
URDFormer: Constructing interactive Realistic
Scenes from Real Images via Simulation and

Generative Modeling

Anonymous Author(s)
Affiliation
Address
email

Internet
Images

Predicted
URDFs

InverseForward

Procedurally
Sampled URDFs

Realistic
Images

Figure 1: Our method uses generative models in a “Forward” process to produce structurally consistent realistic
images from procedurally generated simulation content. We then use these generated simulation/image pairs to
train an “Inverse” process that is able to estimate the underlying structure of diverse real-world images.

Abstract: Constructing accurate and targeted simulation scenes that are both vi-1

sually and physically realistic is a significant practical interest in domains rang-2

ing from robotics to computer vision. However, this process is typically done3

largely by hand - a graphic designer and a simulation engineer work together with4

predefined assets to construct rich scenes with realistic dynamic and kinematic5

properties. While this may scale to small numbers of scenes, to achieve the gener-6

alization properties that are requisite of data-driven machine learning algorithms,7

we require a pipeline that is able to synthesize large numbers of realistic scenes,8

complete with “natural” kinematic and dynamic structure. To do so, we develop9

models for inferring structure and generating simulation scenes from natural im-10

ages, allowing for scalable scene generation from web-scale datasets. To train11

these image-to-simulation models, we show how effective generative models can12

be used in generating training data, the network can be inverted to map from real-13

istic images back to complete scene models. We show how this paradigm allows14

us to build large datasets of scenes with semantic and physical realism, enabling a15

variety of downstream applications in robotics and computer vision. More visual-16

izations are available at: https://sites.google.com/view/urdformer/home17

Keywords: Generative Modeling, Scene Generation, Simulation18

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://sites.google.com/view/urdformer/home


1 Introduction19

Simulation offers the dual advantages of scalable and cheap data collection and an easy way to20

encode domain-specific prior knowledge into end-to-end machine-learning problems [1, 2, 3]. This21

is particularly important for data-scarce problems such as robotics, where collecting real data can22

lead to costly and unsafe failures or may require expensive human supervision. Critical to each of23

these endeavors is a rich and accurate simulation environment, complete with complex scene layouts24

and kinematic structure. The de-facto process for generating simulation content is either manual25

[4] or procedural [5]. The manual process for creating simulation scenes involves the algorithm26

designer working to characterize, identify, and model a particular real-world scene, a painstaking27

and impractical process. This leads to content that is not very diverse due to the onerous human28

effort required. On the other hand, rule-based procedural generation methods [5, 6] have seen29

success in particular machine learning applications such as embodied navigation, but often struggle30

to capture the natural complexity of the real world. Moreover, the procedural generation process31

is not controllable, making it hard to generate simulation content corresponding to a particular32

real-world environment. The inability of the current status quo in the generation of simulation33

content - both procedural generation and manual creation, makes apparent the necessity of a targeted34

technique for scalable content creation in simulation that is able to retain realistic kinematic and35

semantic structure.36

To enable a variety of downstream use cases, scalable content creation in simulation must be (1)37

realistic enough such that inferences made in simulation transfer back to the real world (2) diverse38

in a way that captures natural statistics so as to enable learning generalizable models and policies39

(3) controllable in a way that allows for targeted generation of particular scenes of interest. While40

a variety of methods for scene generation and inverse graphics [7, 8, 9] satisfy one or more of41

these criteria, to the best of our knowledge, it has proven challenging to develop content creation42

methods that satisfy them all. We develop methods that map directly from isolated real-world images43

to corresponding simulation content (expressed as a Unified Robot Description File (URDF)) that44

could plausibly represent the semantics, kinematics, and structure of the scene. This is an inverse45

mapping problem going from real-world images to kinematically accurate, interactive simulation.46

While inverse modeling problems in the literature have been tackled with data-driven techniques47

such as supervised learning, in this case, a large-scale paired dataset of realistic images and their48

corresponding simulation environments does not readily exist in the literature.49

Our key idea is that we can generate a suitable dataset for inverse modeling from images to plausible50

simulations by leveraging controllable text-to-image generative models [10]. From a set of proce-51

durally or manually constructed scenes, we can generate realistic images that are representative of52

that particular simulation scene. This paired dataset of simulation scenes and corresponding realistic53

images can then be inverted via supervised learning to learn a model that maps from realistic images54

directly to plausible simulation environments. This learned model can generate realistic and diverse55

content directly from real-world images mined from the web without any additional annotation. The56

resulting models can be used in several use cases - (1) diverse generation: generating a large and57

diverse set of realistic simulation environments that correspond directly to real-world images, or (2)58

targeted generation: generating a simulation environment (or narrow distribution of environments)59

corresponding to a particular set of desired images.60

2 Related Work61

Inverse-Graphics: A variety of work in inverse-graphics focuses on inferring scene properties62

such as geometry, lighting, and other geometric properties from single images [11]. This work has63

both been optimization-based [12] and learning-based[13]. In a similar vein, a rich body of work64

[14] focuses on mesh reconstruction and novel view synthesis using a variety of techniques such as65

implicit neural fields [15, 16, 17], Gaussian splatting [18, 19], differentiable rendering [20, 21, 22]66

amongst many other techniques. Importantly, the focus of many of these works on inverse graphics67

has been on geometric reconstruction rather than our focus on scene-level simulation construction68

2



complete with kinematic and semantic structure like object relationships and articulation. There69

have been a number of efforts in inferring physical properties such as articulation [23, 24, 25],70

friction and surface properties [26, 27, 28, 29], although these typically require either interaction71

or video access. In contrast, our work focuses less on exact geometry reconstruction but rather on72

generating correct scene statistics at the articulation/kinematics/positioning level for entire scenes73

or complex objects from single RGB images. Our goal is a fast generation process that can scale74

to generate hundreds of scenes with natural statistics, without requiring interaction or targeted data75

collection per domain.76

URDFSimulated Image

Training Images

URDFormer

Real World Images

Forward

URDF Prediction

Inverse

Generative
Texture and
Background

URDFormer

Supervision

Figure 2: An overview of the training and application of URDFormer .
During the forward process, existing simulation assets are first used to
generate a large paired dataset of simulation assets and realistic rendered
images. This paired dataset is used to train the URDFormer inverse
model that can predict URDFs from RGB images. This model can then
be used with real-world images to generate novel simulations.

Generating indoor scenes is a77

long-standing problem in com-78

puter vision and machine learn-79

ing. This has been approached80

by building learned generative81

models of indoor scenes [30,82

31, 32, 33] and floorplans [34,83

35, 36], while others have pro-84

duced text-to-scene models [37,85

38]. While generating scenes86

this way can be promising, these87

methods either fail to achieve88

the targeted generation of com-89

plex scenes with articulation and90

complex kinematic structure in-91

tact or require extremely expen-92

sive inference processes to do93

so. On the other hand, procedural generation techniques have been popular in generating grid-world94

environments [39, 40, 41, 42] and in generating home environments at scale [5]. These scenes are95

diverse but are not controllable to particular target scenes or complete with physical properties and96

articulation. Other techniques such as [43, 44] are able to generate large datasets of interactive97

scenes but require interactive scanning with either a phone or other hardware for dataset generation98

specific to indoor scenes. URDFormer is able to generate realistic, diverse, and controllable scenes99

while retaining rich kinematic and semantic structure from internet images alone.100

Data Augmentation with Generative Models Our work is certainly not the first [45] to use syn-101

thetic data generated by generative models for training networks that can then be deployed on real102

data. These models have been used the context of data augmentation [46, 47, 48], representation103

learning via self supervised learning [49, 50, 51], model selection [52] and even applications like104

healthcare [53]. In contrast, our work shows that controllable generative modeling can be used to105

generate datasets that are suitable for inverse modeling for creating simulation assets at scale.106

3 URDFormer : Generating Interactive Simulation Environments by107

Learning Inverse Models from Generated Datasets108

3.1 Controlled Generation of Paired Datasets with Generative Models109

Given a simulated scene z (drawn from a dataset such as [54], or procedurally generated), we use the110

fact that controllable generative models are both diverse and realistic enough to take an unrealistic111

rendering of a scene in simulation and generate a distribution of corresponding realistic images. This112

allows the scene in simulation with unrealistic appearance and texture to be translated into a diverse113

set of visually realistic images that plausibly match the same underlying environment. To ensure114

piecewise consistency and realism of the generated images, we use two different dataset generation115

techniques for the scene structure and object structure respectively. These share the same conceptual116

ideas but differ to account for consistency properties in each case.117

3



Scene-Level Dataset Generation: To generate training data for the scene model, we feed the ren-118

dered image from simulation along with a templated text prompt to an image-and-text guided dif-119

fusion model [10]. This model generates a new image that attempts to simultaneously match the120

content described in the text prompt while retaining the global scene layout from the provided im-121

age. We found that this model is able to reliably maintain the scene layout, but it may change some122

individual components of the scene, for example replacing objects with a different but plausible123

category, or changing the number of components under an object such as the drawers or handles.124

Despite these failures, the large-scale structural consistency still provides a useful source of training125

data. After running our simulated image through the generated model, we have realistic images126

that contain known high-level object positions and spatial relationships, but unknown category and127

low-level part structures. This means that the scene model dataset contains complete images, but128

incomplete labels. Rather than complete (x, z) pairs, we have a dataset Dscene = {(x, z̃)} of (x, z̃)129

pairs where z̃ only contains the bounding boxes, transforms and parents of the high-level (non-part)130

objects z̃ = {(b1, T1, p1) . . . (bn, Tn, pn)}.131

Object-Level Dataset Generation: The process for generating object-level training data is similar,132

but requires more care due to the tendency of generative models to modify low-level details. For133

objects with complex kinematic structure, such as cabinets, we procedurally generate a large number134

of examples of these objects and render them in isolation from different angles. Rather than using135

the generative model to construct entirely new images, we use it to produce diverse texture images,136

which are overlaid in the appropriate locations on the image using perspective warping. We then137

change the background of the image using the generative model with appropriate masking derived138

from the original render. For less complex objects that do not have important part-wise structure, we139

simply replace the rendered image with a new sample from the image-and-text guided generative140

model. Unlike the scene dataset which contains complete images but partial labels, the object dataset141

contains partial images in the sense that they contain only a single object, but complete labels for142

the object and its kinematic parts. We can say that this dataset Dobject contains (x̃, z) pairs where x̃143

is an image of a single object rather than a full scene (hence the partial x), and z is complete for the144

single object and its parts. The result of these two data generation processes is a high-level scene145

structure dataset Dscene, and a low-level object dataset Dobject.146

3.2 URDFormer : Learning Inverse Generative Models for Scene Synthesis147

Part
Boxes

ROI Align

Transformer Encoder

Base ClassDense Feature Map

M
L

P

URDF

Full Image

Object Crop

Simulated Articulated Object

VIT Backbone

Detector

M
L

P

M
L

P

M
L

P

M
L

P

M
L

P

Child Embedding
Parent Embedding
Class
Position
Bounding Box

Parent/Child Relationships

Figure 3: Architecture of URDFormer : an inverse model (URDFormer ) that predicts simulation parameters
from RGB images. URDFormer can translate web-scraped real-world RGB images of scenes into complete
simulation assets. The model shown here is used to estimate the part structure of an individual object. When
estimating the scene structure, the Object Crop image would be replaced by an image of the entire scene.

Given the datasets Dobject = (x̃, z) and Dscene = (x, z̃) constructed as described above, we can use148

supervised learning methods to learn an inverse model that maps images of a complex object or149

scene to the corresponding simulation asset. In order to take advantage of these partially complete150

datasets, we must add some structure to our prediction model. We do this by splitting our learned151

4



inverse model in correspondence with the split in our forward model: we train one network f−1
θ to152

predict the high-level scene structure using dataset Dscene and another network g−1
ϕ to predict the153

low-level part structure of objects using Dobject.154

To model both the scene-level prediction model (f−1
θ ) and the low-level part prediction model (g−1

ϕ ),155

we propose a novel network architecture - URDFormer, that takes an RGB image and predicts URDF156

primitives as shown in Figure 3. Note that both the scene-level prediction and the low-level part157

prediction use the same network architecture, the scene-level simply operates on full images with158

object components segmented, while the part-level operates on crops of particular objects with parts159

segmented. In the URDFormer architecture, the image is first fed into a ViT visual backbone[55]160

to extract global features. We then obtain bounding boxes of the objects in the image using the161

masks rendered from the original procedurally generated scene in simulation (these are known at162

training time, and can be easily extracted using segmentation models at test time). We then use163

ROI alignment [56] to extract features for each of these bounding boxes. These feature maps are164

combined with an embedding of the bounding box coordinates and then fed through a transformer165

[57] to produce a feature for each object in the scene. An MLP then decodes these features into an166

optional class label (used only when training the object-level model), and a discretized 3D position167

and bounding box. In addition, it also produces a child embedding and a parent embedding that168

are used to predict the hierarchical relationships in the scene (object to its parent and so on). To169

construct these relationships, the network uses a technique from scene graph generation [58] that170

produces an n× n relationship score matrix by computing the dot product of every possible parent171

with every possible child. The scene model also has learned embeddings for six different root objects172

corresponding to the four walls, the floor, and the ceiling so that large objects like countertops and173

sinks can be attached to the room.174

Due to the unpredictable nature of the generative transforms that are used to make the scene im-175

age realistic, which may change class identities, only the position, bounding box, and relationship176

information are used when computing the high-level scene structure. To compute the class labels177

for the top-level objects, we use max-pooling of the dense ViT features along with an MLP in the178

part-prediction model g−1
ϕ . To generate a full estimate of the scene description from a natural image179

at test time, the image and a list of high-level bounding boxes are first fed to the scene prediction180

model f−1
θ , which predicts the location and parent for each object. The image regions correspond-181

ing to these boxes are then extracted and further segmented to produce part-level bounding boxes.182

Each of these image regions and the corresponding part boxes are then fed into the part prediction183

model to compute the kinematic structure of the low-level parts. This nested prediction structure184

can be used to generate entire scenes from web-scraped RGB images drawn from any image dataset185

to generate novel simulation content both at the scene level and at the object level.186

4 Experiments187

4.1 Phase 1: (Forward) Paired Dataset Generation188

To synthesize the initial paired dataset, we first procedurally generate a set of URDF representations189

of scenes in simulation both for global scenes like kitchens and for single objects like fridges, cab-190

inets, and drawers. These initially generated simulation scenes are shown in Fig4 (Left). We can191

then follow the procedure outlined in Section 3.1 for the controlled generation of paired datasets192

to generate a large dataset of simulation scenes and paired realistic RGB images as shown in Fig4193

(Right) (More visualizations and videos are available on the website). For objects with diverse194

parts, we observe that depth-guided stable diffusion [10] often ignores the semantic details of local195

parts, leading to inconsistency issues shown as Fig 7 in Appendix A.1. To overcome this issue, we196

use images of texture to guide diffusion models to generate large and diverse texture templates and197

randomly choose one template and warp it back to the original part region using perspective trans-198

formation. We apply in-painting models for smoothing the boundary of the parts and generating199

content for the background. We visualize this process in A.1 Fig 6. In total, we generated 260K200

5



Sc
en

e-
le

ve
l g

en
er

at
io

n
O

bj
ec

t-
le

ve
l g

en
er

at
io

n

Simulation Generated Paired Images

Figure 4: Qualitative results on (forward) paired dataset generation. Left: Original simulation images. Right:
Generated realistic images that match the URDF descriptions of the scene on the left.

images for global scenes of kitchens and living rooms, and 235K images of 14 types of objects such201

as cabinets, ovens, and fridges. Details of the dataset can be found in Appendix B.1.202

4.2 Phase 2: (Inverse) Real-World URDF Prediction203

Given the generated paired dataset shown in Fig 4, we next evaluate how successful a trained inverse204

model is at generating simulation scenes representing unseen real-world test images.205

Real World Dataset: We create two types of datasets for evaluation: (a) Obj300 includes URDFs206

of 300 internet images of individual objects from 5 categories including 100 cabinets, 50 ovens, 50207

dishwashers, 50 fridges and 50 washing machines. (b) Global scenes include URDFs of 80 internet208

images including 54 kitchens and 26 living rooms. For each scene, we manually label the bounding209

box for each object and its parts, as well as the URDF primitives including mesh types, parent210

bounding box ID, positions, and scales relative to its parent. We use the mesh types such as ”left211

door”, and ”right door” to infer link axis and joint types. All the position values and scale values are212

discretized into 12 bins.213

Evaluation Metrics: Evaluating entire scenes is challenging given the mixed structure and sub-214

jective nature of human labelling. We adopt an edit-distance based metric for structural comparison,215

and use a small dataset of manually labelled examples for evaluation.216

(1) Edit Distance with Bounding Box Offset: We evaluate our predicted scene structure using a tree217

edit-distance metric. This method requires access to a predicted and ground-truth kinematic tree.218

We start at the root of the kinematic tree and use the Hungarian method to compute the lowest-cost219

assignment between the children of the predicted root and the children of the ground truth root where220

the cost is based on their spatial coordinates. If there are more predicted children than ground truth,221

the unassigned predicted children and all of their descendants are marked as False Positive edits.222

Conversely, if there are more ground truth children than predicted children, the unmatched ground223

truth children and all of their descendants are marked as False Negative edits. We then compare the224

spatial parameters of the matched predicted and ground truth children. If they are not close enough225

6



Table 1: Comparison with baseline methods: trained with random colors, selected textures, and random tex-
tures, as well as prompt guided BLIP2. URDFormer with generated realistic textures predicts more accurate
simulation content from unseen real-world images.

Obj300 (↓) Global (Obj) (↓) Global (Parts) (↓)

URDFormer (Random Colors) 1.08 10.81 19.62
URDFormer (Selected Textures) 0.63 9.87 19.11
URDFormer (Random Textures) 1.22 11.85 18.67
Guided BLIP2 4.27 14.64 24.58
URDFormer (Generated Textures (ours)) 0.42 9.51 18.21

to each other according to a fixed threshold, the predicted child and its descendants are marked as226

False Positives, and the ground truth child and its descendants are marked as False Negatives. If227

the two are close enough, the class label of the predicted child is compared against the class label of228

the ground truth child. If they do not match, we add a Class Incorrect edit. Regardless of whether229

the classes match, this process is recursively applied to the matching children. To compute a single230

score, we assign weights to these edits based on their position in the hierarchy and sum them. For231

the experiments in this paper, we assigned a weight of 1.0 to all edits at the top level corresponding232

to objects, a weight of 0.5 to the parts such as cabinet doors, and a weight of 0.1 to all objects further233

down the hierarchy such as handles and knobs attached to doors.234

(2) Edit Distance with IoU: Similar to bounding box offset, we simply replace the spatial coordinate235

cost with IoU between two bounding boxes. We define levels of threshold based on overlapping236

areas: ED IoU0.25, ED IoU0.5, ED IoU0.75. We show evaluation using both metrics in ablations,237

but in general, we found the two metrics yield the same performance, thus we only use edit distance238

with a bounding box for baseline evaluation.239

Baselines We compare URDFormer against several other baselines in Table 1. In particular, to show240

the importance of pixel realism, we compare with training on (1) Random Colors (2) Selected Re-241

alistic Textures (3) Random Textures (Visualizations of their differences are in Appendix A.3). In242

addition, we also compare our method against recent Vision-Language Models with guided prompts:243

Guided BLIP2. In particular, (1) Random Colors randomly selects RGB values for each part inside244

the scene and (2) Selected Realistic Textures manually selects texture images for corresponding ob-245

jects. (3) Random Textures selects random images. (4) Guided BLIP2 takes a sequence of question246

prompts and guides pretrained BLIP2 models [59] to output the URDF primitives in the valid format247

(Please check Appendix C.3 for prompt details). We observe that training with generated realistic248

visual features improves the generalization to real-world images. Although trained on large real-249

world datasets, BLIP2 fails to reason about the 3D structure of the scene as well as the kinematics250

structure of individual objects, showing using a more structured and targeted dataset is important251

during training. Here Global (Obj) represents the evaluation of high-level position/parent reasoning,252

while Global (Parts) represents the evaluation of the full scene including the high-level and detailed253

kinematic structure of each object.254

Ablations To study how different components of URDFormer impact the performance, we perform255

an ablation study on (1) Do backbones pretrained on real-world images help with generalization?256

(2) What are the important features of learning 3D kinematic structures, as shown in Table 2. In par-257

ticular, we train URDFormer with three types of backbones: (1) vit-small-patch16-224 trained from258

scratch (2) finetune vit-small-patch16-224 pretrained on ImageNet (3) finetune vit-small-patch16-259

224 trained in [60] on 197K kitchen scenes and evaluate on 54 real-world kitchen images. We260

observe that finetuning the vision backbone that is pretrained on real images performs better than261

training from scratch, and pretrained in [60] achieves the best performance, which is likely due to262

the fact that it was trained on more diverse datasets than ImageNet. We observe that both training263

with only image features and training with only bounding box features decrease the performance,264

indicating the importance of both spatial and visual features.265

Qualitative Results: We show the qualitative results of our URDF predictions in Fig 5. We use266

the same color to represent the same mesh type for better visualization. We observe that training267

7



Table 2: Ablation study on training with different vision backbones and input features, showing training using
both visual/spatial features, with a backbone pretrained on diverse real images achieves higher performance.

ED Box (↓) ED IoU0.25 (↓) ED IoU0.5 (↓) ED IoU0.75 (↓)

Scratch 7.00 6.15 8.37 14.48
Pretrained on ImageNet 6.33 5.48 7.74 13.85
Pretrained MAE 5.70 5.11 7.07 13.41
Pretrained MAE (No bbox) 6.19 5.26 7.63 14.11
only with bbox 7.04 6.52 8.26 14.26

with data generated using the method described in section 3.1 provides diverse visual information268

compared to baseline methods such as random colors or random textures. This is important for269

distinguishing mesh types such as stove and fridge, and reasoning about structure relations such as270

”cabinet on the right” and ”cabinet in the front”.271

Selected TexturesReal Images GTRandom Colors Random Textures

O
bj

30
0

G
lo

ba
l (

P
ar

t-
L

ev
el

)

Left Door Right Door Drawer 

(Ours)
Generated Textures

Figure 5: Evaluations of generated simulations on unseen real-world images. The left-most column indicates
the real-world image input and each column indicates the performance of an inverse URDF prediction model
trained with different training sets. We evaluate training datasets generated using random colors, selected
textures, random textures, and textures generated with pre-trained generative models (ours), and compare these
with ground truth URDF labels.

5 Conclusion272

In this work, we presented URDFormer , a general-purpose, scalable technique for generating sim-273

ulation content from real-world RGB images. We first generate a large-scale paired dataset of pro-274

cedurally generated simulation content and a corresponding realistic RGB image using pre-trained275

controllable generative models. We then use our generated paired dataset to train an inverse model276

that maps directly from single RGB images to corresponding representations of scenes or complex277

objects in simulation. This inverse model can then be used with large image datasets of real-world278

RGB images to scalably generate simulation data complete with kinematic and semantic structure,279

without requiring any hand-crafting or hand-designing of these simulation assets. We show in our280

experimental results the efficacy of this scheme in generating assets at scale from real-world datasets281

of RGB images.282

8



References283

[1] J. Collins, S. Chand, A. Vanderkop, and D. Howard. A review of physics simulators for robotic284

applications. IEEE Access, 9:51416–51431, 2021. doi:10.1109/ACCESS.2021.3068769. URL285

https://doi.org/10.1109/ACCESS.2021.3068769.286

[2] Y. S. Narang, K. Storey, I. Akinola, M. Macklin, P. Reist, L. Wawrzyniak, Y. Guo,287

Á. Moravánszky, G. State, M. Lu, A. Handa, and D. Fox. Factory: Fast contact for robotic as-288

sembly. In K. Hauser, D. A. Shell, and S. Huang, editors, Robotics: Science and Systems XVIII,289

New York City, NY, USA, June 27 - July 1, 2022, 2022. doi:10.15607/RSS.2022.XVIII.035.290

URL https://doi.org/10.15607/RSS.2022.XVIII.035.291

[3] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem. Sim4cv: A photo-realistic sim-292

ulator for computer vision applications. Int. J. Comput. Vis., 126(9):902–919, 2018. doi:293

10.1007/s11263-018-1073-7. URL https://doi.org/10.1007/s11263-018-1073-7.294

[4] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, M. Deitke, K. Ehsani,295

D. Gordon, Y. Zhu, et al. Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint296

arXiv:1712.05474, 2017.297

[5] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, K. Ehsani, J. Salvador, W. Han, E. Kolve,298

A. Kembhavi, and R. Mottaghi. Procthor: Large-scale embodied ai using procedural genera-299

tion. Advances in Neural Information Processing Systems, 35:5982–5994, 2022.300

[6] A. Raistrick, L. Lipson, Z. Ma, L. Mei, M. Wang, Y. Zuo, K. Kayan, H. Wen, B. Han, Y. Wang,301

A. Newell, H. Law, A. Goyal, K. Yang, and J. Deng. Infinite photorealistic worlds using302

procedural generation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,303

CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pages 12630–12641. IEEE, 2023. doi:304

10.1109/CVPR52729.2023.01215. URL https://doi.org/10.1109/CVPR52729.2023.305

01215.306

[7] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional inverse graph-307

ics network. Advances in neural information processing systems, 28, 2015.308

[8] S. Lunz, Y. Li, A. W. Fitzgibbon, and N. Kushman. Inverse graphics GAN: learning to generate309

3d shapes from unstructured 2d data. CoRR, abs/2002.12674, 2020. URL https://arxiv.310

org/abs/2002.12674.311

[9] M. Jaques, M. Burke, and T. M. Hospedales. Physics-as-inverse-graphics: Unsupervised phys-312

ical parameter estimation from video. In 8th International Conference on Learning Represen-313

tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL314

https://openreview.net/forum?id=BJeKwTNFvB.315

[10] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image syn-316

thesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer317

vision and pattern recognition, pages 10684–10695, 2022.318

[11] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum. Simulation as an engine of physical scene319

understanding. Proceedings of the National Academy of Sciences, 110(45):18327–18332,320

2013.321

[12] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and R. Szeliski.322

Building rome in a day. Communications of the ACM, 54(10):105–112, 2011.323

[13] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning con-324

tinuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF325

conference on computer vision and pattern recognition, pages 165–174, 2019.326

9

http://dx.doi.org/10.1109/ACCESS.2021.3068769
https://doi.org/10.1109/ACCESS.2021.3068769
http://dx.doi.org/10.15607/RSS.2022.XVIII.035
https://doi.org/10.15607/RSS.2022.XVIII.035
http://dx.doi.org/10.1007/s11263-018-1073-7
http://dx.doi.org/10.1007/s11263-018-1073-7
http://dx.doi.org/10.1007/s11263-018-1073-7
https://doi.org/10.1007/s11263-018-1073-7
http://dx.doi.org/10.1109/CVPR52729.2023.01215
http://dx.doi.org/10.1109/CVPR52729.2023.01215
http://dx.doi.org/10.1109/CVPR52729.2023.01215
https://doi.org/10.1109/CVPR52729.2023.01215
https://doi.org/10.1109/CVPR52729.2023.01215
https://doi.org/10.1109/CVPR52729.2023.01215
https://arxiv.org/abs/2002.12674
https://arxiv.org/abs/2002.12674
https://arxiv.org/abs/2002.12674
https://openreview.net/forum?id=BJeKwTNFvB


[14] T. Samavati and M. Soryani. Deep learning-based 3d reconstruction: a survey. Artif. Intell.327

Rev., 56(9):9175–9219, 2023. doi:10.1007/s10462-023-10399-2. URL https://doi.org/328

10.1007/s10462-023-10399-2.329

[15] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:330

Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,331

65(1):99–106, 2021.332

[16] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. Goldman, S. Seitz, and R. Martin-Brualla.333

Deformable neural radiance fields. https://arxiv.org/abs/2011.12948, 2020.334

[17] K. Zhang, G. Riegler, N. Snavely, and V. Koltun. NERF++: Analyzing and improving neural335

radiance fields. https://arxiv.org/abs/2010.07492, 2020.336

[18] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time337

radiance field rendering. ACM Transactions on Graphics (ToG), 42(4):1–14, 2023.338

[19] J. Luiten, G. Kopanas, B. Leibe, and D. Ramanan. Dynamic 3d gaussians: Tracking by persis-339

tent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.340

[20] T. H. Nguyen-Phuoc, C. Li, S. Balaban, and Y. Yang. Rendernet: A deep convolutional net-341

work for differentiable rendering from 3d shapes. Advances in neural information processing342

systems, 31, 2018.343

[21] H. Kato, D. Beker, M. Morariu, T. Ando, T. Matsuoka, W. Kehl, and A. Gaidon. Differentiable344

rendering: A survey. arXiv preprint arXiv:2006.12057, 2020.345

[22] H.-T. D. Liu, M. Tao, and A. Jacobson. Paparazzi: surface editing by way of multi-view image346

processing. ACM Trans. Graph., 37(6):221–1, 2018.347

[23] Z. Xu, J. Wu, A. Zeng, J. B. Tenenbaum, and S. Song. Densephysnet: Learning dense physical348

object representations via multi-step dynamic interactions. arXiv preprint arXiv:1906.03853,349

2019.350

[24] Z. Xu, Z. He, and S. Song. Universal manipulation policy network for articulated objects.351

IEEE Robotics and Automation Letters, 7(2):2447–2454, 2022.352

[25] B. DeMoss, P. Duckworth, N. Hawes, and I. Posner. Ditto: Offline imitation learning with353

world models. arXiv preprint arXiv:2302.03086, 2023.354

[26] J. Wu, E. Lu, P. Kohli, B. Freeman, and J. Tenenbaum. Learning to see physics via visual355

de-animation. Advances in Neural Information Processing Systems, 30, 2017.356

[27] L. S. Piloto, A. Weinstein, P. Battaglia, and M. Botvinick. Intuitive physics learning in a357

deep-learning model inspired by developmental psychology. Nature human behaviour, 6(9):358

1257–1267, 2022.359

[28] J. R. Kubricht, K. J. Holyoak, and H. Lu. Intuitive physics: Current research and controversies.360

Trends in cognitive sciences, 21(10):749–759, 2017.361

[29] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter. End-to-end362

differentiable physics for learning and control. Advances in neural information processing363

systems, 31, 2018.364

[30] D. Ritchie, K. Wang, and Y.-a. Lin. Fast and flexible indoor scene synthesis via deep convolu-365

tional generative models. In Proceedings of the IEEE/CVF conference on computer vision and366

pattern recognition, pages 6182–6190, 2019.367

[31] M. Li, A. G. Patil, K. Xu, S. Chaudhuri, O. Khan, A. Shamir, C. Tu, B. Chen, D. Cohen-Or, and368

H. Zhang. Grains: Generative recursive autoencoders for indoor scenes. ACM Transactions on369

Graphics (TOG), 38(2):1–16, 2019.370

10

http://dx.doi.org/10.1007/s10462-023-10399-2
https://doi.org/10.1007/s10462-023-10399-2
https://doi.org/10.1007/s10462-023-10399-2
https://doi.org/10.1007/s10462-023-10399-2


[32] M. Keshavarzi, A. Parikh, X. Zhai, M. Mao, L. Caldas, and A. Y. Yang. Scenegen: Generative371

contextual scene augmentation using scene graph priors. arXiv preprint arXiv:2009.12395,372

2020.373

[33] D. A. Hudson and C. L. Zitnick. Generative adversarial transformers. CoRR, abs/2103.01209,374

2021. URL https://arxiv.org/abs/2103.01209.375

[34] R. Hu, Z. Huang, Y. Tang, O. Van Kaick, H. Zhang, and H. Huang. Graph2plan: Learning376

floorplan generation from layout graphs. ACM Transactions on Graphics (TOG), 39(4):118–1,377

2020.378

[35] N. Nauata, S. Hosseini, K.-H. Chang, H. Chu, C.-Y. Cheng, and Y. Furukawa. House-gan++:379

Generative adversarial layout refinement network towards intelligent computational agent for380

professional architects. In Proceedings of the IEEE/CVF Conference on Computer Vision and381

Pattern Recognition, pages 13632–13641, 2021.382

[36] K. Wang, X. Xu, L. Lei, S. Ling, N. Lindsay, A. X. Chang, M. Savva, and D. Ritchie. Roomi-383

noes: Generating novel 3d floor plans from existing 3d rooms. Comput. Graph. Forum, 40(5):384

57–69, 2021. doi:10.1111/cgf.14357. URL https://doi.org/10.1111/cgf.14357.385

[37] A. Chang, M. Savva, and C. D. Manning. Learning spatial knowledge for text to 3d scene386

generation. In Proceedings of the 2014 conference on empirical methods in natural language387

processing (EMNLP), pages 2028–2038, 2014.388

[38] A. Chang, W. Monroe, M. Savva, C. Potts, and C. D. Manning. Text to 3d scene generation389

with rich lexical grounding. arXiv preprint arXiv:1505.06289, 2015.390

[39] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius. Pcgrl: Procedural content generation via391

reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence and392

Interactive Digital Entertainment, volume 16, pages 95–101, 2020.393

[40] S. Earle, M. Edwards, A. Khalifa, P. Bontrager, and J. Togelius. Learning controllable content394

generators. In 2021 IEEE Conference on Games (CoG), pages 1–9. IEEE, 2021.395

[41] M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and S. Levine. Emergent396

complexity and zero-shot transfer via unsupervised environment design. Advances in neural397

information processing systems, 33:13049–13061, 2020.398

[42] L. Gisslén, A. Eakins, C. Gordillo, J. Bergdahl, and K. Tollmar. Adversarial reinforcement399

learning for procedural content generation. In 2021 IEEE Conference on Games (CoG), Copen-400

hagen, Denmark, August 17-20, 2021, pages 1–8. IEEE, 2021. doi:10.1109/CoG52621.2021.401

9619053. URL https://doi.org/10.1109/CoG52621.2021.9619053.402

[43] Z. Li, T. Yu, S. Sang, S. Wang, M. Song, Y. Liu, Y. Yeh, R. Zhu, N. B. Gun-403

davarapu, J. Shi, S. Bi, H. Yu, Z. Xu, K. Sunkavalli, M. Hasan, R. Ramamoor-404

thi, and M. Chandraker. Openrooms: An open framework for photorealistic in-405

door scene datasets. In IEEE Conference on Computer Vision and Pattern Recog-406

nition, CVPR 2021, virtual, June 19-25, 2021, pages 7190–7199. Computer Vision407

Foundation / IEEE, 2021. doi:10.1109/CVPR46437.2021.00711. URL https:408

//openaccess.thecvf.com/content/CVPR2021/html/Li_OpenRooms_An_Open_409

Framework_for_Photorealistic_Indoor_Scene_Datasets_CVPR_2021_paper.html.410

[44] M. Deitke, R. Hendrix, A. Farhadi, K. Ehsani, and A. Kembhavi. Phone2proc: Bringing411

robust robots into our chaotic world. In IEEE/CVF Conference on Computer Vision and Pat-412

tern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pages 9665–9675.413

IEEE, 2023. doi:10.1109/CVPR52729.2023.00932. URL https://doi.org/10.1109/414

CVPR52729.2023.00932.415

11

https://arxiv.org/abs/2103.01209
http://dx.doi.org/10.1111/cgf.14357
https://doi.org/10.1111/cgf.14357
http://dx.doi.org/10.1109/CoG52621.2021.9619053
http://dx.doi.org/10.1109/CoG52621.2021.9619053
http://dx.doi.org/10.1109/CoG52621.2021.9619053
https://doi.org/10.1109/CoG52621.2021.9619053
http://dx.doi.org/10.1109/CVPR46437.2021.00711
https://openaccess.thecvf.com/content/CVPR2021/html/Li_OpenRooms_An_Open_Framework_for_Photorealistic_Indoor_Scene_Datasets_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_OpenRooms_An_Open_Framework_for_Photorealistic_Indoor_Scene_Datasets_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_OpenRooms_An_Open_Framework_for_Photorealistic_Indoor_Scene_Datasets_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_OpenRooms_An_Open_Framework_for_Photorealistic_Indoor_Scene_Datasets_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_OpenRooms_An_Open_Framework_for_Photorealistic_Indoor_Scene_Datasets_CVPR_2021_paper.html
http://dx.doi.org/10.1109/CVPR52729.2023.00932
https://doi.org/10.1109/CVPR52729.2023.00932
https://doi.org/10.1109/CVPR52729.2023.00932
https://doi.org/10.1109/CVPR52729.2023.00932


[45] P. Eigenschink, T. Reutterer, S. Vamosi, R. Vamosi, C. Sun, and K. Kalcher. Deep generative416

models for synthetic data: A survey. IEEE Access, 11:47304–47320, 2023. doi:10.1109/417

ACCESS.2023.3275134. URL https://doi.org/10.1109/ACCESS.2023.3275134.418

[46] Z. Q. Chen, S. C. Kiami, A. Gupta, and V. Kumar. Genaug: Retargeting behaviors to unseen419

situations via generative augmentation. In K. E. Bekris, K. Hauser, S. L. Herbert, and J. Yu,420

editors, Robotics: Science and Systems XIX, Daegu, Republic of Korea, July 10-14, 2023,421

2023. doi:10.15607/RSS.2023.XIX.010. URL https://doi.org/10.15607/RSS.2023.422

XIX.010.423

[47] T. Yu, T. Xiao, J. Tompson, A. Stone, S. Wang, A. Brohan, J. Singh, C. Tan, D. M, J. Per-424

alta, K. Hausman, B. Ichter, and F. Xia. Scaling robot learning with semantically imagined425

experience. In K. E. Bekris, K. Hauser, S. L. Herbert, and J. Yu, editors, Robotics: Science426

and Systems XIX, Daegu, Republic of Korea, July 10-14, 2023, 2023. doi:10.15607/RSS.2023.427

XIX.027. URL https://doi.org/10.15607/RSS.2023.XIX.027.428

[48] B. Trabucco, K. Doherty, M. Gurinas, and R. Salakhutdinov. Effective data augmentation429

with diffusion models. CoRR, abs/2302.07944, 2023. doi:10.48550/arXiv.2302.07944. URL430

https://doi.org/10.48550/arXiv.2302.07944.431

[49] S. Fu, N. Tamir, S. Sundaram, L. Chai, R. Zhang, T. Dekel, and P. Isola. Dreamsim: Learning432

new dimensions of human visual similarity using synthetic data. CoRR, abs/2306.09344, 2023.433

doi:10.48550/arXiv.2306.09344. URL https://doi.org/10.48550/arXiv.2306.09344.434

[50] Y. Tian, L. Fan, P. Isola, H. Chang, and D. Krishnan. Stablerep: Synthetic images from text-435

to-image models make strong visual representation learners. CoRR, abs/2306.00984, 2023.436

doi:10.48550/arXiv.2306.00984. URL https://doi.org/10.48550/arXiv.2306.00984.437

[51] A. Jahanian, X. Puig, Y. Tian, and P. Isola. Generative models as a data source for mul-438

tiview representation learning. In The Tenth International Conference on Learning Rep-439

resentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL440

https://openreview.net/forum?id=qhAeZjs7dCL.441

[52] A. Shoshan, N. Bhonker, I. Kviatkovsky, M. Fintz, and G. G. Medioni. Synthetic data for442

model selection. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett,443

editors, International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Hon-444

olulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages 31633–445

31656. PMLR, 2023. URL https://proceedings.mlr.press/v202/shoshan23a.html.446

[53] E. Choi, S. Biswal, B. A. Malin, J. Duke, W. F. Stewart, and J. Sun. Generating multi-label447

discrete patient records using generative adversarial networks. In F. Doshi-Velez, J. Fackler,448

D. C. Kale, R. Ranganath, B. C. Wallace, and J. Wiens, editors, Proceedings of the Machine449

Learning for Health Care Conference, MLHC 2017, Boston, Massachusetts, USA, 18-19 Au-450

gust 2017, volume 68 of Proceedings of Machine Learning Research, pages 286–305. PMLR,451

2017. URL http://proceedings.mlr.press/v68/choi17a.html.452

[54] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su. Partnet: A453

large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding.454

In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,455

CA, USA, June 16-20, 2019, pages 909–918. Computer Vision Foundation / IEEE, 2019.456

doi:10.1109/CVPR.2019.00100. URL http://openaccess.thecvf.com/content_457

CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_458

Hierarchical_Part-Level_3D_CVPR_2019_paper.html.459

[55] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-460

hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transform-461

ers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.462

12

http://dx.doi.org/10.1109/ACCESS.2023.3275134
http://dx.doi.org/10.1109/ACCESS.2023.3275134
http://dx.doi.org/10.1109/ACCESS.2023.3275134
https://doi.org/10.1109/ACCESS.2023.3275134
http://dx.doi.org/10.15607/RSS.2023.XIX.010
https://doi.org/10.15607/RSS.2023.XIX.010
https://doi.org/10.15607/RSS.2023.XIX.010
https://doi.org/10.15607/RSS.2023.XIX.010
http://dx.doi.org/10.15607/RSS.2023.XIX.027
http://dx.doi.org/10.15607/RSS.2023.XIX.027
http://dx.doi.org/10.15607/RSS.2023.XIX.027
https://doi.org/10.15607/RSS.2023.XIX.027
http://dx.doi.org/10.48550/arXiv.2302.07944
https://doi.org/10.48550/arXiv.2302.07944
http://dx.doi.org/10.48550/arXiv.2306.09344
https://doi.org/10.48550/arXiv.2306.09344
http://dx.doi.org/10.48550/arXiv.2306.00984
https://doi.org/10.48550/arXiv.2306.00984
https://openreview.net/forum?id=qhAeZjs7dCL
https://proceedings.mlr.press/v202/shoshan23a.html
http://proceedings.mlr.press/v68/choi17a.html
http://dx.doi.org/10.1109/CVPR.2019.00100
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html


[56] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE463

international conference on computer vision, pages 2961–2969, 2017.464

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-465

sukhin. Attention is all you need. Advances in neural information processing systems, 30,466

2017.467

[58] J. Yang, W. Peng, X. Li, Z. Guo, L. Chen, B. Li, Z. Ma, K. Zhou, W. Zhang, C. C. Loy, and468

Z. Liu. Panoptic video scene graph generation. In CVPR, 2023.469

[59] J. Li, D. Li, S. Savarese, and S. Hoi. Blip-2: Bootstrapping language-image pre-training with470

frozen image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023.471

[60] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. Real-world robot472

learning with masked visual pre-training. In Conference on Robot Learning, pages 416–426.473

PMLR, 2023.474

13



Appendix475

A (Forward) Data Generation476

A.1 Part-Consistency477

We compare our part-wise generation method with other approaches qualitatively in Fig 7. In par-478

ticular, we observe that depth-guided or in-painting stable diffusion models [10] often ignore local479

consistency, making it difficult to render high-quality images that are paired with the simulation con-480

tent. Instead, we only use stable diffusion to change the style of texture and warp the original texture481

to each part of the object, as shown in Fig6 and the masks of each part can be obtained directly from482

the simulator.
Synthetic RGB Depth-guided

Part-consistent RGB

Original Texture Generated Texture

Figure 6: Paired dataset generation using texture and prompt templates to guide Stable Diffusion [10] and create
a diverse texture dataset, which can be then warped on the targeted individual part of the object, as described in
Section 3.1

483

Depth-guided Inpainting Structure-Aware (ours)Original Sim RGB

Figure 7: Qualitative comparison among different rendering methods: depth-guided diffusion models, inpaint-
ing stable diffusion and part-wise generation

A.2 Dataset Generation484

Qualitative details of our dataset of articulated, rigid objects as well as the full scenes are shown in485

Fig8, the top row in each section represents the original synthetic images from the simulation, the486

bottom images are the generated pair images that match the original kinematic structures.487

A.3 Baseline Data488

We visualize the different training data for baseline methods shown in Table 1: URDFormer with489

random colors, selected textures, random textures, and generated textures. All baseline inputs are490

14



Figure 8: Data Generation for articulated objects, rigid objects, and full scenes. The top row in each section
represents the original synthetic images from the simulation, the bottom images are the generated pair images
that match the original kinematic structures.

captured from the same camera angles. As shown in Fig 9, the generated texture shows high pixel491

realism that is closer to the distribution of the real world. As shown in Table 1, training on such data492

improves performance in predicting URDF structures from real-world images during the test time.493

B Training Details of URDFormer494

B.1 Dataset495

Our training dataset includes 267K global scene labels (197K kitchen scenes and 70K living room496

scenes) and 235K objects, which include 14 types of objects including cabinet, oven, dishwasher,497

washer, fridge, oven fan, shelf, tv, sofa, chair, square table, ottoman, coffee table and stuffed toy.498

Among these objects, 5 categories are articulated: cabinet, oven, dishwasher, washer, and fridge.499

These articulated objects include part meshes in from 8 types: drawer, left door, right door, oven500

door, down door, circle door, handle and knob.501

B.2 Training Details502

We use a pretrained vit-small-patch16-224 trained in [60] as the vision backbone, which outputs503

the global image features dimensions of 14x14x384. To predict the base type, the global features504

are first max-pooled followed by a MLP to predict a class type over 14 object types. We then505

perform ROI alignment on cropped features with bounding boxes of the objects or parts. In ROI506

Alignment, we set the spatial scale=1 / 16 and the sampling ratio=2. The ROI size is set to 14.507

15



Random Color Synthetic Texture Random Texture Generated

Figure 9: Comparison among baseline methods with different training input: Random Colors, selected textures,
random textures and generated textures. Generated textures shows photo-realism that closer to the real-world
distribution.

The roi-aligned features are then fed into a 3-layer MLP followed by a norm layer. To compute508

the positional encoder, we feed the bounding box coordinates into a 3-layer MLP as well as a norm509

layer. These normalized roi features together with the normalized spatial features are summed as510

the token features and feed into the transformer, which are then fed into MLPs to compute URDF511

primitives: position start (relative to parent), position end (relative to parent), mesh type, and parent-512

child relation matrix. Here instead of regressing to a position value, we treat it as a classification513

problem, where we discretize the x,y, and z axis of the parent mesh into 12 bins. During training, the514

maximum sequence length is set to 32, which means the maximum number of bounding boxes per515

image is 32. All baseline methods (URDFOrmer with random colors, selected textures, and random516

textures) are trained on one A40 GPU with a batch size of 256. All baselines are trained with an517

equal number of epochs and evaluated using the last checkpoint.518

C Experiment Details519

C.1 Details for Dataset Assets520

We procedurally generate scenes using both rigid and articulated objects. In particular, we collected521

9 categories of common rigid objects in the kitchen and living room and 5 categories of common522

articulated objects for kitchens, and randomly rescale them during data generation.523

C.2 Prompts for Data Generation524

Textures:525

(1) material prompt: ’bright’, ’colorful’, ’modern’, ’multicolor’, ’fancy color’, ’accent’, ’glass’,526

’chestnut’, ’Oakwood’, ’Maplewood’, ’Cherrywood’,’Birchwood’, ’Walnut’, ’Mahogany’, ’Pine’,527

’Beech’, ’Ash’, ’Hickory’, ’Teak’, ’Rosewood’, ’Alder’, ’Cedar’, ’Bamboo’, ’Plywood’, ’Acacia’,528

’Poplar’, ’fir’.529

(2) full texture prompt: ”a material wooden panel texture, high resolution, 4k, photorealistic”.530

Objects: ”A object name, nice detailed, fancy, photorealistic, inside a home, 4k, natural light”531

Full Scenes:532

16



(1) style prompt: ”bright”, ”warm”, ”modern”, ”mediterranean”, ”vintage”, ”contemporary”, ”tran-533

sitional”.534

(2) kitchen: ”a high-resolution picture of a bright style kitchen, very pretty, very natural lighting,535

ultra-high resolution, 8k, 16k, natural light, photorealistic, realism.”536

(3) living room: ”a high-resolution picture of a bright style living room, with sofa, chairs, tv, ot-537

toman, floor lamps, etc, very pretty, very natural lighting, ultra-high resolution, 8k, 16k, natural538

light, photorealistic, realism”.539

C.3 Prompts for BLIP2540

In this section, we show examples of how we guide Vision-Language Models such as BLIP2 [59] to541

produce anwsers that can be converted into comparison results with ours.542

Global Parent Prompt: ”which of the wall is this object most likely on? choose one from ’floor’,543

’ceiling’, ’front wall’, ’left wall’ and ’right wall’”544

Object Base Prompt: ”what’s the name of the object. choose one word from cabinet, oven, dish-545

washer, washer, fridge, oven fan, shelf, tv, sofa, chair, square table, ottoman, coffee table and stuffed546

toy.”547

Object Position Prompt: ”This image has a width of 512 and height of 512, the object box coordi-548

nate x is at 215, if the object scale is from 0 to 12, where do you imagine putting this bounding box549

relative to the object along the length in the 3D space. Choose from an integer from 0 to 12”550

C.4 Compare with Other Scene Generation Methods551

We compare our pipeline with other methods of scene generation 10. In particular, we evaluate on552

(1) If the generated content follows the real-world structure (2) If the method works only on RGB553

images (3) if the method is fully automatic without human interaction with the scene (4) If it is554

scalable (5) if it can be applied to global scenes and (6) if the generated scenes are fully articulated.555

Ditto
Ditto in the house
ProThor
Phone2Proc
Ours

Real World Distribution RGB Fully Automatic Scalable Scene Layout Articulated Objects

N/A

Figure 10: Comparison against different approaches in scene generation: Ditto, Ditto in the house, ProcThor,
Phone2Proc.

17


	Introduction
	Related Work
	URDFormer : Generating Interactive Simulation Environments by Learning Inverse Models from Generated Datasets
	Controlled Generation of Paired Datasets with Generative Models
	URDFormer : Learning Inverse Generative Models for Scene Synthesis

	Experiments
	Phase 1: (Forward) Paired Dataset Generation
	Phase 2: (Inverse) Real-World URDF Prediction

	Conclusion
	(Forward) Data Generation
	Part-Consistency
	Dataset Generation
	Baseline Data

	Training Details of URDFormer
	Dataset
	Training Details

	Experiment Details
	Details for Dataset Assets
	Prompts for Data Generation
	Prompts for BLIP2
	Compare with Other Scene Generation Methods


