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ABSTRACT

Neuronal dynamics are highly nonlinear and nonstationary. Traditional methods
for extracting the underlying network structure from neuronal activity recordings
mainly concentrate on modeling static connectivity, without accounting for key
nonstationary aspects of biological neural systems, such as ongoing synaptic
plasticity and neuronal modulation. To bridge this gap, we introduce the NetFormer
model, an interpretable approach applicable to such systems. In NetFormer, the
activity of each neuron across a series of historical time steps is defined as a
token. These tokens are then linearly mapped through a query and key mechanism
to generate a state- (and hence time-) dependent attention matrix that directly
encodes nonstationary connectivity structures. We analyze our formulation from the
perspective of nonstationary and nonlinear networked dynamical systems, and show
both via an analytical expansion and targeted simulations how it can approximate
the underlying ground truth. Next, we demonstrate NetFormer’s ability to model
a key feature of biological networks, spike-timing-dependent plasticity, whereby
connection strengths continually change in response to local activity patterns. We
further demonstrate that NetFormer can capture task-induced connectivity patterns
on activity generated by task-trained recurrent neural networks. Thus informed,
we apply NetFormer to a multi-modal dataset of real neural recordings, which
contains neural activity, cell type, and behavioral state information. We show that
NetFormer effectively predicts neural dynamics and identifies cell-type specific,
state-dependent dynamic connectivity that matches patterns measured in separate
ground-truth physiology experiments, demonstrating its ability to help decode
complex neural interactions based on population activity observations alone.

1 INTRODUCTION

Inferring the underlying connectivity of a network from observations of the activity of its units
is a long-standing challenge. In the brain, this challenge is exacerbated by (i) different nonlinear
dynamics present in individual neurons, (ii) the difficulty of experimentally sampling the full neuronal
population simultaneously, and (iii) dynamic reconfiguration of effective connectivity, mediated by
both synaptic plasticity and neuromodulation. This last issue carries significant practical importance
in studying behavioral dynamics, learning and memory (Bargmann, 2012; Tyulmankov et al., 2021;
Marder, 2012; Liu et al., 2021; Aitken & Mihalas, 2023). As such, it poses a (harder) generalization
of the classical problem where the connectivity should no longer be considered as a static unknown,
rather as a dynamical variable that needs to be inferred and tracked over time.

A surrogate, but not sufficient, measure of success in unsupervised inference of connectivity is
the inferred network’s success in fitting the observed dynamics. While traditional linear dynamical
models struggle to capture the essential nonlinear mechanisms of leaky integration and firing (Gerstner
& Kistler, 2002) in biological neurons, more sophisticated nonlinear models typically suffer from
a lack of interpretability, making it difficult to identify the underlying connectivity (Pandarinath
et al., 2018; Le & Shlizerman, 2022; Ye et al., 2023). Moreover, traditional approaches often adopt a
static perspective on connectivity (Tank et al., 2021; Löwe et al., 2022), failing to account for the
nonstationary interactions, such as those produced by plasticity and modulation at synapses.
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Here we propose an interpretable nonlinear and nonstationary dynamical model to represent inter-
actions between neurons (Figure 1), based on the fast weight programming nature of the attention
mechanism (Schlag et al., 2021). Prior research has suggested that the attention mechanism can reveal
information about the underlying structure of a system (Singh & Buckley, 2023; Lu et al., 2023).
We further removed the softmax activation function in the attention mechanism, as the constraint of
attention weights summing up to one is not biologically meaningful because neither the in-degrees
nor the out-degrees of neuronal connectivity (nor their counterparts incorporating synaptic strength)
are invariant across neurons (Santuy et al., 2020). We first demonstrated with both mathematical
analysis and simulation study that even without the softmax activation, the core part of the attention
mechanism – the dot-product between queries and keys – is capable of capturing nonstationary and
nonlinear structural information. Next, we applied this novel approach to a wide range of simulated
networks including nonstationary and/or complex nonlinear connectivity patterns, and showed that
it can recover ground truth connectivity information. We then applied it to a large-scale, publicly
available dataset of neuronal activity recordings. Importantly, this dataset includes the genetic cell
type of individual neurons, enabling us to compare our predictions for cell-type level connectivity
patterns against known ground truth values from independent experiments. Taken together, this
shows the potential of our method for recovering interpretable connectivity information, even in the
presence of complex nonlinear and nonstationary network dynamics.

Our main contributions are as follows: (i) We formulated a transformer-inspired network model,
the NetFormer, for which the core of the attention mechanism – the dot-product between queries
and keys – directly encodes nonstationary and nonlinear structure of networks; (ii) On a simulated
network with the spike-timing-dependent plasticity mechanism, we demonstrated that the inferred
time-varying weights from attention aligned with the underlying changes in connectivity; (iii) On
activity generated by task-trained recurrent neural networks, we demonstrated that attention can
capture task-induced connectivity patterns; (iv) We applied the NetFormer model to population
activity recorded from mouse visual cortex, and showed that attention can recover experimentally
measured synaptic connectivity, while benchmarking it with standard recurrent models and other
common statistical metrics. Additionally, we demonstrated that attention can naturally reflect state-
dependent modulations in the inferred cell-type level connectivity, even more effectively compared to
two other specialized baseline methods.

1.1 RELATED WORK

Dynamical models of neuronal activity. Dynamical models have been a powerful tool for high-
dimensional neural data analysis (Vyas et al., 2020). Generalized linear models (GLMs), known for
both interpretability and desirable convexity properties (Paninski et al., 2007), have been widely used
to model neuronal population activity as well as inter-neuronal interactions (Pillow et al., 2008; Das
& Fiete, 2020). Nevertheless, unless stacked with an explicit state switching mechanism (Escola et al.,
2011), in GLMs the weight matrix describing interactions among neurons is typically stationary across
time (Li et al., 2024). Recurrent neural networks (RNNs) have been a popular alternative (Barak,
2017; Perich et al., 2020); while the connectivity in (trained) RNNs is typically given by a static
connectivity matrix “W ”, variants including long short-term memory networks (LSTMs) (Hochreiter
& Schmidhuber, 1996) and gated recurrent neural networks (GRUs) (Cho et al., 2014), do include
nonstationarities at the level of individual neural units. While this can enhance the model’s expressivity
and performance in predictive tasks (Salinas et al., 2020; Lai et al., 2018), it also introduces challenges
for interpretability (Tank et al., 2021). Recently, transformer models (Vaswani et al., 2017) have been
observed to outperform RNNs in various time series forecasting tasks (Zhou et al., 2021; Wu et al.,
2021), but their deep layered structures and nonlinear attention mechanisms also raise challenges in
interpretation with respect to underlying connectivity structures in the original data (Jain & Wallace,
2019; Abnar & Zuidema, 2020), as discussed more below. A closely related approach to the present
work is the switching linear dynamical systems (Fox et al., 2008; Linderman et al., 2017a). These
models have nonstationary connectivity matrices which switch among a number of discrete values
according to a Markov process. Nevertheless, in vivo experiments have revealed that cortical activity
is more likely to go through a continuum of states instead of discrete switching (Harris & Thiele,
2011). This motivates us to propose a model capable of capturing continuous changes in connectivity.

Interpretability of the attention mechanism. Attention weights and positional embeddings provide
opportunities to understand the inner working of the transformer models. However, the interpretability
of these components is still a subject of debate. Findings supporting a certain level of interpretability,
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Figure 1: Overview of NetFormer. NetFormer learns to predict neural dynamics and infer dynamical
connectivity through a linearized attention mechanism. The model takes in activities Xk of N neurons across
H history timesteps, and predicts their activity xk+1 at timestep k + 1. Queries Qk and keys Kk are linearly
mapped from X̃k (Xk concatenated with positional embedding E), using WQ and WK . The time-dependent
linearized attention matrix Ak is computed as QkK

⊤
k , which learns the neuron-level dynamical connectivity.

Red and blue colors in the attention map indicate excitatory and inhibitory interactions, respectively.

such as correlation to linguistic features, are common in the literature, with specialized metrics
developed to quantify their interpretability (Clark et al., 2019; Abnar & Zuidema, 2020). However,
caution should be taken when equating attention with explanation (Jain & Wallace, 2019), considering
the lack of identifiability (Brunner et al., 2019) and the wide variety of underlying architectures and
implementations (Wang & Chen, 2020). In this work, we seek to avoid these confounding aspects by
focusing on the linearized attention mechanism (Schlag et al., 2021).

Predicting activity from connectivity. The reverse direction, predicting activity from connectivity,
is an allied approach for studying the complexities relating functional and structural information.
A prominent line of study has focused on the worm C. elegans as its synaptic connectome was
the first available among all species (White et al., 1986). Using this, generative models of activity
have been proposed (Mi et al., 2021). Nevertheless, decades of electrophysiological analyses have
emphasized the strong additional role of neuromodulators in shaping activity (Randi et al., 2023;
Marder, 2012). As a result, the synaptic connectome alone predicts only partial information about
recorded population dynamics (Bargmann, 2012; Randi & Leifer, 2020).

2 AN INTERPRETABLE MODEL FOR RECOVERING DYNAMIC CONNECTIVITY

We consider an N -dimensional dynamical system
d

dt
x(t) = f

(
W (t)x(t)

)
(1)

where x(t) ∈ RN , f : RN → RN , and W (t) is an N ×N matrix whose entries may vary across
time. Wi,j(t) prescribes how the i-th variable x(i) is driven by the j-th variable x(j) at time t.

Let xk be observations of the system at discrete timesteps tk. For each k, we train the NetFormer
model (Figure 1) to predict xk+1 based on Xk = [xk−H+1 · · · xk] ∈ RN×H , the recent H-
step history of the system up to timestep k. To encode neuronal identities, a learnable positional
embedding matrix E ∈ RN×M is concatenated to Xk, giving X̃k = [Xk E] ∈ RN×(H+M). The
queries Qk and keys Kk are obtained through linear transformations of X̃k, and their product gives
the linearized attention matrix Ak:

Qk = X̃kWQ ∈ RN×D, Kk = X̃kWK ∈ RN×D, Ak = QkK
⊤
k ∈ RN×N . (2)

It follows that entry (i, j) of Ak is computed from the history of x(i) and x(j), and thus describes
the relationship between the i-th and j-th variables. To predict xk+1, we take xk to be the values vk

and employ the residual connection (He et al., 2016), obtaining prediction as

x̂k+1 = vk +Akvk = xk +Akxk, (3)

which is similar to the update rule we would get if Equation 1 were simulated using the classical
forward Euler method with step size δ

xk+1 = xk + δf(Wkxk). (4)
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Since neuronal connections can be either excitatory or inhibitory, but neither effect can be arbitrarily
large, we choose f to be a sigmoidal function with

f(0) = 0, f(x̄) = f(0) + f ′(0)x̄+O(x̄3) for x̄ within some interval (−ϵ, ϵ) around 01

Equation 4 can thus be written as

xk+1 = xk + δf(Wkxk) = xk + δf ′(0)Wkxk + δO(x3
k). (5)

Comparing equations 3 and 5, we deduce that the linearized attention matrix Ak learned by the
NetFormer may capture the true interactions between different variables Wk by approximating
δf ′(0)Wk, especially when ϵ < 1 and the first order term plays the most significant role. It is not
hard to see that this hypothesis also extends to systems in the form of

d

dt
x(t) = −x(t) + f

(
W (t)x(t)

)
, (6)

which includes the decaying effect that is commonly present in neural dynamics (Gerstner & Kistler,
2002) (Appendix A.1). We provide empirical evidence for this hypothesis on both forms of systems
in the subsequent sections.

3 EXPERIMENTS ON SYNTHETIC DATA

3.1 NONLINEAR AND NONSTATIONARY SYSTEMS SIMULATION

We first considered four simplified simulated systems, with variations in the inclusion of nonlinearity
and nonstationarity:

(a)
dx

dt
= Wx, (b)

dx

dt
= tanh(Wx), (c)

dx

dt
= W (x)x, (d)

dx

dt
= tanh(W (x)x),

where W (x) = W0 + xω⊤. Simulation details are in Appendix A.2.1. All trained NetFormer
models are able to make accurate one-step-ahead predictions (R2 = 1.000, Figure 2a-d left). Vi-
sually, the average linearized attention matrix across timesteps, Ā = 1

K

∑K
k=1 Ak, provides a

good characterization of the average ground-truth dynamical association matrix across timesteps,
W̄ = 1

K

∑K
k=1 W (xk) (Figure 2a-d right). As a baseline, we consider AOLS from the linear ordi-

nary least squares regression x̂k+1 = AOLSxk. We used the Spearman’s rank correlation coefficient
(ρ) between the off-diagonal entries of Ā or AOLS and W̄ to quantify how faithfully the learned
connectivities reflect the ground-truth. Ā achieved comparable performance as AOLS in systems
(a) (b), but significantly outperformed AOLS in systems (c) (d), both visually (Figure 2a-d right)
and quantitively (Appendix A.2.2). Moreover, in the nonstationary systems (c) (d), the linearized
attention matrix is able to track the majority of changes in W (x) across timesteps (Figure 2e-f and
Appendix A.2.3). This ability to capture nonstationarity also explains why NetFormer can outperform
the linear regression model which only accounts for static connectivity.

3.2 SPIKE-TIMING-DEPENDENT PLASTICITY (STDP) SIMULATION

Next, we tested NetFormer in a more neurobiological realistic setting by considering a leaky integrate-
and-fire (LIF) neuron (Gerstner & Kistler, 2002) with spike-timing-dependent plasticity (STDP).
STDP is a fundamental and widely studied synaptic modification scheme in neuroscience (Bi &
Poo, 1998; Abbott & Nelson, 2000; Gerstner et al., 1996; Song et al., 2000) where the synaptic
connection strength between two neurons depends on the relative timing of the spikes they fire. In
typical models, when the presynaptic neuron fires before the postsynaptic neuron, their connection
strengthens, increasing the postsynaptic response to future spikes. Conversely, presynaptic firing after
postsynaptic weakens the connection. The amount of change in synaptic strength depends on the time
interval between pre- and postsynaptic spikes. An example relationship is illustrated in Figure 3a.

We simulated a postsynaptic LIF neuron receiving excitatory inputs from 100 presynaptic neurons,
following Neuromatch Academy (2023) (see Appendix A.3 for simulation details). Since we only
need the spike times of presynaptic neurons, instead of simulating their dynamics, we directly

1see Appendix A.2.4 for more discussion on the radius of convergence of this series representation
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Figure 2: NetFormer provides accurate dynamics predictions, and recovers ground truth connectivity
matrices. a-d Left: Test set predictions of NetFormer. Predicted trajectories were obtained by concatenating all
one-step-ahead predictions. Predicted (dashed) trajectories overlap with the true (solid) trajectories. a-d Right:
True and inferred connectivity from NetFormer’s linearized attention matrix or linear regression weight matrix.
For systems c, d, connectivity is averaged across test set timesteps for visualization. For NetFormer, the inferred
connectivity shown is the one whose Spearman correlation ρ is closest to the average ρ across 10 random seeds.
Colorbars: scale of off-diagonal entries. Diagonal entries are masked in grey. Inferred connectivity matrices
were rescaled by the reciprocal of simulation stepsize for visualization. e: True and inferred temporal evolution
of four example connections in the nonstationary system c. Timesteps used as test set are shaded in grey. f: True
and inferred temporal evolution in system d.

modeled their spike trains with independent Poisson processes (Figure 3b). When a spike arrives at a
certain synapse, the membrane potential of the LIF neuron is increased by an amount proportional to
the synaptic strength, and this potential is reset once the firing threshold is reached (see Appendix A.3
for precise equations). The strength, or weight, of each synapse is modulated following STDP (Figure
3a) within some boundaries. The weight evolution of ten example synapses across the simulation
timespan is shown in Figure 3c.

We trained NetFormer to predict the next-step membrane potential of the LIF neuron based on
its present and past potential and the spikes it received. This relationship is captured by the 1 ×
101 linearized attention matrix of NetFormer. After training, NetFormer is able to capture the
dynamics well (test set MSE=0.055± 0.008, R2=0.912± 0.013, mean ± std across 5 random seeds),
outperforming the linear regression model (test set MSE=0.138, R2=0.777). Visualization of their
predictions (Figure 3d) shows that NetFormer effectively captures the nonlinear reset mechanism,
whereas the linear regression model fails.

We further extracted the learned pre-to-postsynaptic neuron relationship from the linearized attention
matrix of NetFormer and compared it against the ground-truth synaptic weights. Unlike the toy
systems in Section 3.1 (Figure 2e, f), recovering individual synaptic weights at each timestep from
the attention scores does not seem viable. This is not surprising, though, given that the weight
differences between synapses are much smaller compared to the membrane potential, that a synapse
is only involved in dynamics prediction when it has a spike, and the strong nonlinearity in the
membrane spiking dynamics. Nevertheless, we found that for most synapses, the long-term trends in
the corresponding attention scores across timesteps are consistent with the true trends in synaptic
weights driven by STDP (Figure 3e, f). Across the 100 synapses, the median of the correlation
coefficients between smoothed synaptic weight evolution trajectories inferred from attention and the
true weight trajectories is 0.608 ± 0.028 (mean ± std across 5 seeds). This demonstrates that the
simple structure of NetFormer is capable of capturing nonstationary connectivity in spiking neuronal
networks with dynamic synapses.
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Figure 3: NetFormer captures the effect of spike-timing-dependent plasticity (STDP). a. STDP temporal
kernel used in the simulation. Change in the synaptic weight (∆W ) is a function of the delay between pre-
and post-synaptic neuron spikes (tpre − tpost). b. Raster plot of spikes received by the LIF neuron at the first
10 synapses during the first 200 timesteps. c. Evolution of the first 10 synapses’ weights across the simulated
timespan. Each color represents a synapse. d. True and predicted membrane potential across 100 timesteps
in the test set. Membrane potential was z-scored before all model fitting. Predicted traces were constructed
by concatenating one-step-ahead predictions. e. True and inferred synaptic evolution across simulation time
span, after smoothing. Both true and inferred evolution trajectories were smoothed with a sliding window. Each
row represents a synapse, and the rows were sorted by the correlation between the smoothed true and inferred
trajectories. The correlation coefficients corresponding to each row are shown on the left. For visualization, each
row was rescaled to [0, 1] through min-max normalization. f. Weight evolution trajectories of four example
synapses, which correspond to the 1st, 31st, 61st, and 91st rows from e., as indicated by arrows. The trajectories
were smoothed but not min-max normalized. Insets: Raw, unsmoothed trajectories in a sliding window.

3.3 TASK-DRIVEN POPULATION ACTIVITY SIMULATION

We further examined whether NetFormer can identify task-driven connectivity patterns in neural
populations. As single neuron level connectivity in task-performing laboratory animals are hard to
measure, we resorted to task-trained recurrent neural network (RNN) models. The RNN models
are trained to perform tasks which mirror the ones laboratory animals are trained to perform, and
the activity of their recurrent hidden units has been widely adopted in studies of task-driven neural
representation and computation (Mante et al., 2013; Sussillo et al., 2015; Yang et al., 2019; Duncker
et al., 2020). Here we considered three representative tasks from the NeuroGym toolkit (Molano-
Mazon et al., 2022): a. Perceptual Decision Making (Britten et al., 1992), b. Go-Nogo (Zhang et al.,
2019), and c. Delay Comparision (Barak et al., 2010). For each task, we trained a RNN model with
hidden dynamics

hk = tanh(Wstimsk + bstim +Wrechk−1 + brec). (7)

Here hk ∈ RN denotes the activity of hidden units, while sk ∈ RS represents the stimulus input at
timestep k. Wrec ∈ RN×N specifies how current activity is shaped by past activity, and Wstim ∈
RN×S captures the effect of the present stimulus input. brec ∈ RN , bstim ∈ RN correspond to
baseline activity and background input. We used RNN models with 4, 8, and 12 hidden units for
tasks a, b, c, respectively. Training details are provided in Appendix A.4.1. For each task, we applied
the trained RNN model to perform 1000 trials, and recorded its hidden units activity across timesteps
on every trial. Then we trained NetFormer to predict the next-step hidden units activity hk+1 based
on the present and past hidden activity (hk−H , . . . ,hk) and stimulus inputs (sk+1−H , . . . , sk+1)
on 800 of those trials, and held out the remaining 200 trials for evaluation. Compared to the linear
regression model, NetFormer attains higher accuracy in both dynamics prediction and connectivity
recovery (Figure 4 and Appendix A.4.2).
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Figure 4: NetFormer captures task-induced connectivity patterns. a. Top: True connectivity matrix
from RNN trained to perform the Perceptual Decision Making task, followed by inferred connectivity from
NetFormer’s linearized attention matrix or linear regression weight matrix. For NetFormer, the inferred
connectivity shown is the one whose Spearman correlation ρ is closest to the average ρ across 5 random seeds.
Colorbars: scale of off-diagonal entries. Diagonal entries are masked in grey. Inset: Scatter plot of off-diagonal
entries in the visualized inferred versus true connectivity matrix. Bottom: True (solid line, open circles) and
NetFormer-predicted (dashed line, filled circles) activity for 4 example hidden units on a held-out trial. Predicted
traces were obtained by concatenating one-step-ahead predictions. Hidden units are distinguished by colors. b-c.
Same as a, for RNNs trained to perform the Go-Nogo task and Delay Comparision task, respectively.

4 CONNECTIVITY-CONSTRAINED SIMULATION AND NEURAL DATA

Neurons form synapses based, in part, on factors controlled by their genetic and morphological cell
types. The transmission of information through these synapses is influenced by activity history and
behavioral states. To test its ability to handle these and allied complexities, we applied the NetFormer
to a recent multi-modal dataset from (Bugeon et al., 2022), containing both simultaneously recorded
neuronal activity and cell type information in the mouse primary visual cortex. After training
the NetFormer to predict the neural activity, we used the time-averaged attention matrix as an
inferred connectivity strength between neurons. We compared this inferred connectivity against
an independent experimental measurement that serves as a cell-type level ground truth. This is
the cell-type averaged postsynaptic potential (PSP) measured directly using paired patch-clamp
experiments (Campagnola et al., 2022), in which the postsynaptic voltage responses of individual
“downstream” neurons are recorded in response to spikes elicited in specific “paired” neurons. As an
additional test, we observed that the inferred dynamical connectivity is more similar within the same
behavioral state and more distinct between different states. Furthermore, following the measured
cell-type level connectivity, we developed a connectivity-constrained simulation to produce neural
dynamics with a fully specified ground truth connectivity. On this simulated dataset, we assessed
the NetFormer’s ability to infer both individual-neuron level and cell-type level connectivities. More
details are in Appendix A.5.

4.1 DATASETS

Multi-modal in-vivo neural recording. The publicly available dataset (Bugeon et al., 2022) includes
spontaneous population activity recorded from the mouse primary visual cortex (V1) via two-photon
calcium imaging. We trained NetFormer models on data from one subject (SB025), which includes
recordings of 2481 neurons. The dataset also provides single-cell spatial transcriptomics data,
enabling identification of excitatory (EC) and three inhibitory neuron subclasses (Pvalb, Sst, Vip).

Connectivity-constrained simulation. We generated activity of a synthetic neuron population with
200 neurons whose cell-type level connectivity is constrained by the aforementioned patch clamp
experiments (Campagnola et al., 2022). Specifically, we simulated the leaky-integration system

d

dt
x(t) = −x(t) + tanh

(
Wx(t) + b

)
+ ϵ (8)

7
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using the forward Euler scheme with a step size δ = 1, obtaining in discrete timesteps

xk+1 = tanh(Wxk + b) + ϵ. (9)

Here ϵ stands for Gaussian observation noise, b represents the baseline activity, and W denotes
the neuronal connectivity. In our simulation, 76% of neurons are excitatory, with the remaining
24% being inhibitory. The inhibitory neurons are further evenly subdivided into three cell types
(Pvalb, Sst, and Vip). We used cell-type specific means and variances of PSPs measured in the patch
clamp experiments to define Gaussian distributions of connection strengths between each pair of cell
types, and sampled the connection strength between individual cells accordingly. We also provide an
additional simulation in Appendix A.7, where the tanh is replaced with a sigmoid nonlinearity.

4.2 BASELINES AND EVALUATION METRICS

We benchmarked NetFormer against multiple baselines: (i) a linear recurrent model (referred to as
“linear regression”), where xk+1 = Wxk + b; two variants of nonlinear recurrent neural networks
(referred to as “RNNs”): (ii) xk+1 = tanh (Wxk + b), which matches the connectivity-constrained
simulation and serves as an “oracle" type model giving a corresponding upper bound on performance,
(iii) xk+1 = exp (Wxk + b), of the form of commonly used generalized linear models (GLMs)
in neuroscience (Pillow et al., 2008), with a nonlinearity mismatched to that of the simulation
itself. We also considered standard statistical metrics, including cross-correlation, covariance, mutual
information, and transfer entropy (with details in Appendix A.6). We evaluated activity prediction
using mean squared error (MSE), coefficient of determination (R2), and the Pearson correlation
coefficient. We assessed the correlation between inferred and true connectivity using Pearson and
Spearman correlation coefficients, both at the N ×N neuron level (N : number of recorded neurons)
and the K ×K cell type-level (K = 4 includes one excitatory and three inhibitory types: Pvalb, Sst,
Vip). More details are provided in Appendix A.10.2.

4.3 TIME-AVERAGED CONNECTIVITY INFERENCE

NetFormer outperforms baselines in inferring time-averaged connectivity. As shown in Table 1
and Figure 5a, on both simulated and real neuronal activity data, NetFormer outperforms other
baseline models in predicting activity and inferring connectivity in the majority of the evaluations.
We hypothesize that NetFormer’s advantage relative to other baseline methods mainly stem from two
key aspects. The first is that the underlying connectivity in the NetFormer model is nonstationary
rather than static, as assumed by the other baseline models and methods. The second is the absence
of a need to specify an activation nonlinearity. Notable, in the connectivity-constrained simulation,
NetFormer achieves comparable performance to the "oracle" model (RNN with tanh nonlinearity).
By contrast, the RNN with an exponential nonlinearity, misspecified with respect to the simulation,
performed significantly worse. This contrast illustrates a strength of the NetFormer model: NetFormer
does not involve specification of an activation function, avoiding the fragility that this can entail. We
further tested NetFormer’s robustness to spurious correlations following Das & Fiete (2020) (see
details in Appendix A.9). NetFormer shows some resilience to spurious correlations, but would also
struggle when the recurrent weights are too strong or too weak, similar to other methods studied in
Das & Fiete (2020), including the GLM (Pillow et al., 2008), logistic regression (Lee et al., 2006),
and the Ising model (Roudi et al., 2009).

Excitation cell type can be decoded from learned positional embeddings. Following Mi et al.
(2024), we also observe that the learned positional embeddings E in the NetFormer model can be
used to decode an aspect of cell class information. Specifically, using learned embeddings of neurons
in the training set, we trained a binary classifier via logistic regression to classify neurons as excitatory
or inhibitory, a coarser grouping which subsumes the genetic/morpological categories considered
above. When applied to classify held-out neurons on the test set, the trained classifier attains 100%
top-1 accuracy in simulation data, 66.67% top-1 accuracy and AUROC score of 0.700 in real data
(see confusion matrices in Figure 5b). This shows that the learned positional embeddings are linearly
separable according to this aspect of neurons’ cell type identity.

NetFormer demonstrates robustness against partial observation. For most biological neuronal
circuits, each recording can only access the activity of a subset of all neurons. To evaluate its
robustness against such partial observation, we fitted NetFormer to a randomly selected subset of
neurons in the simulated dataset. In Figure 5c, we show that the performance in recovering the
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NetFormer linear
regression

RNN
w/ tanh

RNN
w/ exp

cross
correlation covariance mutual

information
transfer
entropy

simulation

connectivity
N× N

Pearson 0.869±0.002 0.817±0.002 0.905±0.000* 0.581±0.011 0.823 -0.029 0.539 0.600
Spearman 0.532±0.001 0.507±0.001 0.546±0.000* 0.393±0.009 0.519 -0.015 0.262 0.339

connectivity
K× K

Pearson 0.879±0.001 0.885±0.001 0.908±0.000* 0.887±0.008 0.888 -0.438 0.371 0.419
Spearman 0.860±0.002 0.852±0.005 0.866±0.002* 0.822±0.025 0.732 -0.334 0.018 0.353

in-vivo
recording

connectivity
K× K

Pearson 0.777±0.047 -0.395±0.020 -0.395±0.036 -0.407±0.006 -0.017 -0.162 -0.176 0.075
Spearman 0.847±0.063 -0.409±0.051 -0.343±0.105 -0.191±0.300 -0.080 -0.190 -0.061 0.233

activity
prediction

MSE 0.404±0.004 0.443±0.001 0.560±0.001 0.476±0.003 – – – –
Pearson 0.740±0.003 0.720±0.001 0.639±0.000 0.699±0.002 – – – –
R2 0.548±0.004 0.515±0.001 0.386±0.001 0.478±0.004 – – – –

Table 1: NetFormer outperforms classical baselines methods in dynamics prediction and connectivity
inference. Results from both connectivity-constrained simulation and neural recording. An asterisk (*) indicates
that the RNN with tanh activation serves as the oracle model (upper bound for performance on the simulation
data). Results from mutual information and transfer entropy are compared against the absolute values of ground
truth connectivity. Simulation data has ground truth for both neuron-level (N ×N ) and cell type-level (K ×K)
connectivity. Patch-clamp results serve as the ground truth for real neural data cell-type level connectivity.
Connectivity inference is assessed with Spearman’s and Pearson’s correlations. Next-step activity prediction is
evaluated with MSE, Pearson’s coefficient, and R2 on the test set.
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Si
m

ul
at

io
n 

D
at

a
Re

al
 M

ou
se

 D
at

a

Presynaptic

Po
st

sy
na

pt
ic

a. b.EC   Pvalb Sst Vip Simulation Data Neural Data
EC/IN Cell Type Classification

c.
Partial Observation

on Simulation

d.

Single-session Multi-session

Connectivity Inference 
on Neural Data

Figure 5: a. Visualization of true and inferred connectivities at both neuron level and cell-type level in
simulation data and neural data. NetFormer is benchmarked with linear regression, RNNs, and standard
statistical metrics. A positive linear transformation has been applied to standardize all matrices to the same range
for better visualization. b. Confusion matrices of excitatory (EC) and inhibitory (IN) cell type classification
on both connectivity-constrained simulation and neural data. c. Experiment on different levels of partial
observability in the connectivity-constrained simulation. Connectivity inference is evaluated at both neuron level
and cell-type level. d. Connectivity inference in real neural data with NetFormer models trained on a single
session and multiple sessions from the same subject. Errorbars: Spearman correlations across 5 random seeds.

neuron-level connectivity does not decrease significantly even with only half of the neurons observed.
Cell-type level connectivity inference is more robust against such partial observations, highlighting
the potential of NetFormer to effectively derive cell-type level connectivity from real neural data.

NetFormer can fit neural recordings across sessions. RNN-type models, designed to recover
connectivity at the level of individual neurons, cannot easily incorporate data of varying population
sizes across experimental sessions. In contrast, NetFormer promotes scalability by allowing parameter
sharing (WQ, WK ) across sessions. These parameters are defined in the temporal dimension and thus
do not increase with the number of neurons. Figure 5d shows that NetFormer achieves comparable
performance for connectivity inference when both fitting a single session and multiple sessions.

4.4 NONSTATIONARY CONNECTIVITY INFERENCE

Building on NetFormer’s ability to capture nonstationary connectivity changes over time in Section 3,
we extended this evaluation to real neural data. In this dataset (Bugeon et al., 2022), activity at each
timestep is labeled by one of the three behavioral states: running, stationary desynchronized, and
stationary synchronized. Figure 6a shows that neurons of different cell types can exhibit different
activity patterns across these states, suggesting that neural activity is informative of behavioral states.
Thus informed, we explored whether the time-varying attention could capture connectivity changes
among these states (see details and visualizations in Appendix A.8). We compared NetFormer with
two baseline methods capable of capturing nonstationary connectivity: a low-tensor-rank RNN
(LtrRNN) (Pellegrino et al., 2023) and an autoregressive Hidden Markov Model (AR-HMM) (Fox
et al., 2008; Linderman et al., 2017b). LtrRNN models trial-varying connectivity using a low rank
tensor W ∈ RN×N×L, where L denotes the number of trials. Since our neural data is measured
during spontaneous activity without an explicit trial structure, to apply LtrRNN, we constructed
“trials" using sliding windows on the data. We note that while NetFormer uses shared parameters
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Figure 6: Connectivity inference across behavioral states. a. Neural activities across cell types in three
behavioral states. b. Projection of NetFormer attention maps and LtrRNN-inferred connectivity weights onto
top two principal components. Each dot represents a different timestep, colored by behavioral states. PCA on
NetFormer attention maps shows greater similarity between the two stationary states compared to the running
state. c. Comparison of AR-HMM inferred states with true behavioral states. d. Comparison of inferred
state-specific connectivities across NetFormer, LtrRNN, and AR-HMM. NetFormer-inferred connectivities are
in better agreement with the patch-clamp result.
across time/trials, LtrRNN trains trial-specific parameters, leading to an explosion in parameters as
the number of trials grows. As a second baseline, we considered the AR-HMM, which assumes that
there are discrete latent states switching underlying the observed activity, and each state admits unique
dynamics through a different connectivity matrix. Due to its discrete state switching mechanism, it is
not suitable for capturing continuous connectivity changes, and its state discovery relies heavily on
the user-specified number of states.

While NetFormer-inferred cell-type level connectivity is in good agreement with the patch-clamp
experimental ground truth, connectivities inferred by LtrRNN and AR-HMM bear little correlation
to this ground truth (Figure 6d). A quantitative comparison is provided in Table 6, Appendix A.8.
Notably, consistent with prior experimental observations (Fu et al., 2014), attention also witnesses
an increase in inhibitory activity from presynaptic Vip neurons and a decrease in inhibition from
presynaptic Sst neurons during the running state, as seen by the darker Vip column in the running
state compared to the stationary states and the lighter Sst column (Figure 6d, top row). Figure 6b
further demonstrates that state information is implicitly captured by NetFormer’s attention maps,
showing greater similarity within states and clear distinctions between states. Notably, stationary
desynchronized and stationary synchronized states show more similarity to each other than to the
running state. Moreover, compared to weights inferred by LtrRNN, PCA on NetFormer-inferred
weights yields a cleaner separation between running and two stationary states. When tasked to
find three states from the neural data, those inferred by the AR-HMM largely align with the three
behavioral states, albeit with higher noise (Figure 6c).

5 CONCLUSION AND DISCUSSION

Experience, activity, and adaptation change the effective connectivity of biological neuronal networks
via mechanisms including synaptic plasticity and neuromodulation, all playing out across various
timescales. This perspective poses connectivity as a dynamical variable that should be tracked, rather
than inferred once. Here, we propose the NetFormer as a light-weight model for dynamical connec-
tivity inference. We began with a mathematical analysis that relates nonlinear and nonstationary
dynamics to its linearized attention mechanism. We further demonstrated, on representative simulated
and in-vivo neural datasets, the strength of our model through comparison against various baselines
to predict nonlinear neural dynamics and to capture the underlying dynamical connectivity.

This said, our method has several limitations: (i) Partial observability of neuronal population dynamics
has been a major confounding factor for connectivity inference, and our method is no exception. (ii)
As our model learns the forward dynamics through a history-dependent linearization of the system in
a local temporal neighborhood, its ability to capture nonlinear or nonstationary systems is limited
compared to fully nonlinear or layered transformer-type models. Despite these limitations, our work
presents a step forward to addressing the long-standing challenge of extracting nonstationary neuronal
network structure from complex functional data, and brings new insights into the interpretability of
the transformer model and its applicability in modeling nonstationary dynamical systems.
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A APPENDIX

A.1 JUSTIFICATION FOR LINEARIZED ATTENTION APPLIED TO “LEAKY" SYSTEMS (EQN 6)

Using the forward Euler method and step size δ, Equation 6 can be simulated as

xk+1 = xk + δ
(
− xk + f(Wkxk)

)
= xk − δxk + δf(Wkxk). (10)

Following the same sigmoidal assumption on f , Equation 10 can be written as

xk+1 = xk + δ(f ′(0)Wk − I)xk + δO(x3
k), (11)

where I is the N ×N identity matrix. Therefore, the linearized attention matrix Ak learned from
Equation 3 may reflect the true interactions Wk by approximating δ(f ′(0)Wk − I), and can capture
the interactions between different variables (off-diagonal entries of Wk) up to a scaling factor
(δf ′(0)).

A.2 ADDITIONAL DETAILS FOR NONLINEAR AND NONSTATIONARY SYSTEMS SIMULATION
(SEC 3.1)

A.2.1 SIMULATION DETAILS

In Figure 2 a, b, ground-truth W were generated randomly, with real-part of each eigenvalue clipped
at 0 to ensure stability of the system. W in a, b were also used as W0 in c,d, respectively. ω in
c, d were picked randomly while maintaining stability of the system. In a, the system trajectory
was simulated using the closed-form solution x(t) = eW tη, where η is the initial state. In b-d,
trajectories were simulated using the forward Euler method: xk+1 = xk + δf(Wkxk), where
Wk ≡ W for b, and Wk = W0 + xkω

⊤ for c, d. All simulations consist of 3000 timesteps
with stepsize δ = 0.01, with the first 80% used as training set, and last 20% as test set. For c, d,
ground-truth connectivity matrices were computed as the time-averaged connectivity across test set
timesteps W̄ =

∑3000
k=2400 Wk . Simulated trajectories are visualized in Figure 7. In all settings, the

NetFormer model was trained to minimize the mean squared error (MSE) on the trainining set for
1100 epochs using the Adam optimizer in Pytorch, with H = 1,M = 5, D = 5, batch size = 80,
initial learning rate = 0.01. In b, d, learning rate was decayed by a factor of 0.9 every 100 epochs. In
c, learning rate was decayed by a factor of 0.8 every 100 epochs.

Figure 7: Simulated trajectories of toy models in Figure 2. Shaded regions represent timesteps used
as test set.

A.2.2 QUANTITIVE COMPARSION WITH LINEAR REGRESSOIN MODEL

For each toy system in section 3.1, we trained 10 NetFormer models with different random seeds
(initializations), and computed the Spearman’s rank correlation coefficient (ρ) and the Pearson
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correlation coefficient (r) between the off-diagonal entries of Ā and W̄ for each trained model.
In terms of ρ, Ā achieved comparable performance as AOLS in systems a, b (p > 0.3, two-sided
one sample t test), but significantly outperformed AOLS in systems c, d (p < 10−8) (Figure 8 left).
Similar observations can be made with r (Figure 8 right). For each system, the linearized attention
matrix visualized in Figure 2 is the one whose ρ is the closet to the average ρ across 10 random seeds.

Figure 8: Comparison between AOLS (red cross) and Ā from NetFormer models with 10 different
random initializations (boxplots).

A.2.3 NONSTATIONARITY CONNECTIVITY TRACKING

On toy systems with nonstationary connectivity (Figure 2c, d), we evaluated how well linearized
attention matrices across timesteps can track changes in the connectivity. For each pair (i, j), i, j =
1, . . . , 5, i ̸= j, we collected Aij and Wij across all test timesteps, resulting in two time-varying
series Aij(t) and Wij(t), and computed the Pearson correlation coefficient between them. Results
for 10 trained NetFormer models with different random seeds are shown in Figure 9. Distributions of
the temporal correlation coefficients for all off-diagonal pairs (i, j) are shown as violin plots, where
each violin corresponds to model trained with one random seed. The median of each distribution is
marked with a black line. All medians are greater than 0.999.

Figure 9: Distribution of test set temporal correlation between the linearized attention matrix and the
true nonstationary connectivity. Each column shows result from NetFormer model with a different
random seed. Median of each distribution is marked in black. All medians are greater than 0.999.

A.2.4 FURTHER DISCUSSION ON NONLINEAR DYNAMICAL SYSTEMS

In Section 2, we showed that when f is sigmoidal, A can reflect W through Taylor series approx-
imation of f(Wxk). Take f = tanh as an example. Let wi denote the i-th row of W . When
|w⊤i xk| < π

2 ∀i = 1, . . . , N ,

tanh(Wxk) = tanh(0) + tanh′(0)Wxk +O(x3
k).

As tanh(0) = 0, the forward Euler method is

xk+1 = xk + δ tanh(Wxk) = xk + δ tanh′(0)Wxk + δO(x3
k).

This analysis also applies to other sigmoidal functions f , such as arctan, with

f(0) = 0, f(x̄) = f ′(0)x̄+O(x̄3) for x̄ within some interval around 0.

Therefore, we hypothesize that A can capture W through learning δf ′(0)W for sigmoidal f . It is
also clear that learning W becomes more challenging when w⊤i x does not always stay within the
radius of convergence of the Maclaurin series. Nonetheless, we note that if some w⊤i x is constantly
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outside the convergence region, f(w⊤i x) will be constantly positive or negative, and the system will
either blow up or decay to zero. Therefore, for the systems of interest here, which are those with
interesting persistent dynamics, from time to time w⊤i x must fall within the convergence region
where the Maclaurin series representation is valid. That being said, while A may still be able to
capture some aspect of W , it could become less accurate, and may require more observations of the
system to gather sufficient timesteps within the convergence region.

In the example nonlinear dynamical system shown in Figure 2b, w⊤i xk stays within the radius of
convergence of tanh for all i and k, which makes the Maclaurin series approximation valid for all
timesteps. In Figure 10, we provide another toy model example showing that the attention from
NetFormer still bears considerable similarity to the ground-truth W even when w⊤i xk falls out of
the convergence region for some i and k.

Figure 10: Demonstration of NetFormer on a nonlinear system dx
dt = tanh(Wx) where w⊤i x

does not always stay within the convergence region of the Maclaurin series of tanh. a. Top row:
Trajectories of the simulated system. Simulation was done using the forward Euler method with
stepsize δ = 0.1. Shaded regions represent timesteps used as test set. Bottom row: Visualization
of w⊤i x across simulated timesteps. Boundaries of the convergence region, ±π

2 , were marked with
black horizontal lines. The right column provides a zoomed-in view of the first 500 simulation
timesteps. b. Left to right Ground-truth W , average linearized attention matrix across test timesteps
from NetFormer (Ā), AOLS fitted through least-squares regression. Colorbars indicate the scale of
the off-diagonal entries, and the diagonal entries are masked in grey. Ā, AOLS were rescaled for
visualization. Spearman’s rank correlation coefficients (ρ) were computed between the off-diagonal
entries of Ā or AOLS and W . We trained 10 NetFormer models with different random initializations
(ρ = 0.841± 0.02, mean ± std), and Ā shown is the one whose ρ is the closet to the average ρ across
10 random initializations. NetFormer models achieved similar performance as AOLS (p = 0.9, two-
sided one sample t test). All NetFormer models were trained to minimize the mean squared error on
the trainining set for 600 epochs using the Adam optimizer in Pytorch, with H = 1,M = 5, D = 5,
batch size = 80. Learning rate was initialized to 0.01, and was decayed by a factor of 0.9 every 100
epochs.

A.3 ADDITIONAL DETAILS FOR STDP SIMULATION (SEC 3.2)

Our STDP simulation is largely based on Neuromatch Academy (2023). The dynamics of the LIF
neuron follows

τm
dV

dt
= −(V − EL)− gE(t)(V − EE) (12)

V (t) ≥ Vth ⇒ V (t) = Vreset (13)
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where V is the membrane potential, τm is the membrane time constant, EL is the resting potential,
EE is the synapse reversal potential, Vth is the spiking threshold, and Vreset is the reset potential.
Once V (t) crosses the spiking threshold, we say the LIF neuron emits a spike, and V (t) will be reset
to and held at Vreset for a refractory period tref . gE(t) is the total excitatory synaptic conductance,
which is the total conductance of all active pre-synapses (i.e. synapses coming into the LIF neuron)
at that time:

gE(t) =

N∑
i=1

gi(t)δi(t− tspk) (14)

where δi is the delta function: δi(t − tspk) = 1 if there is a spike at pre-synapse i at time t, and 0
otherwise. The conductance of each pre-synapse gi evolves following

dgi
dt

= − gi
τE

+ ḡiδi(t− tspk) (15)

where τE is the EPSP time constant, and ḡi is the peak synaptic conductance of pre-synapse i. All ḡi
are bounded between 0 and ḡmax.

When there is a spike arriving at the i-th pre-synapse,

ḡi = ḡi +M(t)ḡmax (16)

where M(t) helps tracking the time since the last postsynaptic spike emitted by the LIF neuron.
When the postsynaptic LIF neuron spikes, all pre-synapses are updated:

ḡi = ḡi + Pi(t)ḡmax,∀i (17)

where Pi(t) helps tracking the time since the last spike at the i-th pre-synapse. STDP is enforced
through M(t) and Pi(t). Specifically, M(t) follows

τ−
dM

dt
= −M (18)

and whenever the postsynaptic LIF neuron spikes,

M(t) = M(t)−A−. (19)

Pi(t) follows

τ+
dP

dt
= −P (20)

and whenever the i-th presynaptic neuron spikes,

P (t) = P (t) +A+. (21)

τ+ and τ− specify the range of separation between pre- and postsynaptic spikes where STDP takes
effect. A+, A− are both positive, and define the maximum amount of synaptic strengthening and
weakening, respectively. It follows that M(t) ≤ 0, Pi(t) ≥ 0 ∀t. M(t) and Pi(t) effectively capture
the STDP rule

∆W = A+e
(tpre−tpost)/τ+ if tpost > tpre (22)

∆W = −A−e
−(tpre−tpost)/τ− if tpost < tpre (23)

as shown in Figure 3a. The constant parameters and initial conditions in our simulation are set in the
same way as in Neuromatch Academy (2023), and are summarized in tables 2, 3. Pre-synaptic spike
trains are modeled as independent Poisson processes with rate 50Hz.

To generate data, we run the simulation for 100,000 timesteps where each timestep corresponds to 1ms.
We used the first 80% of data for training, and the last 20% of data as the test set. Membrane potential
of the LIF neuron was then z-scored using its mean and std on the training set. We fitted 5 NetFormer
models using different random seeds. All NetFormer models have H = 5,M = 101, D = 101, and
were trained to minimized the mean squared error on the training set for 20 epochs using the Adam
optimizer with learning rate 0.005, batch size 64 in Pytorch. Result from one seed is visualized in
Figure 3d-f. We used a sliding window of length 10,000 timesteps to smooth both true and inferred
synaptic weight trajectories before computing the correlation coefficients.
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Table 2: Constant parameters in STDP simulation

Parameter Value
τm 10 [ms]
EL -75 [mV]
EE 0 [mV]
Vth -55 [mV]
Vreset -75 [mV]
tref 2 [ms]
τE 5 [ms]
ḡmax 0.024
τ+ 20 [ms]
τ− 20 [ms]
A+ 0.008
A− 0.0088

Table 3: Initial conditions in STDP simulation

Variable Initial value
V -65 [mV]
gi 0.014
M 0
P 0

A.4 ADDITIONAL DETAILS FOR TASK-DRIVEN POPULATION ACTIVITY SIMULATION

A.4.1 SIMULATION DETAILS

The hidden dynamics of RNN models follows equation 7, and at each timestep k, the network activity
is read out through a linear mapping

yk = Wouthk. (24)

All RNN models are trained to minimize the cross entropy loss using the Adam optimizer in Pytorch.
In the Perceptual Decision Making task, we trained a RNN with 4 hidden units for 5000 epochs using
learning 0.005, batch size 32. In the Go-Nogo task, we trained a RNN with 8 hidden units for 2000
epochs using learning 0.01, batch size 32. In the Delay Comparision task, we trained a RNN with 12
hidden units for 5000 epochs using learning 0.01, batch size 32. All trained RNNs achieve over 90%
accuracy in the 1000 test trials. All trials are generated using the default parameters in the NeuroGym
toolkit (Molano-Mazon et al., 2022).
In each task, we recorded the hidden units activity of the trained RNN during the 1000 test trials.
We then trained NetFormer to predict the next-step hidden units activity based on the present and
past H-step hidden activity and stimulus inputs. Hidden units activity during 800 trials were used
for training, and the remaining 200 trials were using for evaluation. In each task, we trained 5
NetFormer models from different initializations to minimize the mean squared error (MSE) on the
training set using the Adam optimizer in Pytorch. In the Perceptual Decision Making task, NetFormer
has H = 5, N = M = D = 7, and was trained using learning rate 0.0025, batch size 64 for 100
epochs. In the Go-Nogo task, NetFormer has H = 1, N = M = D = 11, and was trained using
learning rate 0.01, batch size 64 for 50 epochs. In the Delay Comparision task, NetFormer has H = 5,
N = M = D = 14, and was trained using learning rate 0.005, batch size 64 for 50 epochs.

A.4.2 QUANTITIVE COMPARSION WITH LINEAR REGRESSOIN MODEL

Table 4 provides a quantatitive comparison between NetFormer and the linear regression model.
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Dynamics prediction Connectivity recovery
NetFormer Linear NetFormer Linear

MSE R2 MSE R2 Spearman Pearson Spearman Pearson
a 0.000±0.000 0.998±0.001 0.014 0.920 0.694±0.163 0.760±0.120 0.566 0.548
b 0.010±0.000 0.972±0.001 0.013 0.960 0.622±0.006 0.722±0.004 0.518 0.553
c 0.001±0.000 0.997±0.001 0.034 0.897 0.811±0.011 0.633±0.105 0.626 0.650

Table 4: a, b, c corresponds to the Perceptual Decision Making task, Go-Nogo task, and Delay Com-
parision task, respectively. MSE and R2 were evaluated on concatenated held-out trials. Spearman
and Pearson correlation coefficients were computed between the off-diagonal entries of the inferred
and true connectivity matrices. NetFormer results are the mean±std across 5 random seeds.

A.5 CONNECTIVITY-CONSTRAINED SIMULATION AND NEURAL DATA: DATASETS AND
PREPROCESSING

A.5.1 CONNECTIVITY-CONSTRAINED SIMULATION

We used the following procedure to construct the ground-truth connectivity matrix. For each cell-type
pair and for every pair of neurons, we first drew a random sample from the uniform distribution
between 0 and 1. Then, we used the connectivity probability from patch-clamp experiments Cam-
pagnola et al. (2022) as a cutoff threshold to determine if two neurons are connected. For connected
neurons, we sampled their connection strength from a normal distribuion N (µ, 0.1), where µ is the
measured post-synaptic potential from patch-clamp experiments. We simulated 30, 000 steps for 200
neurons, using the first 80% timesteps for training and the last 20% for testing.

A.5.2 PATCH-CLAMP DATASET

The dataset released in Campagnola et al. (2022) contains experimental results of connectivity
probability and connectivity strength (Postsynaptic Potential (PSP)) at the cell-type level measured
using patch-clamp. In each experiment, up to eight neurons were simultaneously subjected to whole-
cell patch-clamp recording, mainly under current-clamp conditions, with some stimuli also tested
under voltage-clamp conditions. Stimuli were applied to each patched neuron while recording the
other neurons for postsynaptic responses. We mainly focus on the experimental results for layers
2/3 in mouse primary visual cortext (V1), to match the neurons recorded in the multimodal mouse
datatset (Bugeon et al., 2022).

A.5.3 MULTIMODAL MOUSE DATA

For functional activity recordings from neuronal populations, we used a recent, public multimodal
dataset provided by Bugeon et al. (2022). This dataset includes spontaneous population activity
recordings from the mouse primary visual cortex (V1) across layers 2/3 via 2-photon calcium imaging
at a temporal sampling frequency of 4.3Hz across six 20-minute sessions, recording approximately
500 neurons per session. Spatial coordinates of the recorded neurons are also provided. We trained
our models on data from one experimental subject (SB025), which includes recordings of 2481
neurons, with some neurons repeating across six sessions. The dataset also includes single-cell
spatial transcriptomics, profiling mRNA expression for 72 selected genes to identify excitatory and
inhibitory class labels of neurons. 51% of neurons in the inhibotiry class can further be identified to
be one of Lamp5, Pvalb, Vip, Sncg, and Sst.

A.5.4 DATA PREPROCESSING

In the connectivity-constrained simulation, when using RNN with an exponential activation, we
rescaled the data to ensure that all neuronal activities are nonnegative, as exponential activation
produces only nonnegative outputs.

For the experimental neural recording, which is nonnegative, we normalized it using the mean and
standard deviation calculated across all sessions and neurons involved in training. When using the
RNN model with exponential activation, we normalized the data by dividing by the standard deviation
only, without first subtracting the mean.
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A.6 BASELINES

A.6.1 STATIONARY CONNECTIVITY BASELINES

Linear Regression: We denote neural activity data as Xk = [xk−H+1 · · · xk] ∈ RN×H

recorded from N neurons and H time steps. Let xk+1 ∈ RN denote the neuronal activity at the
(k + 1)th time step. Given previous 1 time step, xk, linear regression predicts current time step
activity as

x̂k+1 = Wxk + b

Recurrent Neural Network (RNN) with tanh activation: Given neuronal activity across previous
p time steps, xk, xk−1, . . . , xk−p+1, a RNN with predefined Tanh activation function predicts current
time step activity as

x̂k+1 = σ
(
W (0)xk +W (1)xk−1 + · · ·+W (p−1)xk−p+1 + b

)
, σ = tanh

where W (l), l ∈ {0, 1, . . . , p−1}, represent how the previous l-th step affects the current step activity
and each element W (l)

ij represents how the j-th neuron at the previous l-th time step influences the
ith neuron in current step. The RNN is trained by minimizing mean squared errors (MSE) of the
current time step activity prediction given previous time steps. p = 1 is commonly used for RNN.
For modeling both simulation data and real mouse data, we chose p = 1, because the simulation data
has exactly one timestep dependency. Using larger p did not improve performance in real data either.

Recurrent Neural Network (RNN) with exponential activation: Next, we change the predefined
activation function of RNN to exponential function for modeling both simulation data and real mouse
data.

x̂k+1 = σ
(
W (0)xk +W (1)xk−1 + · · ·+W (p−1)xk−p+1 + b

)
, σ = exp

Cross correlation: Recall that Xk = [xk−H+1 · · · xk] ∈ RN×H denotes activity of N neurons
across H time steps. Let x(i), x(j) ∈ RH denote the i-th and j-th neurons’ activity across H time
steps. For simpliticity, let a = x(i) [τ :] , b = x(j) [: −τ ]. Cross correlation with time delay τ reflects
connectivity as

ri←j =
a⊤b

∥a− a∥∥b− b∥
We choose τ = 1 for inferring connectivity in both simulation and read data.

Covariance: Similar to above, let x(i), x(j) ∈ RH denote the i-th and j-th neurons’ activity across
H time steps. Covariance indicates the level to which two variables vary together. Covariance matrix
is symmetric, which assumes that the influence from neuron i to neuron j is the same as influence
from neuron j to neuron i. Covariance between neuron i and j is defined as

ci←j = cj←i =
1

H − 1
ΣH

k=1x
(i)
k x

(j)
k

Mutual information: Mutual information quantifies the amount of information that one random
variable contains about another, which is also symmetric. When calculating the mutual information
between activity history of two neurons, the computation involves estimating the entropy of each
neuron’s activity individually and the joint entropy of both neurons together. We used the Python
package PyInform.mutualinfo to compute the mutual information. Let x(i), x(j) ∈ RH as defined
above, then

Ii←j = Ij←i = I(x(i);x(j)) = H(x(i)) +H(x(j))−H(x(i), x(j)),

where H(x(i)) is the entropy of neuron i’s activity, calculated as H(x(i)) = −
∑

z∈x(i) p(z) log p(z).
H(x(j)) is the entropy of neuron j’s activity. H(x(i), x(j)) is the joint entropy of neurons i and j,
calculated as H(x(i), x(j)) = −

∑
z∈x(i),ξ∈x(j) p(z, ξ) log p(z, ξ).

Transfer entropy: Transfer entropy quantifies the amount of directed information transferred
between systems, or in our case, between two neurons. We used the Python package PyIn-
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form.transferentropy to compute the transfer entropy, which is defined as

T i←j =
∑

p
(
x
(i)
k+1, x

(i)
(k+1−p):k, x

(j)
(k+1−l):k

)
log

p
(
x
(i)
k+1 | x(i)

(k+1−p):k, x
(j)
(k+1−l):k

)
p
(
x
(i)
k+1 | x(i)

(k+1−p):k

)
 ,

where x
(i)
k+1 is the future activity of neuron i. x(i)

(k+1−p):k represents the past p activities of neuron

i up to time k. x
(j)
(k+1−l):k denotes the past l activities of neuron j up to time k. p(·) denotes the

probability distributions calculated from the joint and conditional activities as observed in the data.

A.6.2 NONSTATIONARY CONNECTIVITY BASELINES FOR NEURAL DATA

Low-tensor-rank RNN (LtrRNN): LtrRNN is designed to model trial-varying neural dynamics by
capturing low-dimensional changes in connectivity over time. We split continuous neural activity
data into overlapping sliding windows, treating each window as a distinct trial, which allows LtrRNN
to learn temporal variations in connectivity patterns. The dimension of the network is defined by
the number of neurons. By extracting the trial-specific weight matrices from LtrRNN, we compared
these non-stationary connectivity patterns with the attention maps learned by NetFormer. Code for
fitting LtrRNN: https://github.com/arthur-pe/LtrRNN

Autoregressive Hidden Markov Model (AR-HMM): AR-HMM extends the traditional HMM by
incorporating state-specific autoregressive dynamics, where each state has its own unique autoregres-
sive model to describe the temporal dynamics of neural activity. AR-HMM is able to infer the latent
states of the system and estimates the connectivity matrices associated with each state. However, a
limitation of AR-HMM is the need to predefine the total number of states. Code for fitting AR-HMM:
https://github.com/lindermanlab/ssm

A.7 MORE ON CONNECTIVITY-CONSTRAINED SIMULATION

A.7.1 CONNECTIVITY-CONSTRAINED SIMULATION WITH SIGMOID NONLINEARITY

To test the robustness of NetFormer towards different nonlinear activations in the connectivity-
constrained simulation described in Section 4, we replaced the tanh activation with sigmoid activation
and used NetFormer, along with other baselines, to reconstruct connectivity at both neuron-level and
cell-type level. Table 5 presents quantitative comparisons of the inferred connectivity with ground
truth, averaged over five random seeds. Both Table 5 and Figure 11 demonstrate that NetFormer
outperforms the other baselines on neuron-level (N ×N ) connectivity inference.

NetFormer linear
regression

RNN
w/ tanh

RNN
w/ exp

cross
correlation covariance mutual

information
transfer
entropy

simulation

connectivity
N× N

Pearson 0.834±0.006 0.765±0.002 0.772±0.001 0.679±0.002 0.829 -0.022 0.447 0.329
Spearman 0.508±0.005 0.482±0.002 0.485±0.001 0.454±0.000 0.512 -0.006 0.201 0.223

connectivity
K× K

Pearson 0.880±0.003 0.904±0.002 0.940±0.001 0.803±0.002 0.921 -0.438 0.350 0.304
Spearman 0.860±0.002 0.862±0.003 0.886±0.000 0.788±0.011 0.856 -0.299 0.104 0.340

Table 5: Connectivity-constrained simulation with sigmoid activation. Results of connectivity
inference using mutual information, transfer entropy, and Granger causality are assessed by comparing
against the absolute values of ground truth connectivity. Simulation data has ground truth for both
neuron-level (N ×N ) and cell type-level (K ×K) connectivities. Connectivity inference is assessed
using Spearman’s and Pearson’s correlation coefficients.

A.7.2 GRANGER CAUSALITY TEST

We performed Granger causality tests on connectivity-constrained simulation data with both sigmoid
and tanh activations. To create a binary ground-truth neuron-level connectivity matrix, we assigned a
value of 1 to all nonzero entries and 0 to zero entries. We then conducted Granger causality tests on
pairwise neural activities to generate a matrix of test statistics, which is then min-max normalized.
To compare with Granger causality on inferring binary connectivity, we also performed min-max
normalization on the time-averaged neuron-level attention matrix. We evaluated the performance
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Figure 11: Connectivity-constrained simulation with sigmoid activation. Visualization of ground
truth and inferred connectivity matrices at both individual-neuron level and cell-type level. A positive
linear transformation has been applied to standardize all matrices to the same range for better
visualization.
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Ganger Causality
AUROC = 0.586

(sigmoid simulation activation)

Ganger Causality
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(tanh simulation activation)
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AUROC = 0.918

(sigmoid simulation activation)

Figure 12: Visualization of NetFormer and Granger causality results for inferring binary connectivity
(presence or absence of connections) in connectivity-constrained simulation data.

using AUROC. As shown in Figure 12, for simulations with sigmoid activation, the AUROC of
NetFormer is 0.918, while the AUROC of Granger causality is 0.586. For simulations with tanh
activation, the AUROC of NetFormer is 0.894, while the AUROC of Granger causality is 0.672. On
both simulations, NetFormer shows better performance

A.8 NETFORMER FOR NONSTATIONARY CONNECTIVITY INFERENCE ON NEURAL DATA

We visualized neural activity traces, mouse behavioral states, and cell-type level attention weights for
each state in Figure 13. While behavioral states are not provided as model inputs, they can be inferred
using unsupervised methods such as PCA or clustering on NetFormer’s attention weights. Figure 13a
shows that NetFormer predictions effectively capture overall patterns of neural activity. Figure 13b
shows that intra-state connectivity is more consistent compared to connectivity across different states.

We also benchmakred NetFormer with LtrRNN and AR-HMM on state-dependent connectivity
inference, as shown in Table 6. We compared the inferred connectivity with the patch-clamp
experimental result.

A.9 NETFORMER APPLIED TO NETWORKS WITH SPURIOUS CORRELATIONS

Das & Fiete (2020) shows that connectivity inference can be obscured by spurious correlations arising
from strong recurrent connections. To assess NetFormer’s resilience to such spurious correlations, we
performed two experiments on simulated neuron populations with strong recurrent connections. In
the first experiment, we generated continuous activity from the simulated network, where NetFormer
is directly applicable. In the second experiment, we generated spiking activity from the simulated
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Cell Type-level Attention at Running (2 random time-steps) 

Cell Type-level Attention at Stationary Desync (2 random time-steps) 

Activity Traces

Behavioral States
(unseen during training)

Neuron 1

Neuron 2

Neuron 3

Neuron 5

Neuron 4

Cell Type-level Attention at Stationary Sync (2 random time-steps) 

Neuron 6

Neuron 7

a. b.

Figure 13: a. Visualization of neural data and behavioral states for an example session. Top row:
behavioral states. Predicted activity traces from NetFormer are shown in orange, while measured
activity traces are shown in blue. b. Three blocks of time from a. are selected, and each represents a
different state. Two timesteps within each block are randomly selected to showcase the change of
attention weights within states and between states.

NetFormer LtrRNN AR-HMM

in-vivo recording

Running
K × K

Pearson 0.591±0.204 0.007±0.182 0.199±0.027
Spearman 0.601±0.209 -0.036±0.189 0.274±0.048

Stationary Desync
K × K

Pearson 0.662±0.176 -0.003±0.181 -0.320±0.012
Spearman 0.723±0.173 -0.057±0.174 -0.206±0.017

Stationary Sync
K × K

Pearson 0.713±0.148 0.000±0.186 0.145±0.041
Spearman 0.767±0.151 0.069±0.175 0.151±0.009

Table 6: State-dependent connectivity inference. NetFormer attentions and LtrRNN weight
matrices are grouped by state labels and averaged for each state. The inferred connectivity for
each state is compared against Postsynaptic Potential (PSP) resting state amplitude obtained from
patch-clamp experiments.

network, which follows Das & Fiete (2020) more closely but requires modifying the objective
function of NetFormer. In both experiments, we simulated neuron populations of size 100. The
population connectivity matrices in both experiments are constructed in the same way as Das & Fiete
(2020) with a local Mexican hat profile. Specifically, the connection weight between neurons i and j
is computed as

wij = e−d
2
ij/2σ

2
1 − ae−d

2
ij/2σ

2
2 , (25)

where dij is the distance between neurons i and j (in units of neurons), σ1 = 6.98, σ2 = 7, and
a = 1.0005.

A.9.1 NETWORK WITH CONTINUOUS ACTIVITY

The network model used to generate the data is similar to equation 9, with modifications to the
feed-forward inputs b and incorporation of the recurrent weight strength r. Specifically, Gaussian
noise is injected into the feed-forward inputs to mimic the simulation network described in Das &
Fiete (2020).

xk+1 = tanh(rWxk + b(1 + ϵk)). (26)

We conducted similar experiments as in Das & Fiete (2020) by varying the recurrent weight strength
r. The corresponding connectivity inference results are shown in Figure 14. When the recurrent
weight strength is large (e.g. r = 35), spurious correlations between neurons appear, as seen in the
synchronized activity and noise correlation. On the other hand, when the recurrent weight strength is
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Figure 14: Connectivity-constrained simulation with ring circuit connectivity. Correlation
between attention weight as connectivity inference and ground-truth recurrent weights (top row),
noise correlations (second row), attention weights (third row), and time-by-neuron activity traces
(last row), at different recurrent weight strengths r.

small (e.g. r = 5), activity is mainly driven by noise rather than recurrent connections, making it
hard to infer connectivity by fitting activity. In both extremes, NetFormer will struggle to capture
the underlying ground-truth connectivity, as reflected by lower correlations with the ground truth.
That being said, NetFormer still recovers some patterns of the ground truth, better than what noise
correlation alone can capture.

A.9.2 NETWORK WITH SPIKING ACTIVITY

To adapt NetFormer for modeling spiking activity, we take the exponential of NetFormer’s output
as the mean rate of the Poisson distribution for spike generation. The spike generation process is
constructed in the same way as Das & Fiete (2020), which we describe briefly below, and we refer
the readers to the original paper for more details.

Let sk, gk, σk denote the synaptic activation, neural input, and emitted spikes of the neuron population
at timestep k, respectively. gk includes both inputs from other neurons and externally injected inputs
bk; that is,

gk = rWsk + bk. (27)

At timestep k, the i-th neuron will emit a spike, that is, σ(i)
k = 1, if the input it receives exceeds a

certain threshold, that is, g(i)
k > Θ.

To fit the NetFormer, at every timestep k, we have

ĝk = NetFormer(sk, . . . , sk−H+1), (28)

λ̂k = exp(ĝk), (29)

σ̂k ∼ Poisson(λ̂k). (30)

This setup is chosen to match the setup for GLM in Das & Fiete (2020) (see Equation 9 there). One
minor difference is that, as model inputs, they used past spike trains convolved with a decaying
exponential kernel, while we used the synaptic activation. Nonetheless, since their filter is truncated
at a value much larger than the exponential decay time constant, it can be easily verified that these
are actually very similar.

We followed the procedure described in Das & Fiete (2020) to generate population activity at
different recurrent strength r. We followed the data generation code provided by the authors
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at https://github.com/FieteLab/neural-circuit-inference/blob/main/
riken_demo.m. We adopted r and spiking thresholds listed in https://github.com/
FieteLab/neural-circuit-inference/blob/main/thresholds_pinned.mat.
After the simulation starts, we collected activity after the initial 10,000 simulation timesteps in
order for the network activity to stabilize. A total of 100,000 timesteps were collected, where the
first 80,000 steps were used as the training set, and the rest 20,000 steps were used as the test set.
Since this is a prototype study, the data volume we used here is much smaller than what is used in
the orignal paper: their experiments are typically done on 108 spikes, while there are on average
5.05× 104 spikes in our training set across all r. Nevertheless, synchronized activity patterns and
high noise correlation at large r can also be observed in our training set (Figure 15).

For all r, we used NetFormer with H = 1, N = 100, D = 100. For r = 0.0225, M = 40, and
M = 100 for the rest of r. All NetFormer models were trained to minimize the negative Poisson
log likelihood loss on the training set, using batch size 32 for 100 epochs. We used learning rate
0.001 for r = 0.0025, 0.005, 0.002 for r = 0.0075, 0.01, 0.0125, 0.015, 0.0175, 0.02, 0.025, and
0.0005 for r = 0.0225. We used the average NetFormer attention across test set timesteps as the
NetFormer-inferred connectivity. Each row in NetFormer-inferred connectivity is then rescaled to
minimize the l2 distance from the corresponding row in the ground-truth connectivity matrix, as also
done in Das & Fiete (2020). Visually, Figure 15 shows that NetFormer-inferred connectivity can be
affected by the presence of strong spurious correlation in neural activity, while being more resilient
than noise correlation. Quantitively, we computed the Spearman and Pearson correlation coefficients
between the off-diagonal entries of NetFormer-inferred connectivity and true connectivity. We also
computed the inference error (the l2 distance between the off-diagonal entries of true and inferred
connectivity weights) as in Das & Fiete (2020). Consistent with their findings in Figures 2 and 3,
we observe a U-shape curve in inference error as a function of r, and an inverted U-shape curve for
correlation.

A.10 IMPLEMENTAION DETAILS

A.10.1 MODEL FRAMEWORK FOR FITTING CONNECTIVITY-CONSTRAINED SIMULATION AND
REAL MOUSE DATA

Following Section2, we train the NetFormer to predict xk+1 based on Xk = [xk−H+1 · · · xk] ∈
RN×H . To encode neuron identities, a learnable positional embedding matrix E ∈ RN×M is
concatenated to X , giving X̃k = [Xk E] ∈ RN×(H+M). The queries Qk and keys Kk are obtained
through linear transformations of X̃k, Qk = X̃kWQ ∈ RN×D, and Kk = X̃kWK ∈ RN×D.
NetFormer model is trained to predict the next time-step activity xk+1, defined as

x̂k+1 = Akxk + xk = ϕ(
QkK

T
k√

D
)xk + xk =

1√
D
(X̃kWQ)(W

⊤
K X̃⊤k )xk + xk,

where Ak is the self-attention that we want to use for inferring connectivity, ϕ is the attention acti-
vation. In the standard Transformer model Vaswani et al. (2017), softmax is used as the attention
activation function, but here we set ϕ equal to identity for better interpretability. In fact, we experi-
mented with different activation functions and empirically found that the identity activation yields the
best results on recordings from the mouse cortex.

Although not used in the current experiments, it is possible to use an additional linear transformation
on Xk to accommodate neuronal dynamics that can depend on multiple previous timesteps, that is,

x̂k+1 = Ak(Xkwout) +Xkwout, wout ∈ RH×1.

A.10.2 NETFORMER TRAINING AND EVALUATION

We first assign each unique neuron across all sessions an ID, which is later used to track positional
embedding for each unique neuron, because same neuron can be recorded in more than one session.
Then, within each session, we construct samples with window size 200 in simulation and 60 in
real data, and we make sure samples in one batch should come from the same session so that the
dimensions can match.

We use the first 80% timesteps in all sessions for training and the last 20% timesteps for validation.
The model is trained using MSE as the loss function, comparing the predicted activity for the next
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Figure 15: NetFormer for spiking neuron population. Correlation and inference error between true
and NetFormer-inferred connectivities. Errorbars: mean±std across three random initializations for
NetFormer. In addition, rescaled NetFormer-inferred connectivity, noise correlation, and population
synaptic activations at four example r are visualized. For correlation and connectiviy matrices,
colorbars indicate the scale of the off-diagonal entries, and the diagonal entries are masked in grey.

time step with the ground-truth activity. We employ early stopping criteria, ceasing training if there
are 20 epochs without improvement, with a hard limit of 100 epochs maximum.

After training is complete, we calculate the attention for each sample in the dataset. For each session,
we aggregate the attentions from all samples to compute a single time-averaged attention. Averaged
attentions from all sessions are then transformed into a final cell-type level attention. We achieve this
by aggregating attention values according to their corresponding presynaptic and postsynaptic cell
types and dividing by the total count of such pairs.

We also extract positional embeddings from the trained model and utilize each neuron’s unique ID
to determine the neuronal embedding for every unique neuron. These embeddings are then used as
features for logistic regression to classify neurons as either excitatory or inhibitory (Figure5b).

For evaluation, we assess the inferred cell-type level connectivity against the Postsynaptic Potential
(PSP) resting state amplitude obtained from patch-clamp experiments, which serves as the experimen-
tal ground-truth. Additionally, we evaluate the accuracy of the binary cell-type classification using
experimental data from single-cell spatial transcriptomics, which provides a classification of neurons
into excitatory and inhibitory types across all sessions.

A.10.3 EVALUATION METIRCS

We use python libraries and built-in functions for computing evaluation metrics.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

For connectivity inference, we flatten the inferred 2-dimensional N × N or K × K connectivity
matrix and grond-truth matrix.
Pearson correlation: scipy.stats.pearsonr()
Spearman rank correlation: scipy.stats.spearmanr().

For activity prediction, given the input matrix ∈ RB×N×H for NetFormer and input matrix ∈ RB×N

for RNN, where B is the batch size, NetFormer outputs ∈ RB×N×1 and RNN outputs ∈ RB×N . We
flatten the predicted activity and the grond-truth.
MSE: torch.nn.functional.mse_loss()
Pearson correlation: scipy.stats.pearsonr()
R2 : sklearn.metrics.r2_score()

For binary classification, classifier predicts the probability for all neurons.
Top-1 accuracy: sklearn.metrics.accuracy_score()
Area Under the Receiver Operating Characteristic (AUROC): sklearn.metrics.roc_auc_score()

A.10.4 HYPERPARAMETERS

In connectivity-constrained simulation data, for training NerFormer, we use history window size 100,
embedding size 200, hidden dimension of query and key matrices is 300, learning rate 10−3, and
batch size 32. For training RNN, we use p = 1, batch size 32, and learning rate 10−3.

In real data, for training NetFormer, we use history window size 60, embedding size 30, hidden
dimension of query and key matrices 90, learning rate 10−3, and batch size 32. For training RNN,
we use p = 1, batch size 32, and learning rate 10−4.

We use PyTorch Paszke et al. (2017) and PyTorch Lightning Falcon & The PyTorch Lightning team
(2019) for model development and training, and Adam as the optimizer.

A.10.5 PSEUDO CODE

We train NetFormer and extract attentions and positional embeddings for connectivity inference
and binary cell-type classification. The pseudo code for model training , connectivity inference and
cell-type classification is provided as follows:

NetFormer(x, neuron_ids):
if constraint == True:

cell_type_level_mean = parameters(num_cell_type, num_cell_type)
cell_type_level_var = parameters(num_cell_type, num_cell_type)

embeddings = embedding_table(neuron_ids)
input = layer_norm(concat(x, embeddings))
x, embeddings = input[:, :, :T], input[:, :, T:]

dim_x, dim_e = x.shape[-1], embeddings.shape[-1]
scale = (dim_x + dim_e) ** -0.5

logits = input @ W_Q_W_KT @ input.T
logits = logits * scale

if activation == softmax:
attention = softmax(logits)

elif activation == sigmoid:
attention = sigmoid(logits)

elif activation == tanh:
attention = tanh(logits)

elif activation == none:
attention = logits

output = layer_norm(attention @ x + x)
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if out_layer == True:
# linear_out is a lienar transformation from dimension T to 1
output = linear_out(output)
return output, attention

else:
# Use the last column as prediction
return output[:, :, -1], attention

NetFormer_Training(all_samples):
all_inputs, all_neuron_ids, all_GT_targets = all_samples
model = NetFormer()
optimizer = Adam(model, learning_rate)

all_predictions, all_attentions = model(all_inputs, all_neuron_ids)

prediction_loss = MSE(all_predictions, all_GT_targets)
loss = prediction_loss

optimizer.zero_grad()
loss.backward()
optimizer.step()

Connectivity_Inference(all_samples, trained_NetFormer, GT_connectivity):
all_inputs, all_neuron_ids, all_GT_targets = all_samples
all_predictions, all_attentions = trained_NetFormer(all_inputs, all_neuron_ids)

avg_attention = mean(all_attentions, axis=0)

pearson_corr = pearsonr(GT_connectivity, avg_attention)
spearman_corr = spearmanr(GT_connectivity, avg_attention)

Cell_Type_Classification(trained_NetFormer, neuron_ids, cell_types):
embeddings = trained_NetFormer.embedding_table(neuron_ids)

X_train = embeddings[TRAIN_idx]
y_train = cell_types[TRAIN_idx]
X_test = embeddings[TEST_idx]
y_test = cell_types[TEST_idx]

# Train classifier
classifier = LogisticRegression.fit(X_train, y_train)
# Test on test set
y_pred = classifier.predict(X_test)

A.11 COMPUTE RESOURCES

Model training on simulated systems in Section 3 was done on a MacBook Pro with Apple M1 chip.
Using the NVIDIA A100 GPU, NetFormer model trained on connectivity-constrained simulation
data took about 10min. NetFormer model trained on one mouse (SB025) in real mouse data took
about 20min, which requires at least 30 GB of RAM and 16 GB of GPU memory.
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