louizos et al.,
2018) as:

si = σ

(
1

βi

(
log

µi

1− µi
+ logαi

))
,mi = min (1,max (0, si (ξ − γ) + γ)) , (1)

where σ denotes the sigmoid function. ξ = 1.1 and γ = −0.1 are constants, and µi ∼ U(0, 1) is the
random sample drawn from the uniform distribution. αi and βi are learnable parameters. The random
variable si follows a binary concrete (or Gumbel Softmax) distribution, which is an approximation
of the discrete Bernoulli distribution. Samples from the binary concrete distribution are identical to
samples from a Bernoulli distribution with probability αi as βi → 0, and the location αi allows for
gradient-based optimization through reparametrization tricks (Jang et al., 2022). During the inference
stage, the mask mi could be derived from a hard concrete gate:

mi = min (1,max (0, σ (logαi) (ξ − γ) + γ)) . (2)

Training Dataset Construction. we construct two datasets to identify the embedding dimensions
most affected by the privacy concept C. The positive dataset D+ = {s1, . . . , s|D+|} consists of
sentences that include tokens representing the concept C. For each sentence si ∈ D+, we construct a
corresponding negative sample by removing all tokens related to C, denoted asR(si, C). This yields
the negative dataset D− = {R(si, C) | si ∈ D+}, where each sentence is identical to its positive
counterpart except for the absence of concept-specific tokens.

Learning Objective. The neuron mask m is trained to satisfy two key objectives: (i) The masked
embedding Φ(s)⊙m should retain sufficient information to distinguish between the positive and
negative datasets D+ and D−, respectively; and (ii) the mask m should be sparse, thereby isolating
only the most relevant dimensions associated with the privacy-sensitive concept C. To achieve these
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objectives, we define a composite loss function. The first term is a discriminative loss that encourages
separation between D+ and D−:

Lcls(m, θ) = −
∑

s+∈D+

logPθ

(
Φ(s+)⊙m

)
−

∑
s−∈D−

log
(
1− Pθ

(
Φ(s−)⊙m

))
, (3)

where Pθ(·) denotes the probability predicted by a MLP classifier parameterized by θ. To enforce
sparsity in the learned mask, we add an L0-regularization term based on the expected number of
active neurons under the hard concrete distribution:

Lreg(m) = − 1

|m|

|m|∑
i=1

σ

(
logαi − βi log

(
−γ
ξ

))
. (4)

The final objective function jointly optimizes the classification performance and sparsity:

min
m,θ
Lcls(m, θ) + λLreg(m), (5)

where the regularization coefficient λ controls the trade-off between predictive accuracy and the
compactness of the neuron mask. For more implementation details, readers are referred to Appendix H
and Algorithm 2.

3.2 EMBEDDING PERTURBATION WITH MAHALANOBIS MECHANISM

Having identified the privacy-sensitive embedding dimensions through the learned neuron mask m,
we now describe how to perturb the embeddings in a sensitivity-aware manner. Specifically, we
extend the generalized Laplace mechanism by incorporating a Mahalanobis norm-based perturbation
scheme, thereby enabling elliptical noise calibrated by the neuron sensitivity of m. We begin by
formally defining the Mahalanobis norm.
Definition 4 (Mahalanobis Norm). For any vector v ∈ Rn, and a positive definite matrix Σ ∈ Rn×n,
its Mahalanobis norm is defined as ∥v∥M =

√
v⊺Σ−1v.

Note that for any η > 0, the Euclidean ball {y ∈ Rn : |y − x|2 = η} defines a sphere, implying
isotropic noise in all directions. In contrast, the Mahalanobis ball {y ∈ Rn : |y−x|M = η} defines an
ellipsoid. This distinction allows us to inject anisotropic noise whose spread adapts to the sensitivity
of each embedding dimension.
Definition 5 (Mahalanobis Mechanism). Let ϵ ≥ 0 be the privacy budget and let Σ ∈ Rn×n be a
symmetric positive definite matrix. The Mahalanobis mechanismMMah : Rn → Rn perturbs any
input x as

MMah(x) = x+ ZMah, ZMah ∼ fZ(z) ∝ exp (−ϵ ∥z∥M ) .

To calibrate noise based on the learned neuron sensitivity, we define Σ = diag(m1 + δ, . . . ,mn + δ),
where mi is the i-th entry of m and δ = 1e−6 is a small constant ensuring positive definiteness. For
scale compatibility with the isotropic Laplace mechanism, we normalize m such that

∑
i mi = n

(i.e., trace(Σ) = trace(In)). Algorithm 1 details how to sample ZMah. We now establish the privacy
guarantee of this mechanism:
Theorem 1. Given a privacy parameter ϵ, the Mahalanobis mechanism outputting Φ′(s) ∼
M (Φ (s)) fulfills ϵd-LDP with respect to the Mahalanobis Norm.

A formal proof is provided in Appendix B.1. Below, we explain how the privacy guarantee of the
Mahalanobis mechanism relates to that of the generalized Laplace mechanism.

Connecting Privacy Guarantee to Generalized Laplace Mechanism. We now show that the
privacy guarantee of the Mahalanobis mechanism is equivalent, up to constant factors, to that of
the generalized Laplace mechanism. Since the Mahalanobis and Euclidean norms are equivalent
in finite-dimensional spaces, the Mahalanobis mechanism preserves the same asymptotic privacy
guarantee, differing only by data-independent constants.
Lemma 1. Let Σ∈Rn×n be positive–definite with trace(Σ) = n. Assume the smallest eigenvalue of
Σ is bounded below by c > 0. Then, for any vector v ∈ Rn,

∥v∥2√
n
≤ ∥v∥M ≤ ∥v∥2√

c
.
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Building on this, the following lemma shows that the privacy-loss exponent under the Mahalanobis
mechanism is bounded between two exponents based on the Euclidean norm:
Lemma 2. Assume trace(Σ) = n and that the smallest eigenvalue of Σ is bounded below by a
constant c > 0. Then, for every input text s, s′ ∈ S and every ϵ ≥ 0,

exp

(
ϵ√
n
∥Φ(s)− Φ(s′)∥2

)
≤ exp (ϵ ∥Φ(s)− Φ(s′)∥M ) ≤ exp

(
ϵ√
c
∥Φ(s)− Φ(s′)∥2

)
.

Together, these lemmas show that the Mahalanobis mechanism achieves a privacy guarantee compa-
rable to that of the generalized Laplace mechanism under the same privacy budget ϵ. The detailed
proof in the section is deferred to Appendix B.

4 EXPERIMENTAL EVALUATION

4.1 EXPERIMENT SETUP

Datasets. Following prior work on embedding inversion (Morris et al., 2023; Kim et al., 2022),
We evaluate six benchmark datasets with downstream labels (for privacy-utility tradeoff) and two
real-world datasets, PII-Masking-300K (Team, 2023) and MIMIC-III (Johnson et al., 2018), covering
27 PII types and clinical notes. We extract the named entities as sensitive information for these
datasets using named entity recognition models (detailed in Appendix E).

Attack models. Three attack models are employed to access the privacy risks of text embedding,
including Vec2text (Morris et al., 2023), GEIA (Li et al., 2023), and MLC (Song & Raghunathan,
2020). Vec2text and GEIA are sentence-level attack methods that leverage pre-trained LLMs to
reconstruct the input sentence. MLC utilizes a three-layer MLP to predict the existence of individual
words. Due to its superior performance, Vec2text serves as our default attack model in subsequent
experiments.

Defense methods. We compare our proposed SPARSE with two established differential privacy
approaches: generalized Laplace mechanism (Wu et al., 2017) (LapMech) and Purkayastha mecha-
nism (Du et al., 2023) (PurMech). LapMech introduces privacy by sampling noise from the Laplace
distribution and adding it to the embedding vectors, while PurMech utilizes Purkayastha directional
noise to perturb embeddings while preserving semantic meaning. These baselines represent the state-
of-the-art in embedding privacy protection methods and provide strong comparisons for evaluating
our approach.

Evaluation Metrics. To quantify privacy risk, we use two measures: (1) Leakage: the attack model’s
accuracy in predicting sensitive tokens (lower is better); (2) Confidence: the probability of the attack
model to predict the sensitive tokens (lower indicates less exposure). For downstream utility, we
report each dataset’s standard task metric (e.g., NDCG or correlation; see Appendix Table 6). Please
refer to Appendix D for a detailed description of all the evaluation metrics.

Embedding models. We evaluate three widely used embedding models: GTR-base (Ni et al., 2022b),
Sentence-T5 (Ni et al., 2022a), and SBERT (Reimers & Gurevych, 2019). GTR-base is the default
model due to its higher vulnerability to the Vec2text attack.

4.2 PRIVACY-UTILITY TRADE-OFF ANALYSIS

We evaluate the privacy-utility trade-off across different defense methods and privacy budgets of ϵ
using the STS12 and FIQA datasets. Note that we vary the values of ϵ ∈ {5, 10, 20, 30, 40} following
the settings of prior works (Feyisetan et al., 2020; 2019). The results are presented in Table 1. Here,
ϵ = ∞ denotes the unprotected embedding. In comparison with the baseline methods (LapMech
and PurMech), SPARSE demonstrates consistent superiority in minimizing privacy leakage while
maintaining downstream utility. On the STS12 dataset at ϵ = 10, SPARSE reduces privacy leakage
from 60% to 19%, whereas alternative methods achieve only a 22% reduction. Meanwhile, SPARSE
maintains 65% downstream utility while other methods decline to 60%. Although the marginal
benefits diminish as ϵ increases, SPARSE’s superior performance remains consistent across varying
privacy budgets and datasets. We evaluate SPARSE on four more datasets and two real-world cases
with sensitive attributes. As detailed in Appendix F.1 and 4.4, SPARSE consistently reduces privacy
leakage and outperforms baseline methods.
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Table 1: Privacy-utility tradeoff across various defense methods. The mean and standard deviation of
5 runs are reported in percentages(%).

Privacy Metrics Utility Metric
Leakage ↓ Confidence ↓ Downstream ↑

Dataset ϵ LapMech PurMech SPARSE LapMech PurMech SPARSE LapMech PurMech SPARSE

STS12

5 7.36 ±0.61 7.42 ±0.49 4.34 ±0.51 6.70 ±0.32 6.80 ±0.29 6.41 ±0.23 29.28 ±0.00 29.31 ±0.00 34.12 ±0.00

10 22.34 ±1.38 22.66 ±1.15 19.31 ±0.21 9.39 ±0.17 9.42 ±0.17 8.91 ±0.12 60.72 ±0.00 60.72 ±0.00 65.27 ±0.00

20 38.17 ±0.86 38.04 ±0.71 36.98 ±0.45 24.70 ±0.75 24.74 ±0.71 23.85 ±0.43 72.47 ±0.00 72.47 ±0.00 73.25 ±0.00

30 44.74 ±0.43 44.76 ±0.49 43.81 ±0.24 34.59 ±0.32 34.59 ±0.24 34.16 ±0.76 73.68 ±0.00 73.68 ±0.00 74.04 ±0.00

40 48.48 ±0.60 48.34 ±0.57 47.54 ±0.44 38.75 ±0.80 38.82 ±0.79 38.49 ±0.76 73.98 ±0.00 73.98 ±0.00 74.15 ±0.00

∞ 60.09 47.81 74.25

FIQA

5 12.56 ±0.98 13.01 ±1.40 8.48 ±0.30 6.67 ±0.51 6.70 ±0.49 6.18 ±0.25 10.64 ±0.24 10.63 ±0.25 14.87 ±0.15

10 35.17 ±1.46 35.31 ±0.86 31.62 ±0.75 16.70 ±0.74 16.55 ±0.66 13.45 ±0.38 21.74 ±0.36 21.76 ±0.29 23.45 ±0.29

20 55.69 ±1.05 55.38 ±1.26 53.41 ±1.89 35.32 ±0.74 35.25 ±0.78 33.77 ±0.73 32.22 ±0.14 32.23 ±0.13 32.65 ±0.19

30 64.12 ±0.82 64.13 ±0.85 63.51 ±0.69 43.35 ±1.50 43.56 ±1.53 42.21 ±0.91 33.24 ±0.03 33.26 ±0.04 33.58 ±0.13

40 68.85 ±1.26 68.63 ±1.36 68.13 ±0.80 48.07 ±1.08 47.77 ±0.78 46.65 ±0.55 33.50 ±0.14 33.52 ±0.15 33.85 ±0.11

∞ 77.35 54.48 33.56

4.3 DEFENSE ROBUSTNESS AGAINST DIFFERENT THREAT MODELS

While previous experiments focus on Vec2text, it is important to assess SPARSE under varied threat
models. We evaluate privacy leakage under three embedding inversion attack models: MLC (Song
& Raghunathan, 2020), GEIA (Li et al., 2023), and Vec2text (Morris et al., 2023). Since changing
the attack model does not impact downstream utility, we report only the Leakage metric. As shown
in Table 2, SPARSE consistently outperforms LapMech and PurMech across all attack models by a
significant margin. Additionally, we notice that complex attack models, such as Vec2text and GEIA,
are more susceptible to embedding perturbation, exhibiting substantial leakage reductions of 92% and
72% respectively at ϵ = 5. In contrast, the shallow MLC model demonstrates less vulnerability to
our defense method. The results suggest that SPARSE offers a more resilient defense against diverse
embedding inversion threats.

Table 2: Defense performance with respect to different attack models. We report the Leakage metric
in percentage (%) on the STS12 dataset. In addition, we highlight the relative performance compared
to the non-protected embedding in red.

ϵ = 5 ϵ = 10

Attack Models ϵ =∞ LapMech PurMech SPARSE LapMech PurMech SPARSE
Vec2text (Morris et al., 2023) 60.09 7.36 (-87.75%) 7.42 (-87.65%) 4.34 (-92.78%) 22.34 (-62.82%) 22.66 (-62.29%) 19.31 (-67.86%)

GEIA (Li et al., 2023) 25.34 12.30 (-51.46%) 12.36 (-51.22%) 7.08 (-72.06%) 20.60 (-18.71%) 21.21 (-16.30%) 15.82 (-37.57%)
MLC (Song & Raghunathan, 2020) 53.20 19.39 (-63.55%) 19.80 (-62.78%) 17.63 (-66.86%) 32.74 (-38.45%) 32.68 (-38.57%) 29.59 (-44.38%)

4.4 EVALUATION ON REAL-WORLD PRIVACY THREATS

We evaluated SPARSE’s resilience to inversion attacks across various data domains and privacy
categories. This evaluation used the PII-Masking 300K dataset (Team, 2023), and MIMIC-III clinical
notes (Johnson et al., 2018). The results in Table 3 demonstrate significant privacy vulnerabilities
in unprotected embeddings and the superior protection offered by our approach. In the MIMIC-
III dataset, unprotected models exhibited severe privacy leakage with attack models successfully
extracting sensitive attributes at concerning rates: 88% for sex, 70% for diseases, and 82% for
symptoms. Under equivalent perturbation budgets of ϵ, SPARSE reduces sex attribute leakage from
88% to 28%, while both LapMech and PurMech achieve only modest reductions to 43%. This
superior protection generalizes across all evaluated privacy categories.

4.5 COMPARING SPARSE WITH WHITE-BOX DEFENSE

Our defense framework is predicated on the hypothesis that sensitive information is encoded within
specific dimensions of the embedding space. Consequently, selectively perturbing these dimensions
could effectively mitigate inversion attacks. This motivates two key questions: (i) How effective
could SPARSE be under perfect knowledge of embedding sensitivity? and (ii) How closely can our
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Table 3: Defense performance on different categories of sensitive information. We report the Leakage
metric in percentage (%) with ϵ = 10.

Dataset PII-300K MIMIC-III

Category Sex City State Country Age Sex Disease Symptom

Non-protected 86.12 68.45 75.43 84.07 58.49 88.40 70.43 82.76

LapMech 42.35 33.39 36.63 40.37 31.88 43.38 23.32 38.17

PurMech 43.53 34.10 38.45 41.45 31.89 43.38 22.86 31.30

SPARSE 33.76 28.76 33.62 35.19 28.98 28.45 18.28 29.35

black-box approach approximate this ideal? To answer these questions, we design SPARSE-WB, an
empirical upper-bound defense assuming white-box access to the attack model.

Extending SPARSE to White-Box Defense. For each sensitive token, we use Integrated Gradi-
ents (Sundararajan et al., 2017) to compute the gradient of the model’s output with respect to the
input embedding, treating sensitivity estimation as a feature attribution problem. Each dimension’s
attribution score reflects its influence on the prediction. Instead of applying the neuron mask as in
the original SPARSE, the white-box method uses the attribution score for sampling noise from the
Mahalanobis mechanism.

Results. As shown in Table 4, SPARSE-WB consistently achieves the best privacy-utility tradeoff
across different datasets and privacy budgets. The promising result of SPARSE-WB verifies our
hypothesis and servers as a strong upper bound. Importantly, we notice SPARSE closely approaches
this white-box defense performance, especially at ϵ = 20, 30, 40, with only small gaps in both leakage
and utility. This suggests that SPARSE is able to effectively approximate the white-box sensitivity
estimation without access to the attack model, which is crucial in realistic threat settings.

Table 4: Comparison of SPARSE with its white-box variant and LapMech to assess how well SPARSE
approximates an ideal defense with perfect knowledge of sensitive dimensions. Results are reported
in terms of privacy leakage and downstream utility under varying privacy budgets ϵ.

Leakage ↓(%) Downstream ↑ (%)

Dataset Method ϵ = 5 10 20 30 40 ϵ = 5 10 20 30 40

STS12
LapMech 7.36 22.34 38.17 44.74 48.48 29.28 60.72 72.47 73.68 73.98
SPARSE 4.34 19.31 36.98 43.81 47.54 34.12 65.27 73.25 74.04 74.15

SPARSE-WB 1.43 12.01 33.67 42.95 47.13 40.92 67.45 74.01 74.13 74.10

FIQA
LapMech 12.56 35.17 55.69 64.12 68.85 10.64 21.74 32.22 33.24 33.50
SPARSE 8.48 31.62 53.41 63.51 68.13 14.87 23.45 32.65 33.58 33.85

SPARSE-WB 3.03 22.35 51.27 62.70 67.92 14.58 26.46 32.87 33.55 33.58

4.6 QUALITATIVE ANALYSIS OF PRIVACY-SENSITIVE DIMENSIONS

We present a qualitative analysis to better understand the quality of the privacy-sensitive dimensions
identified by SPARSE for specific privacy concepts. To enhance interpretability and visualization,
we focus on individual words rather than aggregated token sets as in prior experiments. Figure 2
visualizes the learned neuron masks for six semantically coherent groups: weekdays, countries,
months, U.S.-related terms, gender-related terms, and numbers. The x-axis shows the union of the
top-5 neuron indices most strongly associated with each word. We have the following two findings:

1) Semantically related words activate overlapping privacy-sensitive dimensions. As depicted
in Figure 2, we found that words with similar semantics, such as weekdays or countries, tend to
cluster around the similar embedding dimensions. The clustering behavior verifies the quality of
our proposed neuron mask detection process, demonstrating that it effectively localizes meaningful,
non-random privacy signals that align with linguistic structure.

2) SPARSE implicitly protects semantically similar tokens. We hypothesize that protecting a
token’s privacy-sensitive dimensions also benefits semantically similar tokens, as they often share
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Figure 2: Visualization of the learned neuron
mask by SPARSE for individual tokens, where
larger values represent higher privacy sensitivity.

Table 5: Leakage mitigation rates achieved by
SPARSE with ϵ = 10 compared to non-protected
embeddings. Results are evaluated across three
token types: target tokens, semantically similar
tokens, and unrelated (other) tokens under differ-
ent privacy categories.

Target Similar Other

Weekdays -76.2% -46.2% -11.7%
Country -64.3% -36.2% -29.1%
Months -72.5% -42.8% -12.6%
Gender -61.0% -40.5% -18.3%

City -70.2% -39.8% -14.7%

overlapping dimensions. To test this, we apply the learned neuron mask for each target token and
evaluate leakage reduction for three types: the target, semantically similar, and unrelated tokens.
Leakage mitigation is quantified as the relative reduction of the Leakage metric compared to the
non-protected embedding. As Table 5 shows, SPARSE substantially reduces leakage for similar
tokens (e.g., 46.2% for “Weekdays”), even though only the target was protected. These results suggest
that although our privacy-sensitive dimensions are identified based on explicitly defined tokens, it
implicitly extends protection to a broader, more generalizable privacy concept.

5 RELATED WORK

Inversion Attacks on Text Embeddings. Text embeddings have been shown to pose serious privacy
risks, as they can unintentionally encode and expose sensitive attributes and content (Pan et al., 2020;
Song & Shmatikov, 2019; Lyu et al., 2020b; Coavoux et al., 2018). For example, prior work (Pan
et al., 2020) demonstrated that keywords can be partially recovered from text embeddings using
annotated external datasets. Similarly, attribute inference and embedding inversion attacks have been
used to extract unordered sets of words from sentence representations (Song & Raghunathan, 2020).
GEIA (Li et al., 2023) extended these attacks by introducing a generative approach that reconstructs
entire input sequences. More recently, Vec2Text (Morris et al., 2023) showed that embeddings from
commercial APIs (e.g., OpenAI) can be inverted with high accuracy. These findings underscore the
need for robust privacy-preserving embedding methods.

Privacy-preserving Text Embeddings. To mitigate privacy risks in textual representations, prior
work has introduced various noise injection mechanisms for token- and sentence-level embeddings.
DPNR (Lyu et al., 2020b) randomly masks input tokens and adds Laplace noise to the resulting
embeddings. Feyisetan et al. (Feyisetan et al., 2019) apply a generalized Laplace mechanism to
perturb token embeddings under metric local differential privacy (LDP). For sentence embeddings,
Lyu et al. (Lyu et al., 2020a) directly inject Laplace noise into BERT-based vectors. Laplace-based
mechanisms have also been employed to defend against inversion (Morris et al., 2023), membership
inference (Song & Raghunathan, 2020), and attribute inference (Coavoux et al., 2018) attacks. Recent
work such as the Purkayastha mechanism (Du et al., 2023) further refines Laplace perturbation for
enhanced privacy guarantees.

6 CONCLUSION

We introduced SPARSE, a framework that enhances privacy in text embeddings by selectively apply-
ing sensitivity-guided elliptical noise. By identifying and perturbing privacy-sensitive embedding
dimensions, SPARSE resists embedding inversion attacks while preserving utility. Experiments across
models, datasets, and threat scenarios demonstrate its effectiveness in improving the privacy-utility
tradeoff. As embeddings become central to real-world systems, embedding-level privacy is essential.
We see SPARSE as a step toward controllable, concept-aware protection, and hope it encourages
research into adaptive and accountable defenses for sensitive NLP.
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ETHICAL CONSIDERATIONS

While SPARSE is designed to enhance privacy in text embedding applications, its deployment must
be guided by ethical considerations. First, although our method reduces the risk of embedding
inversion, it does not eliminate all privacy threats, and may offer a false sense of security if used
without awareness of its limitations. Practitioners should carefully evaluate the privacy requirements
of their specific context and avoid over-relying on embedding anonymization as a substitute for
broader data governance and access controls.

Second, our framework is concept-driven and depends on predefining sensitive information categories.
This raises fairness concerns: groups or attributes not explicitly included in the sensitive concept
space may receive less protection, potentially reinforcing systemic biases or exposing vulnerable
populations. Future implementations should strive for inclusiveness in concept selection and explore
concept-agnostic sensitivity detection to mitigate this risk.

Finally, as with any privacy-preserving technique, SPARSE could be misused—for example, to evade
moderation or mask malicious content. We encourage responsible use aligned with principles of
transparency, accountability, and user consent, especially in high-stakes domains such as healthcare,
education, or law.

REPRODUCIBILITY STATEMENT

All essential details required to reproduce our main results are provided in this paper. Appendix H
offers comprehensive descriptions of the model architectures and training procedures, Appendix I
details the attack configurations used in our experiments, and Appendix D presents the formal
definitions of all evaluation metrics. In addition, we plan to publicly release our code in the near
future to further facilitate reproducibility and future research.
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Figure 3: Sensitivity distribution comparison between the top and bottom 10% privacy neurons. The
Wilcoxon Signed Rank Test indicates a highly significant difference (p-value = 1.30× 10−21).

A EMPIRICAL VALIDATION OF PRIVACY-SENSITIVE DIMENSIONS

In this section, we introduce the concept of privacy neurons and empirically validate their existence
and relevance. We demonstrate that privacy-related information within text embeddings may be
primarily concentrated in a limited subset of dimensions.

Definition 6 (Privacy Neurons). Consider an input text s and an embedding model Φ : s → Rd.
We assume there is a subset of dimensions Nt ⊆ V = {1, . . . , d} that encapsulates the sensitive
information associated with a privacy concept C. Consequently, the embedding Φ(x) can be expressed
as:

Φ(s) = (ΦNC (s),ΦV\NC (s)), (6)

where ΦNC (s) represents the privacy-sensitive neuron activations and ΦV\NC (s) the privacy-
invariant neuron activations.

Intuitively, dimensions identified as privacy neurons should exhibit higher sensitivity to the presence or
absence of privacy-related tokens in the input text. To quantify how individual embedding dimensions
respond to privacy-related information, we introduce the following measure:

Definition 7 (Neuron Sensitivity). Let D+ and D− denote positive and negative datasets containing
sentences with and without tokens related to the privacy concept C, respectively. For each embedding
dimension i, the neuron sensitivity ∆i is defined as:

∆i = max
(
{|Φ(s+)i − Φ(s−)i| | s+ ∈ D+, s− ∈ D−}

)
, (7)

where Φ(·)i represents the activation value of the i-th embedding dimension.

We assume a high value of ∆i indicates that dimension i is responsive and likely encodes privacy-
related information.

Dataset Construction for Sensitivity Analysis To measure the embedding changes associated
with the privacy concept C, we first construct a dataset D+ = {s1, . . . , s|D+|}, containing sentences
that include tokens from concept C. Correspondingly, we generate a negative set D− = {R(si, C) |
si ∈ D+}, whereR(si, C) denotes the operation of removing all tokens ti ∈ C from the sentence si.
Thus, D− consists of sentences identical to D+ except for the absence of tokens associated with the
sensitive privacy concept.

Results Figure 3 presents the distribution of sensitivity scores for dimensions identified as the
top and bottom 10% privacy neurons based on the sensitivity vector v. Our pilot study clearly
illustrates a significant difference between the two groups. Specifically, the top-ranked privacy
neurons demonstrate substantially higher sensitivity scores (mean sensitivity = 0.04) than the bottom-
ranked neurons, which exhibit nearly zero sensitivity. A Wilcoxon Signed Rank Test confirms the
significance of this observation with a p-value of 1.30× 10−21. These results empirically support
the existence of privacy neurons, suggesting that embedding inversion attacks may be effectively
mitigated by selectively manipulating only a small subset of embedding dimensions.
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B MISSING PROOF IN SECTION 3.2

B.1 PROOF OF THEOREM 1

Proof of Theorem 1. Recall that the mechanism releases Φ′(s) = Φ(s) + Z, where the noise density
is fZ(z) = C exp(−ε∥z∥M ) and the normalizing constant C is independent of z.

For any output y ∈ Rd, we have:
Pr[Φ′(s) = y]

Pr[Φ′(s′) = y]
=

fZ(y − Φ(s))

fZ(y − Φ(s′))
(8)

=
C exp(−ϵ∥y − Φ(s)∥M )

C exp(−ϵ∥y − Φ(s′)∥M )
(9)

= exp
(
− ϵ∥y − Φ(s)∥M + ϵ∥y − Φ(s′)∥M

)
(10)

By the triangle inequality for the Mahalanobis norm, we have:
∥y − Φ(s)∥M − ∥y − Φ(s′)∥M ≤ ∥Φ(s)− Φ(s′)∥M (11)

Therefore:
Pr[Φ′(s) = y]

Pr[Φ′(s′) = y]
≤ exp

(
ϵ∥Φ(s)− Φ(s′)∥M

)
(12)

This precisely establishes ϵd-local differential privacy under the Mahalanobis norm.

B.2 PROOF OF LEMMA 1

Proof of Lemma 1. Because Σ is symmetric positive–definite, it admits the spectral decomposition
Σ = QΛQ⊤, where Q is orthogonal (Q⊤Q = I) and Λ = diag(ξ1, . . . , ξn) collects the eigenvalues
ξ1, . . . , ξn of Σ. Write ṽ := Q⊤v; note that ∥ṽ∥2 = ∥v∥2 because Q is orthogonal.

Upper bound. By assumption ξi ≥ c for every i, hence the eigenvalues of Σ−1 satisfy ξ−1
i ≤ c−1.

Therefore

∥v∥2M = v⊤Σ−1v = ṽ⊤Λ−1ṽ =

n∑
i=1

ṽ2i
ξi
≤ 1

c

n∑
i=1

ṽ2i =
∥v∥22
c

,

which yields ∥v∥M ≤ ∥v∥2/
√
c.

Lower bound. Because trace(Σ) = n,
∑n

i=1 ξi = n, implying ξi ≤ n for every i. Consequently
ξ−1
i ≥ 1/n and

∥v∥2M =

n∑
i=1

ṽ2i
ξi
≥ 1

n

n∑
i=1

ṽ2i =
∥v∥22
n

,

so that ∥v∥M ≥ ∥v∥2/
√
n.

Combining the two inequalities completes the proof.

B.3 PROOF OF LEMMA 2

Proof of Lemma 2. Let v := Φ(x)− Φ(x′) ∈ Rm. By Lemma 1 we have the deterministic bounds
∥v∥2√
m
≤ ∥v∥M ≤ ∥v∥2√

c
.

Multiplying each term by the non–negative scalar ϵ preserves the ordering, and applying the (strictly
increasing) exponential map yields

exp

(
ϵ√
m
∥v∥2

)
≤ exp (ϵ∥v∥M ) ≤ exp

(
ϵ√
c
∥v∥2

)
,

which is precisely the desired statement.
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C ALGORITHM FOR MAHALANOBIS NOISE SAMPLING

Algorithm 1 Sampling from fZ(z) ∝ exp(−ϵ∥z∥M)

1: Input: Privacy budget ϵ, dimension n, a positive definite matrix Σ
2: Sample an n-dimensional random vector N from a multivariate normal distribution with mean

zero and identity covariance matrix.
3: Normalize X = N/∥N∥2
4: Sample Y from a Gamma distribution with shape parameter n and scale parameter 1/ϵ
5: Return Z = Y · Σ1/2X

Lemma 3. The random variable Z returned from Algorithm 1 has a probability-density function of
the form

fZ(z) ∝ exp
(
−ε ∥z∥M

)
, ∥z∥M =

√
z⊤Σ−1z .

Proof. Define U = Y X . Note that conditional on Y = y, U is uniformly distributed on the sphere
of radius y in Rm. Hence

fU |Y (u | y) ∝ y−(m−1) whenever ∥u∥2 = y,

and zero otherwise. Using the Dirac delta function δ(·), we write

fU (u) =

∫ ∞

0

fU |Y (u | y) fY (y) δ (y − ∥u∥2) dy

∝
∫ ∞

0

y−(n−1) ϵn

Γ(n)
y n−1e−ϵy δ (y − ∥u∥2) dy

∝ e−ϵ∥u∥2 ,

so fU (u) ∝ exp(−ϵ∥u∥2).

Since Σ is positive definite, Σ1/2 exists and is invertible. Setting Z = Σ1/2 U , the change-of-variables
formula yields

fZ(z) = fU

(
Σ−1/2z

) ∣∣det(Σ−1/2
)
|

∝ exp
(
−ϵ ∥Σ−1/2z∥2

)
= exp

(
−ϵ
√
z⊤Σ−1z

)
= exp

(
−ϵ ∥z∥M

)
.

This completes the proof.

Table 6: Statistics of datasets.

Dataset STS12 FIQA STSB STS14 Quora NFCorpus MIMIC-III PII-300K

Downstream task STS Retrieval STS STS Retrieval Retrieval - -
Domain SemEval Financial SemEval SemEval QA Medical Medical PII
Sentences 10684 5500 17256 3000 10000 2590 4244 177677
Average sentence length 14.53 10.80 10.17 9.77 9.53 3.31 15.03 47.12
Unique named entities 123 41 228 41 90 13 290 491
Evaluation metric Pearson Corr. NDCG@10 Pearson Corr. Pearson Corr. NDCG@10 NDCG@10 - -

D DATASET STATISTICS AND EVALUATION METRICS

Privacy Metrics. To quantify the privacy risk of our model, we adopt two complementary metrics:
Leakage and Confidence. These metrics assess both the accuracy and certainty of an adversarial
model attempting to infer sensitive information from the model’s outputs.

(1) Leakage. Leakage measures the extent to which an attack model A can recover sensitive tokens
from an obfuscated embedding. Given a sentence si containing sensitive tokens Ci ⊆ C, the attacker
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generates a reconstructed sentence ŝi = A(Φ′(si)) based on the obfuscated embedding. The leakage
is computed by checking whether any sensitive token appears in the reconstructed sentence:

Leakage =
1

T

N∑
i=1

∑
t∈Ci

1 [t ∈ ŝi] (13)

where N is the number of text samples, Ci is the set of sensitive tokens in sentence si, ŝi is the
reconstructed sentence from the attacker, and T =

∑N
i=1 |Ci| is the total number of sensitive token

instances across the dataset. A lower Leakage score indicates better protection of sensitive content,
as fewer sensitive tokens are successfully inferred by the attacker.

(2) Confidence. Confidence quantifies how certain the attack model is when predicting sensitive
tokens, regardless of whether the predictions are correct. It is defined as the average predicted
probability assigned to the true sensitive tokens across all samples:

Confidence =
1

T

N∑
i=1

∑
t∈Ci

PA(t | Φ′(si)) (14)

where Ci ⊆ C is the set of sensitive tokens in sentence si, Φ′(si) is the obfuscated embedding, and
T =

∑N
i=1 |Ci| is the total number of sensitive token instances. The term PA(t | Φ′(si)) denotes the

probability assigned by the attack model A to sensitive token t based on the obfuscated embedding.
A lower Confidence score indicates that the model is less certain in its inference, suggesting stronger
privacy.

Utility Metrics. To assess the utility of the learned representations, we follow the widely adopted
evaluation framework provided by the Massive Text Embedding Benchmark (MTEB) (Muennighoff
et al., 2022). MTEB is a standard benchmark for embedding models, covering a diverse set of
downstream tasks such as classification, clustering, retrieval, and semantic textual similarity. These
tasks reflect the practical performance of embeddings in real-world applications. By using MTEB,
we ensure that our utility evaluation is comprehensive, comparable, and aligned with established
practices in the embedding research community.

E SENSITIVE TOKEN EXTRACTION

We utilize the MIMIC-III clinical notes corpus (Johnson et al., 2018), a de-identified electronic
health record dataset comprising detailed clinical documentation from intensive care units. To
extract privacy-sensitive information, we apply a biomedical Named Entity Recognition (NER)
model (Raza et al., 2022) specifically trained to identify medically relevant entities such as age,
sex, diseases, and symptoms. For non-clinical datasets, named entities are extracted using the
en_core_web_sm NER pipeline from the spaCy library2, which provides general-purpose entity
recognition for categories such as persons, locations, and organizations.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 PERFORMANCE ON MORE DATASETS

In addition to the STS12 (Agirre et al., 2012) and FIQA (Maia et al., 2018) datasets used in the
main experiment, Table 6 also presents statistics of other datasets, including STSB (Cer et al.,
2017), STS14 (Agirre et al., 2014), Quora (Bondarenko et al., 2020), and NFCorpus (Boteva et al.,
2016). Table 7 shows the complete defense performance on all datasets. Besides using Leakage, we
also utilize Confidence to assess the defense performance. This metric reflects the certainty of the
attack model’s predictions. A higher Confidence score indicates that the model is more confident
in its prediction of the sensitive token. For the semantic textual similarity (STS) task, downstream

2https://github.com/explosion/spacy-models/releases/tag/en_core_web_
sm-3.7.0

17

https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.7.0
https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.7.0


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

performance is measured using the Pearson correlation of Cosine Similarity (Pearson corr.). In
the context of information retrieval, we employ the ranking metric NDCG@10. As described in
Section 4.2, SPARSE consistently demonstrates superior performance over LapMech and PurMech
across all levels of perturbation and datasets, both in defense and downstream task metrics.

Table 7: Privacy-utility tradeoff across different defense Methods. Privacy leakage is assessed using
Leakage and Confidence metrics, where lower values indicate stronger privacy protection. Utility is
measured by data-specific downstream performance. All metrics are presented as percentages (%).

Privacy Metrics Utility Metric
Leakage ↓ Confidence ↓ Downstream ↑

Dataset ϵ LapMech PurMech SPARSE LapMech PurMech SPARSE LapMech PurMech SPARSE

STSB

5 20.75 19.03 2.68 1.89 1.98 1.78 40.03 40.05 48.17
10 53.79 49.95 32.39 15.40 13.97 8.07 71.87 71.85 76.14
20 71.82 69.15 64.79 41.76 38.44 36.33 80.95 80.95 81.00
30 76.15 74.98 73.10 52.36 49.28 48.63 81.08 81.08 80.91
40 78.94 77.40 76.42 56.84 54.02 53.98 80.95 80.95 80.81

∞ 86.75 66.57 80.64

STS14

5 1.03 1.55 0.30 20.42 20.88 18.05 39.76 39.71 48.47
10 4.04 4.13 2.41 21.86 21.84 21.10 70.28 70.25 74.44
20 8.64 8.77 9.46 28.05 27.73 28.56 79.16 79.16 79.31
30 11.22 11.26 14.70 30.38 30.39 32.95 79.47 79.47 79.37
40 13.67 13.50 16.12 32.09 32.05 34.81 79.43 79.43 79.32

∞ 21.97 35.99 79.25

Quora

5 25.96 25.87 2.85 2.71 2.70 1.57 11.89 11.78 15.43
10 57.44 54.78 33.67 18.62 15.92 9.94 70.04 70.19 82.19
20 75.56 75.80 68.00 50.87 51.00 41.21 82.79 82.75 83.94
30 81.65 81.65 76.75 58.99 59.08 53.43 83.70 83.72 84.02
40 83.69 83.64 79.79 62.28 62.06 57.32 83.90 83.91 83.97
∞ 89.30 68.30 84.01

NFCorpus

5 7.77 8.45 0.68 1.27 1.06 0.83 23.70 23.61 19.94
10 29.73 31.42 12.16 15.92 15.51 6.73 27.31 27.38 29.61
20 56.76 55.41 46.96 45.70 46.26 35.36 30.76 30.75 31.04
30 69.93 69.26 57.77 58.27 58.00 48.09 31.32 31.32 31.37
40 78.72 79.05 66.55 63.89 63.83 53.85 31.56 31.56 31.52

∞ 88.18 75.54 31.63

F.2 DEFENSE PERFORMANCE ON MORE EMBEDDING MODELS

To assess the generalizability of SPARSE, we evaluate its performance on three representative
embedding models: GTR-base (Ni et al., 2022b), Sentence-T5 (Ni et al., 2022a), and SBERT (Reimers
& Gurevych, 2019). As presented in Table 8, SPARSE consistently achieves low privacy leakage (e.g.,
19% with GTR-base and 17% with SBERT), while preserving strong downstream utility. In contrast,
baseline methods such as LapMech and PurMech not only suffer from higher leakage rates (20–30%)
but also incur greater utility degradation. These results support the generality of our approach and
validate the effectiveness of detecting and perturbing privacy-sensitive dimensions across different
embedding architectures.

Table 8: Defense and downstream performance using different embedding models under ϵ = 10. We
use STS12 dataset and report the mean and standard deviation of 5 runs for all evaluation metrics.

Embedding Models GTR-base Sentence-T5 SBERT
Metrics Leakage ↓ Downstream ↑ Leakage ↓ Downstream ↑ Leakage ↓ Downstream ↑

Non-protected 60.09 74.25 43.83 86.79 42.11 81.36

LapMech 22.34 ±0.62 60.72 ±0.00 31.71 ±0.62 63.16 ±0.00 23.82 ±0.89 66.89 ±0.00

PurMech 22.66 ±0.67 60.72 ±0.00 32.11 ±0.47 63.15 ±0.00 23.59 ±0.78 65.89 ±0.00

SPARSE 19.31 ±0.21 65.27 ±0.00 22.38 ±0.44 74.45 ±0.00 17.15 ±0.74 69.42 ±0.00
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F.3 COMPARISON WITH PII-BASED DEFENSE METHODS

Since the goal of SPARSE aims to mitigate the privacy leakage of sensitive tokens, it raises a natural
question: how does SPARSE compare to traditional PII removal or transformation methods? To
answer this question, we evaluate three additional PII-based defense approaches: (1) PII removal
via Azure Language Service (Microsoft Corporation), which replaces private tokens with ’*’, (2)
Random word replacement from the corpus, and (3) Semantic word replacement within the same
named entity category. The results are presented in Table 9. We have the following key insights:

PII transformation incurs significant information loss. All PII-based strategies lead to noticeable
degradation in downstream performance. For instance, PII redaction reduces STS12 accuracy from
74% to 59%, and FIQA from 33% to 21%. Semantic replacement fares slightly better, with scores of
64% (STS12) and 18% (FIQA), but still underperforms relative to the original embeddings. Random
replacement exhibits a similar decline, indicating that simple token-level transformations often disrupt
semantic integrity.

SPARSE achieves a better privacy-utility tradeoff. While PII transformations can obscure sensitive
content, they often compromise task utility. To evaluate this tradeoff, we define a tradeoff rate metric
R = ∆Leakage

∆Utility , where ∆Leakage is the reduction in privacy leakage, and ∆Utility is the drop in
downstream performance relative to the unprotected embeddings. For simplicity and upper-bound
estimation, we assume that PII-based methods reduce leakage to zero. As shown in Table 9, SPARSE
achieves markedly higher tradeoff rates of 23.11 on STS12 and 26.30 on FIQA, compared to 4–6
for the PII-based approaches. These results verify the advantage of embedding-level defenses like
SPARSE, which enable more nuanced and fine-grained privacy preservation without sacrificing utility.

Table 9: Comparison of privacy-utility tradeoff between SPARSE and PII transformation methods.

Dataset Defense Methods Leakage ↓(%) Downstream ↑(%) Tradeoff Rate R ↑

STS12

Unprotected 60.09 74.25 -
RemovePII - 59.47 4.12

Random-Replace - 60.50 4.42
Semantic-Replace - 64.46 6.22
SPARSE (ϵ = 20) 36.98 73.25 23.11

FIQA

Unprotected 77.35 33.56 -
RemovePII - 21.24 6.27

Random-Replacement - 19.20 5.38
Semantic-Replacement - 18.37 5.09

SPARSE (ϵ = 20) 53.41 32.65 26.30

F.4 HYPERPARAMETER ANALYSIS

We analyze the impact of the regularization parameter λ on the tradeoff between privacy and utility.
As shown in Table 10, increasing λ results in reduced leakage across all values of ϵ, confirming that
stronger regularization suppresses sensitive information more effectively. However, this comes at the
cost of reduced downstream performance, particularly under lower ϵ, where the noise becomes more
dominant. Notably, moderate values such as λ = 1e−3 strike a balance, achieving significant privacy
gains with tolerable performance degradation.

G COMPUTATIONAL OVERHEAD

We provide an analysis of the computational overhead introduced by SPARSE, focusing on both
inference-time noise sampling and offline neuron mask training.

Inference Cost. During inference, the dominant overhead arises from sampling Mahalanobis noise,
which involves a lightweight matrix multiplication. To evaluate efficiency, we measured the average
inference latency per sample over 10,000 runs and compared SPARSE with two representative
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Table 10: Effect of the regularization hyperparameter λ on privacy leakage and downstream perfor-
mance under different privacy budgets ϵ. Smaller λ values lead to stronger regularization.

Leakage ↓(%) Downstream ↑ (%)

Dataset λ ϵ = 5 10 20 30 40 ϵ = 5 10 20 30 40

STS12

1e−2 0.52 0.91 1.37 1.84 2.15 22.14 36.87 43.25 44.06 44.38
5e−3 1.36 3.82 7.14 10.34 13.76 27.61 48.05 56.17 57.88 58.19
1e−3 4.34 19.31 36.98 43.81 47.54 34.12 65.27 73.25 74.04 74.15
5e−4 7.62 25.83 44.23 51.41 55.27 31.33 59.78 67.10 67.98 68.24
1e−4 9.88 33.02 51.47 58.62 62.90 28.40 52.45 59.66 60.34 60.79

FIQA

1e−2 0.78 1.28 1.93 2.71 3.26 8.71 13.82 17.44 17.83 18.14
5e−3 2.26 6.42 11.68 17.23 21.14 11.38 18.67 25.09 25.66 25.94
1e−3 8.48 31.62 53.41 63.51 68.13 14.87 23.45 32.65 33.58 33.85
5e−4 11.05 36.43 58.23 67.28 71.83 13.72 21.42 28.93 29.84 30.11
1e−4 13.61 40.82 62.14 70.25 74.44 12.45 18.63 25.42 26.28 26.50

baselines: the Laplace Mechanism and the Purkayastha Mechanism. The results are summarized in
Table 11.

Table 11: Average inference time per sample (in microseconds).

Method Latency (µs/sample) ↓
Laplace Mechanism 39.8
Purkayastha Mechanism 33,200
SPARSE (ours) 48.4

As shown, SPARSE introduces only a marginal overhead compared to the Laplace Mechanism (less
than 25% increase), while being several orders of magnitude more efficient than the Purkayastha
Mechanism. This confirms that SPARSE is suitable for real-time and low-latency applications.

Training Cost. The training cost arises from learning the neuron mask used to identify privacy-
sensitive dimensions. This is a one-time offline process that can be precomputed and reused, and
therefore does not affect inference efficiency. The training time scales linearly with dataset size and
remains practical in common settings. For instance, training on 10,000 samples takes 25.3 minutes,
and on 20,000 samples, it completes in under 45 minutes. Further acceleration can be achieved with
larger batch sizes or distributed training.

H IMPLEMENTATION DETAILS OF SPARSE

H.1 TRAINING ALGORITHM FOR NEURON-SENSITIVITY DETECTION

Algorithm 2 details the training procedure used to learn a neuron mask that identifies privacy-sensitive
dimensions in the embedding space. The method jointly optimizes a differentiable binary mask and a
classifier to distinguish between samples containing a privacy concept and their perturbed counterparts.
A hard concrete distribution is used to approximate binary masking in a differentiable manner, and
the training objective combines a classification loss with a sparsity-inducing regularization term.

H.2 TRAINING SETTINGS

We train our privacy-sensitive dimension identification model using mini-batch gradient descent with
the Adam optimizer. The model is trained for 100 epochs with a batch size of 64 and a learning rate
of 1× 10−4. The predictor Pθ is implemented as a multi-layer perceptron (MLP) with two hidden
layers of sizes 256 and 128, respectively, and ReLU activations. We conduct a hyperparameter search
over λ ∈ {0.01, 0.005, 0.001, 0.0005, 0.0001} and set λ = 0.001 as the default for all experiments
unless stated otherwise. All implementations are based on PyTorch.
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Algorithm 2 Training Neuron Mask for Privacy-Sensitive Dimension Detection

1: Input: Paired dataset D+, D−, embedding function Φ(·), learning rate η, temperature β, regu-
larization coefficient λ, initialization of mask logits logα, constants ξ = 1.1, γ = −0.1

2: Initialize classifier parameters θ
3: for each epoch = 1 to N do
4: for each minibatch {(s+i , s

−
i )} ⊂ (D+, D−) do

5: for each mask dimension i do
6: Sample µi ∼ U(0, 1)
7: Compute si = σ

(
1
βi

(
log µi

1−µi
+ logαi

))
8: Compute mi = min (1,max (0, si(ξ − γ) + γ))
9: end for

10: Compute masked embeddings: Φ+
m = Φ(s+)⊙m, Φ−

m = Φ(s−)⊙m
11: Compute classification loss Lcls(m, θ) using Eq. equation 3
12: Compute regularization loss Lreg(m) using Eq. equation 4
13: Compute total loss: Ltotal = Lcls + λLreg
14: Update θ ← θ − η∇θLtotal
15: Update logα← logα− η∇logαLtotal
16: Update log β ← log β − η∇log βLtotal
17: end for
18: end for
19: Output: Trained classifier Pθ, optimized neuron mask m

H.3 COMPUTING RESOURCES

All experiments were performed on a workstation with an Intel Core i9-10980XE CPU (18 cores, 36
threads, 3.00GHz) and an NVIDIA RTX 3090 GPU with 24GB of memory. The system runs on a
64-bit x64 architecture.

I IMPLEMENTATION DETAILS OF ATTACK MODELS

To thoroughly evaluate the privacy risks associated with text embeddings, we adopt three repre-
sentative attack models: Vec2text (Morris et al., 2023), GEIA (Li et al., 2023), and MLC (Song &
Raghunathan, 2020). These models represent both sentence-level and word-level inference attacks,
and are implemented or fine-tuned under controlled conditions to assess the effectiveness of various
privacy-preserving mechanisms.

I.1 VEC2TEXT

Vec2text is a sentence-level attack model designed to reconstruct input text directly from embed-
dings. We use the publicly available pre-trained version of Vec2text3, which is based on the GPT-2
architecture. To simulate a realistic adversarial scenario, we fine-tune this model for 50 epochs
individually on embeddings perturbed by each defense method (LapMech, PurMech, and SPARSE).
The fine-tuning is performed using a batch size of 32 and a learning rate of 5e-5, optimized with
Adam.

I.2 GEIA

GEIA is another sentence-level reconstruction model that inverts embeddings into textual sequences
using a fine-tuned GPT-2 decoder. Unlike Vec2text, GEIA employs a mapping network to project
embeddings into the GPT-2 latent space. We use GEIA based on the original paper4, using a two-layer
MLP as the projection module. The GPT-2 decoder is initialized from the HuggingFace Transformers
library and fine-tuned for 30 epochs using embeddings from each defense method. The model is
optimized using Adam with a learning rate of 3e-5 and trained with a batch size of 16.

3https://huggingface.co/ielabgroup/vec2text_gtr-base-st_inversion
4https://github.com/HKUST-KnowComp/GEIA
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I.3 MLC

MLC is a word-level embedding inversion attack model that predicts whether specific sensitive tokens
are present in the input text based on its embedding. The model consists of a three-layer MLP with
hidden sizes [512, 256, 128], ReLU activations, and a sigmoid output layer. We train a separate MLC
for each perturbation method using a binary cross-entropy loss function. Training is performed for 20
epochs using a batch size of 64 and a learning rate of 1e-4 with the Adam optimizer.

J CASE STUDY ON MIMIC-III DATASET

To demonstrate the privacy risks in a specific threat domain, we conducted a case study using MIMIC-
III clinical notes (Johnson et al., 2018). Table 12 presents the results of embedding inversion attack
on two types of sensitive tokens ("age" and "disease name") with different noise levels. We assessed
the semantic fidelity of the reconstructed sentences by comparing their similarity to the original text
using cosine similarity from an external embedding model.

In Example 1, we applied a strong perturbation level of ϵ = 5 to perturb the text embeddings.
Under this condition, all three defense methods (LapMech, PurMech, and SPARSE) effectively
prevented the leakage of sensitive age information. However, LapMech and PurMech significantly
degraded the semantic quality of the embeddings with only 11% of the original semantic similarity. In
contrast, SPARSE maintained 62% semantic similarity. In Example 2, we used a lower perturbation
level of ϵ = 10. Here, both LapMech and PurMech failed to protect against privacy leakage and
further compromised the semantic integrity of the embeddings. Conversely, SPARSE successfully
safeguarded the sensitive information while preserving semantic quality of the embeddings.

Table 12: Case study on the MIMIC-III dataset with two sensitive words and perturbation level ϵ. We
highlight the leakage of sensitive words and demonstrate the semantic similarity of the reconstructed
sentence to the ground truth.

Example 1: Protect age with strong noise ϵ = 5

Method Defense Semantic Reconstructed Sentence

Ground truth - - this 68-year-old white male has a history of diabetes, hyperlipidemia and hypertension
Non-private Failed 0.98 this 68-year-old white male has a history of hypertension, hyperlipidemia, and diabetes.
LapMech Success 0.11 age (e.g., blood edemas in males of African PH whose history has been hyperesoteric
PurMech Success 0.11 age (e.g., blood edemas in males of African PH whose history has been hyperesoteric
SPARSE Success 0.62 a white male with diabetes has existing Hyperlipidemia history

Example 2: Protect disease name with weak noise ϵ = 10

Ground truth - - this male has had known coronary disease and prior silent myocardial infarction.
Non-private Failed 0.95 this male has known silent coronary disease and has had prior myocardial infarction.
LapMech Failed 0.23 male has known coronary myopathy. Silent rib syndrome, white-fiddled gyne, and ca
PurMech Failed 0.18 male has known coronary myopathy. Silent-fidged heart attacks. White-fidged-fid
SPARSE Success 0.54 an active male with myocardial infarction, congestive heart disease.

K USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) were used in two ways. First, we employed pre-trained
open-source LLMs as embedding generators to produce text representations, and also served as the
foundation for conducting inversion attacks in our experiments. Second, an LLM-based assistant
(OpenAI GPT-4) was used to improve the clarity and readability of the manuscript through grammar
checking and minor language refinements. All decisions regarding research design, experimental
setup, analysis, and interpretation were made solely by the authors.
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