
Identifying Functionally Important Features
with End-to-End Sparse Dictionary Learning

Dan Braun 1 Jordan Taylor 2 3 Nicholas Goldowsky-Dill 1

Lee Sharkey 1

Abstract
Identifying the features learned by neural net-
works is a core challenge in mechanistic inter-
pretability. Sparse autoencoders (SAEs), which
learn a sparse, overcomplete dictionary that re-
constructs a network’s internal activations, have
been used to identify these features. However,
SAEs may learn more about the structure of the
datatset than the computational structure of the
network. There is therefore only indirect reason
to believe that the directions found in these dictio-
naries are functionally important to the network.
We propose end-to-end (e2e) sparse dictionary
learning, a method for training SAEs that ensures
the features learned are functionally important by
minimizing the KL divergence between the output
distributions of the original model and the model
with SAE activations inserted. Compared to stan-
dard SAEs, e2e SAEs offer a Pareto improvement:
They explain more network performance, require
fewer total features, and require fewer simulta-
neously active features per datapoint, all with no
cost to interpretability. We explore geometric and
qualitative differences between e2e SAE features
and standard SAE features. E2e dictionary learn-
ing brings us closer to methods that can explain
network behavior concisely and accurately. We
release our library for training e2e SAEs and re-
producing our analysis at https://github
.com/ApolloResearch/e2e_sae.

1. Introduction
Sparse Autoencoders (SAEs) are a popular method in mech-
anistic interpretability (Sharkey et al., 2022; Cunningham
et al., 2023; Bricken et al., 2023). They have been pro-

1Apollo Research 2ML Alignment, Theory Scholars
(MATS) 3University of Queensland, Australia. Correspon-
dence to: Dan Braun <dan@apolloresearch.ai>, Lee Sharkey
<lee@apolloresearch.ai>.

Copyright 2024 by the author(s).

posed as a solution to the problem of superposition, the
phenomenon by which networks represent more ‘features’
than they have neurons. ‘Features’ are directions in neural
activation space that are considered to be the basic units
of computation in neural networks. SAE dictionary ele-
ments (or ‘SAE features’) are thought to approximate the
features used by the network. SAEs are typically trained to
reconstruct the activations of an individual layer of a neural
network using a sparsely activating, overcomplete set of
dictionary elements (directions). It has been shown that
this procedure identifies ground truth features in toy models
(Sharkey et al., 2022).

However, current SAEs focus on the wrong goal: They
are trained to minimize mean squared reconstruction error
(MSE) of activations (in addition to minimizing their spar-
sity penalty). The issue is that the importance of a feature
as measured by its effect on MSE may not strongly corre-
late with how important the feature is for explaining the
network’s performance. This would not be a problem if the
network’s activations used a small, finite set of ground truth
features – the SAE would simply identify those features,
and thus optimizing MSE would have led the SAE to learn
the functionally important features. In practice, however,
Bricken et al. (2023) observed the phenomenon of feature
splitting, where increasing dictionary size while increasing
sparsity allows SAEs to split a feature into multiple, more
specific features, representing smaller and smaller portions
of the dataset. In the limit of large dictionary size, it would
be possible to represent each individual datapoint as its own
dictionary element. Since minimizing MSE does not explic-
itly prioritize learning features based on how important they
are for explaining the network’s performance, an SAE may
waste much of its fixed capacity on learning less important
features. This is perhaps responsible for the observation
that, when measuring the causal effects of some features
on network performance, a significant amount is mediated
by the reconstruction residual errors (i.e. everything not
explained by the SAE) and not mediated by SAE features
(Marks et al., 2024).

Given these issues, it is therefore natural to ask how we
can identify the functionally important features used by the

1

https://github.com/ApolloResearch/e2e_sae
https://github.com/ApolloResearch/e2e_sae

Functionally Important Features with E2E Dictionary Learning

Block 5

SAE

Block 6

Block 6

SAElocal
recon.
loss (MSE)

Block 7

Block 7

SAEe2e + ds
downstream recon.
loss (MSE)

⋯ Block 11

Block 11

Both SAEe2e and
SAEe2e + ds
KL-div loss

⋯

⋯

Unembed

Unembed

Figure 1. Top: Diagram comparing the loss terms used to train each type of SAE. Each arrow is a loss term which compares the activations
represented by circles. SAElocal uses MSE reconstruction loss between the SAE input and the SAE output. SAEe2e uses KL-divergence on
the logits. SAEe2e+ds (end-to-end + downstream reconstruction) uses KL-divergence in addition to the sum of the MSE reconstruction
losses at all future layers. All three are additionally trained with a L1 sparsity penalty (not pictured).
Bottom: Pareto curves for three different types of GPT2-small layer 6 SAEs as the sparsity coefficient is varied. E2e-SAEs require
fewer features per datapoint (i.e. have a lower L0) and fewer features over the entire dataset (i.e. have a low number of alive dictionary
elements). GPT2-small has a CE loss of 3.139 over our evaluation set.

network. We say a feature is functional important if it is im-
portant for explaining the network’s behavior on the training
distribution. If we prioritize learning functionally important
features, we should be able to maintain strong performance
with fewer features used by the SAE per datapoint as well
as fewer overall features.

To optimize SAEs for these properties, we introduce a new
training method. We still train SAEs using a sparsity penalty
on the feature activations (to reduce the number of features
used on each datapoint), but we no longer optimize activa-
tion reconstruction. Instead, we replace the original activa-
tions with the SAE output (Figure 1) and optimize the KL
divergence between the original output logits and the output
logits when passing the SAE output through the rest of the
network, thus training the SAE end-to-end (e2e). We use
SAEe2e to denote an SAE trained with KL divergence and a
sparsity penalty. By contrast, we use SAElocal to denote our
baseline SAEs, trained only to reconstruct the activations at
the current layer with a sparsity penalty.

One risk with this method is that it may be possible for the
outputs of SAEe2e to take a different computational path-

way through subsequent layers of the network (compared
with the original activations) while nevertheless producing
a similar output distribution. For example, it might learn
a new feature that exploits a particular transformation in a
downstream layer that is unused by the regular network or
that is used for other purposes. To reduce this likelihood,
we also add terms to the loss for the reconstruction error
between the original model and the model with the SAE
at downstream layers in the network (Figure 1). We use
SAEe2e+ds to denote SAEs trained with KL divergence, a
sparsity penalty, and downstream reconstruction loss. We
use e2e SAEs to refer to the family of methods introduced
in this work, including both SAEe2e and SAEe2e+ds.

Previous work has used the performance explained – mea-
sured by cross-entropy loss difference when replacing the
original activations with SAE outputs – as a measure of
SAE quality (Cunningham et al., 2023; Bricken et al., 2023;
Bloom, 2024). It’s reasonable to ask whether our approach
runs afoul of Goodhart’s law (“When a measure becomes a
target, it ceases to be a good measure”). We contend that
mechanistic interpretability should prefer explanations of
networks (and the components of those explanations, such

2

Functionally Important Features with E2E Dictionary Learning

as features) that explain more network performance over
other explanations. Therefore, optimizing directly for quan-
titative proxies of performance explained (such as CE loss
difference, KL divergence, and downstream reconstruction
error) is preferred.

We train each SAE type on language models (GPT2-small
(Radford et al., 2019) and Tinystories-1M (Eldan & Li,
2023)), and present three key findings:

1. For the same level of performance explained, SAElocal
requires activating more than twice as many features
per datapoint compared to SAEe2e+ds and SAEe2e (Sec-
tion 3.1).

2. SAEe2e+ds performs equally well as SAEe2e in terms of
the number of features activated per datapoint (Section
3.1), yet its activations take pathways through the net-
work that are much more similar to SAElocal (Sections
3.2, 3.3).

3. SAElocal requires more features in total over the dataset
to explain the same amount of network performance
compared with SAEe2e and SAEe2e+ds (Section 3.1).

These findings suggest that e2e SAEs are more ef-
ficient in capturing the essential features that con-
tribute to the network’s performance. Moreover, our
automated-interpretability and qualitative analyses reveal
that SAEe2e+ds features are at least as interpretable as
SAElocal features, demonstrating that the improvements in
efficiency do not come at the cost of interpretability (Section
3.4). These gains nevertheless come at the cost of longer
wall-clock time to train (Appendix H).

In addition to this article, we also provide: A library for
training all SAE types presented in this article (https:
//github.com/ApolloResearch/e2e_sae); a
Weights and Biases (Biewald, 2020) report that links to
training metrics for all runs (https://api.wandb.ai
/links/sparsify/evnqx8t6); a Neuronpedia (Lin
& Bloom, 2023) page for interacting with the features in a
subset of SAEs (those presented in Tables 2 and 3) (https:
//www.neuronpedia.org/gpt2sm-apollojt)
as well as a repository for downloading these SAEs directly
(https://huggingface.co/apollo-researc
h/e2e-saes-gpt2).

2. Training end-to-end SAEs
Our experiments train SAEs using three kinds of loss func-
tion (Figure 1), which we evaluate according to several
metrics (Section 2.5):

1. Llocal trains SAEs to reconstruct activations at a partic-
ular layer (Section 2.2);

2. Le2e trains SAEs to learn functionally important fea-
tures (Section 2.3);

3. Le2e+downstream trains SAEs to learn functionally im-
portant features that optimize for faithfulness to the
activations of the original network at subsequent layers
(Section 2.4).

2.1. Formulation

Suppose we have a feedforward neural network (such as a
decoder-only Transformer (Radford et al., 2018)) with L
layers and vectors of hidden activations a(l):

a(0)(x) = x

a(l)(x) = f (l)(a(l−1)(x)), for l = 1, . . . , L− 1

y = softmax
(
f (L)(a(L−1)(x))

)
.

We use SAEs that consist of an encoder network (an affine
transformation followed by a ReLU activation function) and
a dictionary of unit norm features, represented as a matrix
D, with associated bias vector bd. The encoder takes as
input network activations from a particular layer l. The
architecture we use is:

Enc
(
a(l)(x)

)
= ReLU

(
Wea

(l)(x) + be

)
SAE

(
a(l)(x)

)
= D⊤Enc

(
a(l)(x)

)
+ bd,

where the dictionary D and encoder weights We are
both (N dict elements × d hidden) matrices, be is
a N dict elements-dimensional vector, while bd and
a(l)(x) are d hidden-dimensional vectors.

2.2. Baseline: Local SAE training loss (Llocal)

The standard, baseline method for training SAEs is SAElocal
training, where the output of the SAE is trained to recon-
struct its input using a mean squared error loss with a spar-
sity penalty on the encoder activations (here an L1 loss):

Llocal = Lreconstruction + Lsparsity

= ||a(l)(x)− SAElocal(a
(l)(x))||22

+ ϕ||Enc(a(l)(x))||1.

ϕ = λ
dim(a(l) is a sparsity coefficient λ scaled by the size

of the input to the SAE (see Appendix D for details on
hyperparameters).

2.3. Method 1: End-to-end SAE training loss (Le2e)

For SAEe2e, we do not train the SAE to reconstruct activa-
tions. Instead, we replace the model activations with the

3

https://github.com/ApolloResearch/e2e_sae
https://github.com/ApolloResearch/e2e_sae
https://api.wandb.ai/links/sparsify/evnqx8t6
https://api.wandb.ai/links/sparsify/evnqx8t6
https://www.neuronpedia.org/gpt2sm-apollojt
https://www.neuronpedia.org/gpt2sm-apollojt
https://huggingface.co/apollo-research/e2e-saes-gpt2
https://huggingface.co/apollo-research/e2e-saes-gpt2

Functionally Important Features with E2E Dictionary Learning

output of the SAE and pass them forward through the rest
of the network:

â(l)(x) = SAEe2e(a
(l)(x))

â(k)(x) = f (k)(â(l)(x)) for k = l, . . . , L− 1

ŷ = softmax
(
f (L)(â(L−1)(x))

)
We train the SAE by penalizing the KL divergence between
the logits produced by the model with the SAE activations
and the original model:

Le2e = LKL + Lsparsity = KL(ŷ, y) + ϕ||Enc(a(l)(x))||1

Importantly, we freeze the parameters of the model, so
that only the SAE is trained. This contrasts with Tamkin
et al. (2023), who train the model parameters in addition to
training a ‘codebook’ (which is similar to a dictionary).

2.4. Method 2: End-to-end with downstream layer
reconstruction SAE training loss (Le2e+downstream)

A reasonable concern with the Le2e is that the model with
the SAE inserted may compute the output using an impor-
tantly different pathway through the network, even though
we’ve frozen the original model’s parameters and trained
the SAE to replicate the original model’s output distribution.
To counteract this possibility, we also compare an additional
loss: The end-to-end with downstream reconstruction train-
ing loss (Le2e+downstream) additionally minimizes the mean
squared error between the activations of the new model at
downstream layers and the activations of the original model:

Le2e+downstream = LKL + Lsparsity + Ldownstream

= KL(ŷ, y) + ϕ||Enc(a(l))||1

+
βl

L− l

L−1∑
k=l+1

||â(k)(x)− a(k)(x)||22

(1)

where βl is a hyperparameter that controls the downstream
reconstruction loss term (Appendix D).

Le2e+downstream thus has the desirable properties of 1) incen-
tivizing the SAE outputs to lead to similar computations in
downstream layers in the model and 2) allowing the SAE to
“clear out” some of the non-functional features by not train-
ing on a reconstruction error at the layer with the SAE. Note,
however, the inclusion of the intermediate reconstruction
terms means that Le2e+downstream may encourage the SAE to
learn features that are less functionally important.

2.5. Experimental metrics

We record several key metrics for each trained SAE:

1. Cross-entropy loss increase between the original
model and the model with SAE: We measure the in-
crease in cross-entropy (CE) loss caused by using acti-
vations from the inserted SAE rather than the original
model activations on an evaluation set. We sometimes
refer to this as ‘amount of performance explained’,
where a low CE loss increase means more performance
explained. All other things being equal, a better SAE
recovers more of the original model’s performance.

2. L0: How many SAE features activate on average for
each datapoint. All other things being equal, a better
SAE needs fewer features to explain the performance
of the model on a given datapoint.

3. Number of alive dictionary elements: The number
of features in training that have not ‘died’ (which we
define to mean that they have not activated over a set
of 500k tokens of data). All other things being equal,
a better SAE needs a smaller number of alive features
to explain the performance of model over the dataset.

We also record the reconstruction loss at downstream lay-
ers. This is the mean squared error between the activations
of the original model and the model with the SAE at all
layers following the insertion of the SAE (i.e. downstream
layers). If reconstruction loss at downstream layers is low,
then the activations take a similar pathway through the net-
work as in the original model. This minimizes the risk that
the SAEs are learning features that take different computa-
tional pathways through the downstream layers compared to
the original model. Finally, following Bills et al. (2023), we
perform automated-interpretability scoring and qualita-
tive analysis on a subset of the SAEs, to verify that improved
quantitative metrics does not sacrifice the interpretability of
the learned features.

We show results for experiments performed on GPT2-
small’s residual stream before attention layer 6.1 Results
for layers 2, 6, and 10 of GPT2-small and some runs on
a model trained on the TinyStories dataset (Eldan & Li,
2023) can be found in Appendices A.1 and A.2, respectively.
They are qualitatively similar to those presented in the main
text. For our GPT2-small experiments, we train SAEs with
each type of loss function on 400k samples of context size
1024 from the Open Web Text dataset (Gokaslan & Cohen,
2019) over a range of sparsity coefficients λ. Our dictio-
nary is fixed at 60 times the size of the residual stream (i.e.
60×768 = 46080 initial dictionary elements). Hyperparam-
eters, along with sweeps over dictionary size and number
of training examples, are shown in Appendices D and E,
respectively.

1We use zero-indexed layer numbers throughout this article

4

Functionally Important Features with E2E Dictionary Learning

3. Results
3.1. End-to-end SAEs are a Pareto improvement over

local SAEs

We compare the trained SAEs according to CE loss increase,
L0, and number of alive dictionary elements. The learning
rates for each SAE type were selected to be Pareto-optimal
according to their L0 vs CE loss increase curves.2 Each
experiment uses a range of sparsity coefficients λ. In Figure
1, we see that both SAEe2e and SAEe2e+ds achieve better CE
loss increase for a given L0 or for a given number of alive
dictionary elements. This means they need fewer features
to explain the same amount of network performance for a
given datapoint or for the dataset as a whole, respectively.
For similar results at other layers see Appendix A.1.

This difference is large: For a given L0, both SAEe2e and
SAEe2e+ds have a CE loss increase that is less than 45% of
the CE loss increase of SAElocal.3 SAElocal must therefore
be learning features that are not maximally important for
explaining network performance.

This improved performance comes at the expense of in-
creased compute costs (2-3.5 times longer runtime, see Ap-
pendix H). We test to see if additional compute improves our
SAElocal baseline in Appendix E. We find neither increasing
dictionary size from 60 ∗ 768 to 100 ∗ 768 nor increasing
training samples from 400k to 800k noticeably improves
the Pareto frontier, implying that our e2e SAEs maintain
their advantage even when compared against SAElocal dic-
tionaries trained with more compute.

For comparability, our subsequent analyses focus on 3 par-
ticular SAEs that have approximately equivalent CE loss
increases (Table 1).

Table 1. Three SAEs from layer 6 with similar CE loss increases
are analyzed in detail. λ represents the sparsity coefficient.

Type λ L0 Alive Elements CE Increase

local 4.0 69.4 26k 0.145
e2e 3.0 27.5 22k 0.144

e2e+ds 50.0 36.8 15k 0.125

2We show in Appendix C that it is possible to reduce the number
of alive dictionary elements for any SAE type by increasing the
learning rate. This has minimal cost according to L0 vs CE loss
increase Pareto-optimality up to some limit.

3Measured using linear interpolation over a range of L0 ∈
(50, 300). This range was chosen based on two criteria: (1) L0

should be significantly smaller than the residual stream size for the
SAE to be effective (we conservatively chose 300 compared to the
residual stream size of 768), and (2) the CE loss should not start
to increase dramatically, which occurs at approximately L0 = 50
(Figure 1).

3.2. End-to-end SAEs have worse reconstruction loss at
each layer despite similar output distributions

Even though SAEe2es explain more performance per feature
than SAElocals, they have much worse reconstruction error of
the original activations at each subsequent layer (Figure 2).
This indicates that the activations following the insertion of
SAEe2e take a different path through the network than in the
original model, and therefore potentially permit the model to
achieve its performance using different computations from
the original model. This possibility motivated the training
of SAEe2e+dss.

Figure 2. Reconstruction mean squared error (MSE) at later layers
for our set of GPT2-small layer 6 SAEs with similar CE loss
increases (Table 1). SAElocal is trained to minimize MSE at layer
6, SAEe2e was trained to match the output probability distribution,
SAEe2e+ds was trained to match the output probability distribution
and minimize MSE in all downstream layers.

In later layers, the reconstruction errors of SAElocal and
SAEe2e+ds are extremely similar (Figure 2). SAEe2e+ds there-
fore has the desirable properties of both learning features
that explain approximately as much network performance
as SAEe2e (Figure 1) while having reconstruction errors that
are much closer to SAElocal. There remains a difference in
reconstruction at layer 6 between SAEe2e+ds and SAElocal.
This is not surprising given that SAEe2e+ds is not trained
with a reconstruction loss at this layer. In Appendix B, we
examine how much of this difference is explained by feature
scaling. In Appendix G.3, we find a specific example of a
direction with low functional importance that is faithfully
represented in SAElocal but not SAEe2e+ds.

3.3. Differences in feature geometries between SAE
types

3.3.1. END-TO-END SAES HAVE MORE ORTHOGONAL
FEATURES THAN SAELOCAL

(Bricken et al., 2023) observed ‘feature splitting’, where
a locally trained SAEs learns a cluster of features which
represent similar categories of inputs and have dictionary
elements pointing in similar directions. A key question

5

Functionally Important Features with E2E Dictionary Learning

Figure 3. Within-SAE cosine similarity for SAEs in Table 1. For
each dictionary element we find the max cosine similarity between
its decoder direction and all other decoder direction in the same
SAE.

is to what extent these subtle distinctions are functionally
important for the network’s predictions, or if they are only
helpful for reconstructing functionally unimportant patterns
in the data.

We have already seen that SAEe2e and SAEe2e+ds learn
smaller dictionaries compared with SAElocal for a given
level of performance explained (Figure 1). In this section,
we explore if this is due to less feature splitting. We measure
the cosine similarities between each SAE dictionary feature
and next-closest feature in the same dictionary. While this
does not account for potential semantic differences between
directions with high cosine similarities, it serves as a useful
proxy for feature splitting, since split features tend to be
highly similar directions (Bricken et al., 2023). We find
that SAElocal has features that are more tightly clustered,
suggesting higher feature splitting (Figure 3). Compared to
SAEe2e+ds the mean cosine similarity is 0.04 higher (boot-
strapped 95% CI [0.037− 0.043]); compared to SAEe2e the
difference is 0.166 (95% CI [0.163− 0.168]). We measure
this for all runs in our Pareto frontiers and find that this
difference is not explained by SAElocal having more alive
dictionary elements than e2e SAEs (Appendix A.5).

3.3.2. SAEE2E FEATURES ARE NOT ROBUST ACROSS
RANDOM SEEDS, SAEE2E+DS AND SAELOCAL ARE

We find that SAElocals trained with one seed learn similar
features as SAElocals trained with a different seed (Figure
4). The same is true for two SAEe2e+dss. However, fea-
tures learned by SAEe2e are quite different for different
seeds. This suggests there are many different sets of SAEe2e
features that achieve the same output distribution, despite
taking different paths through the network.

3.3.3. SAEE2E AND SAEE2E+DS FEATURES DO NOT
ALWAYS ALIGN WITH SAELOCAL FEATURES

The cosine similarity plots between SAEe2e and SAElocal
(Figure 5) reveal that the average similarity between the

Figure 4. Cross-seed cosine similarity for SAEs in Table 1. For
each dictionary element we find the max cosine similarity between
its decoder direction and all decoder directions from an SAE with
identical hyperparameters but a different random seed.

Figure 5. Cross-SAE-type cosine similarity for SAEs in Table 1.
For each dictionary element of the two e2e-SAEs, we find the max
cosine similarity between its decoder direction and all decoder
directions in the SAElocal.

most similar features is low, and includes a group of fea-
tures that are very dissimilar. SAEe2e+ds learns features that
are much more similar to SAElocal, although the cosine sim-
ilarity plot is bimodal, suggesting that SAEe2e+ds learns a
set of directions that very different to those identified by
SAElocal (Figure 5).

It is encouraging that SAElocal and SAEe2e+ds features are
somewhat similar, since this indicates that SAElocals may
serve as good initializations for training SAEe2e+dss, reduc-
ing training time.

3.4. Interpretability of learned directions

Using the automated-interpretability library
(Lin, 2024) (an adaptation of Bills et al. (2023)), we gener-
ate automated explanations of our SAE features by prompt-
ing gpt-4-turbo-2024-04-09 (OpenAI et al., 2024) with five
max-activating examples for each feature, before generating
“interpretability scores” by tasking gpt-3.5-turbo to use that
explanation to predict the SAE feature’s true activations
on a random sample of 20 max-activating examples. For
each SAE we generate automated-interpretabilty scores for
a random sample of features (n = 198 to 201 per SAE). We
then measure the difference between average interpretability
scores. This interpretability score is an imperfect metric of

6

Functionally Important Features with E2E Dictionary Learning

interpretability, but it serves as an unbiased verification and
is therefore useful for ensuring that we are not trading better
training losses for significantly less interpretable features.

For pairs of SAEs with similar L0 (listed in Table 3), we find
no difference between the average interpretability scores
of SAElocal and SAEe2e+ds. If we repeat the analysis for
pairs with similar CE loss increases, we find the SAEe2e+ds
features to be more interpretable than SAElocal features in
Layers 2 (p = 0.0053) and 6 (p = 0.0005) but no sig-
nificant difference in layer 10. For additional automated-
interpretability analysis, see Appendix A.7.

We also provide some qualitative, human-generated inter-
pretations of some groups of features for different SAE
types in Appendix G. Features from the SAEs in Table
2 and Table 3 can be viewed interactively at https:
//www.neuronpedia.org/gpt2sm-apollojt.

4. Related work
4.1. Using sparse autoencoders and sparse coding in

mechanistic interpretability

When Elhage et al. (2022) identified superposition as a key
bottleneck to progress in mechanistic interpretability, the
field found a promising scalable solution in SAEs (Sharkey
et al., 2022). SAEs have since been used to interpret lan-
guage models (Cunningham et al., 2023; Bricken et al.,
2023; Bloom, 2024) and have been used to improve per-
formance of classifiers on downstream tasks (Marks et al.,
2024). Earlier work by Yun et al. (2021) concatenated to-
gether the residual stream of a language model and used
sparse coding to identify an undercomplete set of sparse
‘factors’ that spanned multiple layers. This echoes even
earlier work that applied sparse coding to word embeddings
and found sparse linear structure (Faruqui et al., 2015; Sub-
ramanian et al., 2017; Arora et al., 2018). Similar to our
work is Tamkin et al. (2023), who trained sparse feature
codebooks, which are similar to SAEs, and trained them
end-to-end. However, to achieve adequate performance,
they needed to train the model parameters alongside the
sparse codebooks. Here, we only trained the SAEs and left
the interpreted model unchanged.

4.2. Identifying problems with and improving sparse
autoencoders

Although useful for mechanistic interpretability, current
SAE approaches have several shortcomings. One issue
is the functional importance of features, which we have
aimed to address here. Some work has noted problems with
SAEs, including Anders & Bloom (2024), who found that
SAE features trained on a language model with a given
context length failed to generalize to activations collected
from activations in longer contexts. Other work has ad-

dressed ‘feature suppression’ (Wright & Sharkey, 2024),
also known as ‘shrinkage’ (Jermyn et al., 2024), where SAE
feature activations systematically undershoot the ‘true’ acti-
vation value because of the sparsity penalty. While Wright
& Sharkey (2024) approached this problem using finetun-
ing after SAE training, Jermyn et al. (2024) and Riggs &
Brinkmann (2024) explored alternative sparsity penalties
during training that aimed to reduce feature suppression
(with mixed success). Farrell (2024), taking an approach
similar to (Jermyn et al., 2024), has explored different spar-
sity penalties, though here not to address shrinkage, but
instead to optimize for other metrics of SAE quality. Ra-
jamanoharan et al. (2024) introduce Gated SAEs, an ar-
chitectural variation for the encoder which both addresses
shrinkage and improves on the Pareto frontier of L0 vs CE
loss increase.

4.3. Methods for evaluating the quality of trained SAEs

One of the main challenges in using SAEs for mechanis-
tic interpretability is that there is no known ‘ground truth’
against which to benchmark the features learned by SAEs.
Prior to our work, several metrics have been used, includ-
ing: Comparison with ground truth features in toy data;
activation reconstruction loss; L1 loss; number of alive dic-
tionary elements; similarity of SAE features across different
seeds and dictionary sizes (Sharkey et al., 2022); L0; KL
divergence (between the output distributions of the original
model and the model with SAE activations) upon causal in-
terventions on the SAE features (Cunningham et al., 2023);
reconstructed negative log likelihood of the model with SAE
activations inserted (Cunningham et al., 2023; Bricken et al.,
2023); feature interpretability Cunningham et al. (2023)
(as measured by automatic interpretability methods (Bills
et al., 2023)); and task-specific comparisons (Makelov et al.,
2024). In our work, we use (1) L0, (2) number of alive
dictionary elements, (3) the average KL divergence between
the output distribution of the original model and the model
with SAE activations, and (4) the reconstruction error of
activations in layers that follow the layer where we replace
the original model’s activations with the SAE activations.

4.4. Methods for identifying the functional importance
of sparse features

In our work, we optimize for functional importance directly,
but previous work measured functional importance post hoc
using different approaches. Cunningham et al. (2023) used
activation patching (Vig et al., 2020), a form of causal medi-
ation analysis, where they intervened on feature activations
and found the output distribution was more sensitive (had
higher KL divergence with the original model’s distribu-
tion) in the direction of SAE features than other directions,
such as PCA directions. With the same motivation, Marks
et al. (2024) use a similar, approximate, but more efficient,

7

https://www.neuronpedia.org/gpt2sm-apollojt
https://www.neuronpedia.org/gpt2sm-apollojt

Functionally Important Features with E2E Dictionary Learning

method of causal mediation analysis (Nanda, 2022; Sun-
dararajan et al., 2017). Unlike our work, these works use the
measures of functional importance to construct circuits of
sparse features. Bricken et al. (2023) used logit attribution,
measuring the effect the feature has on the output logits.

5. Conclusion
In this work, we introduce end-to-end dictionary learning
as a method for training SAEs to identify functionally im-
portant features in neural networks. By optimizing SAEs
to minimize the KL divergence between the output distribu-
tions of the original model and the model with SAE activa-
tions inserted, we demonstrate that e2e SAEs learn features
that better explain network performance compared to the
standard locally trained SAEs.

Our experiments on GPT2-small and Tinystories-1M reveal
several key findings. First, for a given level of performance
explained, e2e SAEs require activating significantly fewer
features per datapoint and fewer total features over the en-
tire dataset. Second, SAEe2e+ds, which has additional loss
terms for the reconstruction errors at downstream layers
in the model, achieves a similar performance explained
to SAEe2e while maintaining activations that follow simi-
lar pathways through later layers compared to the original
model. Third, the improved efficiency of e2e SAEs does
not come at the cost of interpretability, as measured by
automated-interpretability scores and qualitative analysis.

These results suggest that standard, locally trained SAEs
are capturing information about dataset structure that is not
maximally useful for explaining the algorithm implemented
by the network. By directly optimizing for functional im-
portance, e2e SAEs offer a more targeted approach to iden-
tifying the essential features that contribute to a network’s
performance.

6. Acknowledgements
Johnny Lin and Joseph Bloom for supporting our SAEs
on https://www.neuronpedia.org/gpt2sm-a
pollojt and Johnny Lin for providing tooling for au-
tomated interpretability, which made the qualitative anal-
ysis much easier. Lucius Bushnaq, Stefan Heimersheim
and Jake Mendel for helpful discussions throughout. Jake
Mendel for many of the ideas related to the geometric anal-
ysis. Tom McGrath, Bilal Chughtai, Stefan Heimersheim,
Lucius Bushnaq, and Marius Hobbhahn for comments on
earlier drafts. Center for AI Safety for providing much of
the compute used in the experiments.

7. Contributions statement
DB led the analysis as well as the development of the
e2e sae library, both with significant contributions from
JT and NGD. JT led the automated interpretability analy-
sis (Section 3.4) and analysis of UMAP regions in layer 6
(Appendix G.1). NGD led the analysis of reconstruction
errors (Appendix B.1) and the UMAP region in layer 10
(Appendix G.3). NGD and DB produced figures. LS, with
substantial input from DB and input from NGD, drafted the
manuscript. LS originated the idea for end-to-end SAEs and
designed most of the experiments.

8. Impact statement
This article proposes an improvement to methods used in
mechanistic interpretability. Mechanistic interpretability,
and interpretability broadly, promises to let us understand
the inner workings of neural networks. This may be useful
for debugging and improving issues with neural networks.
For instance, it may enable the evaluation of a model’s
fairness or bias. Interpretability may relatedly be useful for
improving the trust-worthiness of AI systems, potentially
enabling AI’s use in certain high stakes settings, such as
healthcare, finance, and justice. However, increasing the
trust-worthiness of AI systems may be dual use in that may
also enable its use in settings such as military applications.

References
Anders, E. and Bloom, J. Examining language model per-

formance with reconstructed activations using sparse au-
toencoders. https://www.lesswrong.com/po
sts/8QRH8wKcnKGhpAu2o/examining-langu
age-model-performance-with-reconstru
cted, 2024.

Arora, S., Li, Y., Liang, Y., Ma, T., and Risteski, A. Linear
algebraic structure of word senses, with applications to
polysemy. 2018. URL https://arxiv.org/abs/
1601.03764.

Biewald, L. Experiment tracking with weights and biases,
2020. URL https://www.wandb.com/. Software
available from wandb.com.

Bills, S., Cammarata, N., Mossing, D., Tillman, H., Gao, L.,
Goh, G., Sutskever, I., Leike, J., Wu, J., and Saunders,
W. Language models can explain neurons in language
models. https://openaipublic.blob.core
.windows.net/neuron-explainer/paper/i
ndex.html, 2023.

Bloom, J. Open source sparse autoencoders for all residual
stream layers of gpt2 small. https://www.alignm
entforum.org/posts/f9EgfLSurAiqRJySD

8

https://www.neuronpedia.org/gpt2sm-apollojt
https://www.neuronpedia.org/gpt2sm-apollojt
https://www.lesswrong.com/posts/8QRH8wKcnKGhpAu2o/examining-language-model-performance-with-reconstructed
https://www.lesswrong.com/posts/8QRH8wKcnKGhpAu2o/examining-language-model-performance-with-reconstructed
https://www.lesswrong.com/posts/8QRH8wKcnKGhpAu2o/examining-language-model-performance-with-reconstructed
https://www.lesswrong.com/posts/8QRH8wKcnKGhpAu2o/examining-language-model-performance-with-reconstructed
https://arxiv.org/abs/1601.03764
https://arxiv.org/abs/1601.03764
https://www.wandb.com/
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream

Functionally Important Features with E2E Dictionary Learning

/open-source-sparse-autoencoders-for
-all-residual-stream, 2024.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn,
A., Conerly, T., Turner, N., Anil, C., Denison, C.,
Askell, A., Lasenby, R., Wu, Y., Kravec, S., Schiefer,
N., Maxwell, T., Joseph, N., Hatfield-Dodds, Z., Tamkin,
A., Nguyen, K., McLean, B., Burke, J. E., Hume, T.,
Carter, S., Henighan, T., and Olah, C. Towards monose-
manticity: Decomposing language models with dictio-
nary learning. Transformer Circuits Thread, 2023. URL
https://transformer-circuits.pub/2023
/monosemantic-features/index.html.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly inter-
pretable features in language models. arXiv preprint
arXiv:2309.08600, 2023. URL https://arxiv.or
g/abs/2309.08600.

Eldan, R. and Li, Y. Tinystories: How small can lan-
guage models be and still speak coherent english? arXiv
preprint arXiv:2305.07759, 2023.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., Grosse, R., McCandlish, S., Kaplan, J.,
Amodei, D., Wattenberg, M., and Olah, C. Toy models
of superposition, 2022.

Farrell, E. Experiments with an alternative method to pro-
mote sparsity in sparse autoencoders. https://www.
lesswrong.com/posts/cYA3ePxy8JQ8ajo8
B/experiments-with-an-alternative-met
hod-to-promote-sparsity, 2024.

Faruqui, M., Tsvetkov, Y., Yogatama, D., Dyer, C., and
Smith, N. Sparse overcomplete word vector representa-
tions, 2015.

Gokaslan, A. and Cohen, V. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCo
rpus, 2019.

Jermyn, A., Templeton, A., Batson, J., and Bricken, T. Tanh
penalty in dictionary learning. https://transfor
mer-circuits.pub/2024/feb-update/inde
x.html#:˜:text=handle%20dying%20neur
ons.-,Tanh%20Penalty%20in%20Dictiona
ry%20Learning,-Adam%20Jermyn%2C%20Ad
ly, 2024.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Lin, J. Automatic interpretability. https://github.c
om/hijohnnylin/automated-interpretab
ility, 2024.

Lin, J. and Bloom, J. Analyzing neural networks with dic-
tionary learning, 2023. URL https://www.neuron
pedia.org. Software available from neuronpedia.org.

Makelov, A., Lange, G., and Nanda, N. Towards principled
evaluations of sparse autoencoders for interpretability and
control. https://openreview.net/forum?i
d=MHIX9H8aYF, 2024.

Marks, S., Rager, C., Michaud, E. J., Belinkov, Y., Bau, D.,
and Mueller, A. Sparse feature circuits: Discovering and
editing interpretable causal graphs in language models.
arXiv preprint arXiv:2403.19647, 2024.

McInnes, L., Healy, J., Saul, N., and Großberger, L. Umap:
Uniform manifold approximation and projection. Journal
of Open Source Software, 3(29):861, 2018. doi: 10.211
05/joss.00861. URL https://doi.org/10.211
05/joss.00861.

Nanda, N. Attribution patching: Activation patching at
industrial scale. https://www.neelnanda.io/m
echanistic-interpretability/attribut
ion-patching, 2022.

Nanda, N. and Bloom, J. Transformerlens. https://gi
thub.com/TransformerLensOrg/Transfor
merLens, 2022.

OpenAI, Achiam, J., Adler, S., Agarwal, S., et al. Gpt-4
technical report, 2024.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kramár, J., Shah, R., and Nanda, N. Improving
dictionary learning with gated sparse autoencoders, 2024.

Riggs, L. and Brinkmann, J. Improving sae’s by sqrt()-
ing l1 and removing lowest activating features. https:
//www.lesswrong.com/posts/YiGs8qJ8aN
Bgwt2YN/improving-sae-s-by-sqrt-ing
-l1-and-removing-lowest, 2024.

Sharkey, L., Braun, D., and Millidge, B. Taking features
out of superposition with sparse autoencoders, Dec 2022.
URL https://www.alignmentforum.org/p
osts/z6QQJbtpkEAX3Aojj/interim-resea
rch-report-taking-features-out-of-s
uperposition.

9

https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://transformer-circuits.pub/2024/feb-update/index.html#:~:text=handle%20dying%20neurons.-,Tanh%20Penalty%20in%20Dictionary%20Learning,-Adam%20Jermyn%2C%20Adly
https://transformer-circuits.pub/2024/feb-update/index.html#:~:text=handle%20dying%20neurons.-,Tanh%20Penalty%20in%20Dictionary%20Learning,-Adam%20Jermyn%2C%20Adly
https://transformer-circuits.pub/2024/feb-update/index.html#:~:text=handle%20dying%20neurons.-,Tanh%20Penalty%20in%20Dictionary%20Learning,-Adam%20Jermyn%2C%20Adly
https://transformer-circuits.pub/2024/feb-update/index.html#:~:text=handle%20dying%20neurons.-,Tanh%20Penalty%20in%20Dictionary%20Learning,-Adam%20Jermyn%2C%20Adly
https://transformer-circuits.pub/2024/feb-update/index.html#:~:text=handle%20dying%20neurons.-,Tanh%20Penalty%20in%20Dictionary%20Learning,-Adam%20Jermyn%2C%20Adly
https://transformer-circuits.pub/2024/feb-update/index.html#:~:text=handle%20dying%20neurons.-,Tanh%20Penalty%20in%20Dictionary%20Learning,-Adam%20Jermyn%2C%20Adly
https://github.com/hijohnnylin/automated-interpretability
https://github.com/hijohnnylin/automated-interpretability
https://github.com/hijohnnylin/automated-interpretability
https://www.neuronpedia.org
https://www.neuronpedia.org
https://openreview.net/forum?id=MHIX9H8aYF
https://openreview.net/forum?id=MHIX9H8aYF
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition

Functionally Important Features with E2E Dictionary Learning

Subramanian, A., Pruthi, D., Jhamtani, H., Berg-
Kirkpatrick, T., and Hovy, E. Spine: Sparse interpretable
neural embeddings, 2017.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks, 2017.

Tamkin, A., Taufeeque, M., and Goodman, N. D. Codebook
features: Sparse and discrete interpretability for neural
networks. 2023.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D.,
Sakenis, S., Huang, J., Singer, Y., and Shieber, S. Causal
mediation analysis for interpreting neural nlp: The case
of gender bias, 2020.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., et al. Huggingface’s transformers: State-of-the-
art natural language processing, 2020.

Wright, B. and Sharkey, L. Addressing feature suppression
in saes, Feb 2024. URL https://www.alignmentf
orum.org/posts/3JuSjTZyMzaSeTxKk/add
ressing-feature-suppression-in-saes.

Yun, Z., Chen, Y., Olshausen, B. A., and LeCun, Y. Trans-
former visualization via dictionary learning: contextual-
ized embedding as a linear superposition of transformer
factors, 2021. URL https://arxiv.org/abs/21
03.15949.

10

https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://arxiv.org/abs/2103.15949
https://arxiv.org/abs/2103.15949

Functionally Important Features with E2E Dictionary Learning

A. Additional results on other layers and models
A.1. Pareto curves for SAEs at other layers

Figure 6. Performance of all SAE types on GPT2-small’s residual stream at layers 2, 6 and 10. GPT2-small has a CE loss of 3.139 over
our evaluation set.

A.2. Pareto curves for TinyStories-1M

We also tested our methods on Tinystories-1M, a 1M parameter model trained on short, simple stories (Eldan & Li, 2023).
Figure 7 shows our key results generalising to the residual stream halfway through the model (before the 5th of 8 layers).

11

Functionally Important Features with E2E Dictionary Learning

Note that most of our Tinystories-1M runs were for SAElocal and SAEe2e, and we did not perform several of the analyses
that we performed for GPT2-small elsewhere in this report. But the clear improvement in L0 and alive dict elements vs CE
loss increase was apparent for SAEe2e vs SAElocal. More results can be found at https://api.wandb.ai/links/s
parsify/yk5etolk. Future work would test that these results hold on more models of different sizes and architectures,
as well as on SAEs trained not just on the residual stream.

Figure 7. Tinystories-1M runs comparing SAElocal, SAEe2e and SAEe2e+ds on the residual stream before the 5th of 8 layers. Tinystories-1M
has a CE loss of 2.306 over our evaluation set.

A.3. Comparison of runs with similar L0, CE loss increase, or number of alive dictionary elements

Table 2. Comparison of runs with similar CE loss increase for each layer. λ represents the sparsity coefficient and GradNorm is the mean
norm of all SAE weight gradients measured from 10k training samples onwards.

Layer Type λ L0 AliveElements GradNorm CEIncrease

local 0.8 73.5 41k 0.04 0.016
2 e2e 0.5 33.4 22k 0.24 0.020

e2e+ds 10 36.2 18k 1.55 0.015

local 4 69.4 26k 0.12 0.144
6 e2e 3 27.5 22k 0.59 0.145

e2e+ds 50 36.8 15k 3.27 0.124

local 6 162.7 33k 0.40 0.122
10 e2e 1.5 62.3 25k 0.64 0.131

e2e+ds 1.75 70.2 25k 0.24 0.144

A.4. Downstream MSE for all layers

Figure 8 shows that layers 2 and 10 also have the property that SAEe2e+ds has a very similar reconstruction loss to SAElocal
at downstreams layers, and SAEe2e has a much higher reconstruction loss.

A.5. Feature splitting geometry

In Section 3.3.1 we showed that at layer 6, SAElocal is less orthogonal than SAEe2e and SAEe2e+ds, indicating a higher level
of feature splitting. In Figure 9 we extend the analysis to runs on other layers.

12

https://api.wandb.ai/links/sparsify/yk5etolk
https://api.wandb.ai/links/sparsify/yk5etolk

Functionally Important Features with E2E Dictionary Learning

Table 3. Comparison of runs with similar L0 for each layer. λ represents the sparsity coefficient and GradNorm is the mean norm of all
SAE weight gradients measured from 10k training samples onwards.

Layer Run Type λ L0 Alive Elements Grad Norm CE Loss Increase

local 4 18.4 18k 0.04 0.101
2 e2e 1.5 18.6 20k 0.31 0.043

e2e+ds 35 17.9 15k 2.24 0.039

local 6 42.8 21k 0.13 0.228
6 e2e 1.5 39.7 25k 0.42 0.099

e2e+ds 50 36.8 15k 3.27 0.124

local 10 74.9 28k 0.37 0.202
10 e2e 1.5 62.3 25k 0.64 0.131

e2e+ds 1.75 70.2 25k 0.24 0.144

Figure 8. Reconstruction mean squared error (MSE) at later layers for our three SAEs with similar CE loss increase for layers 2, 6, and 10.

In almost all cases we find that SAEe2e contains the most orthogonal dictionaries, followed by SAEe2e+ds and then SAElocal.
Perhaps surprisingly, as the number of alive dictionary elements decrease for each SAE type, we see an increase in the mean
of the within-SAE similarities, indicating less feature splitting. One hypothesis for this result is that the the orthogonality of
the dictionary depends much more on the output performance (as measured by CE loss difference) or sparsity (as measured
by L0) of the model with the SAE than on the number of alive dictionary elements, though further analysis is needed.

A.6. Cross-type similarity at other layers

In Section 3.3.2 we show that downstream and local SAEs have more similar decoder directions than e2e and local SAEs. In
Figure 10 we show this is true for layers 2, 6, and 10.

A.7. Auto-interpretability

In section 3.4 we claim that when comparing auto-interpretability scores we find no difference between pairs of similar L0,
but do find SAEe2e+ds is more interpretable than SAElocal in layers 2 and 6. These results are presented in more detail in
Figure 11 and Table 4.

13

Functionally Important Features with E2E Dictionary Learning

Figure 9. Mean over all SAE dictionary elements of the cosine similarity to the next-closest element in the same dictionary. Plotted
against L0, CE loss increase, and number of alive dictionary elements for all SAE types on runs with a variety of sparsity coefficients for
GPT2-small

14

Functionally Important Features with E2E Dictionary Learning

Figure 10. For runs with similar CE loss increase in layers 2, 6, 10, for each SAEe2e and SAEe2e+ds dictionary direction, we take the max
cosine similarity over all SAElocal directions.

(a) Similar L0 (b) Similar CE Loss increase

Figure 11. Comparison of auto-interpretability scores between SAEe2e+ds and SAElocal. We choose two pairs at every layer, one with
similar L0 (see Table 3) and the other with similar CE loss increase (see Table 2). Error bars are a bootstraped 95% confidence interval for
the true mean auto-interpretability scores. Measured on approximately 200(±2) randomly selected features per dictionary.

Table 4. Estimates of the difference between the mean auto-interpretability scores for SAEe2e+ds and SAElocal (Figure 11). A positive
difference indicates SAEe2e+ds is more interpretable. For each comparison we use bootstrapping to compute a 95% confidence interval and
a two-tailed p-value that the means are equal.

Layer Mean diff. 95% CI p-value

Similar L0 2 −0.01 [−0.07, 0.04] 0.61
6 −0.01 [−0.07, 0.05] 0.71

10 0.03 [−0.03, 0.08] 0.33

Similar CE 2 0.08 [0.02, 0.13] 0.0057
6 0.10 [0.05, 0.16] 0.00044

10 0.02 [−0.03, 0.08] 0.41

15

Functionally Important Features with E2E Dictionary Learning

B. Analysis of reconstructed activations
We saw in Appendix A.4 that our e2e-trained SAEs are much worse at reconstructing the exact activation compared to
locally-trained SAEs. We performed some initial analysis of why this is.

B.1. Scale

A common problem with SAEs is “feature-supression”, where the SAE output has considerably smaller norm than the input
(Wright & Sharkey, 2024; Rajamanoharan et al., 2024). We observe this as well, as shown in Figure 12 for an SAEe2e+ds in
layer 6. Note the cluster of activations with original norm around 3000; these are the activations at position 0.

Figure 12. A scatterplot showing the L2-norm of the input and output activations for out SAEe2e+ds in layer 6.

Table 5. L2 Ratio for the SAEs of similar CE loss increase, as in Table 2.

Position 0 Position > 0

Layer 2 6 10 2 6 10

local 1.00 1.00 1.00 0.98 0.92 0.91
e2e 0.16 0.11 0.08 0.67 0.31 0.15
downstream 0.14 0.99 0.99 0.74 0.56 0.32

We can measure suppression with the metric:

L2 Ratio = Ex∈D
||â(x)||
||a(x)||

which is presented in Table 5 for all of the similar CE loss increase SAEs in Table 2. Generally, SAEe2e has the most
feature-suppression. This is as layer-norm is applied to the residual stream before the activations are used, which can allow
the network to re-normalize the downscaled activations and keep similar outputs. The downscaled activations will still
disrupt the normal ratio between the residual stream before the SAE is applied and the outputs of future layers that are added
to the residual stream.

B.2. Direction

Both SAEe2e and SAEe2e+ds do significantly worse at reconstructing the directions of the original activations than SAElocal
(Figure 13). Note, however, that we are comparing runs with similar CE loss increases. SAElocal is the only one of the three
that is trained directly on reconstructing these activations, and achieves this reconstruction with significantly higher average
L0.

16

Functionally Important Features with E2E Dictionary Learning

Overall, SAEe2e+ds and SAEe2e reconstruct the activation direction in the current layer similarly well, with SAEe2e+ds doing
better at layer 6 and but worse at layer 10.

Figure 13. Distribution of cosine similarities between the original and reconstructed activations, for our SAEs with similar CE loss
increases (Table 2). We measure 100 sequences of length 1024.

B.3. Explained variance

How much of the reconstruction error seen earlier (Section 3.2) is due to feature shrinkage? One way to investigate this is to
normalize the activations of the SAE output before comparing them to the original activation.4 In Figure 14, we compare the
explained variance for the reconstructed activations of each type of SAE in layer 6, both with and without normalizing the
activations first. Normalizing the activations greatly improves the explained variance of our e2e SAEs. Despite this, the
overall story and relative shapes of the curves are similar.

C. Effect of gradient norms on the number of alive dictionary elements
One of our goals is to reduce the total number of features needed over a dataset (i.e. the alive dictionary elements), thereby
reducing the computational overhead of any method that makes use of these features. We showed in Figure 6 that SAEe2e
and SAEe2e+ds consistently use fewer dictionary elements for the same amount of performance when compared with SAElocal.
We also see that SAEe2e+ds uses fewer elements than SAEe2e for layers 2 and 6 but not layer 10.

Notice in Table 2, however, that the number of alive dictionary elements is negatively correlated with the norm of the
gradients during training. This begs the question: If we increase the learning rate, is it possible to maintain performance in

4To “normalize” we apply center along the embedding dimension and scale the resulting vector to have unit norm. This is equivalent
to Layer Normalization with no affine transformation. We use this as Layer Normalization is applied to the residual-stream activations
before they are used by the network.

(a) Unmodified activations (b) Normalized activations

Figure 14. Explained variance between activations from the model with and without the SAE inserted. Measured at all later layers for our
set of SAEs with similar CE loss increase in layer 6 (Table 1). In (b) we apply Layer Normalization to the activations before comparison.

17

Functionally Important Features with E2E Dictionary Learning

L0 vs CE loss increase while also decreasing the number of alive dictionary elements?

Figure 15. Varying the learning rate for SAElocal on layers 2, 6 and 10. All other parameters are the same as the local runs listed in the
similar CE loss increase Table 2.

In Figures 15, 16, 17, we show the effect that varying the learning rate has on performance for SAElocal, SAEe2e, and
SAEe2e+ds, respectively. In all cases, we see that learning rates higher than our default of 0.0005 require fewer dictionary
elements for the same level of performance on CE loss increase. We also see that these runs with higher learning rates (up to
a limit) can have a better L0 vs CE loss increase frontier at high sparsity levels and is similar or worse at low sparsity levels.

This effect appears to be more pronounced for SAEe2e and SAEe2e+ds than SAElocal, indicating that e2e SAEs may require
even fewer alive dictionary elements compared to SAElocals than what is presented in the figures in the main text.

While not shown in these figures, a downside of using learning rates larger than 0.0005 is that it can cause the L0 metric
to steadily increase during training after an initial period of decreasing. This occurred for all of our SAE types, and
was especially apparent in later layers. Due to this instability, we persisted with a learning rate of 0.0005 for our main
experiments. We expect that training tweaks such as using a sparsity schedule could help remedy this issue and allow for
using higher learning rates.

18

Functionally Important Features with E2E Dictionary Learning

Figure 16. Varying the learning rate for SAEe2e on layers 2, 6 and 10. All other parameters are the same as the local runs listed in the
similar CE loss increase Table 2.

D. Experimental details and hyperparameters
Our architectural and training design choices were selected with the goal of maximizing L0 vs CE loss increase Pareto
frontier of SAElocal. We then used the same design choices for SAEe2e and SAEe2e+ds. Much of our design choice iteration
took place on the smaller Tinystories-1m due to time and cost constraints.

Our SAE encoder and decoder both have a regular, trainable bias, and use Kaiming initialization. To form our dictionary
elements, we transform our decoder to have unit norm on every forward pass. We do not employ any resampling techniques
(Bricken et al., 2023) as it is unclear how these methods affect the types of features that are found, especially when aiming to
find functional features with e2e training. We clip the gradients norms of our parameters to a fixed value (10 for GPT2-small).
This only affects the very large grad norms at the start of training and the occasional spike later in training. We do not have
strong evidence that this is worthwhile to do on GPT2-small, and it does comes at a computational cost.

We train for 400k samples of context size 1024 on Open Web Text with an effective batch size of 16. We use a learning

19

Functionally Important Features with E2E Dictionary Learning

Figure 17. Varying the learning rate for SAEe2e+ds on layers 2, 6 and 10. All other parameters are the same as the local runs listed in the
similar CE loss increase Table 2.

rate of 5e− 4, with a warmup of 20k samples, a cosine schedule decaying to 10% of the max learning rate, and the Adam
optimizer (Kingma & Ba, 2017) with default hyperparameters.

For SAEe2e+ds, we multiply our KL loss term by a value of 0.5 in our implementation. Note that if we instead fixed this
value to 1 and varied the other loss coefficients, we would also need to vary other coefficients such as learning rate and
effective batch size accordingly, which may have been difficult. This said, fixing this parameter to 1 and having fewer overall
hyperparemeters may be a better option going forward, as it turns out to be difficult to tune the other coefficients in this
setting anyway. We set the total coeff (i.e., the coefficient that multiplies the downstream reconstruction MSE, denoted β in
Equation 1) to 2.5 for layers 2 and 6, and to 0.05 for layer 10. Note from Equation 1 that this coefficient gets split evenly
among all downstream layers. It’s likely that a different weighting of these parameters is more desirable, but we did not
explore this for this report.

It’s worth noting that we did not iterate heavily on loss function design for SAEe2e+ds, so it’s likely that other configurations
have better performance (e.g. having different downstream reconstruction loss coefficients depending on the layer, and/or

20

Functionally Important Features with E2E Dictionary Learning

including the reconstruction loss at the layer containing the SAE).

Note that in our loss formulation (Section 2), we divide our sparsity coefficient λ by the size of the residual stream
dim(a(l)(x)). This is done in an attempt to make our sparsity coefficient robust to changes in model size. The idea is that
the L1 score for an optimal SAE will be a function of the size of the residual stream. However, we did not explore this
relationship in detail and expect that other functions of residual stream size (and perhaps dictionary size) are more suitable
for scaling the sparsity coefficient.

For GPT2-small we stream the dataset https://huggingface.co/datasets/apollo-research/Skylio
n007-openwebtext-tokenizer-gpt2 which is a tokenized version of OpenWebText ((Gokaslan & Cohen, 2019))
(released under the license CC0-1.0). The tokenization process is the same as was used in GPT2 training, with a ‘BOS’
token between documents.

We evaluate our models on 500 samples of the Open Web Text dataset (a different seed to that used for training). We
consider a dictionary element alive if it activates at all on 500k training tokens.

Note that information from all of our runs are accessible in this Weights and Biases ((Biewald, 2020)) report, including the
weights, configs and numerous metrics tracked throughout training. The SAEs from these runs can be loaded and further
analysed in our library https://github.com/ApolloResearch/e2e_sae/.

We used NVIDIA A100 GPUs with 80GB VRAM (although the GPU was saturated when using smaller batch sizes that
used 40GB VRAM or less).

Our library imports from the TransformerLens library (Nanda & Bloom, 2022) (released under the MIT License), which is
used to download models via HuggingFace’s Transformers library (Wolf et al., 2020) (released under the Apache License
2.0). GPT2-small is released under the MIT license. The Tinystories-1M model is released under the Apache License 2.0
and it’s accompanying dataset is released under CDLA-Sharing-1.0.

21

https://huggingface.co/datasets/apollo-research/Skylion007-openwebtext-tokenizer-gpt2
https://huggingface.co/datasets/apollo-research/Skylion007-openwebtext-tokenizer-gpt2
https://api.wandb.ai/links/sparsify/evnqx8t6
https://github.com/ApolloResearch/e2e_sae/

Functionally Important Features with E2E Dictionary Learning

E. Varying initial dictionary size and number of training samples
E.1. Varying initial dictionary size

In Figure 18 we show the effect of varying the initial dictionary size for our layer 6 similar CE loss increase SAEs in Table
2. For all SAE types, we see L0 vs CE loss increase improve with diminishing returns as the dictionary size is scaled
up, capping out at a dictionary size of roughly 60. This comes at the cost of having more alive dictionary elements with
increasing dictionary size.

It’s worth mentioning that, after preliminary investigation on Tinystories-1M, it’s possible to reduce the dictionary ratio to 5
times the residual stream and still achieve a good L0 vs CE loss increase tradeoff, as well as reducing the number of alive
dictionary elements. See this Weights and Biases report for details https://wandb.ai/sparsify/tinystorie
s-1m-ratio/reports/Scaling-dict-size-tinystories-blocks-4-layerwise--Vmlldzo3MzM
zOTcw.

Figure 18. Sweep over the SAE dictionary size for layer 6 (where ‘ratio’ is the size of the initial dictionary divided by the residual stream
size of 768). All other parameters are the same as in the similar CE loss increase runs in Table 2.

22

https://wandb.ai/sparsify/tinystories-1m-ratio/reports/Scaling-dict-size-tinystories-blocks-4-layerwise--Vmlldzo3MzMzOTcw
https://wandb.ai/sparsify/tinystories-1m-ratio/reports/Scaling-dict-size-tinystories-blocks-4-layerwise--Vmlldzo3MzMzOTcw
https://wandb.ai/sparsify/tinystories-1m-ratio/reports/Scaling-dict-size-tinystories-blocks-4-layerwise--Vmlldzo3MzMzOTcw

Functionally Important Features with E2E Dictionary Learning

E.2. Varying number of training samples

In Figure 19 we analyse the effect of varying the number of training samples for each SAE type on layer 6 of our similar CE
loss increase SAEs. For SAElocal, training for 50k samples is clearly insufficient. The difference between training on 200k,
400k, and 800k samples is quite minimal for both L0 vs CE loss increase and alive dict elements vs CE loss increase.

For SAEe2e, we see improvements to L0 vs CE loss increase when increasing from 50k to 800k samples but with diminishing
returns. In contrast to SAElocal, we see a steady improvement in alive dict elements vs CE loss increase as we increase the
number of samples. Note that training SAEe2e or SAEe2e+ds for 800k samples takes approximately 23 hours on a single
A100.

For SAEe2e+ds, the L0 vs CE loss increase and alive dict elements vs CE loss increase improves up until 400k samples
where performance maxes out.

Figure 19. Sweep over number of samples trained on layer 6. All other parameters are the same as in the similar CE loss increase runs in
Table 2.

23

Functionally Important Features with E2E Dictionary Learning

F. Robustness of features to different seeds
We show in Figure 20 that, for a variety of sparsity coefficients and layers, our training runs are robust to the random seed.
Note that the seed is responsible for both SAE weight initialization as well as the dataset samples used in training and
evaluation.

Figure 20. A sample of SAEs for layers 2, 6 and 10 for all run types showing the robustness of SAE training to two different seeds.

24

Functionally Important Features with E2E Dictionary Learning

G. Analysis of UMAP plots
To explore the qualitative differences between the features learned by SAElocal and SAEe2e+ds, we first visualize the SAE
features using UMAP (McInnes et al., 2018) (Figures 21, 22).

G.1. UMAP of layer 6 SAEs

Although there is substantial overlap between the features from both types of SAE in the plot, there are some distinct regions
that are dense with SAEe2e+ds features but void of SAElocal, and vice versa. We look at the features in these regions along with
features in other identified regions of interest such as small mixed clusters in layer 6 of GPT2-small in more detail. We label
the regions of interest from A to G in Figure 21, and provide human-generated overview of these features below. Features
from this UMAP plot can be explored interactively at https://www.neuronpedia.org/gpt2sm-apollojt.
For each region, we also share links to lists of features in that region which go to an interactive dashboards on Neuronpedia.

Figure 21. UMAP plot of SAEe2e+ds and SAElocal features for layer 6 on runs with similar CE loss increase in GPT2-small.

REGION A (SAEE2E+DS FEATURES (18). SAELOCAL FEATURES (91))

Many of these features appear to be late-context positional features, or miscellaneous tokens that only activate in particularly
late context positions. It may be the case that SAEe2e+ds has fewer positional features than local, as indicated by the 18
SAEe2e+ds vs 91 SAElocal local features in this region (and similar in surrounding reasons). This said, we have not ruled out
whether positional features for SAEe2e+ds are found elsewhere in the UMAP plot.

25

https://www.neuronpedia.org/gpt2sm-apollojt
https://www.neuronpedia.org/list/clvioqad40015hbispsvj7o82
https://www.neuronpedia.org/list/clvioqazt0017hbisv9blma5e

Functionally Important Features with E2E Dictionary Learning

REGION B (SAEE2E+DS FEATURES (48). SAELOCAL FEATURES (2))

This region mostly contains features which activate on <|endoftext|> tokens, in addition to some newline and double
newline. These are tokens that mark the beginning of a new context. Seemingly SAEe2e+ds contains many more distinct
features for <|endoftext|> than SAElocal.

REGION C (SAEE2E+DS FEATURES (20). SAELOCAL FEATURES (31))

Region C potentially suggests more feature splitting happening in SAElocal than SAEe2e+ds. For SAEe2e+ds, each feature
activates most strongly on tokens “by” or “from” in a broad range of contexts. For SAElocal, each feature activates most
strongly in fine-grained contexts, such as “goes by” vs “led by” vs “. By” vs “stop by” vs “¡media¿, by author” vs “despised
by” vs “overtaken by” vs “issued by” vs “step-by-step / case-by-case / frame-by-frame” vs “Posted by” vs “Directed by” vs
“killed by” vs “by”.

REGION D (SAEE2E+DS FEATURES (11). SAELOCAL FEATURES (19))

These features all activate on “at” in various contexts. As in Region C, the SAEe2e+ds features appear less fine-grained.
Examples of SAElocal features not present in SAEe2e+ds: “Announced at” or “presented at” or “revealed at” feature (ht
tps://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/40197). “At” in technical contexts
(https://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/34541).

REGION E (SAEE2E+DS FEATURES (3). SAELOCAL FEATURES (67))

All features appear to boost starting words which would come after a paragraph or a full stop to start a new idea, such as
“Finally”, “Moreover”, “Similarly”, “Furthermore”, “Regardless”, “However” and so on. They seem to be differentiated by
perhaps activating in different contexts. For example https://www.neuronpedia.org/gpt2-small/6-res
_scl-ajt/4284 activates on full stops and newlines in technical contexts so it can predict things like “Additionally”,
“However”, and “Specifically”. On the other hand, https://www.neuronpedia.org/gpt2-small/6-res_scl
-ajt/13519 activates on full stops in baking recipes so it can predict things like “Then”, “Afterwards”, “Alternatively”,
“Depending” and so on.

REGION F (SAEE2E+DS FEATURES (19). SAELOCAL FEATURES (8))

These seem mostly similar to Region E. It’s not clear what distinguishes the regions looking at the feature dashboards alone.

REGION G (SAEE2E+DS FEATURES (41). SAELOCAL FEATURES (71))

The features in both SAEs seem to activate on fairly specific different words or phrases. There is no obvious distinguishing
features. It’s possible that SAEe2e+ds features tend to activate more specifically and on fewer tokens than the corresponding
SAElocal features. An example of this can be seen when comparing https://www.neuronpedia.org/gpt2-sma
ll/6-res_scefr-ajt/13910 (a SAEe2e+ds feature), with https://www.neuronpedia.org/gpt2-small
/6-res_scl-ajt/45568 (a SAElocal feature).

G.2. UMAP of layer 2 and layer 10 SAEs

In Figure 22, we show UMAP plots for layers 2 and 10. We interpret a single region from layer 10 in the next section.

G.3. Region H in layer 10 (SAEe2e+ds features (2). SAElocal features (593))

While some individual features in this region are interpretable, there is no obvious uniting theme semantically. There is,
however, a geometric connection. In particular, these are features that point away from the 0th PCA direction in the original
model’s activations (Figure 23).

The 0th PCA direction is nearly exactly the direction of the outlier activations at position 0 (see also Appendix B). Activations
in this direction are tri-modal, with large outliers at position 0 and smaller outliers at end-of-text tokens (Figure 24).

We can measure how well an SAE preserves a particular direction by measuring the correlation between the input and
output components in that direction. Our SAEe2e+ds faithfully reconstructs the activations in this direction at position 0

26

https://www.neuronpedia.org/list/clvioqbep0019hbishedb137o
https://www.neuronpedia.org/list/clvioqbz6001bhbis6i8d5vuq
https://www.neuronpedia.org/list/clvioqcb1001dhbiswedm0ux7
https://www.neuronpedia.org/list/clvioqcr8001fhbisdrw1otvf
https://www.neuronpedia.org/list/clvioqd3e001hhbis09zlr3rm
https://www.neuronpedia.org/list/clvioqdf3001jhbisra5ssxj6
https://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/40197
https://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/40197
https://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/34541
https://www.neuronpedia.org/list/clvioqdpa001lhbispvxy5ei6
https://www.neuronpedia.org/list/clvioqe94001nhbis9k1ctisy
https://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/4284
https://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/4284
https://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/13519
https://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/13519
https://www.neuronpedia.org/list/clvioqelp001phbisca8711da
https://www.neuronpedia.org/list/clvioqewm001rhbis2qhmyyna
https://www.neuronpedia.org/list/clvioqfap001thbis62e5oxhe
https://www.neuronpedia.org/list/clvioqfrq001vhbisqi7p4mjm
https://www.neuronpedia.org/gpt2-small/6-res_scefr-ajt/13910
https://www.neuronpedia.org/gpt2-small/6-res_scefr-ajt/13910
https://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/45568
https://www.neuronpedia.org/gpt2-small/6-res_scl-ajt/45568
https://www.neuronpedia.org/list/clviopxrz0001hbist1xwcn6k
https://www.neuronpedia.org/list/clvioq0wc0003hbiszookzfvb

Functionally Important Features with E2E Dictionary Learning

Figure 22. UMAP of SAEe2e+ds and SAElocal features for layers 2 and 10 on runs with similar CE loss increase in GPT2-small.

(r = 0.996), but not at other positions (r = 0.262). This is a particularly poor reconstruction compared to SAElocal or other
PCA directions (Figure 25a).

SAEe2e+ds’s poor reconstruction of the activations in this direction implies that the differences may not be functionally
relevant. We can measure this by resample ablating the activation in this direction at all non-zero positions. This means we
perform the following intervention in a forward hook:

a(x)i ← a(x)i − Pa(x)i + Pa(x′)j

Where a(x)i is the activation at position i > 0, a(x′)j is the resampled activation for a different input x′ and position j > 0,
and P is a projection matrix onto the 0th PCA direction.

After performing this ablation, the kl-divergence from the original activations is only 0.01. This difference is smaller than
repeating the experiment for any other direction in the first 30 PCA directions (Figure 25b).

This means that the exact value of this component of the activation (at positions > 0) is mostly functionally irrelevant for
the model. SAElocal still captures the direction faithfully, as it is purely trained to minimize MSE. While SAEe2e+ds fails to
preserve this direction accurately, this seems to allow it to have a cleaner dictionary, avoiding SAElocal’s cluster of features
that point partially away from this direction.

27

Functionally Important Features with E2E Dictionary Learning

Figure 23. The UMAP plot for SAEe2e+ds and SAElocal directions, with points colored by their cosine similarity to the 0th PCA direction.

Figure 24. A histogram of the 0th PCA component of the activations before layer 10.

(a) Reconstruction faithfulness (b) Output sensitivity to resample ablating

Figure 25. For each PCA direction before layer 10 we measure two qualities. The first is how faithfully SAElocal and SAEe2e+ds reconstruct
that direction by measuring correlation coefficient. The second is how functionally-important the direction is, as measured by how much
the output of the model changes when resample ablating the direction.

28

Functionally Important Features with E2E Dictionary Learning

H. Training time
The training time for each type of SAE in GPT2-small is shown in Table 6. We see that e2e SAEs are 2-3.5x slower than
SAElocal. Note that one can reduce training time with little performance cost by training on fewer that 400k samples (Figure
19) and/or using an initial dictionary ratio of less than 60x the residual stream size (Figure 18). Using locally trained SAEs
as initialization for e2e SAEs or training multiple SAEs at different layers concurrently are also possible solutions.

Table 6. Training times for different layers and SAE training methods using a single NVIDIA A100 GPU on the residual stream of
GPT2-small at layer 6. All SAEs are trained on 400k samples of context length 1024, with a dictionary size of 60x the residual stream
size of 768.

Layer SAElocal SAEe2e SAEe2e+ds

2 3h 45m 12h 24m 12h 30m
6 4h 45m 11h 20m 11h 24m

10 5h 19m 10h 12m 10h 20m

29

