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Abstract

Humans and animals need to rapidly adapt to dynamically changing environments
given only few experiences while high-performance artificial systems require large
datasets. In order to bridge this gap, we consider data augmentations, which have
been shown to substantially improve the data-efficiency and generalization capabil-
ities of many machine learning models including reinforcement learning agents.
However, how augmentation should be coordinated online during open-ended
interactions with the world is unclear. We take inspiration from the brain in ad-
dressing this issue. Encountering unexpected environment states (signaled by state
prediction errors, SPEs) has been associated with the phasic release of serotonin, a
neurotransmitter known to mediate cognitive flexibility in humans. We hypothesize
that serotonin triggers augmentations and that this facilitates adaptation to novel en-
vironments. In our agent-based simulations, learning from augmentations improves
state-prediction in unfamiliar contexts within a minimal circular environment and
in gridworlds. Furthermore, we find that augmentations timed to high SPEs are
particularly effective. These preliminary results are consistent with a functional
role for serotonergic neuromodulation in open-ended adaptation of natural and
artificial systems based on regulating the augmentation of experience.

1 Introduction

Data augmentation is a particularly useful machine learning strategy for the regime of sparse data
and large systems such as brains, where generalization is a critical property [1]. It has emerged as a
instrumental method for training large models especially in the self-supervised setting [2, 3, 4, 5]. We
investigate whether an analogous computational process may be implemented in the brain and propose
a mechanistic implementation. Specifically, we examine a novel hypothesis involving an ancient, and
widely conserved, neuromodulator, serotonin (5-HT) [6]. We postulate that the functional role of
serotonin in the brain is to cause the generation of neural augmentations of experience. That is, long-
range projections of serotonergic activity throughout the brain trigger stochastic augmentations of
experiences in order to enhance generalization and aid learning from sparse environmental interactions
in biological systems.

We develop our theory by exploring its implications via the simulation of reinforcement learning (RL)
agents engaged in open-ended learning of novel environments [7]. Data augmentation has recently
been a focus of study in the RL context whereby an agent’s experience of state-action trajectories is
augmented [8, 9, 3, 10]. Indeed, novel augmentation methods, such as random amplitude scaling, have
been proposed specifically for continuous state-based control [10]. A critical distinction can be drawn
between data augmentation in the offline [10] versus online [3] scenarios. In the former case, previous
experiences in the agent’s buffer are randomly sampled and augmented during periods of quiescence.
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In the latter case, augmentations may be generated from a recent experience of the agent while
environmental engagement is ongoing. Particularly in this online case, it is unclear when precisely a
continuous stream of open-ended experiences should be interrupted to generate an augmentation. In
this study, we propose to treat online augmentation as a meta-task whereby the agent can optimize
when to generate augmentations. Specifically, given a limited budget of augmentations, when should
they be applied to the agent’s experience? Inspired by neuroscientific studies regarding the role of
serotonergic modulation in the brain, we propose that a state novelty or uncertainty signal may serve
the purpose of determining when augmentations are generated. Specifically, we hypothesize that the
phasic activity of serotonin-producing neurons triggers experiential augmentations when an animal
or human encounters a novel environment state. In order to examine whether this could contribute
to the performance of open-ended learning mechanisms, we investigated a key prediction in our
simulations. We tested whether an RL agent, endowed with the capacity to regulate the generation of
augmentations of recent experiences according to an environment state novelty signal, learns and
generalizes better than an agent which randomly augments regardless of the interactive context of the
agent.

2 Methods
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Figure 1: A. We used a minimal circle environment with random two-dimensional real-valued
observations to illustrate our theory. The agent (a virtual rodent) can traverse the circle via egocentric
actions “turn”, “go”, ”wait”. The current sensory observation (green and yellow rectangle) and the
egocentric action sequence are inputted to a neural network. B. A neural network was trained to
predict the next sensory observation (orange and red rectangle) from the previous sensory observation
and action sequence. C. We trained an analogous network in an open gridworld with one object (red).
The agent observes one of 28 possible egocentric observations (field of view, FOV, in blue). The
input to the network is the scalar corresponding to the observation state (1-28). D. We examined
the generalization properties of our augmented learning algorithm between two possible behavioral
policy contexts; namely, whether the agent was biased to traverse the space in a cw (top) or ccw
(bottom) fashion.

We study the problem of state prediction in Markov decision processes. Agents receive continuous or
discrete state observations ot together with a sequence of k discrete actions at:t+k and aim to predict
the next state observations ot+k. The agent consists of a two-layer feedforward neural network
with 100 neurons per layer, and an output layer that maps to predicted state observation space
(Fig. 1B). Weights were optimized using backpropagation with Adam [11], either mean squared error
(MSE) or cross-entropy loss and a learning rate of 0.001 for the circle and 0.0001 for the gridworld
environments (see below for a detailed description of the environments).

Augmentations: The agent is able to produce and learn from augmentations of its experienced
trajectories. Augmentations are random combinations of experienced environmental states and
actions that the agent “imagines” traversing. Concretely, during augmentations the neural network is
trained on such a set of randomly generated state-action-state sequences. Triggered augmentations
occur after a high state prediction error (SPE) while random augmentations can occur at any point
with their probability matched to the rate of triggered augmentations. We test the state-prediction
performance of the dynamic triggered-augmentation agent against random-augmentation and no-
augmentation baselines in two environments.

Circle environment: The first environment (Fig. 1A) is a circular track which an agent traverses
in one of two contexts; clockwise (cw) or counterclockwise (ccw). The circle has 36 discrete states
each with a unique continuous sensory 2-dimensional observation vector that depends on the angular
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position and the direction that the agent faces (i.e. at one angle the agent might get a sensory
observation of o = [1, 2] if facing cw, or o = [2, 1] if facing ccw). The agent can take one of three
actions: a forward step to reach the next angular state according to its current direction, a turn that
changes its direction and flips its sensory observation but does not change its angular state, or a wait
action. The agent predicts the next sensory observation ot+k given the current state observation ot

and a sequence of either wait or forward actions at:t+k (for instance at = [1, 1, 1, 1, 0, 0, 0, 0]). We
train the agent in an unidirectional context (cw or ccw) on the MSE loss of its predictions and true
observations. We then test the agent’s ability to predict states of cw or ccw trajectories, one of which
is unfamiliar to the agent.

Gridworld environment: We further test our algorithm in a minigrid environment [12] with a 3× 3
grid and 3 possible actions, turn left, turn right, step forward (Fig. 1C). The egocentric field of view
depends on the agent’s orientation in the environment leading to 28 possible 7× 7 pixel observation
states [12], which we simplify into an observational state category label, that is provided to the
network as a scalar input. We train the network on this state input and an action sequence to predict
the next state category using a cross-entropy loss. The agent moves through the gridworld following
one of two possible policies. In the first, clockwise, policy context the agent takes mostly actions
that result in cw trajectories. With a probability of 10% the agent still chooses random actions. The
second context follows the same rules, but ccw (Fig. 1D).

3 Results

State prediction poses a key problem in model-based RL, especially if environmental structure
changes or multiple contexts are encountered by an agent. Here we propose a new approach which
regulates automatic augmentations and enhances zero-shot performance in the online learning setting.
This method can be used widely and flexibly combined with different policy learning algorithms.

Learning protocol and zero-shot performance: First, we train an agent in the circular environment
given a unidirectional policy (cw context, 500 training batches of 64 trials, maximum of k = 8 forward
actions, test MSE in familiar context < 0.01). We then test the agent’s ability to predict the next
state observation in a new, unfamiliar context, ccw trajectories. We find that state prediction errors
increase significantly in this environmental condition (t-test p = 0.004, Fig. 2A). Next we test
whether augmentation can improve the performance of the trained agent in the unfamiliar context and
find significantly decreased MSE for the same trained model after additional training on augmented
random trajectory data (t-test p = 0.03, Fig. 2A). Similarly we train an agent in the gridworld
environment on a directional policy, where the agent moves in the environment with a strong cw
or ccw bias (see Methods). An agent trained on one context (e.g. cw) has significantly decreased
performance in a new context (e.g. ccw), measured as % correctly predicted next state categories
(t-test p < 1e− 10 Fig. 2B). This zero-shot context-switch performance is significantly increased
through augmentations (t-test between performance of trained versus trained + augmented agents in
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Figure 2: Augmentations improve zero-shot state prediction in both the circle A and gridworld B
environment. Boxplot indicates inter-quartile range (IQR) and median, whiskers indicate 1.5× IQR.
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new context p < 1e− 10), without significant decreases in performance in the familiar cw context
(t-test between trained and trained+augmented agents for performance in familiar context p = 0.12).

Online augmentations: We hypothesize a role for serotonin in the brain for triggering stochastic
augmentations of recent experiences to accelerate adaptation to novel environmental contexts. Specif-
ically, increased SPE, associated with unfamiliar sensory experiences and signaled by serotonin,
activates augmented neural representations from which the brain learns more generalized knowledge.
We tested whether such timed augmentations following high SPEs in an online learning setting
improve performance over randomly interspersed augmentations.

First, we took an agent trained on one context of the circular environment and test it on multiple
blocks of trials from either the familiar or unfamiliar context. SPEs is substantially higher in the
unfamiliar context blocks (Fig. 3A). We then rerun this block-design but allow the agent to trigger
augmentations whenever the SPE surpasses a threshold θ (i.e. MSE > θ). In this work, the threshold
is arbitrarily set to θ = 0.05 however a future avenue of investigation would be to meta-optimize this
hyperparameter. We find a significant difference between the average online SPE without and with
augmentations (average MSE without augmentations 0.11, average MSE with augmentations 0.04,
t-test p < 1e− 14, Fig. 3B&C).

In order to test, whether the timing of the augmentations is crucial, we compare to simulations where
augmentations happen randomly, independent of SPE, but keep the total number of augmentations
the same as for the triggered augmentations. We find that while random augmentations are also
able to improve the overall performance of the agent, SPE-triggered augmentations are significantly
better than random augmentations (ave. MSE with random augmentations 0.05, t-test p < 1e− 4,
Fig. 3C). We confirm the findings of SPE-triggered augmentations in the gridworld task. We
find that both random and SPE-triggered augmentations improve the trained model’s performance
(% correct across context-blocks) significantly, and that SPE-triggered augmentations outperform
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Figure 3: SPE-triggered augmentations lead to better performance than random augmentations in the
circle environment (A-C) and gridworld (D). A) Left: State predictions across familiar/unfamiliar
context blocks in circular environment (two blocks shown). Black lines indicates SPE of individual
simulations. Right: Distribution of SPE by context. Grey line indicates threshold of 0.05. Boxplot
statistics as in Fig. 2. B) Augmentations are triggered when SPE surpasses threshold (red lines). Grey
line indicates the MSE before the augmentation and black line indicates the MSE after the augmenta-
tion. C) SPE across contexts in circle environment for no augmentations, random augmentations and
triggered augmentations. Left plot shows the distribution, median and IQR, right plot shows mean
and standard error. D) As C but for the gridworld environment.
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random augmentations (trained model without augmentation ave. 43% correct, with SPE-triggered
augmentations 78%, with random augmentations 64%, t-test between trained and SPE-triggered
augmentations p < 1e− 13, t-test between random and SPE-triggered augmentations p < 1e− 5,
Fig. 3D). These results illustrate that augmentations of recent experiences not only help an agent
to constantly adapt its internal models of state transitions to novel environmental context, but that
timing these augmentations to follow high SPEs significantly increases their positive impact.

4 Discussion

With respect to previous work on the role of serotonin in the brain, our theory provides a new
perspective which integrates models relating 5-HT to state prediction error signals indicating con-
textual novelty, with evidence suggesting a contribution of serotonin towards cognitive flexibility
[13, 14, 15]. We explicitly model serotonin signals as state prediction errors; these drive augmenta-
tions, which in turn facilitate generalization and therefore increase cognitive flexibility as measured
by zero-shot inference in this work. In support of our hypothesis, we have performed preliminary
simulations investigating a role for state novelty signals in regulating experience augmentations
during open-ended learning. Such signals have long been explored as intrinsically motivating (IM)
objective functions for driving exploration in RL agents seeking to construct useful state and action
representations - a key goal of open-ended learning [16]. Here, we show that such IM signals can
also be productively applied to automatically trigger and modulate augmentations of the agent’s
experience albeit in relatively simple environments. However, analogous IM measures have recently
been scaled to high-dimensional continuous problems using random network distillation [8] which
we plan to leverage for future work in applying our framework to more complex environments.

Though our simulations have focused on serotonergically triggered augmentations in the online awake
state amid bouts of agent-environment engagement, we envision this to be mutually consonant with
the proposed role of dreaming as an augmentation process during offline sleep states [17]. Indeed,
serotonin is known to affect both the structure of sleep and the content of dreams [18]. This also
aligns with a previous proposal conceptualizing diffusive hippocampal replay, which specifically
occurs during the sleep state [19], as augmentations optimized for spatial learning [20]. This
observation opens up another potential avenue for future investigation regarding possible mechanistic
implementations of augmentations in the brain. From a computational perspective, an intriguing
possibility is that qualitatively distinct forms of augmentations may be symbiotically generated in the
brain during the online and offline phases with different generalization properties that reciprocally
benefit.

In future work, we expect this complex interplay to provide further theoretic guidance regarding our
hypothesis relating serotonin and experience augmentations across distinct states of consciousness
throughout open-ended world interactions. While previous work has focused on the question of
what augmentations to generate leading to automated algorithms for augmentation selection [21],
our theory introduces the problem of when to trigger augmentations. In general, best practices for
automating the initiation and parametrization of augmentations remain poorly understood [5]. Too
little augmentation results in limited generalization and inflexibility while too much augmentation
leads to inaccurate hallucinatory inferences and bias. Potentially, the brain may provide insights into
effective regulation strategies regarding when and how augmentations should be generated.
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