

CONCEPT-AWARE PRIVACY MECHANISMS FOR DEFENDING EMBEDDING INVERSION ATTACKS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
CONCEPT-AWARE PRIVACY MECHANISMS FOR
DEFENDING EMBEDDING INVERSION ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text embeddings enable numerous NLP applications but face severe privacy risks from embedding inversion attacks, which can expose sensitive attributes or reconstruct raw text. Existing differential privacy defenses assume uniform sensitivity across embedding dimensions, leading to excessive noise and degraded utility. We propose SPARSE, a user-centric framework for concept-specific privacy protection in text embeddings. SPARSE combines (1) differentiable mask learning to identify privacy-sensitive dimensions for user-defined concepts, and (2) the Mahalanobis mechanism that applies elliptical noise calibrated by dimension sensitivity. Unlike traditional spherical noise injection, SPARSE selectively perturbs privacy-sensitive dimensions while preserving non-sensitive semantics. Evaluated across six datasets with three embedding models and attack scenarios, SPARSE consistently reduces privacy leakage while achieving superior downstream performance compared to state-of-the-art DP methods.

1 INTRODUCTION

Text embeddings are general representations of textual data that enable various downstream learning tasks without utilizing the raw text. Recent advances in pre-trained models like Sentence-T5 (Ni et al., 2022a) and SentenceBERT (Reimers & Gurevych, 2019) enable the generation of high-quality embeddings that power numerous NLP applications. A prominent example is retrieval-augmented generation (RAG) systems (Lewis et al., 2020), which have led to the widespread adoption of online embedding database services such as Chroma¹ and Faiss (Johnson et al., 2019).

However, recent research has uncovered critical vulnerabilities in text embeddings through *embedding inversion attacks* (Huang et al., 2024; Pan et al., 2020; Song & Raghunathan, 2020). These attacks can extract sensitive attributes or even reconstruct the original text. For example, prior work (Coavoux et al., 2018) showed that demographic information can be inferred directly from embeddings, while GEIA (Li et al., 2023) demonstrated that full sentences can be recovered. Most strikingly, Vec2Text (Morris et al., 2023) reported that adversaries can reconstruct up to 92% of a 32-token input from T5-based embeddings. Such vulnerabilities pose significant risks in domains handling sensitive data, such as patient notes in medical RAG system. Thus, developing robust defenses against embedding inversion has become a critical challenge.

Differential privacy (DP) (Dwork et al., 2006) is a widely adopted framework for protecting sensitive information due to its rigorous guarantees. However, most existing DP-based defenses implicitly assume that all information in embeddings is equally privacy-sensitive. This assumption has two drawbacks. First, privacy concerns are inherently user- and context-dependent (Brown et al., 2022): one individual may prioritize protecting health conditions, while another may care more about political views or personal relationships. Second, to cover all possible sensitive information, DP mechanisms typically inject substantial noise across all embedding dimensions, which inevitably leads to significant utility degradation. Therefore, it is crucial to develop a defense mechanism that can provide **concept-specific** protection—allowing users to specify which attributes to protect while preserving embedding quality for non-sensitive content. This work aims to address a key research question:

¹<https://docs.trychroma.com/>

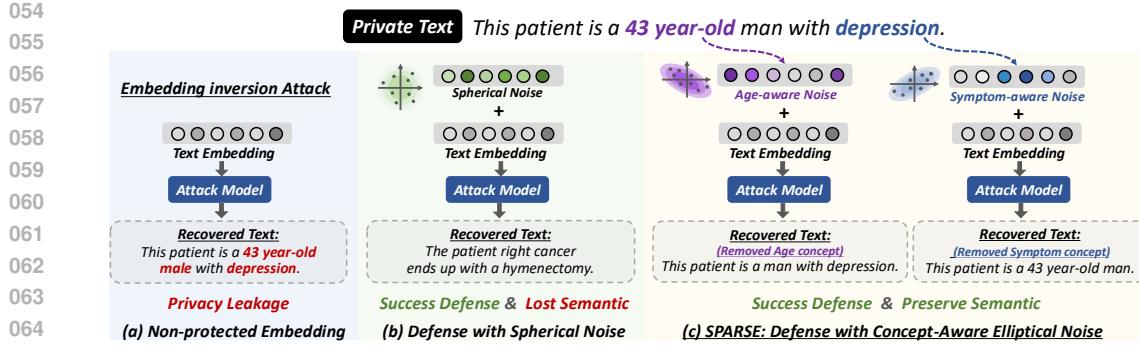


Figure 1: Illustration of embedding inversion attack and different defense strategies. (a) Sensitive information can be easily identified from non-protected text embeddings. (b) Adding spherical noise mitigates privacy leakage but harms textual semantics. (c) Our approach applies elliptical noise guided by a user-defined privacy concept, selectively adding stronger perturbations to privacy-sensitive dimensions while preserving non-sensitive semantics. A real-world case study is presented in Appendix J.

Research Question: *Can we selectively obfuscate user-defined private concepts in embeddings while preserving non-sensitive semantics for downstream tasks?*

However, designing such a defense mechanism is non-trivial. The central challenge lies in the mismatch between existing DP methods and the heterogeneous nature of embedding dimensions. Current approaches add the same level of noise to every embedding dimension, implicitly assuming that all dimensions carry equal amounts of sensitive information. However, our preliminary analysis (see Appendix A) reveals that embedding dimensions exhibit varying degrees of privacy sensitivity with respect to specific concepts. Some dimensions may be highly sensitive to particular privacy attributes (e.g., medical conditions), while others primarily encode non-sensitive semantic features.

To address this challenge, an ideal defense mechanism should accomplish two key objectives: (1) identify which embedding dimensions are privacy-sensitive for a given privacy concept, and (2) design a differential privacy mechanism that calibrates noise injection based on dimension sensitivity while maintaining theoretical guarantees.

We propose SPARSE (Sensitivity-guided Privacy-Aware Representations for better SEMantic-preserving), a novel user-centric framework that improves privacy in text embeddings through sensitivity-guided perturbations. To achieve the first goal, we present a differentiable mask learning framework to estimate the sensitivity of embedding dimensions with respect to a user-defined privacy concept. To achieve the second goal, we introduce the Mahalanobis mechanism, an extension of the generalized Laplace mechanism, which injects elliptical noise calibrated by dimension sensitivity. As illustrated in Figure 1, while traditional methods apply spherical noise that uniformly perturbs all dimensions (panel b), our approach first identifies privacy-sensitive dimensions associated with user-specified concepts (e.g., symptom or age) and then applies elliptical noise with larger perturbations to these sensitive dimensions while minimally affecting others (panel c). We summarize our key contribution as follows:

- **Novel defense paradigm.** We introduce SPARSE, a sensitivity-guided framework for user-defined privacy protection in embeddings, and introduce the Mahalanobis mechanism—an extension of differential privacy that provides rigorous theoretical guarantees.
- **Better privacy-utility tradeoffs.** We evaluate SPARSE against two state-of-the-art differential privacy methods across six datasets. Experimental results show that SPARSE consistently reduces privacy leakage while achieving better downstream performance.
- **Robust generalization.** We assess the generalizability of SPARSE using three different embedding models and three attack models. Experimental results demonstrate that SPARSE remains consistently effective regardless of the specific embedding method or threat model used.
- **Comparable performance to white-box defense.** We further design a white-box variant of SPARSE with full access to the threat model. Despite lacking prior knowledge of the attack model, SPARSE achieves performance close to the white-box defense, demonstrating its ability to accurately identify privacy-sensitive dimensions.

108

2 PRELIMINARIES

109

2.1 BACKGROUND ON DIFFERENTIAL PRIVACY

110 Differential Privacy (DP) (Dwork et al., 2006) is a rigorous privacy guarantee that ensures a randomized mechanism \mathcal{M} behaves similarly on any two inputs. There are two common models of DP: central and local. In this work, we focus on Local Differential Privacy (LDP) (Kasiviswanathan et al., 111 2011), where each user perturbs their data locally before sharing it. This approach offers stronger 112 privacy guarantees in settings where the data collector cannot be trusted, as it removes the need for a 113 trusted aggregator.

114 **Definition 1** (Local Differential Privacy). *A randomized mechanism \mathcal{M} satisfies ϵ -local differential 115 privacy if for all pairs of possible user inputs $x, x' \in \mathcal{X}$ and any output set $O \subseteq \text{Range}(\mathcal{M})$,*

$$116 \Pr[\mathcal{M}(x) \in O] \leq e^\epsilon \cdot \Pr[\mathcal{M}(x') \in O],$$

117 where $\epsilon \geq 0$ is a privacy parameter and $\text{Range}(\mathcal{M})$ denotes the set of all possible outputs of \mathcal{M} . The 118 mechanism \mathcal{M} outputs a random sample from a probability distribution over possible outputs, rather 119 than a deterministic value. The ϵ parameter, termed the *privacy budget*, controls the similarity in the 120 output, with a smaller ϵ indicating higher privacy protection, and vice versa.

121 **Generalization with distance metrics.** Local differential privacy (LDP) requires a mechanism to 122 produce nearly indistinguishable outputs for any two possible inputs, regardless of how different the 123 inputs are. While this provides a strong privacy guarantee, it often leads to significant utility loss, 124 especially in continuous or semantic domains such as text embeddings (Feyisetan et al., 2019). To 125 address this limitation, we adopt metric local differential privacy (metric LDP) (Chatzikokolakis et al., 126 2013; Alvim et al., 2018), a generalization of LDP to metric spaces. Metric LDP relaxes the 127 indistinguishability requirement by incorporating a distance function d over the input space. This 128 allows the privacy guarantee to degrade gracefully as the dissimilarity between inputs increases.

129 **Definition 2** (Metric Local Differential Privacy). *Let $\epsilon \geq 0$ be the privacy parameter, and d be a 130 distance metric for the input space. A mechanism \mathcal{M} satisfies ϵd -LDP, if for any two inputs x, x' and 131 any output set $O \subseteq \text{Range}(\mathcal{M})$,*

$$132 \Pr[\mathcal{M}(x) \in O] \leq e^{\epsilon \cdot d(x, x')} \cdot \Pr[\mathcal{M}(x') \in O].$$

133 The key idea is that the privacy guarantee depends on how similar the inputs are: closer inputs 134 must yield nearly indistinguishable outputs, while distant inputs may produce more distinguishable 135 ones. Although the privacy budget ϵ remains fixed, the output bound varies with the input distance. 136 To instantiate a mechanism satisfying metric LDP under ℓ_2 distance, we introduce the generalized 137 Laplace mechanism, which is widely used for embedding sanitization against adversarial attacks.

138 **Definition 3** (Generalized Laplace Mechanism (Wu et al., 2017)). *Let $\epsilon \geq 0$ be the privacy budget. 139 The generalized Laplace mechanism $\mathcal{M}_{\text{Lap}} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ perturbs any input $x \in \mathbb{R}^n$ as*

$$140 \mathcal{M}_{\text{Lap}}(x) = x + Z_{\text{Lap}}, \quad Z_{\text{Lap}} \sim f_Z(z) \propto \exp(-\epsilon \|z\|_2).$$

141 We note two important properties of the generalized Laplace mechanism: (1) it satisfies ϵd -LDP 142 with respect to the ℓ_2 norm (Du et al., 2023); and (2) it adds isotropic (spherical) noise, implicitly 143 assuming that privacy sensitivity is uniformly distributed across all embedding dimensions.

144

2.2 PROBLEM STATEMENT

145 **Attack Scenario.** In this work, we focus on a specific embedding inversion attack scenario where the 146 adversary aims to reconstruct the input text from the corresponding text embedding. Formally, given 147 a sequence of tokens s and the text embedding model $\Phi : s \rightarrow \mathbb{R}^n$, where n denotes the embedding 148 dimension, the attacker seeks to find a function g to approximate the inversion function of Φ as: 149 $g(\Phi(s)) \approx \Phi^{-1}(\Phi(s)) = s$. These inversion attacks can be classified into two categories based on 150 their target: (i) token-level inversion (Pan et al., 2020; Song & Raghunathan, 2020), which focuses 151 on retrieving individual tokens from the original text, and (ii) sentence-level inversion (Li et al., 2023; 152 Morris et al., 2023), which attempts to reconstruct the entire ordered sequence of text. Regardless of 153 the attack model employed, our study prioritizes understanding whether private information (e.g., 154 names, diseases) within the original text is revealed.

162 **Privacy Definition.** Privacy is inherently context-dependent (Brown et al., 2022). While many prior
 163 works adopt a narrow operational definition centered on personally identifiable information (PII) such
 164 as names or identification numbers (Sousa & Kern, 2023), such a fixed notion is often insufficient.
 165 In practice, users may care about protecting different types of sensitive attributes—for instance,
 166 health conditions, political views, or personal relationships. To capture this variability, we adopt a
 167 *user-centric privacy definition*, where the data owner specifies a privacy concept \mathcal{C} representing the
 168 set of tokens or attributes to be protected. In our experiments, we instantiate \mathcal{C} primarily with named
 169 entities and PII tokens, but the framework naturally generalizes to other user-defined concepts.

170 **Defense Scenario.** Our goal is to develop privacy-preserving embeddings that satisfy two objectives:

- 171 • **Goal 1 (Defending against sensitive token inference attack):** For the threat model \mathcal{A} and text
 172 embedding $\Phi(\mathbf{s})$, where \mathbf{s} is a sentence that contains sensitive information. The data owner defines
 173 a privacy concept $\mathcal{C} = \{t_1, t_2, \dots, t_{|\mathcal{C}|}\}$, which is a set of sensitive tokens (e.g., names, medical
 174 conditions) that must be protected. The objective is to generate an obfuscated embedding $\Phi'(\mathbf{s})$
 175 that prevents the threat model \mathcal{A} from accurately reconstructing the tokens in \mathcal{C} .
- 176 • **Goal 2 (Maintaining downstream utility):** The secondary objective is to ensure that the protective
 177 measures, while securing the embeddings from inversion attacks, do not compromise the utility of
 178 the embeddings in downstream tasks.

180 3 SPARSE FRAMEWORK

182 3.1 IDENTIFYING PRIVACY-SENSITIVE DIMENSION THROUGH NEURON MASK LEARNING

184 To quantify the sensitivity of individual dimensions with respect to a privacy concept \mathcal{C} , we propose a
 185 neuron mask learning framework that estimates a *relaxed* binary mask over the embedding dimensions.
 186 The goal is to learn a mask vector $\mathbf{m} \in [0, 1]^n$ that approximates a binary selection: assigning values
 187 close to 1 for dimensions relevant to \mathcal{C} , and close to 0 otherwise. Given an embedding $\Phi(\mathbf{s})$, the
 188 masked representation is denoted by $\Phi(\mathbf{s}) \odot \mathbf{m}$, where \odot indicates the Hadamard product.

189 **Differentiable Neuron Mask Learning.** Although the ultimate goal is to approximate a binary
 190 mask, direct optimization over discrete values is not feasible due to non-differentiability. Therefore,
 191 we resort to a practical method that employs a smoothing approximation of the discrete Bernoulli
 192 distribution (Maddison et al., 2017). Under this framework, we assume each mask m_i follows a hard
 193 concrete distribution $\text{HardConcrete}(\log \alpha_i, \beta_i)$ with location α_i and temperature β_i (Louizos et al.,
 194 2018) as:

$$195 \quad s_i = \sigma \left(\frac{1}{\beta_i} \left(\log \frac{\mu_i}{1 - \mu_i} + \log \alpha_i \right) \right), m_i = \min (1, \max (0, s_i (\xi - \gamma) + \gamma)), \quad (1)$$

198 where σ denotes the sigmoid function. $\xi = 1.1$ and $\gamma = -0.1$ are constants, and $\mu_i \sim \mathcal{U}(0, 1)$ is the
 199 random sample drawn from the uniform distribution. α_i and β_i are learnable parameters. The random
 200 variable s_i follows a binary concrete (or Gumbel Softmax) distribution, which is an approximation
 201 of the discrete Bernoulli distribution. Samples from the binary concrete distribution are identical to
 202 samples from a Bernoulli distribution with probability α_i as $\beta_i \rightarrow 0$, and the location α_i allows for
 203 gradient-based optimization through reparametrization tricks (Jang et al., 2022). During the inference
 204 stage, the mask m_i could be derived from a hard concrete gate:

$$205 \quad m_i = \min (1, \max (0, \sigma (\log \alpha_i) (\xi - \gamma) + \gamma)). \quad (2)$$

207 **Training Dataset Construction.** We construct two datasets to identify the embedding dimensions
 208 most affected by the privacy concept \mathcal{C} . The positive dataset $D^+ = \{\mathbf{s}_1, \dots, \mathbf{s}_{|D^+|}\}$ consists of
 209 sentences that include tokens representing the concept \mathcal{C} . For each sentence $\mathbf{s}_i \in D^+$, we construct a
 210 corresponding negative sample by removing all tokens related to \mathcal{C} , denoted as $\mathcal{R}(\mathbf{s}_i, \mathcal{C})$. This yields
 211 the negative dataset $D^- = \{\mathcal{R}(\mathbf{s}_i, \mathcal{C}) \mid \mathbf{s}_i \in D^+\}$, where each sentence is identical to its positive
 212 counterpart except for the absence of concept-specific tokens.

213 **Learning Objective.** The neuron mask \mathbf{m} is trained to satisfy two key objectives: (i) The masked
 214 embedding $\Phi(\mathbf{s}) \odot \mathbf{m}$ should retain sufficient information to distinguish between the positive and
 215 negative datasets D^+ and D^- , respectively; and (ii) the mask \mathbf{m} should be sparse, thereby isolating
 only the most relevant dimensions associated with the privacy-sensitive concept \mathcal{C} . To achieve these

objectives, we define a composite loss function. The first term is a discriminative loss that encourages separation between D^+ and D^- :

$$\mathcal{L}_{\text{cls}}(\mathbf{m}, \theta) = - \sum_{\mathbf{s}^+ \in D^+} \log P_\theta(\Phi(\mathbf{s}^+) \odot \mathbf{m}) - \sum_{\mathbf{s}^- \in D^-} \log (1 - P_\theta(\Phi(\mathbf{s}^-) \odot \mathbf{m})), \quad (3)$$

where $P_\theta(\cdot)$ denotes the probability predicted by a MLP classifier parameterized by θ . To enforce sparsity in the learned mask, we add an L_0 -regularization term based on the expected number of active neurons under the hard concrete distribution:

$$\mathcal{L}_{\text{reg}}(\mathbf{m}) = -\frac{1}{|\mathbf{m}|} \sum_{i=1}^{|\mathbf{m}|} \sigma \left(\log \alpha_i - \beta_i \log \left(\frac{-\gamma}{\xi} \right) \right). \quad (4)$$

The final objective function jointly optimizes the classification performance and sparsity:

$$\min_{\mathbf{m}, \theta} \mathcal{L}_{\text{cls}}(\mathbf{m}, \theta) + \lambda \mathcal{L}_{\text{reg}}(\mathbf{m}), \quad (5)$$

where the regularization coefficient λ controls the trade-off between predictive accuracy and the compactness of the neuron mask. For more implementation details, readers are referred to Appendix H and Algorithm 2.

3.2 EMBEDDING PERTURBATION WITH MAHALANOBIS MECHANISM

Having identified the privacy-sensitive embedding dimensions through the learned neuron mask \mathbf{m} , we now describe how to perturb the embeddings in a sensitivity-aware manner. Specifically, we extend the generalized Laplace mechanism by incorporating a Mahalanobis norm-based perturbation scheme, thereby enabling elliptical noise calibrated by the neuron sensitivity of \mathbf{m} . We begin by formally defining the Mahalanobis norm.

Definition 4 (Mahalanobis Norm). *For any vector $v \in \mathbb{R}^n$, and a positive definite matrix $\Sigma \in \mathbb{R}^{n \times n}$, its Mahalanobis norm is defined as $\|v\|_M = \sqrt{v^\top \Sigma^{-1} v}$.*

Note that for any $\eta > 0$, the Euclidean ball $\{y \in \mathbb{R}^n : \|y - x\|_2 = \eta\}$ defines a sphere, implying isotropic noise in all directions. In contrast, the Mahalanobis ball $\{y \in \mathbb{R}^n : \|y - x\|_M = \eta\}$ defines an ellipsoid. This distinction allows us to inject anisotropic noise whose spread adapts to the sensitivity of each embedding dimension.

Definition 5 (Mahalanobis Mechanism). *Let $\epsilon \geq 0$ be the privacy budget and let $\Sigma \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. The Mahalanobis mechanism $\mathcal{M}_{\text{Mah}} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ perturbs any input x as*

$$\mathcal{M}_{\text{Mah}}(x) = x + Z_{\text{Mah}}, \quad Z_{\text{Mah}} \sim f_Z(z) \propto \exp(-\epsilon \|z\|_M).$$

To calibrate noise based on the learned neuron sensitivity, we define $\Sigma = \text{diag}(m_1 + \delta, \dots, m_n + \delta)$, where m_i is the i -th entry of \mathbf{m} and $\delta = 1e-6$ is a small constant ensuring positive definiteness. For scale compatibility with the isotropic Laplace mechanism, we normalize \mathbf{m} such that $\sum_i m_i = n$ (i.e., $\text{trace}(\Sigma) = \text{trace}(\mathbf{I}_n)$). Algorithm 1 details how to sample Z_{Mah} . We now establish the privacy guarantee of this mechanism:

Theorem 1. *Given a privacy parameter ϵ , the Mahalanobis mechanism outputting $\Phi'(\mathbf{s}) \sim \mathcal{M}(\Phi(\mathbf{s}))$ fulfills $\epsilon\text{d-LDP}$ with respect to the Mahalanobis Norm.*

A formal proof is provided in Appendix B.1. Below, we explain how the privacy guarantee of the Mahalanobis mechanism relates to that of the generalized Laplace mechanism.

Connecting Privacy Guarantee to Generalized Laplace Mechanism. We now show that the privacy guarantee of the Mahalanobis mechanism is equivalent, up to constant factors, to that of the generalized Laplace mechanism. Since the Mahalanobis and Euclidean norms are equivalent in finite-dimensional spaces, the Mahalanobis mechanism preserves the same asymptotic privacy guarantee, differing only by data-independent constants.

Lemma 1. *Let $\Sigma \in \mathbb{R}^{n \times n}$ be positive-definite with $\text{trace}(\Sigma) = n$. Assume the smallest eigenvalue of Σ is bounded below by $c > 0$. Then, for any vector $v \in \mathbb{R}^n$,*

$$\frac{\|v\|_2}{\sqrt{n}} \leq \|v\|_M \leq \frac{\|v\|_2}{\sqrt{c}}.$$

270 Building on this, the following lemma shows that the privacy-loss exponent under the Mahalanobis
 271 mechanism is bounded between two exponents based on the Euclidean norm:

272 **Lemma 2.** *Assume $\text{trace}(\Sigma) = n$ and that the smallest eigenvalue of Σ is bounded below by a
 273 constant $c > 0$. Then, for every input text $\mathbf{s}, \mathbf{s}' \in \mathcal{S}$ and every $\epsilon \geq 0$,*

$$275 \exp\left(\frac{\epsilon}{\sqrt{n}} \|\Phi(\mathbf{s}) - \Phi(\mathbf{s}')\|_2\right) \leq \exp(\epsilon \|\Phi(\mathbf{s}) - \Phi(\mathbf{s}')\|_M) \leq \exp\left(\frac{\epsilon}{\sqrt{c}} \|\Phi(\mathbf{s}) - \Phi(\mathbf{s}')\|_2\right).$$

277 Together, these lemmas show that the Mahalanobis mechanism achieves a privacy guarantee comparable
 278 to that of the generalized Laplace mechanism under the same privacy budget ϵ . The detailed
 279 proof in the section is deferred to Appendix B.

281 4 EXPERIMENTAL EVALUATION

283 4.1 EXPERIMENT SETUP

285 **Datasets.** Following prior work on embedding inversion (Morris et al., 2023; Kim et al., 2022),
 286 We evaluate six benchmark datasets with downstream labels (for privacy-utility tradeoff) and two
 287 real-world datasets, PII-Masking-300K (Team, 2023) and MIMIC-III (Johnson et al., 2018), covering
 288 27 PII types and clinical notes. We extract the named entities as sensitive information for these
 289 datasets using named entity recognition models (detailed in Appendix E).

290 **Attack models.** Three attack models are employed to access the privacy risks of text embedding,
 291 including Vec2text (Morris et al., 2023), GEIA (Li et al., 2023), and MLC (Song & Raghunathan,
 292 2020). Vec2text and GEIA are sentence-level attack methods that leverage pre-trained LLMs to
 293 reconstruct the input sentence. MLC utilizes a three-layer MLP to predict the existence of individual
 294 words. Due to its superior performance, Vec2text serves as our default attack model in subsequent
 295 experiments.

296 **Defense methods.** We compare our proposed SPARSE with two established differential privacy
 297 approaches: generalized Laplace mechanism (Wu et al., 2017) (LapMech) and Purkayastha mecha-
 298 nism (Du et al., 2023) (PurMech). LapMech introduces privacy by sampling noise from the Laplace
 299 distribution and adding it to the embedding vectors, while PurMech utilizes Purkayastha directional
 300 noise to perturb embeddings while preserving semantic meaning. These baselines represent the state-
 301 of-the-art in embedding privacy protection methods and provide strong comparisons for evaluating
 302 our approach.

303 **Evaluation Metrics.** To quantify privacy risk, we use two measures: (1) *Leakage*: the attack model’s
 304 accuracy in predicting sensitive tokens (lower is better); (2) *Confidence*: the probability of the attack
 305 model to predict the sensitive tokens (lower indicates less exposure). For downstream utility, we
 306 report each dataset’s standard task metric (e.g., NDCG or correlation; see Appendix Table 6). Please
 307 refer to Appendix D for a detailed description of all the evaluation metrics.

308 **Embedding models.** We evaluate three widely used embedding models: GTR-base (Ni et al., 2022b),
 309 Sentence-T5 (Ni et al., 2022a), and SBERT (Reimers & Gurevych, 2019). GTR-base is the default
 310 model due to its higher vulnerability to the Vec2text attack.

312 4.2 PRIVACY-UTILITY TRADE-OFF ANALYSIS

314 We evaluate the privacy-utility trade-off across different defense methods and privacy budgets of ϵ
 315 using the STS12 and FIQA datasets. Note that we vary the values of $\epsilon \in \{5, 10, 20, 30, 40\}$ following
 316 the settings of prior works (Feyisetan et al., 2020; 2019). The results are presented in Table 1. Here,
 317 $\epsilon = \infty$ denotes the unprotected embedding. In comparison with the baseline methods (LapMech
 318 and PurMech), SPARSE demonstrates consistent superiority in minimizing privacy leakage while
 319 maintaining downstream utility. On the STS12 dataset at $\epsilon = 10$, SPARSE reduces privacy leakage
 320 from 60% to 19%, whereas alternative methods achieve only a 22% reduction. Meanwhile, SPARSE
 321 maintains 65% downstream utility while other methods decline to 60%. Although the marginal
 322 benefits diminish as ϵ increases, SPARSE’s superior performance remains consistent across varying
 323 privacy budgets and datasets. We evaluate SPARSE on four more datasets and two real-world cases
 324 with sensitive attributes. As detailed in Appendix F.1 and 4.4, SPARSE consistently reduces privacy
 325 leakage and outperforms baseline methods.

324 Table 1: Privacy-utility tradeoff across various defense methods. The mean and standard deviation of
 325 5 runs are reported in percentages(%).

Dataset	ϵ	Privacy Metrics						Utility Metric		
		Leakage \downarrow			Confidence \downarrow			Downstream \uparrow		
		LapMech	PurMech	SPARSE	LapMech	PurMech	SPARSE	LapMech	PurMech	SPARSE
STS12	5	7.36 \pm 0.61	7.42 \pm 0.49	4.34 \pm 0.51	6.70 \pm 0.32	6.80 \pm 0.29	6.41 \pm 0.23	29.28 \pm 0.00	29.31 \pm 0.00	34.12 \pm 0.00
	10	22.34 \pm 1.38	22.66 \pm 1.15	19.31 \pm 0.21	9.39 \pm 0.17	9.42 \pm 0.17	8.91 \pm 0.12	60.72 \pm 0.00	60.72 \pm 0.00	65.27 \pm 0.00
	20	38.17 \pm 0.86	38.04 \pm 0.71	36.98 \pm 0.45	24.70 \pm 0.75	24.74 \pm 0.71	23.85 \pm 0.43	72.47 \pm 0.00	72.47 \pm 0.00	73.25 \pm 0.00
	30	44.74 \pm 0.43	44.76 \pm 0.49	43.81 \pm 0.24	34.59 \pm 0.32	34.59 \pm 0.24	34.16 \pm 0.76	73.68 \pm 0.00	73.68 \pm 0.00	74.04 \pm 0.00
	40	48.48 \pm 0.60	48.34 \pm 0.57	47.54 \pm 0.44	38.75 \pm 0.80	38.82 \pm 0.79	38.49 \pm 0.76	73.98 \pm 0.00	73.98 \pm 0.00	74.15 \pm 0.00
	∞	60.09			47.81			74.25		
FIQA	5	12.56 \pm 0.98	13.01 \pm 1.40	8.48 \pm 0.30	6.67 \pm 0.51	6.70 \pm 0.49	6.18 \pm 0.25	10.64 \pm 0.24	10.63 \pm 0.25	14.87 \pm 0.15
	10	35.17 \pm 1.46	35.31 \pm 0.86	31.62 \pm 0.75	16.70 \pm 0.74	16.55 \pm 0.66	13.45 \pm 0.38	21.74 \pm 0.36	21.76 \pm 0.29	23.45 \pm 0.29
	20	55.69 \pm 1.05	55.38 \pm 1.26	53.41 \pm 1.89	35.32 \pm 0.74	35.25 \pm 0.78	33.77 \pm 0.73	32.22 \pm 0.14	32.23 \pm 0.13	32.65 \pm 0.19
	30	64.12 \pm 0.82	64.13 \pm 0.85	63.51 \pm 0.69	43.35 \pm 1.50	43.56 \pm 1.53	42.21 \pm 0.91	33.24 \pm 0.03	33.26 \pm 0.04	33.58 \pm 0.13
	40	68.85 \pm 1.26	68.63 \pm 1.36	68.13 \pm 0.80	48.07 \pm 1.08	47.77 \pm 0.78	46.65 \pm 0.55	33.50 \pm 0.14	33.52 \pm 0.15	33.85 \pm 0.11
	∞	77.35			54.48			33.56		

4.3 DEFENSE ROBUSTNESS AGAINST DIFFERENT THREAT MODELS

While previous experiments focus on Vec2text, it is important to assess SPARSE under varied threat models. We evaluate privacy leakage under three embedding inversion attack models: MLC (Song & Raghunathan, 2020), GEIA (Li et al., 2023), and Vec2text (Morris et al., 2023). Since changing the attack model does not impact downstream utility, we report only the Leakage metric. As shown in Table 2, SPARSE consistently outperforms LapMech and PurMech across all attack models by a significant margin. Additionally, we notice that complex attack models, such as Vec2text and GEIA, are more susceptible to embedding perturbation, exhibiting substantial leakage reductions of 92% and 72% respectively at $\epsilon = 5$. In contrast, the shallow MLC model demonstrates less vulnerability to our defense method. The results suggest that SPARSE offers a more resilient defense against diverse embedding inversion threats.

Table 2: Defense performance with respect to different attack models. We report the Leakage metric in percentage (%) on the STS12 dataset. In addition, we highlight the relative performance compared to the non-protected embedding in red.

Attack Models	$\epsilon = \infty$	$\epsilon = 5$			$\epsilon = 10$		
		LapMech	PurMech	SPARSE	LapMech	PurMech	SPARSE
Vec2text (Morris et al., 2023)	60.09	7.36 (-87.75%)	7.42 (-87.65%)	4.34 (-92.78%)	22.34 (-62.82%)	22.66 (-62.29%)	19.31 (-67.86%)
GEIA (Li et al., 2023)	25.34	12.30 (-51.46%)	12.36 (-51.22%)	7.08 (-72.06%)	20.60 (-18.71%)	21.21 (-16.30%)	15.82 (-37.57%)
MLC (Song & Raghunathan, 2020)	53.20	19.39 (-63.55%)	19.80 (-62.78%)	17.63 (-66.86%)	32.74 (-38.45%)	32.68 (-38.57%)	29.59 (-44.38%)

4.4 EVALUATION ON REAL-WORLD PRIVACY THREATS

We evaluated SPARSE’s resilience to inversion attacks across various data domains and privacy categories. This evaluation used the PII-Masking 300K dataset (Team, 2023), and MIMIC-III clinical notes (Johnson et al., 2018). The results in Table 3 demonstrate significant privacy vulnerabilities in unprotected embeddings and the superior protection offered by our approach. In the MIMIC-III dataset, unprotected models exhibited severe privacy leakage with attack models successfully extracting sensitive attributes at concerning rates: 88% for sex, 70% for diseases, and 82% for symptoms. Under equivalent perturbation budgets of ϵ , SPARSE reduces sex attribute leakage from 88% to 28%, while both LapMech and PurMech achieve only modest reductions to 43%. This superior protection generalizes across all evaluated privacy categories.

4.5 COMPARING SPARSE WITH WHITE-BOX DEFENSE

Our defense framework is predicated on the hypothesis that sensitive information is encoded within specific dimensions of the embedding space. Consequently, selectively perturbing these dimensions could effectively mitigate inversion attacks. This motivates two key questions: (i) How effective could SPARSE be under perfect knowledge of embedding sensitivity? and (ii) How closely can our

378 Table 3: Defense performance on different categories of sensitive information. We report the Leakage
 379 metric in percentage (%) with $\epsilon = 10$.
 380

Dataset	PII-300K				MIMIC-III				
	Category	Sex	City	State	Country	Age	Sex	Disease	Symptom
Non-protected	86.12	68.45	75.43	84.07	58.49	88.40	70.43	82.76	
LapMech	42.35	33.39	36.63	40.37	31.88	43.38	23.32	38.17	
PurMech	43.53	34.10	38.45	41.45	31.89	43.38	22.86	31.30	
SPARSE	33.76	28.76	33.62	35.19	28.98	28.45	18.28	29.35	

381
 382 black-box approach approximate this ideal? To answer these questions, we design **SPARSE-WB**, an
 383 empirical upper-bound defense assuming white-box access to the attack model.
 384

385 **Extending SPARSE to White-Box Defense.** For each sensitive token, we use Integrated Gradi-
 386 ents (Sundararajan et al., 2017) to compute the gradient of the model’s output with respect to the
 387 input embedding, treating sensitivity estimation as a feature attribution problem. Each dimension’s
 388 attribution score reflects its influence on the prediction. Instead of applying the neuron mask as in
 389 the original SPARSE, the white-box method uses the attribution score for sampling noise from the
 390 Mahalanobis mechanism.
 391

392 **Results.** As shown in Table 4, SPARSE-WB consistently achieves the best privacy-utility tradeoff
 393 across different datasets and privacy budgets. The promising result of SPARSE-WB verifies our
 394 hypothesis and servers as a strong upper bound. Importantly, we notice SPARSE closely approaches
 395 this white-box defense performance, especially at $\epsilon = 20, 30, 40$, with only small gaps in both leakage
 396 and utility. This suggests that SPARSE is able to effectively approximate the white-box sensitivity
 397 estimation without access to the attack model, which is crucial in realistic threat settings.
 398

400 Table 4: Comparison of SPARSE with its white-box variant and LapMech to assess how well SPARSE
 401 approximates an ideal defense with perfect knowledge of sensitive dimensions. Results are reported
 402 in terms of privacy leakage and downstream utility under varying privacy budgets ϵ .
 403

Dataset	Method	Leakage ↓(%)					Downstream ↑(%)				
		$\epsilon = 5$	10	20	30	40	$\epsilon = 5$	10	20	30	40
STS12	LapMech	7.36	22.34	38.17	44.74	48.48	29.28	60.72	72.47	73.68	73.98
	SPARSE	4.34	19.31	36.98	43.81	47.54	34.12	65.27	73.25	74.04	74.15
	SPARSE-WB	1.43	12.01	33.67	42.95	47.13	40.92	67.45	74.01	74.13	74.10
FIQA	LapMech	12.56	35.17	55.69	64.12	68.85	10.64	21.74	32.22	33.24	33.50
	SPARSE	8.48	31.62	53.41	63.51	68.13	14.87	23.45	32.65	33.58	33.85
	SPARSE-WB	3.03	22.35	51.27	62.70	67.92	14.58	26.46	32.87	33.55	33.58

417 4.6 QUALITATIVE ANALYSIS OF PRIVACY-SENSITIVE DIMENSIONS

418 We present a qualitative analysis to better understand the quality of the privacy-sensitive dimensions
 419 identified by SPARSE for specific privacy concepts. To enhance interpretability and visualization,
 420 we focus on individual words rather than aggregated token sets as in prior experiments. Figure 2
 421 visualizes the learned neuron masks for six semantically coherent groups: weekdays, countries,
 422 months, U.S.-related terms, gender-related terms, and numbers. The x-axis shows the union of the
 423 top-5 neuron indices most strongly associated with each word. We have the following two findings:
 424

425 **1) Semantically related words activate overlapping privacy-sensitive dimensions.** As depicted
 426 in Figure 2, we found that words with similar semantics, such as weekdays or countries, tend to
 427 cluster around the similar embedding dimensions. The clustering behavior verifies the quality of
 428 our proposed neuron mask detection process, demonstrating that it effectively localizes meaningful,
 429 non-random privacy signals that align with linguistic structure.
 430

431 **2) SPARSE implicitly protects semantically similar tokens.** We hypothesize that protecting a
 432 token’s privacy-sensitive dimensions also benefits semantically similar tokens, as they often share

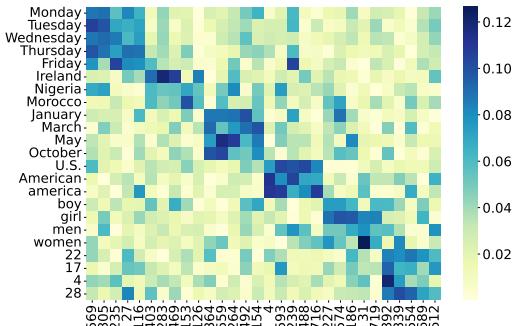


Figure 2: Visualization of the learned neuron mask by SPARSE for individual tokens, where larger values represent higher privacy sensitivity.

Table 5: Leakage mitigation rates achieved by SPARSE with $\epsilon = 10$ compared to non-protected embeddings. Results are evaluated across three token types: target tokens, semantically similar tokens, and unrelated (other) tokens under different privacy categories.

	Target	Similar	Other
Weekdays	-76.2%	-46.2%	-11.7%
Country	-64.3%	-36.2%	-29.1%
Months	-72.5%	-42.8%	-12.6%
Gender	-61.0%	-40.5%	-18.3%
City	-70.2%	-39.8%	-14.7%

overlapping dimensions. To test this, we apply the learned neuron mask for each target token and evaluate leakage reduction for three types: the target, semantically similar, and unrelated tokens. Leakage mitigation is quantified as the relative reduction of the *Leakage* metric compared to the non-protected embedding. As Table 5 shows, SPARSE substantially reduces leakage for similar tokens (e.g., 46.2% for “Weekdays”), even though only the target was protected. These results suggest that although our privacy-sensitive dimensions are identified based on explicitly defined tokens, it implicitly extends protection to a broader, more generalizable privacy concept.

5 RELATED WORK

Inversion Attacks on Text Embeddings. Text embeddings have been shown to pose serious privacy risks, as they can unintentionally encode and expose sensitive attributes and content (Pan et al., 2020; Song & Shmatikov, 2019; Lyu et al., 2020b; Coavoux et al., 2018). For example, prior work (Pan et al., 2020) demonstrated that keywords can be partially recovered from text embeddings using annotated external datasets. Similarly, attribute inference and embedding inversion attacks have been used to extract unordered sets of words from sentence representations (Song & Raghunathan, 2020). GEIA (Li et al., 2023) extended these attacks by introducing a generative approach that reconstructs entire input sequences. More recently, Vec2Text (Morris et al., 2023) showed that embeddings from commercial APIs (e.g., OpenAI) can be inverted with high accuracy. These findings underscore the need for robust privacy-preserving embedding methods.

Privacy-preserving Text Embeddings. To mitigate privacy risks in textual representations, prior work has introduced various noise injection mechanisms for token- and sentence-level embeddings. DPNR (Lyu et al., 2020b) randomly masks input tokens and adds Laplace noise to the resulting embeddings. Feyisetan et al. (Feyisetan et al., 2019) apply a generalized Laplace mechanism to perturb token embeddings under metric local differential privacy (LDP). For sentence embeddings, Lyu et al. (Lyu et al., 2020a) directly inject Laplace noise into BERT-based vectors. Laplace-based mechanisms have also been employed to defend against inversion (Morris et al., 2023), membership inference (Song & Raghunathan, 2020), and attribute inference (Coavoux et al., 2018) attacks. Recent work such as the Purkayastha mechanism (Du et al., 2023) further refines Laplace perturbation for enhanced privacy guarantees.

6 CONCLUSION

We introduced SPARSE, a framework that enhances privacy in text embeddings by selectively applying sensitivity-guided elliptical noise. By identifying and perturbing privacy-sensitive embedding dimensions, SPARSE resists embedding inversion attacks while preserving utility. Experiments across models, datasets, and threat scenarios demonstrate its effectiveness in improving the privacy-utility tradeoff. As embeddings become central to real-world systems, embedding-level privacy is essential. We see SPARSE as a step toward controllable, concept-aware protection, and hope it encourages research into adaptive and accountable defenses for sensitive NLP.

486 ETHICAL CONSIDERATIONS
487488 While SPARSE is designed to enhance privacy in text embedding applications, its deployment must
489 be guided by ethical considerations. First, although our method reduces the risk of embedding
490 inversion, it does not eliminate all privacy threats, and may offer a false sense of security if used
491 without awareness of its limitations. Practitioners should carefully evaluate the privacy requirements
492 of their specific context and avoid over-relying on embedding anonymization as a substitute for
493 broader data governance and access controls.494 Second, our framework is concept-driven and depends on predefining sensitive information categories.
495 This raises fairness concerns: groups or attributes not explicitly included in the sensitive concept
496 space may receive less protection, potentially reinforcing systemic biases or exposing vulnerable
497 populations. Future implementations should strive for inclusiveness in concept selection and explore
498 concept-agnostic sensitivity detection to mitigate this risk.499 Finally, as with any privacy-preserving technique, SPARSE could be misused—for example, to evade
500 moderation or mask malicious content. We encourage responsible use aligned with principles of
501 transparency, accountability, and user consent, especially in high-stakes domains such as healthcare,
502 education, or law.504 REPRODUCIBILITY STATEMENT
505506 All essential details required to reproduce our main results are provided in this paper. Appendix H
507 offers comprehensive descriptions of the model architectures and training procedures, Appendix I
508 details the attack configurations used in our experiments, and Appendix D presents the formal
509 definitions of all evaluation metrics. In addition, we plan to publicly release our code in the near
510 future to further facilitate reproducibility and future research.512 REFERENCES
513514 Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. SemEval-2012 task 6: A pilot
515 on semantic textual similarity. In Eneko Agirre, Johan Bos, Mona Diab, Suresh Manandhar,
516 Yuval Marton, and Deniz Yuret (eds.), **SEM 2012: The First Joint Conference on Lexical and
517 Computational Semantics – Volume 1: Proceedings of the main conference and the shared task,
518 and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval
519 2012)*, pp. 385–393, Montréal, Canada, 7–8 June 2012. Association for Computational Linguistics.
520 URL <https://aclanthology.org/S12-1051>.521 Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
522 Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe. SemEval-2014 task 10: Multilingual
523 semantic textual similarity. In Preslav Nakov and Torsten Zesch (eds.), *Proceedings of the 8th
524 International Workshop on Semantic Evaluation (SemEval 2014)*, pp. 81–91, Dublin, Ireland,
525 August 2014. Association for Computational Linguistics. doi: 10.3115/v1/S14-2010. URL
526 <https://aclanthology.org/S14-2010>.527 Mário Alvim, Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Anna Pazii. Local differential
528 privacy on metric spaces: optimizing the trade-off with utility. In *2018 IEEE 31st Computer
529 Security Foundations Symposium (CSF)*, pp. 262–267. IEEE, 2018.530 Alexander Bondarenko, Maik Fröbe, Meriem Beloucif, Lukas Gienapp, Yamen Ajjour, Alexander
531 Panchenko, Chris Biemann, Benno Stein, Henning Wachsmuth, Martin Potthast, et al. Overview
532 of touché 2020: argument retrieval. In *Experimental IR Meets Multilinguality, Multimodality, and
533 Interaction: 11th International Conference of the CLEF Association, CLEF 2020, Thessaloniki,
534 Greece, September 22–25, 2020, Proceedings 11*, pp. 384–395. Springer, 2020.535 Vera Boteva, Demian Gholipour, Artem Sokolov, and Stefan Riezler. A full-text learning to rank
536 dataset for medical information retrieval. In *Advances in Information Retrieval: 38th European
537 Conference on IR Research, ECIR 2016, Padua, Italy, March 20–23, 2016. Proceedings 38*, pp.
538 716–722. Springer, 2016.

540 Hannah Brown, Katherine Lee, Fatemehsadat Mireshghallah, Reza Shokri, and Florian Tramèr.
 541 What does it mean for a language model to preserve privacy? In *Proceedings of the 2022 ACM*
 542 *Conference on Fairness, Accountability, and Transparency*, pp. 2280–2292, 2022.

543 Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1:
 544 Semantic textual similarity multilingual and crosslingual focused evaluation. In Steven Bethard,
 545 Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, and David Jurgens
 546 (eds.), *Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)*,
 547 pp. 1–14, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi:
 548 10.18653/v1/S17-2001. URL <https://aclanthology.org/S17-2001>.

549 Konstantinos Chatzikokolakis, Miguel E Andrés, Nicolás Emilio Bordenabe, and Catuscia
 550 Palamidessi. Broadening the scope of differential privacy using metrics. In *Privacy Enhanc-
 551 ing Technologies: 13th International Symposium, PETs 2013, Bloomington, IN, USA, July 10-12,
 552 2013. Proceedings 13*, pp. 82–102. Springer, 2013.

553 Maximin Coavoux, Shashi Narayan, and Shay B Cohen. Privacy-preserving neural representations
 554 of text. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language
 555 Processing*, pp. 1–10, 2018.

556 Minxin Du, Xiang Yue, Sherman SM Chow, and Huan Sun. Sanitizing sentence embeddings (and
 557 labels) for local differential privacy. In *Proceedings of the ACM Web Conference 2023*, pp.
 558 2349–2359, 2023.

559 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
 560 private data analysis. In *Theory of Cryptography: Third Theory of Cryptography Conference, TCC
 561 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3*, pp. 265–284. Springer, 2006.

562 Oluwaseyi Feyisetan, Tom Diethe, and Thomas Drake. Leveraging hierarchical representations for
 563 preserving privacy and utility in text. In *2019 IEEE International Conference on Data Mining
 564 (ICDM)*, pp. 210–219. IEEE, 2019.

565 Oluwaseyi Feyisetan, Borja Balle, Thomas Drake, and Tom Diethe. Privacy-and utility-preserving
 566 textual analysis via calibrated multivariate perturbations. In *Proceedings of the 13th international
 567 conference on web search and data mining*, pp. 178–186, 2020.

568 Yu-Hsiang Huang, Yuche Tsai, Hsiang Hsiao, Hong-Yi Lin, and Shou-De Lin. Transferable em-
 569 bedding inversion attack: Uncovering privacy risks in text embeddings without model queries.
 570 In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual
 571 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4193–
 572 4205, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
 573 <https://aclanthology.org/2024.acl-long.230>.

574 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
 575 *International Conference on Learning Representations*, 2022.

576 Alistair E W Johnson, David J Stone, Leo A Celi, and Tom J Pollard. The mimic code repository:
 577 enabling reproducibility in critical care research. *Journal of the American Medical Informatics
 578 Association*, 25(1):32–39, 2018.

579 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE
 580 Transactions on Big Data*, 7(3):535–547, 2019.

581 Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
 582 What can we learn privately? *SIAM Journal on Computing*, 40(3):793–826, 2011.

583 Donggyu Kim, Garam Lee, and Sungwoo Oh. Toward privacy-preserving text embedding similarity
 584 with homomorphic encryption. In *Proceedings of the Fourth Workshop on Financial Technology
 585 and Natural Language Processing (FinNLP)*, pp. 25–36, 2022.

586 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 587 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 588 tion for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33:
 589 9459–9474, 2020.

594 Haoran Li, Mingshi Xu, and Yangqiu Song. Sentence embedding leaks more information than you
 595 expect: Generative embedding inversion attack to recover the whole sentence. In *Findings of the*
 596 *Association for Computational Linguistics: ACL 2023*, pp. 14022–14040, 2023.

597

598 Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
 599 l_0 regularization. In *International Conference on Learning Representations*, 2018.

600

601 Lingjuan Lyu, Xuanli He, and Yitong Li. Differentially private representation for nlp: Formal
 602 guarantee and an empirical study on privacy and fairness. In *Findings of the Association for*
 603 *Computational Linguistics: EMNLP 2020*, pp. 2355–2365, 2020a.

604

605 Lingjuan Lyu, Yitong Li, Xuanli He, and Tong Xiao. Towards differentially private text repre-
 606 sentations. In *Proceedings of the 43rd International ACM SIGIR Conference on Research and*
 607 *Development in Information Retrieval*, pp. 1813–1816, 2020b.

608

609 C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous relaxation of discrete
 610 random variables. In *Proceedings of the international conference on learning Representations*.
 611 International Conference on Learning Representations, 2017.

612

613 Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDermott, Manel Zarrouk,
 614 and Alexandra Balahur. Wwww'18 open challenge: financial opinion mining and question answering.
 615 In *Companion proceedings of the the web conference 2018*, pp. 1941–1942, 2018.

616

617 Microsoft Corporation. Language service overview. <https://learn.microsoft.com/en-us/azure/ai-services/language-service/overview>.

618

619 John Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander M Rush. Text embeddings
 620 reveal (almost) as much as text. In *Proceedings of the 2023 Conference on Empirical Methods in*
 621 *Natural Language Processing*, pp. 12448–12460, 2023.

622

623 Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding
 624 benchmark. *arXiv preprint arXiv:2210.07316*, 2022. doi: 10.48550/ARXIV.2210.07316. URL
 625 <https://arxiv.org/abs/2210.07316>.

626

627 Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei
 628 Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. In *Findings*
 629 *of the Association for Computational Linguistics: ACL 2022*, pp. 1864–1874, 2022a.

630

631 Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma, Vincent Zhao,
 632 Yi Luan, Keith Hall, Ming-Wei Chang, et al. Large dual encoders are generalizable retrievers. In
 633 *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp.
 634 9844–9855, 2022b.

635

636 Xudong Pan, Mi Zhang, Shouling Ji, and Min Yang. Privacy risks of general-purpose language
 637 models. In *2020 IEEE Symposium on Security and Privacy (SP)*, pp. 1314–1331. IEEE, 2020.

638

639 Shaina Raza, Deepak John Reji, Femi Shajan, and Syed Raza Bashir. Large-scale application of
 640 named entity recognition to biomedicine and epidemiology. *PLOS Digital Health*, 1(12):e0000152,
 641 2022.

642

643 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 644 In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*
 645 and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
 646 pp. 3982–3992, 2019.

647

648 Congzheng Song and Ananth Raghunathan. Information leakage in embedding models. In *Pro-
 649 ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security*, pp.
 650 377–390, 2020.

651

652 Congzheng Song and Vitaly Shmatikov. Auditing data provenance in text-generation models. In
 653 *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data*
 654 *Mining*, pp. 196–206, 2019.

648 Samuel Sousa and Roman Kern. How to keep text private? a systematic review of deep learning
649 methods for privacy-preserving natural language processing. *Artificial Intelligence Review*, 56(2):
650 1427–1492, 2023.

651 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
652 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.

653

654 AI4Privacy Team. Pii masking 300k dataset, 2023. URL <https://huggingface.co/datasets/ai4privacy/pii-masking-300k>. Licensed under Apache License 2.0. Ac-
655 cessed on: Sep 30, 2024.

656

657 Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey Naughton. Bolt-on
658 differential privacy for scalable stochastic gradient descent-based analytics. In *Proceedings of the*
659 *2017 ACM International Conference on Management of Data*, pp. 1307–1322, 2017.

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

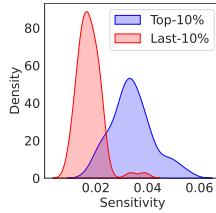


Figure 3: Sensitivity distribution comparison between the top and bottom 10% privacy neurons. The Wilcoxon Signed Rank Test indicates a highly significant difference (p-value = 1.30×10^{-21}).

A EMPIRICAL VALIDATION OF PRIVACY-SENSITIVE DIMENSIONS

In this section, we introduce the concept of *privacy neurons* and empirically validate their existence and relevance. We demonstrate that privacy-related information within text embeddings may be primarily concentrated in a limited subset of dimensions.

Definition 6 (Privacy Neurons). Consider an input text \mathbf{s} and an embedding model $\Phi : \mathbf{s} \rightarrow \mathbb{R}^d$. We assume there is a subset of dimensions $\mathcal{N}_c \subseteq \mathcal{V} = \{1, \dots, d\}$ that encapsulates the sensitive information associated with a privacy concept \mathcal{C} . Consequently, the embedding $\Phi(\mathbf{s})$ can be expressed as:

$$\Phi(\mathbf{s}) = (\Phi_{\mathcal{N}_c}(\mathbf{s}), \Phi_{\mathcal{V} \setminus \mathcal{N}_c}(\mathbf{s})), \quad (6)$$

where $\Phi_{\mathcal{N}_c}(\mathbf{s})$ represents the privacy-sensitive neuron activations and $\Phi_{\mathcal{V} \setminus \mathcal{N}_c}(\mathbf{s})$ the privacy-invariant neuron activations.

Intuitively, dimensions identified as privacy neurons should exhibit higher *sensitivity* to the presence or absence of privacy-related tokens in the input text. To quantify how individual embedding dimensions respond to privacy-related information, we introduce the following measure:

Definition 7 (Neuron Sensitivity). Let D^+ and D^- denote positive and negative datasets containing sentences with and without tokens related to the privacy concept \mathcal{C} , respectively. For each embedding dimension i , the neuron sensitivity Δ_i is defined as:

$$\Delta_i = \max \left(\{ |\Phi(\mathbf{s}^+)_i - \Phi(\mathbf{s}^-)_i| \mid \mathbf{s}^+ \in D^+, \mathbf{s}^- \in D^- \} \right), \quad (7)$$

where $\Phi(\cdot)_i$ represents the activation value of the i -th embedding dimension.

We assume a high value of Δ_i indicates that dimension i is responsive and likely encodes privacy-related information.

Dataset Construction for Sensitivity Analysis To measure the embedding changes associated with the privacy concept \mathcal{C} , we first construct a dataset $D^+ = \{\mathbf{s}_1, \dots, \mathbf{s}_{|D^+|}\}$, containing sentences that include tokens from concept \mathcal{C} . Correspondingly, we generate a negative set $D^- = \{\mathcal{R}(\mathbf{s}_i, \mathcal{C}) \mid \mathbf{s}_i \in D^+\}$, where $\mathcal{R}(\mathbf{s}_i, \mathcal{C})$ denotes the operation of removing all tokens $t_i \in \mathcal{C}$ from the sentence \mathbf{s}_i . Thus, D^- consists of sentences identical to D^+ except for the absence of tokens associated with the sensitive privacy concept.

Results Figure 3 presents the distribution of sensitivity scores for dimensions identified as the top and bottom 10% privacy neurons based on the sensitivity vector \mathbf{v} . Our pilot study clearly illustrates a significant difference between the two groups. Specifically, the top-ranked privacy neurons demonstrate substantially higher sensitivity scores (mean sensitivity = 0.04) than the bottom-ranked neurons, which exhibit nearly zero sensitivity. A Wilcoxon Signed Rank Test confirms the significance of this observation with a p-value of 1.30×10^{-21} . These results empirically support the existence of privacy neurons, suggesting that embedding inversion attacks may be effectively mitigated by selectively manipulating only a small subset of embedding dimensions.

756 **B MISSING PROOF IN SECTION 3.2**
757758 **B.1 PROOF OF THEOREM 1**
759760 *Proof of Theorem 1.* Recall that the mechanism releases $\Phi'(\mathbf{s}) = \Phi(\mathbf{s}) + Z$, where the noise density
761 is $f_Z(z) = C \exp(-\varepsilon \|z\|_M)$ and the normalizing constant C is independent of z .762 For any output $y \in \mathbb{R}^d$, we have:
763

764
$$\frac{\Pr[\Phi'(\mathbf{s}) = y]}{\Pr[\Phi'(\mathbf{s}') = y]} = \frac{f_Z(y - \Phi(\mathbf{s}))}{f_Z(y - \Phi(\mathbf{s}'))} \quad (8)$$

765

766
$$= \frac{C \exp(-\varepsilon \|y - \Phi(\mathbf{s})\|_M)}{C \exp(-\varepsilon \|y - \Phi(\mathbf{s}')\|_M)} \quad (9)$$

767

768
$$= \exp\left(-\varepsilon \|y - \Phi(\mathbf{s})\|_M + \varepsilon \|y - \Phi(\mathbf{s}')\|_M\right) \quad (10)$$

769

770 By the triangle inequality for the Mahalanobis norm, we have:
771

772
$$\|y - \Phi(\mathbf{s})\|_M - \|y - \Phi(\mathbf{s}')\|_M \leq \|\Phi(\mathbf{s}) - \Phi(\mathbf{s}')\|_M \quad (11)$$

773

774 Therefore:
775

776
$$\frac{\Pr[\Phi'(\mathbf{s}) = y]}{\Pr[\Phi'(\mathbf{s}') = y]} \leq \exp\left(\varepsilon \|\Phi(\mathbf{s}) - \Phi(\mathbf{s}')\|_M\right) \quad (12)$$

777

778 This precisely establishes εd -local differential privacy under the Mahalanobis norm. \square
779780 **B.2 PROOF OF LEMMA 1**781 *Proof of Lemma 1.* Because Σ is symmetric positive-definite, it admits the spectral decomposition
782 $\Sigma = Q\Lambda Q^\top$, where Q is orthogonal ($Q^\top Q = I$) and $\Lambda = \text{diag}(\xi_1, \dots, \xi_n)$ collects the eigenvalues
783 ξ_1, \dots, ξ_n of Σ . Write $\tilde{v} := Q^\top v$; note that $\|\tilde{v}\|_2 = \|v\|_2$ because Q is orthogonal.784 **Upper bound.** By assumption $\xi_i \geq c$ for every i , hence the eigenvalues of Σ^{-1} satisfy $\xi_i^{-1} \leq c^{-1}$.
785 Therefore

786
$$\|v\|_M^2 = v^\top \Sigma^{-1} v = \tilde{v}^\top \Lambda^{-1} \tilde{v} = \sum_{i=1}^n \frac{\tilde{v}_i^2}{\xi_i} \leq \frac{1}{c} \sum_{i=1}^n \tilde{v}_i^2 = \frac{\|v\|_2^2}{c},$$

787

788 which yields $\|v\|_M \leq \|v\|_2/\sqrt{c}$.
789790 **Lower bound.** Because $\text{trace}(\Sigma) = n$, $\sum_{i=1}^n \xi_i = n$, implying $\xi_i \leq n$ for every i . Consequently
791 $\xi_i^{-1} \geq 1/n$ and

792
$$\|v\|_M^2 = \sum_{i=1}^n \frac{\tilde{v}_i^2}{\xi_i} \geq \frac{1}{n} \sum_{i=1}^n \tilde{v}_i^2 = \frac{\|v\|_2^2}{n},$$

793

794 so that $\|v\|_M \geq \|v\|_2/\sqrt{n}$.
795796 Combining the two inequalities completes the proof. \square
797798 **B.3 PROOF OF LEMMA 2**800 *Proof of Lemma 2.* Let $v := \Phi(x) - \Phi(x') \in \mathbb{R}^m$. By Lemma 1 we have the deterministic bounds
801

802
$$\frac{\|v\|_2}{\sqrt{m}} \leq \|v\|_M \leq \frac{\|v\|_2}{\sqrt{c}}.$$

803

804 Multiplying each term by the non-negative scalar ϵ preserves the ordering, and applying the (strictly
805 increasing) exponential map yields

806
$$\exp\left(\frac{\epsilon}{\sqrt{m}} \|v\|_2\right) \leq \exp(\epsilon \|v\|_M) \leq \exp\left(\frac{\epsilon}{\sqrt{c}} \|v\|_2\right),$$

807

808 which is precisely the desired statement. \square
809

810 C ALGORITHM FOR MAHALANOBIS NOISE SAMPLING
811812 **Algorithm 1** Sampling from $f_Z(z) \propto \exp(-\epsilon\|z\|_M)$
813

814 1: **Input:** Privacy budget ϵ , dimension n , a positive definite matrix Σ
 815 2: Sample an n -dimensional random vector N from a multivariate normal distribution with mean
 816 zero and identity covariance matrix.
 817 3: Normalize $X = N/\|N\|_2$
 818 4: Sample Y from a Gamma distribution with shape parameter n and scale parameter $1/\epsilon$
 819 5: Return $Z = Y \cdot \Sigma^{1/2} X$

820
821 **Lemma 3.** *The random variable Z returned from Algorithm 1 has a probability-density function of
822 the form*

823
$$f_Z(z) \propto \exp(-\epsilon\|z\|_M), \quad \|z\|_M = \sqrt{z^\top \Sigma^{-1} z}.$$

824

825 *Proof.* Define $U = YX$. Note that conditional on $Y = y$, U is uniformly distributed on the sphere
826 of radius y in \mathbb{R}^m . Hence

827
$$f_{U|Y}(u | y) \propto y^{-(m-1)} \quad \text{whenever } \|u\|_2 = y,$$

828

829 and zero otherwise. Using the Dirac delta function $\delta(\cdot)$, we write

830
$$\begin{aligned} f_U(u) &= \int_0^\infty f_{U|Y}(u | y) f_Y(y) \delta(y - \|u\|_2) dy \\ 831 &\propto \int_0^\infty y^{-(n-1)} \frac{\epsilon^n}{\Gamma(n)} y^{n-1} e^{-\epsilon y} \delta(y - \|u\|_2) dy \\ 832 &\propto e^{-\epsilon\|u\|_2}, \end{aligned}$$

833

834 so $f_U(u) \propto \exp(-\epsilon\|u\|_2)$.
835836 Since Σ is positive definite, $\Sigma^{1/2}$ exists and is invertible. Setting $Z = \Sigma^{1/2} U$, the change-of-variables
837 formula yields

838
$$\begin{aligned} f_Z(z) &= f_U \left(\Sigma^{-1/2} z \right) \left| \det(\Sigma^{-1/2}) \right| \\ 839 &\propto \exp \left(-\epsilon \|\Sigma^{-1/2} z\|_2 \right) = \exp \left(-\epsilon \sqrt{z^\top \Sigma^{-1} z} \right) = \exp(-\epsilon\|z\|_M). \end{aligned}$$

840

841 This completes the proof. □
842843 Table 6: Statistics of datasets.
844

Dataset	STS12	FIQA	STSB	STS14	Quora	NFCorpus	MIMIC-III	PII-300K
Downstream task	STS	Retrieval	STS	STS	Retrieval	Retrieval	-	-
Domain	SemEval	Financial	SemEval	SemEval	QA	Medical	Medical	PII
Sentences	10684	5500	17256	3000	10000	2590	4244	177677
Average sentence length	14.53	10.80	10.17	9.77	9.53	3.31	15.03	47.12
Unique named entities	123	41	228	41	90	13	290	491
Evaluation metric	Pearson Corr.	NDCG@10	Pearson Corr.	Pearson Corr.	NDCG@10	NDCG@10	-	-

855 D DATASET STATISTICS AND EVALUATION METRICS
856857 **Privacy Metrics.** To quantify the privacy risk of our model, we adopt two complementary metrics:
858 *Leakage* and *Confidence*. These metrics assess both the accuracy and certainty of an adversarial
859 model attempting to infer sensitive information from the model’s outputs.860 **(1) Leakage.** Leakage measures the extent to which an attack model \mathcal{A} can recover sensitive tokens
861 from an obfuscated embedding. Given a sentence \mathbf{s}_i containing sensitive tokens $C_i \subseteq \mathcal{C}$, the attacker

864 generates a reconstructed sentence $\hat{s}_i = \mathcal{A}(\Phi'(\mathbf{s}_i))$ based on the obfuscated embedding. The leakage
 865 is computed by checking whether any sensitive token appears in the reconstructed sentence:
 866

$$867 \quad \text{Leakage} = \frac{1}{T} \sum_{i=1}^N \sum_{t \in C_i} \mathbf{1}[t \in \hat{s}_i] \quad (13)$$

871 where N is the number of text samples, C_i is the set of sensitive tokens in sentence \mathbf{s}_i , \hat{s}_i is the
 872 reconstructed sentence from the attacker, and $T = \sum_{i=1}^N |C_i|$ is the total number of sensitive token
 873 instances across the dataset. A lower Leakage score indicates better protection of sensitive content,
 874 as fewer sensitive tokens are successfully inferred by the attacker.

875 **(2) Confidence.** Confidence quantifies how certain the attack model is when predicting sensitive
 876 tokens, regardless of whether the predictions are correct. It is defined as the average predicted
 877 probability assigned to the true sensitive tokens across all samples:
 878

$$879 \quad \text{Confidence} = \frac{1}{T} \sum_{i=1}^N \sum_{t \in C_i} P_{\mathcal{A}}(t \mid \Phi'(\mathbf{s}_i)) \quad (14)$$

883 where $C_i \subseteq \mathcal{C}$ is the set of sensitive tokens in sentence \mathbf{s}_i , $\Phi'(\mathbf{s}_i)$ is the obfuscated embedding, and
 884 $T = \sum_{i=1}^N |C_i|$ is the total number of sensitive token instances. The term $P_{\mathcal{A}}(t \mid \Phi'(\mathbf{s}_i))$ denotes the
 885 probability assigned by the attack model \mathcal{A} to sensitive token t based on the obfuscated embedding.
 886 A lower Confidence score indicates that the model is less certain in its inference, suggesting stronger
 887 privacy.

888 **Utility Metrics.** To assess the utility of the learned representations, we follow the widely adopted
 889 evaluation framework provided by the Massive Text Embedding Benchmark (MTEB) (Muennighoff
 890 et al., 2022). MTEB is a standard benchmark for embedding models, covering a diverse set of
 891 downstream tasks such as classification, clustering, retrieval, and semantic textual similarity. These
 892 tasks reflect the practical performance of embeddings in real-world applications. By using MTEB,
 893 we ensure that our utility evaluation is comprehensive, comparable, and aligned with established
 894 practices in the embedding research community.

895 E SENSITIVE TOKEN EXTRACTION

896 We utilize the MIMIC-III clinical notes corpus (Johnson et al., 2018), a de-identified electronic
 897 health record dataset comprising detailed clinical documentation from intensive care units. To
 898 extract privacy-sensitive information, we apply a biomedical Named Entity Recognition (NER)
 899 model (Raza et al., 2022) specifically trained to identify medically relevant entities such as age,
 900 sex, diseases, and symptoms. For non-clinical datasets, named entities are extracted using the
 901 `en_core_web_sm` NER pipeline from the spaCy library², which provides general-purpose entity
 902 recognition for categories such as persons, locations, and organizations.

903 F ADDITIONAL EXPERIMENTAL RESULTS

904 F.1 PERFORMANCE ON MORE DATASETS

905 In addition to the STS12 (Agirre et al., 2012) and FIQA (Maia et al., 2018) datasets used in the
 906 main experiment, Table 6 also presents statistics of other datasets, including STSB (Cer et al.,
 907 2017), STS14 (Agirre et al., 2014), Quora (Bondarenko et al., 2020), and NFCorpus (Boteva et al.,
 908 2016). Table 7 shows the complete defense performance on all datasets. Besides using Leakage,
 909 we also utilize Confidence to assess the defense performance. This metric reflects the certainty of the
 910 attack model’s predictions. A higher Confidence score indicates that the model is more confident
 911 in its prediction of the sensitive token. For the semantic textual similarity (STS) task, downstream

912
 913
 914
 915
 916
 917 ²https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.7.0

918 performance is measured using the Pearson correlation of Cosine Similarity (Pearson corr.). In
 919 the context of information retrieval, we employ the ranking metric NDCG@10. As described in
 920 Section 4.2, SPARSE consistently demonstrates superior performance over LapMech and PurMech
 921 across all levels of perturbation and datasets, both in defense and downstream task metrics.
 922

923 Table 7: Privacy-utility tradeoff across different defense Methods. Privacy leakage is assessed using
 924 Leakage and Confidence metrics, where lower values indicate stronger privacy protection. Utility is
 925 measured by data-specific downstream performance. All metrics are presented as percentages (%).
 926

Dataset	ϵ	Privacy Metrics						Utility Metric		
		Leakage \downarrow			Confidence \downarrow			Downstream \uparrow		
		LapMech	PurMech	SPARSE	LapMech	PurMech	SPARSE	LapMech	PurMech	SPARSE
STS12	5	20.75	19.03	2.68	1.89	1.98	1.78	40.03	40.05	48.17
	10	53.79	49.95	32.39	15.40	13.97	8.07	71.87	71.85	76.14
	20	71.82	69.15	64.79	41.76	38.44	36.33	80.95	80.95	81.00
	30	76.15	74.98	73.10	52.36	49.28	48.63	81.08	81.08	80.91
	40	78.94	77.40	76.42	56.84	54.02	53.98	80.95	80.95	80.81
	∞	86.75			66.57			80.64		
STS14	5	1.03	1.55	0.30	20.42	20.88	18.05	39.76	39.71	48.47
	10	4.04	4.13	2.41	21.86	21.84	21.10	70.28	70.25	74.44
	20	8.64	8.77	9.46	28.05	27.73	28.56	79.16	79.16	79.31
	30	11.22	11.26	14.70	30.38	30.39	32.95	79.47	79.47	79.37
	40	13.67	13.50	16.12	32.09	32.05	34.81	79.43	79.43	79.32
	∞	21.97			35.99			79.25		
Quora	5	25.96	25.87	2.85	2.71	2.70	1.57	11.89	11.78	15.43
	10	57.44	54.78	33.67	18.62	15.92	9.94	70.04	70.19	82.19
	20	75.56	75.80	68.00	50.87	51.00	41.21	82.79	82.75	83.94
	30	81.65	81.65	76.75	58.99	59.08	53.43	83.70	83.72	84.02
	40	83.69	83.64	79.79	62.28	62.06	57.32	83.90	83.91	83.97
	∞	89.30			68.30			84.01		
NFCorpus	5	7.77	8.45	0.68	1.27	1.06	0.83	23.70	23.61	19.94
	10	29.73	31.42	12.16	15.92	15.51	6.73	27.31	27.38	29.61
	20	56.76	55.41	46.96	45.70	46.26	35.36	30.76	30.75	31.04
	30	69.93	69.26	57.77	58.27	58.00	48.09	31.32	31.32	31.37
	40	78.72	79.05	66.55	63.89	63.83	53.85	31.56	31.56	31.52
	∞	88.18			75.54			31.63		

F.2 DEFENSE PERFORMANCE ON MORE EMBEDDING MODELS

954 To assess the generalizability of SPARSE, we evaluate its performance on three representative
 955 embedding models: GTR-base (Ni et al., 2022b), Sentence-T5 (Ni et al., 2022a), and SBERT (Reimers
 956 & Gurevych, 2019). As presented in Table 8, SPARSE consistently achieves low privacy leakage (e.g.,
 957 19% with GTR-base and 17% with SBERT), while preserving strong downstream utility. In contrast,
 958 baseline methods such as LapMech and PurMech not only suffer from higher leakage rates (20–30%)
 959 but also incur greater utility degradation. These results support the generality of our approach and
 960 validate the effectiveness of detecting and perturbing privacy-sensitive dimensions across different
 961 embedding architectures.

962 Table 8: Defense and downstream performance using different embedding models under $\epsilon = 10$. We
 963 use STS12 dataset and report the mean and standard deviation of 5 runs for all evaluation metrics.
 964

Embedding Models	GTR-base		Sentence-T5		SBERT	
	Metrics	Leakage \downarrow	Downstream \uparrow	Leakage \downarrow	Downstream \uparrow	Leakage \downarrow
Non-protected	60.09	74.25	43.83	86.79	42.11	81.36
LapMech	22.34 ± 0.62	60.72 ± 0.00	31.71 ± 0.62	63.16 ± 0.00	23.82 ± 0.89	66.89 ± 0.00
PurMech	22.66 ± 0.67	60.72 ± 0.00	32.11 ± 0.47	63.15 ± 0.00	23.59 ± 0.78	65.89 ± 0.00
SPARSE	19.31 ± 0.21	65.27 ± 0.00	22.38 ± 0.44	74.45 ± 0.00	17.15 ± 0.74	69.42 ± 0.00

972 F.3 COMPARISON WITH PII-BASED DEFENSE METHODS
973

974 Since the goal of SPARSE aims to mitigate the privacy leakage of sensitive tokens, it raises a natural
975 question: how does SPARSE compare to traditional PII removal or transformation methods? To
976 answer this question, we evaluate three additional PII-based defense approaches: (1) PII removal
977 via Azure Language Service (Microsoft Corporation), which replaces private tokens with '*', (2)
978 Random word replacement from the corpus, and (3) Semantic word replacement within the same
979 named entity category. The results are presented in Table 9. We have the following key insights:

980 **PII transformation incurs significant information loss.** All PII-based strategies lead to noticeable
981 degradation in downstream performance. For instance, PII redaction reduces STS12 accuracy from
982 74% to 59%, and FIQA from 33% to 21%. Semantic replacement fares slightly better, with scores of
983 64% (STS12) and 18% (FIQA), but still underperforms relative to the original embeddings. Random
984 replacement exhibits a similar decline, indicating that simple token-level transformations often disrupt
985 semantic integrity.

986 **SPARSE achieves a better privacy-utility tradeoff.** While PII transformations can obscure sensitive
987 content, they often compromise task utility. To evaluate this tradeoff, we define a tradeoff rate metric
988 $R = \frac{\Delta \text{Leakage}}{\Delta \text{Utility}}$, where $\Delta \text{Leakage}$ is the reduction in privacy leakage, and $\Delta \text{Utility}$ is the drop in
989 downstream performance relative to the unprotected embeddings. For simplicity and upper-bound
990 estimation, we assume that PII-based methods reduce leakage to zero. As shown in Table 9, SPARSE
991 achieves markedly higher tradeoff rates of 23.11 on STS12 and 26.30 on FIQA, compared to 4–6
992 for the PII-based approaches. These results verify the advantage of embedding-level defenses like
993 SPARSE, which enable more nuanced and fine-grained privacy preservation without sacrificing utility.

994
995 Table 9: Comparison of privacy-utility tradeoff between SPARSE and PII transformation methods.
996

997 Dataset	998 Defense Methods	999 Leakage ↓(%)	1000 Downstream ↑(%)	1001 Tradeoff Rate $R \uparrow$
1000 STS12	Unprotected	60.09	74.25	-
	RemovePII	-	59.47	4.12
	Random-Replace	-	60.50	4.42
	Semantic-Replace	-	64.46	6.22
	SPARSE ($\epsilon = 20$)	36.98	73.25	23.11
1004 FIQA	Unprotected	77.35	33.56	-
	RemovePII	-	21.24	6.27
	Random-Replacement	-	19.20	5.38
	Semantic-Replacement	-	18.37	5.09
	SPARSE ($\epsilon = 20$)	53.41	32.65	26.30

1010 F.4 HYPERPARAMETER ANALYSIS
1011

1012 We analyze the impact of the regularization parameter λ on the tradeoff between privacy and utility.
1013 As shown in Table 10, increasing λ results in reduced leakage across all values of ϵ , confirming that
1014 stronger regularization suppresses sensitive information more effectively. However, this comes at the
1015 cost of reduced downstream performance, particularly under lower ϵ , where the noise becomes more
1016 dominant. Notably, moderate values such as $\lambda = 1e-3$ strike a balance, achieving significant privacy
1017 gains with tolerable performance degradation.

1019 G COMPUTATIONAL OVERHEAD
1020

1021 We provide an analysis of the computational overhead introduced by SPARSE, focusing on both
1022 inference-time noise sampling and offline neuron mask training.

1024 **Inference Cost.** During inference, the dominant overhead arises from sampling Mahalanobis noise,
1025 which involves a lightweight matrix multiplication. To evaluate efficiency, we measured the average
inference latency per sample over 10,000 runs and compared SPARSE with two representative

Table 10: Effect of the regularization hyperparameter λ on privacy leakage and downstream performance under different privacy budgets ϵ . Smaller λ values lead to stronger regularization.

Dataset	λ	Leakage ↓(%)					Downstream ↑(%)				
		$\epsilon = 5$	10	20	30	40	$\epsilon = 5$	10	20	30	40
STS12	1e-2	0.52	0.91	1.37	1.84	2.15	22.14	36.87	43.25	44.06	44.38
	5e-3	1.36	3.82	7.14	10.34	13.76	27.61	48.05	56.17	57.88	58.19
	1e-3	4.34	19.31	36.98	43.81	47.54	34.12	65.27	73.25	74.04	74.15
	5e-4	7.62	25.83	44.23	51.41	55.27	31.33	59.78	67.10	67.98	68.24
	1e-4	9.88	33.02	51.47	58.62	62.90	28.40	52.45	59.66	60.34	60.79
FIQA	1e-2	0.78	1.28	1.93	2.71	3.26	8.71	13.82	17.44	17.83	18.14
	5e-3	2.26	6.42	11.68	17.23	21.14	11.38	18.67	25.09	25.66	25.94
	1e-3	8.48	31.62	53.41	63.51	68.13	14.87	23.45	32.65	33.58	33.85
	5e-4	11.05	36.43	58.23	67.28	71.83	13.72	21.42	28.93	29.84	30.11
	1e-4	13.61	40.82	62.14	70.25	74.44	12.45	18.63	25.42	26.28	26.50

baselines: the Laplace Mechanism and the Purkayastha Mechanism. The results are summarized in Table 11.

Table 11: Average inference time per sample (in microseconds).

Method	Latency (μ s/sample) \downarrow
Laplace Mechanism	39.8
Purkayastha Mechanism	33,200
SPARSE (ours)	48.4

As shown, SPARSE introduces only a marginal overhead compared to the Laplace Mechanism (less than 25% increase), while being several orders of magnitude more efficient than the Purkayastha Mechanism. This confirms that SPARSE is suitable for real-time and low-latency applications.

Training Cost. The training cost arises from learning the neuron mask used to identify privacy-sensitive dimensions. This is a one-time offline process that can be precomputed and reused, and therefore does not affect inference efficiency. The training time scales linearly with dataset size and remains practical in common settings. For instance, training on 10,000 samples takes 25.3 minutes, and on 20,000 samples, it completes in under 45 minutes. Further acceleration can be achieved with larger batch sizes or distributed training.

H IMPLEMENTATION DETAILS OF SPARSE

H.1 TRAINING ALGORITHM FOR NEURON-SENSITIVITY DETECTION

Algorithm 2 details the training procedure used to learn a neuron mask that identifies privacy-sensitive dimensions in the embedding space. The method jointly optimizes a differentiable binary mask and a classifier to distinguish between samples containing a privacy concept and their perturbed counterparts. A hard concrete distribution is used to approximate binary masking in a differentiable manner, and the training objective combines a classification loss with a sparsity-inducing regularization term.

H 2 TRAINING SETTINGS

We train our privacy-sensitive dimension identification model using mini-batch gradient descent with the Adam optimizer. The model is trained for 100 epochs with a batch size of 64 and a learning rate of 1×10^{-4} . The predictor P_θ is implemented as a multi-layer perceptron (MLP) with two hidden layers of sizes 256 and 128, respectively, and ReLU activations. We conduct a hyperparameter search over $\lambda \in \{0.01, 0.005, 0.001, 0.0005, 0.0001\}$ and set $\lambda = 0.001$ as the default for all experiments unless stated otherwise. All implementations are based on PyTorch.

1080 **Algorithm 2** Training Neuron Mask for Privacy-Sensitive Dimension Detection

1081 1: **Input:** Paired dataset D^+, D^- , embedding function $\Phi(\cdot)$, learning rate η , temperature β , regularization coefficient λ , initialization of mask logits $\log \alpha$, constants $\xi = 1.1$, $\gamma = -0.1$

1082 2: Initialize classifier parameters θ

1083 3: **for** each epoch = 1 to N **do**

1084 4: **for** each minibatch $\{(\mathbf{s}_i^+, \mathbf{s}_i^-)\} \subset (D^+, D^-)$ **do**

1085 5: **for** each mask dimension i **do**

1086 6: Sample $\mu_i \sim \mathcal{U}(0, 1)$

1087 7: Compute $s_i = \sigma\left(\frac{1}{\beta_i} \left(\log \frac{\mu_i}{1-\mu_i} + \log \alpha_i\right)\right)$

1088 8: Compute $m_i = \min(1, \max(0, s_i(\xi - \gamma) + \gamma))$

1089 9: **end for**

1090 10: Compute masked embeddings: $\Phi_m^+ = \Phi(\mathbf{s}^+) \odot \mathbf{m}$, $\Phi_m^- = \Phi(\mathbf{s}^-) \odot \mathbf{m}$

1091 11: Compute classification loss $\mathcal{L}_{\text{cls}}(\mathbf{m}, \theta)$ using Eq. equation 3

1092 12: Compute regularization loss $\mathcal{L}_{\text{reg}}(\mathbf{m})$ using Eq. equation 4

1093 13: Compute total loss: $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{cls}} + \lambda \mathcal{L}_{\text{reg}}$

1094 14: Update $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_{\text{total}}$

1095 15: Update $\log \alpha \leftarrow \log \alpha - \eta \nabla_{\log \alpha} \mathcal{L}_{\text{total}}$

1096 16: Update $\log \beta \leftarrow \log \beta - \eta \nabla_{\log \beta} \mathcal{L}_{\text{total}}$

1097 17: **end for**

1098 18: **end for**

1099 19: **Output:** Trained classifier P_{θ} , optimized neuron mask \mathbf{m}

1101

1102 H.3 COMPUTING RESOURCES

1103 All experiments were performed on a workstation with an Intel Core i9-10980XE CPU (18 cores, 36 threads, 3.00GHz) and an NVIDIA RTX 3090 GPU with 24GB of memory. The system runs on a 64-bit x64 architecture.

1104

1105 I IMPLEMENTATION DETAILS OF ATTACK MODELS

1106 To thoroughly evaluate the privacy risks associated with text embeddings, we adopt three representative attack models: Vec2text (Morris et al., 2023), GEIA (Li et al., 2023), and MLC (Song & Raghunathan, 2020). These models represent both sentence-level and word-level inference attacks, and are implemented or fine-tuned under controlled conditions to assess the effectiveness of various privacy-preserving mechanisms.

1107

1108 I.1 VEC2TEXT

1109 Vec2text is a sentence-level attack model designed to reconstruct input text directly from embeddings. We use the publicly available pre-trained version of Vec2text³, which is based on the GPT-2 architecture. To simulate a realistic adversarial scenario, we fine-tune this model for 50 epochs individually on embeddings perturbed by each defense method (LapMech, PurMech, and SPARSE). The fine-tuning is performed using a batch size of 32 and a learning rate of 5e-5, optimized with Adam.

1110

1111 I.2 GEIA

1112 GEIA is another sentence-level reconstruction model that inverts embeddings into textual sequences using a fine-tuned GPT-2 decoder. Unlike Vec2text, GEIA employs a mapping network to project embeddings into the GPT-2 latent space. We use GEIA based on the original paper⁴, using a two-layer MLP as the projection module. The GPT-2 decoder is initialized from the HuggingFace Transformers library and fine-tuned for 30 epochs using embeddings from each defense method. The model is optimized using Adam with a learning rate of 3e-5 and trained with a batch size of 16.

1113 ³https://huggingface.co/ielabgroup/vec2text_gtr-base-st_inversion

1114 ⁴<https://github.com/HKUST-KnowComp/GEIA>

1134 I.3 MLC

1135

1136 MLC is a word-level embedding inversion attack model that predicts whether specific sensitive tokens
 1137 are present in the input text based on its embedding. The model consists of a three-layer MLP with
 1138 hidden sizes [512, 256, 128], ReLU activations, and a sigmoid output layer. We train a separate MLC
 1139 for each perturbation method using a binary cross-entropy loss function. Training is performed for 20
 1140 epochs using a batch size of 64 and a learning rate of 1e-4 with the Adam optimizer.

1141

1142

1143 J CASE STUDY ON MIMIC-III DATASET

1144

1145 To demonstrate the privacy risks in a specific threat domain, we conducted a case study using MIMIC-
 1146 III clinical notes (Johnson et al., 2018). Table 12 presents the results of embedding inversion attack
 1147 on two types of sensitive tokens ("age" and "disease name") with different noise levels. We assessed
 1148 the semantic fidelity of the reconstructed sentences by comparing their similarity to the original text
 1149 using cosine similarity from an external embedding model.

1150 In Example 1, we applied a strong perturbation level of $\epsilon = 5$ to perturb the text embeddings.
 1151 Under this condition, all three defense methods (LapMech, PurMech, and SPARSE) effectively
 1152 prevented the leakage of sensitive age information. However, LapMech and PurMech significantly
 1153 degraded the semantic quality of the embeddings with only 11% of the original semantic similarity. In
 1154 contrast, SPARSE maintained 62% semantic similarity. In Example 2, we used a lower perturbation
 1155 level of $\epsilon = 10$. Here, both LapMech and PurMech failed to protect against privacy leakage and
 1156 further compromised the semantic integrity of the embeddings. Conversely, SPARSE successfully
 1157 safeguarded the sensitive information while preserving semantic quality of the embeddings.

1158

1159 Table 12: Case study on the MIMIC-III dataset with two sensitive words and perturbation level ϵ . We
 1160 highlight the leakage of sensitive words and demonstrate the semantic similarity of the reconstructed
 1161 sentence to the ground truth.

1162

1163

Example 1: Protect age with strong noise $\epsilon = 5$

Method	Defense	Semantic	Reconstructed Sentence
Ground truth	-	-	this 68-year-old white male has a history of diabetes, hyperlipidemia and hypertension
Non-private	Failed	0.98	this 68-year-old white male has a history of hypertension, hyperlipidemia, and diabetes.
LapMech	Success	0.11	age (e.g., blood edemas in males of African PH whose history has been hypersoteric
PurMech	Success	0.11	age (e.g., blood edemas in males of African PH whose history has been hypersoteric
SPARSE	Success	0.62	a white male with diabetes has existing Hyperlipidemia history

Example 2: Protect disease name with weak noise $\epsilon = 10$

Ground truth	-	-	this male has had known coronary disease and prior silent myocardial infarction.
Non-private	Failed	0.95	this male has known silent coronary disease and has had prior myocardial infarction.
LapMech	Failed	0.23	male has known coronary myopathy. Silent rib syndrome, white-fiddled gyne, and ca
PurMech	Failed	0.18	male has known coronary myopathy. Silent-fidded heart attacks. White-fidded-fid
SPARSE	Success	0.54	an active male with myocardial infarction, congestive heart disease.

1174

1175

1176

1177

K LIMITATIONS

1178

1179

Limited Scope of Attack Scenario. Our method is explicitly tailored to mitigate embedding inversion
 1180 attacks, in which an adversary seeks to reconstruct input data from text embeddings. However, it
 1181 does not offer guarantees against other widely studied privacy attacks such as membership inference
 1182 attacks. Although our approach is compatible with differential privacy mechanisms in principle, we
 1183 leave the integration of comprehensive privacy protections to future work.

1184

1185

1186

1187

Protecting Broader Privacy Concept. Our framework estimates privacy-sensitive dimensions based
 1188 on predefined concepts, which works well for targeted protection but might not scale well with
 1189 broader or abstract notions of privacy. As the definition of privacy becomes overly broad (e.g., "any
 1190 identifiable content"), our method loses its specificity and utility. A potential solution is to move
 1191 toward *concept-agnostic* sensitivity estimation regardless of predefined labels.

1188 **L USE OF LARGE LANGUAGE MODELS (LLMs)**
11891190 In this work, large language models (LLMs) were used in two ways. First, we employed pre-trained
1191 open-source LLMs as embedding generators to produce text representations, and also served as the
1192 foundation for conducting inversion attacks in our experiments. Second, an LLM-based assistant
1193 (OpenAI GPT-4) was used to improve the clarity and readability of the manuscript through grammar
1194 checking and minor language refinements. All decisions regarding research design, experimental
1195 setup, analysis, and interpretation were made solely by the authors.
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241