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Abstract

Multi-agent reinforcement learning (MARL) has emerged as a powerful framework

for modeling autonomous agents that independently optimize their individual ob-

jectives. However, in mixed-motive MARL environments, rational self-interested

behaviors often lead to collectively suboptimal outcomes situations commonly

referred to as social dilemmas. A key challenge in addressing social dilemmas lies

in accurately quantifying and representing them in a numerical form that captures

how self-interested agent behaviors impact social welfare. To address this chal-

lenge, externalities in the economic concept is adopted and extended to denote the

unaccounted-for impact of one agent’s actions on others, as a means to rigorously

quantify social dilemmas. Based on this measurement, a novel method, Learning
Optimal Pigovian Tax (LOPT) is proposed. Inspired by Pigovian taxes, which are

designed to internalize externalities by imposing cost on negative societal impacts,

LOPT employs an auxiliary tax agent that learns an optimal Pigovian tax policy to

reshape individual rewards aligned with social welfare, thereby promoting agent

coordination and mitigating social dilemmas. We support LOPT with theoretical

analysis and validate it on standard MARL benchmarks, including Escape Room

and Cleanup. Results show that by effectively internalizing externalities that

quantify social dilemmas, LOPT aligns individual objectives with collective goals,

significantly improving social welfare over state-of-the-art baselines.

1 Introduction

Reinforcement learning [42] achieved remarkable efficacy across diverse domains [32, 21, 18, 52] and

has been successfully extended to multi-agent settings, especially in fully-cooperative scenarios [46,

26, 49]. Nevertheless, prevalent centralized multi-agent reinforcement learning (MARL) methods

that utilize team rewards [13, 41, 38, 37, 7] are encumbered by inherent limitations in their scalability

to large agent populations and are fundamentally deemed unsuitable for self-interested agents

in mixed-motivation environments. While decentralized learning paradigms [43, 40, 2], wherein

agents independently optimize their individual rewards, provide a more natural modeling approach
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for self-interested behavior. Yet, these methods frequently encounter difficulties in facilitating

coordination among agents. In many real-world environments with mixed motives—particularly

those involving exclusionary or subtractive common-pool resources [36, 22, 23]—rational, self-

interested behavior often leads to collectively suboptimal outcomes. These situations are known as

social dilemmas.

The concept of social dilemma, originating from economics, refers to situations in which individually

rational decision-making leads to collectively suboptimal outcomes [19]. Specifically, these scenarios

arise when mutual cooperation would generate universal benefits, yet agents are incentivized to

defect due to the prospect of greater individual gain from non-cooperative behavior. In the context of

mixed-motivation MARL, social dilemmas are formally characterized as conflicts between individual

reward maximization and the optimization of joint or collective returns [22]. This framing reflects

a core economic insight: strategies that are rational from an individual agent’s perspective can

produce inefficient or undesirable outcomes at the group level. Accordingly, a central challenge

in mixed-motivation MARL research is the development of theoretically grounded mechanisms

to accurately quantify and represent social dilemmas in a numerical form that captures how self-

interested agent behaviors impact social welfare. This involves not only assessing the long-term

influence of self-interested agent policies on social welfare but also designing learning algorithms

capable of aligning individual incentives with collective welfare over extended time horizons.

Established economic theory has long applied the concept of externalities to explain social dilem-

mas [44, 8, 6]. An externality arises when the actions of one economic agent directly affect the

utility or production possibilities of others without these effects being accounted for in market

transactions [30]. These impacts on individual utility or production capacities collectively contribute

to changes in social welfare. Positive externalities arise from actions that benefit social welfare,

while negative externalities result from actions that harm it. Based on this theoretical foundation,

many policy instruments—both market-based and non-market-based—have been developed to

mitigate the negative impacts of externalities and resolve corresponding social dilemmas [35, 1, 5].

A prominent example is the Pigovian tax/allowance [5, 28], such as carbon tax
∗
, which levies taxes

on any market activity that generates negative externalities and provides allowances to which bring

positive externalities [34], thereby incorporating these effects into market prices. This process

known as externality internalization.

Inspired by economic theory, we introduce externality into mixed-motivation MARL to address the

challenge of accurately quantifying and representing social dilemmas in a numerical form. This

theoretical perspective offers a clear way to describe MARL dilemmas, where an agent’s actions may

impact otherswithout those effects being reflected in its own reward—creating externalities. Building

on this insight, we further propose a learning-based solution that leverages Pigovian tax/allowance

mechanisms to alleviate these issues by subsidizing behaviors with positive externalities and taxing

thosewith negative ones. The proposedmethod, LearningOptimalPigovianTax (LOPT), introduces
a centralized agent, referred to as the tax planner which learns to allocate tax and allowance rates

by maximizing the long-term global reward. This learning process is proven to be equivalent to

approximating the optimal Pigovian tax, which reflects the value of externalities. The learned rates

are then used to design a novel reward shaping mechanism, termed optimal Pigovian tax reward

shaping, which shapes each agent’s local reward to reflect how its actions impact overall social

welfare. Compared to existing handcrafted or performance-driven reward shaping methods for

addressing social dilemmas, LOPT offers a theoretically sound shaping approach based on optimal

Pigovian tax, which is computed by optimizing social welfare. This ensures theoretical guarantees

while demonstrates superior empirical effectiveness and adaptability.

The primary contributions of this paper are as follows:

- Externality theory is introduced in MARL to quantify and represent social dilemmas numer-

ically, providing a theoretically grounded framework for capturing the impact of self-interested

agent behaviors on social welfare.

- A centralized tax/allowance mechanism based on reward shaping LOPT is proposed to

approximate the optimal Pigovian tax and internalize the externalities of self-interested agents in

mixed-motivation MARL tasks, thereby aligning individual agent incentives with social welfare

and addressing social dilemmas.

∗

The carbon tax [29] serves as a widely cited Pigovian tax, making the implicit social costs of carbon

emissions explicit by pricing them into market transactions.
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- Experiments in the Escape Room and challenging Cleanup environments demonstrate the

effectiveness of the proposed mechanism in alleviating social dilemmas in MARL.

2 Externality in MARL
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Figure 1: Externality [30]. The gap between social marginal cost and the private cost is externality.

This section illustrates the concept of externality in MARL and introduces a formalism for measuring

it, enabling the visualization of social dilemmas. First, the concept of externality in economics

is explained, with the graphical analysis
†
shown in Figure 1. Consider a firm i that produces

a product ai to meet consumer demand. Simultaneously, the firm generates pollution, which

negatively impacts social welfare. Let us denote the quantity of produced ai as qi. The price of ai is
determined by a function that depends on both the quantity produced qi and the market demand for

ai. Defining the market demand as qri , the profit function is represented as Pi(q
r
i , qi). The target of

the firm is to maximize such utility:

ui (qi, q
r
i ) = qi × Pi (q

r
i , qi) . (1)

Let us analyze N firms indexed i = 1, 2, ..., N , each firm i producing a product ai. Naturally, i
aims to maximize its profit by following (1). However, the production process inevitably generates

activities not reflected in market transactions, such as pollution (which harms social welfare) or

job creation (which benefits social welfare). To properly account for these externalities, social

welfare assessments must incorporate these non-market activities. Therefore, we define the impact

of such activities for each firm i as a function xi(qi) based on the quantity of product ai produced.
Consequently, social welfare can be represented as:

U =
∑

i(ui (qi, q
r
i ) + xi(qi)). (2)

The externality is caused by these activities that are not reflected in market transactions, with the

economic definition as:

Definition 1. An externality occurs whenever one economic actor’s activities affect another’s activities
in ways that are not reflected in market transactions [30].

The influence xi can be used to measure the externality. When xi > 0, it represents a positive
externality. When xi < 0, it represents a negative externality. We can express the Pigovian tax as a

function ti(qi) based on the quantity of product ai produced. The after-tax utility for firm i is:

ui (qi, q
r
i ) = qi × Pi (q

r
i , qi)− ti (qi) . (3)

Here, the Pigovian tax ti(qi) is designed to internalize the externality by making the firm’s private

cost align with the social cost, with the tax value directly proportional to the influence xi. This

ensures that addressing externalities is rooted in accurately quantifying the impact xi of an actor’s

activities on others. Similarly, in the context of multi-agent reinforcement learning (MARL),

externalities can also emerge as a key concept, where agents’ actions influence the outcomes

†

Without considering social costs, the firm will seek to minimize its Private Marginal Costs at the expense

of social welfare. By considering social costs, a firm can reduce the Social Marginal Cost, thereby promoting

social welfare.
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or rewards of other agents in ways that are not captured by their individual local rewards. By

drawing an analogy between economic markets and MARL environments, an agent’s action can be

viewed as a form of market behavior, while its local reward corresponds to its individual payoff

or utility. The externalities in this context then represent the unintended effects of an agent’s

actions on others, which aligns closely with the fundamental economic definition of externality. By

extending this analogy, we can formalize the idea of externality in MARL as follows:

Definition 2. An externality occurs whenever an agent’s actions affect others in ways that are not
reflected in individual local rewards.

A decentralized MARL scenario is examined with an N -player partially observable general-sum

Markov game on a finite set of states S . At each timestep, each agent i ∈ {1, . . . , N} receives a
d-dimensional observation oi ∈ Rd

from the observation function O : S × {1, . . . , N} → Rd,
which maps the current environment state s ∈ S and agent identity to an individual observation.

Based on its observation oi, agent i selects an action ai ∈ Ai according to its policy πi(ai | oi),
where Ai denotes the action space of agent i. which transitions to the next state s′ according to
the transition function P (s′ | s,a) where a = (a1, . . . , aN ) denotes the joint action. Agents then
receive their individual extrinsic rewards ri = Ri(s,a). Each agent aims to maximize its long-term

γ-discounted payoff:

Qi(s,a) = E
[∑T

t=0 γ
tri(s

t,at)
∣∣ s0 = s,a0 = a

]
. (4)

The social welfare of the scenario is defined as a global long-term γ-discount payoff as follows:

Q(s,a,x)=E
[∑T

t=0 γ
t
∑N

i=1(ri (s
t,at)+xi (s

t, ati))
∣∣s0=s,a0=a

]
, (5)

where xi(s
t, ati) represents the influence of agent i on other agents in the scenario, and x denotes

the joint influence {xi}Ni=1. In this setting, each agent’s behavior inevitably affects the rewards of

other agents. Consequently, social welfare is equivalent to:

Q(s,a) = E
[∑T

t=0 γ
t
∑N

i=1 ri (s
t,at)

∣∣ s0 = s,a0 = a
]
.

The optimal joint policy yields the following social welfare:

Q∗(s,a∗) = E
[∑T

t=0 γ
t
∑N

i=1 ri (s
t,at)

∣∣ s0 = s,a0 = a∗
]
,

where a∗ represents the optimal joint action derived from the optimal joint policy. According to

Definition 2, the externality of agent i can be defined as follows:

Ei
(
s,a∗−i, ai

)
= Q∗ (s,a∗)−Q

(
s,a∗−i, ai

)
, (6)

where a−i
∗
represents the joint optimal action excluding ai, and ai is the current action of agent i.

Based on (1), an Optimal Pigovian Tax reward shaping approach can be proposed to address

externalities in MARL and resolve social dilemmas. The optimal Pigovian tax-based reward shaping

can be expressed as:

Fi (s,a−i
∗, ai) = Q∗ (s,a∗)−Q (s,a−i

∗, ai) . (7)

The agent i receives a modified reward with the reward shaping:

r̂i
(
st,at

)
= ri

(
st,at

)
+ Fi (s,a−i∗, ai) , (8)

which successfully internalizes the externality.

The Prisoner’s Dilemma, a classic example of a social dilemma, is illustrated in Figure 2. In this

scenario, two agents must independently choose between cooperation and defection. While the

payoff matrix in Figure 2(a) shows that mutual cooperation maximizes collective welfare, defection

remains the dominant strategy for each agent under self-interested reasoning. This misalignment

between individual rationality and social welfare leads to an outcome with the lowest utility. The

core of the Prisoner’s Dilemma lies in the divergence between private incentives and social costs,

which can be captured by the concept of externalities. Each agent neglects the negative externality

their actions impose on the other. By quantifying these externalities through Equation 6 and

applying Optimal Pigovian Tax reward shaping as defined in Equation 7, we transform the payoff

structure into the revised matrix shown in Figure 2(b). In this modified matrix, the dominant strategy

4



shifts to "Cooperate," demonstrating that by internalizing externalities via Optimal Pigovian Tax

reward shaping, the social dilemma inherent in the Prisoner’s Dilemma can be resolved.
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t

(a) Original Payoff Matrix
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C
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Defect

D
ef
ec
t

(b) Payoff Matrix after Tax

Figure 2: Pigovian Tax/Allowance for Prisoner’s Dilemma.

3 Learning Optimal Pigovian Tax

In this section, LOPT will be explained in detail. As illustrated in Figure 3, it comprises two major

components: (1) A centralized agent called Tax Planner that learns to allocate Pigovian tax and

allowance rates bymaximizing the long-term global rewards; (2)A reward shapingmechanism based

on the learned tax/allowance allocation policy that internalizes each agent’s externality, thereby

aligning individual incentives with social welfare and effectively addressing social dilemmas. LOPT

update

Joint
Action

Reward Function

...

Local Observation

Pigavian Tax
Update

Social
Welfare

Figure 3: The Architecture of the LOPT. The centralized agent Tax planner allocate the Pigovian

tax/allowance within a functional percentage formulation. Reward shaping is established based on

the Pigovian tax/allowance to alleviate the social dilemmas.

is designed to learn the Optimal Pigovian Tax reward shaping described in (7) to internalize each

agent’s social cost. The Pigovian tax rewards is reformulated as:

F i
∗
(
st,at−i

∗
, ati

)
=
∑N

j=0 rj
(
st,at

∗)−∑N
j=0 r

j
(
st,at−i

∗
, ati

)
.

Pigovian tax reward shaping within percentage tax/allowance is formulated as:

F i
θ,δ

(
st,at−i

∗
, ati

)
= −θiri

(
st,at−i

∗
, ati

)
+ δi(s

t,at)

N∑
j=0

θjrj

(
st,at−i

∗
, ati

)
,

where θ represents the tax rates for all agents, θi is the specific tax rate for agent i, while δ denotes

the allowance rates for all agents, and δi is the specific allowance rate for agent i. The Optimal

Pigovian Tax reward shaping can be learned by determining appropriate values for θ and δ, such

that each F i
θ,δ

(
st,a−it∗, ati

)
equals F i ∗

(
st,at−i

∗
, ati

)
. However, since tax and allowance rates
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vary among different agents in different situations, it is necessary to represent θ and δ as functions

of the current joint state and action. Therefore, the Pigovian tax reward shaping within percentage

tax/allowance is reformulated as:

F i
θ,δ

(
st,at−i

∗
, ati

)
= −θi(st,at)ri

(
st,at−i

∗
, ati

)
+ δi(s

t,at)

N∑
j=0

θj(s
t,at)rj

(
st,at−i

∗
, ati

)
.

Theorem 1. If other agents’ actions are treated as part of the environment for any agent i at any
timestep t, there always exists typical θi(st,at) and δi(st,at) to let the F i

θ,δ

(
st,at−i

∗
, ati

)
equal to

the F i
∗
(
st,at−i

∗
, ati

)
.‡

This theorem shows that the Pigovian tax reward shaping within percentage tax/allowance can

reach the optimum in a specific condition. The theorem is proven in Appendix. B. The reward

shaping function could be treated as follows:

F i
θ,δ (s

t,at) = F i
θ,δ

(
st,at−i

∗
, ati

)
.

The central challenge is how to learn appropriate tax and allowance rate functions. As shown in

Figure 3, we address this by introducing a centralized tax planner that treats tax and allowance

rate as its action space and learns to maximize social welfare. The optimal Pigovian tax based on

reward shaping is applied to internalize each agent’s externality and solve the social dilemmas. In

this form, the tax planner aims to learn the tax rates θ and allowance rates δ for all agents within

the MARL task.

Theorem 2. If the interactive influences from other agents are not considered, when the policy of
tax planner ⟨θi (st,at) , δi (st,a)⟩ maximizes the social welfare, the typical F i

θ,δ

(
st,at−i

∗
, ati

)
will

qualitatively equivalent to the F i
∗
(
st,at−i

∗
, ati

)
.

Theorem 2 provides a key theoretical foundation for our approach, demonstrating that training the

tax planner as a centralized reinforcement learning agent to maximize total social welfare implicitly

approximates the optimal Pigovian tax. This theoretical equivalence is particularly significant,

as it implies that LOPT can explicitly quantify externalities in MARL by capturing social
dilemmas and internalize the broader societal impacts of self-interested agent behavior. In doing

so, it directly addresses the core challenge of resolving social dilemmas in multi-agent reinforcement

learning, as outlined in this paper. The complete proof is presented in Appendix B.

Guided by this insight, we formalize the tax planner as a reinforcement learning agent defined by

the tuple ⟨Sp,Op,Ap,Rp⟩, where at each timestep t: (1). The planner observes the global state and

all agents’ joint actions otp = ⟨st,at⟩; (2). selects taxes and allowances for agents atp = ⟨θt, δt⟩;(3).
receives a reward equal to the sum of all agents’ rewards, rtp. Thus, the tax planner optimizes the

cumulative social welfare:

max
πp

Jp := Eπp

[∑
t = 0T rp(o

t
p, a

t
p)
]
.

In short, by leveraging reinforcement learning to maximize social welfare, our method implicitly

derives and implements optimal Pigovian tax-based reward shaping—providing a principled and
practical solution to accurately quantify and mitigate social dilemmas in MARL.

In the training process, we use the approximated state-action function Qp(op, ap) to replace the

cumulative reward rp(o
t
p, a

t
p), and the objective function then becomes:

maxπp
Jp := Eπp

[Q (op, ap)] .

Typically, a policy gradient-based optimization [31] method is applied to train the tax planner. The

gradient loss is therefore defined as follows:

L(ϕp) = E
π
ϕp
p

[
∇

π
ϕp
p

log πp

(
atp

∣∣ otp)Qp,πp
ϕp

(
otp, a

t
p

)]
,

‡

Here we assume that the tax only occurs when the agent i get an reward ri ̸= 0, because in reinforcement

learning, its profit will only be shown in the step where r ̸= 0.
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where the tax planner’s policy function parameters are represented by ϕp. Additionally, to maintain

balance between tax and allowance, the tax planner needs to minimize the following entropy f(πp)
during the learning process:

f(πp) =
∣∣∣∑T

t=0

∑T
i=0 F

i
θ,δ

(
ot,at−i

∗
, ati

)∣∣∣ ,
As a result, the gradient loss L (ϕp) can be denoted as:

E
π
ϕp
p

[
∇

π
ϕp
p

log πp

(
atp | otp

)
Qp,π

ϕp
p

(
otp, a

t
p

)]
+ ηf

(
πϕp
p

)
, (9)

where η is a hyperparameter weighting the entropy f(πp).

In light of the learning process of the tax planner, other general agents are trained using the

approximated Optimal Pigovian Tax reward shaping as follows:

L (ϕi) = E
π
ϕi
i

[
∇

π
ϕi
i

log πi (ai | s) Q̂i,π
ϕi
i (s,a)

]
, (10)

where function Q̂i,π
ϕi
i (s,a) is defined as

ri(s,a) + F i
(
s,a−i∗ , ai

)
+ γmaxa′ Q̂i,π

ϕi
i (s′,a′) .

The typical learning process of LOPT is outlined in Algorithm 1 (Appendix), and its performance is

demonstrated through experiments in the Escape Room and Cleanup environments.

4 Experiment

Environments We conduct experiments on both the Escape Room [50] and the Cleanup [15]

environments, the details are summarized as follows:

-1-1 -1 -1

-1 -1+10

(a) Escape Room (N = 3,M = 2)

Agents

Cleaning 
Beam

Apple

Waste

River

(b) Cleanup(N = 5)

Figure 4: Environment Examples

Escape Room (ER): In an Escape Room game ER(N , M ), where N > M , N agents as players aim to

escape from the room (Figure 4(a)). In this environment, there are 3 available states: door, lever,
and start (the initial state), where agents are able to take actions to keep or change their states.

An agent is able to open the door, then receive an extrinsic reward of +10, and end the current

episode if and only if no less than M other agents pull the lever. Otherwise, agents will receive an
extrinsic penalty of −1 for making any state change. When agents try to maximize their rewards

egoistically, they tend to stay in current positions to avoid punishments or move to the door and
wait for others to pull the lever that will never happen, which creates a social dilemma. In our

experiments, settings of (N = 2,M = 1) and (N = 3,M = 2) are applied.

Cleanup: In a Cleanup game with N agents (Figure 4(b)), agents get an extrinsic reward of +1
by harvesting an apple and aim to collect as many apples as possible. Apples are spawned at a

variable rate, which decreases linearly as the aquifer fills with waste over time. If the waste density

reaches the depletion threshold, no more apples will spawn, so agents must clean waste without any

extrinsic reward, creating a social dilemma. At each timestep t, agents observe their surroundings
as an image and perform one of the following actions:{

move left, move right, move up, move down, stay,

rotate clockwise, rotate counterclockwise, fire cleaning beam

}
,

where the move” / rotate” actions change the positions/directions of agents in the map, the stay”
action waits at the original positions and does nothing, and the fire cleaning beam” action allows

7



agents to fire cleaning beams (with width 3) to clean wastes (the beam cannot penetrate wastes).

To verify how the proposed LOPT resolves the social dilemma, we initialize each episode with

sufficient wastes and no spawned apple, then experiment withN = 2 on a 7× 7map and a 10× 10
map, where the latter applies lower depletion threshold and apple respawn rate. Finally, a more

complex scenario of N = 5 Cleanup games with a larger 18 × 25 map and a much lower apple

respawn rate is used to explore the generalizability and scalability of our proposed method.

Implementation and Baselines We compared several baseline approaches in our experiments.

First, we evaluated standard reinforcement learning algorithms including Policy Gradient (PG) for
Escape Room, and Actor-Critic (AC) along with Proximal Policy Optimization (PPO) for Cleanup.

We then examined state-of-the-art methods for addressing social dilemmas: LIO [50] and its

decentralized variant LIO-dec, which learn to incentivize cooperation through reward-sharing;

Inequity Averse (IA) [15], which promotes cooperation via inequity-averse social preferences; Model

of Other Agents (MOA) [17], which uses counterfactual reasoning to model agent interactions; and

Social Curiosity Module (SCM) [14], which combines curiosity and empowerment rewards.

For specific environments, we implemented various method combinations. In Escape Room, we

compared LIO, LIO-dec, and Policy Gradient variants with discrete and continuous reward-giving

actions (PG-d/c). The Cleanup(N = 2) evaluation included LIO, IA, MOA, SCM, and Actor-Critic

variants (AC-d/c), while the more complex Cleanup(N = 5) scenario focused onMOA and SCM.
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Figure 5: Results on Escape Room Environment. (5(a), 5(b)) shows the learning curves of the

proposed LOPT; which converges to the optimum and successfully solves the Escape Room social

dilemmas. (5(c), 5(d)) shows LOPT is able to end the episode in a single 1 step without any betrayal.
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(a) N = 2, (7× 7)

0 4 8 12 16 20
Steps (1e6)

0
3
6
9

12
15
18
21
24
27

So
ci

al
 W

el
fa

re

LOPT
SCM
MOA
PPO
LIO
IA
AC
AC-c
AC-d

(b) N = 2, (10× 10)
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Figure 6: Results on Cleanup Environment. (6(a), 6(b)) shows the learning curves for the proposed

LOPT in Cleanup(N = 2); (6(c)) shows the learning curves for the proposed LOPT in Cleanup(N =
2) with the fixed-orientated assumption. (6(d)) scales to a more complex environment with N = 5.

Results Our experiments demonstrate that the proposed LOPT successfully resolves social dilem-

mas by approximating externalities among agents in MARL problems and modeling the optimal

Pigovian tax reward shaping. This approach internalizes the externalities, enabling convergence

toward optimal solutions even in complex scenarios. In both Escape Room and Cleanup envi-

ronments, LOPT implements effective tax/allowance schemes and redistributes rewards among

agents, thereby internalizing externalities and guiding agents to develop social-good behaviors

(both cooperative and competitive), which significantly accelerates learning curves. Additionally,

compared to baseline methods, the internalized externalities in our proposed LOPT result in fewer

betrayals, leading to a more stable learning process.

Escape Room. In both ER(N = 2,M = 1) and ER(N = 3,M = 2) settings, Figures 5(a) and 5(b)

demonstrate that LOPT rapidly converges to optimal values (8 and 9 respectively) by leveraging
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Figure 7: Rewards for Each Agent with Different Behaviors in Escape Room Environment. LOPT
internalizes externalities and redistributes rewards among agents with taxes and allowances.

optimal Pigovian tax incentives. PG agents completely fail due to selfish optimization, while

PC-d/c agents exhibit high variance and suboptimal performance. Although LIO and LIO-dec
achieve near-optimal results, they display instability and betrayal-related fluctuations are absent

to LOPT. The optimal solution requires only 1 step (M agents pull levers, N −M open door).

Figures 5(c) and 5(d) confirm that LOPT consistently achieves this efficiency, unlike other methods.

Figure 7 reveals the underlying mechanism: LOPT taxes "Winner" agents (those creating negative

externalities) and rewards "Cooperator" agents (those generating positive externalities), effectively

internalizing externalities through Pigovian incentives.
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Figure 8: An Example Rollout for Cleanup(N = 5) Environment. (8(a)) visualizes this example

rollout, where agents apply different social-good behaviors and divisions of laborers (cleaner,

harvester, and part-time) emerge. (8(b)) shows the approximated optimal Pigovian tax reward

shaping by the proposed LOPT. (8(c)) shows the reward shaping process of the LOPT in this

episode, which demonstrates how the LOPT internalizes externalities for agents with different

socially contributed behaviors.

Cleanup. We evaluate LOPT on Cleanup with both simple (N = 2) and complex (N = 5) scenarios.
For N = 2, we remove LIO’s rotation-action restriction, testing on 7 × 7 and 10 × 10 maps.

Figures 6(a) and 6(b) show LOPT achieves near-optimal social welfare, while LIO fails to learn

efficient policies. AC-d performs well on 7× 7 but poorly scales to 10× 10. Other baselines reach
near-optimum on 7 × 7, but IA and AC-c degrade severely on 10 × 10 compared to AC, PPO,
SCM, andMOA. Even with fixed-orientation (Figure 6(c)), LOPT maintains stable performance

by properly internalizing externalities, while LIO shows instability due to potential incentive

misalignment. We then compare the proposed LOPT with PPO, SCM, and MOA baselines, which

have shown better scalability, in the more complex Cleanup(N = 5) scenario, where an 18× 25
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large map and applied apple respawn rate are applied. Figure 6(d) shows that our proposed LOPT is

able to scale to more complex scenarios and internalize the approximated externalities by learning

optimal Pigovian tax reward shaping, which effectively helps agents to learn in social dilemmas.

To demonstrate how LOPT estimates externalities and influences agent behaviors, we analyze

their actions and reward redistribution. Figure 8(a) shows a Cleanup game with N = 5 agents:

Initially, agents 1, 2, and 4 clean waste (exceeding the depletion threshold) to accelerate apple

spawning. Agent 4 becomes a full-time cleaner while agent 1 transitions to part-time harvesting.

Agent 2 becomes another part-timer, balancing harvesting with waste cleaning, while agents 0 and

3 remain full-time harvesters. LOPT naturally induces labor specialization (cleaners, harvesters,

and part-timers) by internalizing externalities, effectively addressing the social dilemma. Figure 8(c)

reveals the mechanism: Harvesters (0, 3) pay heavy taxes for negative externalities; part-timers (1, 2)

receive allowances for cleaning but pay taxes for harvesting; cleaner 4 gains substantial allowances

for positive externalities. The system provides near-optimal Pigovian tax incentives (Figure 8(b)) to

guide agents toward superior outcomes. Additional results appear in Appendix D.3.

5 Conclusion

In this paper, we introduce externality theory to measure the influence of agents’ behavior on

social welfare. Based on this theoretical foundation in the MARL domain, we propose the Learning
Optimal Pigovian Tax method to address social dilemmas. We construct a centralized agent,

Tax Planner, which learns the tax/allowance allocation policy for each agent. Through Optimal

Pigovian Tax reward shaping, each agent’s externality is internalized, encouraging behaviors that

benefit social welfare. Our experiments demonstrate the superiority of the proposed mechanism in

alleviating social dilemmas in MARL. For future work, we aim to develop a decentralized Pigovian

tax/allowance mechanism to learn reward shaping that internalizes agents’ externalities while

reducing computational complexity.
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A Related Work

Our work, LOPT, is motivated by the challenge of fostering cooperation among independently

learning agents in intertemporal social dilemmas (ISDs) [22]. In ISDs, agents pursue individual

long-term returns, but mutual defection often leads to suboptimal collective outcomes and degraded

social welfare over time.

A.1 Limitations of Conventional MARL in ISDs

ConventionalMulti-Agent Reinforcement Learning (MARL) algorithms designed for fully cooperative
tasks [13, 41, 38, 24, 25, 10] struggle with ISDs due to their assumption of aligned agent incentives.

In contrast, ISDs feature mixed motivations, where agents’ local optima may conflict with collective

well-being.

Several approaches attempt to address this by incorporating reward shaping or intrinsic motiva-
tion [12, 15, 47]. However, these methods often rely on hand-crafted heuristics or evolution-based

adaptations to other agents’ behaviors, limiting generality and scalability. More recent approaches,

like LIO [50], enable agents to learn incentives for others, while some studies explore mechanism or
information design [27] in fully cooperative contexts. Yet, these methods typically lack a unified

economic rationale for shaping rewards.

A.2 Externality Theory and Economic Inspiration

LOPT is grounded in externality theory [30], which provides a principled framework for aligning

individual incentives with social welfare—a central challenge in ISDs. In both non-market [1] and
market economies [35], various mechanisms have been developed to internalize externalities, such

as the Pigovian tax [5], which penalizes behaviors that impose social costs.

Our approach adopts a learning-based Pigovian tax framework to shape agent incentives and miti-

gate negative externalities. This aligns with economic findings that reward structures significantly

influence cooperative behavior in repeated settings. For instance, [39] demonstrates that limited

feedback and longer interaction horizons promote cooperation in human queueing systems, empha-

sizing the role of information and interaction design. Similarly, [4] shows that optimal mechanisms

in competitive markets are sensitive to network structures, reinforcing the importance of structural

design in multi-agent coordination.

Moreover, [33] highlights the theoretical interchangeability of taxes and subsidies under certain

conditions, broadening the space of policy tools for influencing agent behavior. While LOPT focuses

on tax-based shaping, its theoretical foundation can naturally extend to subsidy schemes depending

on fairness or implementation considerations.

Our design also draws structural inspiration from the AI Economist [51], employing a two-stage

architecture to learn tax policies. However, LOPT specifically targets ISDs inMARL and distinguishes

itself by leveraging externality theory to inform its reward shaping paradigm.

A.3 Structural Solutions to ISDs: Centralized vs. Decentralized

Beyond reward shaping, recent work has explored structural interventions for ISDs, drawing parallels
to economic governance models. These can be categorized into:

• Centralized boundaries [9, 16], which emulate government-like authorities to regulate

agent behavior.

• Decentralized sanctions [3, 20, 48, 45, 11], which enable agents to punish others for

socially harmful behavior.

LOPT follows the centralized boundaries paradigm, introducing a centralized tax planner that

learns to enforce Pigovian taxes based on global observations. Unlike previous centralized ap-

proaches, such as [9], which uses arbitrary allocation for shared resources, or [16], which introduces

a fixed tax mechanism, LOPT learns a dynamic tax policy tailored to the environment. Furthermore,

our method is theoretically supported by externality theory, providing a principled foundation for

shaping agent behavior.
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B Proof

Theorem 1. If other agents’ actions are treated as part of the environment for any agent i at any
timestep t, there always exists typical θi(st,at) and δi(st,at) to let the F i

θ,δ

(
st,at−i

∗
, ati

)
equal to

the F i
∗
(
st,at−i

∗
, ati

)
.

Proof. We make classified discussions for any agent i create negative externality, agent i create
positive externality. For any agent i which creates a negative externality at timestep t: the agent
will not receive any allowance, so the allowance rate function δi(s

t, ati) is equal to 0. And the tax

rate can be written as:

θi(s
t, ati, a

t
−i

∗
) =

Ei(st, at−i
∗
, ati)

ri(st, ati, a
t
−i

∗
)
, (11)

θi(s
t, ati, a

t
−i

∗
) =

Q(st,at
∗
)−Q(st, at−i

∗
, ati)

ri(st, ati, a
t
−i

∗
)

(12)

And as the interactive influence from other agents is not considered, other agents’ optimal action

at−i
∗
can be seen as a part of the environment, and this optimum has a fixed result. Therefore, like

the reinforcement learning method with an advantage function, for each agent i, the advantage
function based on the current joint state and action can also be found in the tax rate, where:

Q(st,at
∗
) = A0

i (s
t,at)×Q(st,at),

Q(st, at−i
∗
, ati) = A1

i (s
t,at)×Q(st,at),

ri(s
t, ati, a

t
−i

∗
) = A2

i (s
t,at)× ri(s

t,at).

(13)

Then the tax rate for agent i becomes:

θi(s
t, ati, a

t
−i

∗
) =

(A0
i (s

t,at)−A1
i (s

t,at))×Q(st,at)

A2
i (s

t,at)× ri(st,at)
,

θi(s
t,at) =

(A0
i (s

t,at)−A1
i (s

t,at))×Q(st,at)

A2
i (s

t,at)× ri(st,at)
.

(14)

Then it is proven that for any agent i which generates negative externality, there always exists

typical θi(s
t,at) and δi(s,a

t) to let the F i
θ,δ

(
st,at−i

∗
, ati

)
equivalent to the F i

∗
(
st,at−i

∗
, ati

)
.

Similarly, for any agent i which generates positive externality, there also exists typical θi(s
t,at)

and δi(s
t,at) to satisfy the condition above.

This proves that if the interactive influence from other agents is not considered, for any agent i
at any timestep t, there always exists typical θi(s

t,at) and δi(s,a
t) to let the F i

θ,δ

(
st,at−i

∗
, ati

)
equivalent to the F i

∗
(
st,at−i

∗
, ati

)
.

Theorem 2. If the interactive influences from other agents are not considered, when the policy of
tax planner ⟨θi (st,at) , δi (st,a)⟩ maximizes the social welfare, the typical F i

θ,δ

(
st,at−i

∗
, ati

)
will

qualitatively equivalent to the F i
∗
(
st,at−i

∗
, ati

)
.

Proof. Here we use the method of "reduction to absurdity." Suppose that there exists an agent i
which generates negative externality, and the learned F i

θ,δ

(
st,at−i

∗
, ati

)
does not qualitatively

equivalent to the F i
∗
(
st,at−i

∗
, ati

)
. The reason why agent i will choose the selfish behavior which

harms social welfare without reward shaping is because its individual reward shows:

ri(s
t, at−i

∗
, ati) > ri(s

t,at
∗
). (15)

And the effect of the Optimal Pigovian Tax reward shaping is to let any ati ∈ Ai hold the following

constraint:

ri(s
t, at−i

∗
, ati) + F i

θ,δ(s
t, at−i

∗
, ati) < ri(s

t,at
∗
). (16)

As we suppose that its typically learned reward shaping does not qualitatively equivalent to the

Optimal Pigovian Tax reward shaping. That means there exists some ati ∈ Ai, which causes:

ri(s
t, at−i

∗
, ati) + F i

θ,δ(s
t, at−i

∗
, ati) > ri(s

t,at
∗
). (17)
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This means agent i within its optimal policy π∗
i would like to choose the behavior ati rather than

the behavior in optimal joint actions at
∗
. Then if we use the tax planner’s learned policy π

ϕp
p to

describe the tax rate allocation, which means there exists another tax planner’s policy π∗
p , letting:

E
π
ϕp
p

[
T∑

t=0

rp
(
stp, a

t
p

)]
< Eπ∗

p

[
T∑

t=0

rp
(
stp, a

t
p

)]
. (18)

Thus we have shown that if any learned reward shaping of agent i is not qualitatively equivalent to

the Optimal Pigovian Tax reward shaping, the tax planner’s learned policy is not optimal.

C Algorithm

Algorithm 1 LOPT: Learning Optimal Pigovian Tax

1: Initialization: all general agents’ policy parameters {ϕi}, tax planner’s policy parameters ϕp;

2: for each iteration do
3: Generate a joint state-action trajectory with shaped rewards and tax/allowance rates as {τ};
4: for each state-action pair with shaped reward for each agent i, i.e., ⟨si,a, ri + Fi⟩ in {τ} do
5: Compute the new ϕ̂i by gradient ascent on (10);

6: end for
7: for each tax planner state-action pair with global reward ⟨op, ap, rp⟩ in {τ} do
8: Compute the new ϕ̂p by gradient ascent on (9);

9: end for
10: ϕi ← ϕ̂i, ϕp ← ϕ̂p, for all i ∈ N.
11: end for
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D Experiment

D.1 Implementations

The policy and value functions in LOPT are implemented as neural networks (detailed architecture

provided in Appendix. D.2). Training is conducted on a virtual machine hosted on a GPU server

equipped with four NVIDIA GTX 2080 Ti GPUs, a 24-core CPU, and 32 GB of DRAM.

We implemented the LOPT in both Escape Room and Cleanup environments. At each timestep

t, the global observation otglobal from the joint state st, and the joint action at are fed to the tax

planner as input. To better handle our challenging environments, we provide a “bank” variable to
the tax planner to save rewards from taxes as available budgets for allowances, which supports the

more sophisticated tax/allowance mechanism. Then, the current bank state otbank and joint reward

rt are also introduced to the observation:

otp =
〈
otglobal,a

t, otbank, r
t
〉
.

The tax planner outputs the joint tax rate θt
and the joint allowance rate δt. In addition, the tax

planner outputs. Also, it outputs a percentage for rewards withdrawn from the bank as the budget

ratio abankt . So, the action for the current time step is:

apt =
〈
θt, δt, atbank

〉
.

In addition, the entropy f(πp) is weighted by a hyperparameter η in (9) Concretely, in both

environments with N agents, otbank and at are scalers, while at, rt, θt
and δt are N dimensional

vectors. In the Escape Room games, the tax planner agent observes a multi-hot vector global states

otglobal ∈ {0, 1}d from the joint state st, where d = 3N . And in the Cleanup games, the global

observation otglobal is the global visual normalized RGB observation with the same width and height

of the applied map.

In the Escape Room environment, the policy network for the tax planner is defined as follows: 1).

a dense layer h11 of size 64 takes o
t
global as input and 3 dense layers h1i, i = 2, 3, 4 of size 32 for

at, otbank, and rt respectively; 2). the outputs of dense layers h1i, i = 1, 2, 3, 4 are concatenated

and fed to a dense layer h2 of size 32; 3). the output of dense layer h2 is fed to 3 dense layers

h3i, i = 1, 2, 3 of sizes 1,N ,N and activation functions sigmoid, sigmoid, softmax, then output

as abankt , θt
, δt respectively. While in the Cleanup environment, the policy network for the tax

planner is defined as follows: 1). the global observation otglobal is firstly fed to a convolutional layer

conv1 of kernel size 3× 3, stride 1 and 6 filters; 2). the output of the convolutional layer conv1, at,
otbank , and r

t
are fed to 4 two-layer dense layers h2i, i = 1, 2, 3, 4 of size 32 and 32 respectively; 3).

the outputs of dense layers h2i, i = 1, 2, 3, 4 are concatenated and fed to an LSTM of cell size 128;
4). at last, the output of the LSTM is fed to the dense layers and output as abankt , θt

, δt respectively.

The settings of hyperparameters for baselines follow their previous work [15, 17, 50, 14]. For all

experiments, the tuned hyperparameters of all baselines and LOPT are given in Table. 2-4 in the

appendix D.2, where: α is the learning rate; αschedule is a list that contains the step and weight

pairs for the learning rate scheduler; η is the weight for the entropy f(πp); ϵ in [50] decays linearly

from ϵstart to ϵend by ϵdiv episodes; β is coefficient for the entropy of the policy.
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D.2 Hyperparameter

Parameters

N = 2,
7× 7 map

N = 2,
10× 10 map

N = 2, 10× 10
map fixed orientations

N = 5,
18× 25 map

appleRespawnProbability 0.5 0.3 0.3 0.05
wasteSpawnProbability 0.5 0.5 0.5 0.5
thresholdDepletion 0.6 0.4 0.4 0.4
thresholdRestoration 0.0 0.0 0.0 0.0

rotationEnabled ✓ ✓ ✗ ✓
view_size 4 7 7 7
max_steps 50 50 50 1000

Table 1: Experiment Settings for Cleanup Environment.

Hyperparameters
N = 2 N = 3

PG PG-d PG-c LIO LIO-dec LOPT PG PG-d PG-c LIO LIO-dec LOPT

α 1e−4 1e−4 1e−3 1e−4 1e−4 1e−3 1e−4 1e−4 1e−3 1e−4 1e−4 1e−3
η - - - - - 0.95 - - - - - 0.95

ϵstart 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5
ϵend 0.05 0.05 0.1 0.1 0.1 0.05 0.05 0.05 0.1 0.3 0.3 0.05
ϵdiv 100 100 1000 1000 1000 100 100 100 1000 1000 1000 100
β 0.01 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0.1 0.01 0.01 0.01

Table 2: Hyperparameter Settings for Escape Room Environment.

Hyperparameters
7× 7 map 10× 10 map

AC AC-d AC-c IA LIO PPO MOA SCM LOPT AC AC-d AC-c IA LIO PPO MOA SCM LOPT

α 1e−3 1e−4 1e−3 1e−3 1e−4 2.52e−3 2.52e−3 2.52e−3 2.52e−3 1e−3 1e−3 1e−3 1e−3 1e−4 1.26e−3 1.26e−3 1.26e−3 2.52e−3
αschedule - - - - - [ (5e5, 1.26e−3), (2.5e6, 1.26e−4) ] - - - - - [ (1e7, 1.26e−4) ] [(5e5, 1.26e−3), (1e7, 1.26e−4)]

η - - - - - - - - 0.95 - - - - - - - - 0.95
ϵstart 0.5 0.5 0.5 0.5 0.5 - - - - 0.5 0.5 1.0 0.5 0.5 - - - -

ϵend 0.05 0.05 0.05 0.05 0.05 - - - - 0.05 0.05 0.05 0.05 0.05 - - - -

ϵdiv 100 100 100 1000 100 - - - - 5000 1000 1000 5000 1000 - - - -

β 0.1 0.1 0.1 0.1 0.1 1.76e−3 1.76e−3 1.76e−3 1.76e−3 0.01 0.01 0.1 0.01 0.01 1.76e−3 1.76e−3 1.76e−3 1.76e−3

Table 3: Hyperparameter Settings for Cleanup(N = 2) Environment.

Hyperparameters PPO MOA SCM LOPT

α 1.26e−3 1.26e−3 1.26e−3 1.26e−3
αschedule [ (2e7, 1.26e−4), (2e8, 1.26e−5) ] [(2.5e7, 1.26e−4)]

η - - - 0.95
β 1.76e−3 1.76e−3 1.76e−3 1.76e−3

Table 4: Hyperparameter settings for Cleanup(N = 5).
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D.3 Addtional Experiment Results

In this section, additional results from experiments will be demonstrated. As illustrated in Figure. 9-

12, our proposed LOPT is able to internalize externalities in all of our Cleanup experiment settings

and provide approximated optimal Pigovian tax reward shaping to greatly alleviate the social

dilemmas. And for Cleanup(N = 5) environment, we further show the relationship among the

environmental states of the numbers of apples and wastes and the tax/allowance schemes given

by the LOPT, where proper tax/allowance schemes are given for agents with different socially

contributed behaviors in Figure 13(a), Figure 13(b), and Figure 13(c) Also, Figure. 13(d) shows that

the LOPT encourages agents to clean wastes efficiently and maintains the density of wastes at

a relatively low level so that the apples are spawned at a relatively high rate. Also, we provide

visualized and analyzed results from example rollouts in Cleanup(N = 2) with both the 7× 7 and

the 10× 10 maps.
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Figure 9: An Example Rollout for Cleanup(N = 2) Environment with A 7× 7Map.
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Figure 10: An Example Rollout for Cleanup(N = 2) Environment with A 10× 10Map.
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Figure 11: Number of Apples and Wastes in the Environment
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Figure 12: An Example Rollout for Cleanup(N = 2) Environment with A 10× 10Map and Fixed

Orientations.
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Figure 13: An Example Rollout for Cleanup(N = 5) Environment, supplemental results for Figure 8.

(13(a), 13(b), 13(c)) illustrate relationship of environmental states (the number of apples/wastes)

and the tax/allowance schemes given by the LOPT for 3 types of agents with different socially

contributed behaviors. (13(d)) shows the amount for apples and wastes during the episode.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the

paper’s contributions and scope?

Answer: [Yes]

Justification: The main claim made in abstract and introduction is that we introduce

externalities to denote to quantify social dilemmas in MARL and LOPT is proposed to

internalize externalities and solve social dilemmas.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims

made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or

NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how

much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these

goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation of the work in section. 5 as our work is centralized

so it is necessary to reduce computational complexity.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means

that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results

are to violations of these assumptions (e.g., independence assumptions, noiseless

settings, model well-specification, asymptotic approximations only holding locally).

The authors should reflect on how these assumptions might be violated in practice

and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often

depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-

proach. For example, a facial recognition algorithm may perform poorly when image

resolution is low or images are taken in low lighting. Or a speech-to-text system

might not be used reliably to provide closed captions for online lectures because it

fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used

by reviewers as grounds for rejection, a worse outcome might be that reviewers

discover limitations that aren’t acknowledged in the paper. The authors should use

their best judgment and recognize that individual actions in favor of transparency

play an important role in developing norms that preserve the integrity of the com-

munity. Reviewers will be specifically instructed to not penalize honesty concerning

limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions

and a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the proof in Appendix. B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.

• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a

short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-

mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main

experimental results of the paper to the extent that it affects the main claims and/or

conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementations in appendix. D.1 and the hyperparameter in

appendix. D.2.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of

whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps

taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture

fully might suffice, or if the contribution is a specific model and empirical evaluation,

it may be necessary to either make it possible for others to replicate the model with

the same dataset, or provide access to the model. In general. releasing code and data

is often one good way to accomplish this, but reproducibility can also be provided via

detailed instructions for how to replicate the results, access to a hosted model (e.g., in

the case of a large language model), releasing of a model checkpoint, or other means

that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.

(b) If the contribution is primarily a newmodel architecture, the paper should describe

the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to

reproduce the model (e.g., with an open-source dataset or instructions for how to

construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case

authors are welcome to describe the particular way they provide for reproducibility.

In the case of closed-source models, it may be that access to the model is limited in

some way (e.g., to registered users), but it should be possible for other researchers

to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-

tions to faithfully reproduce the main experimental results, as described in supplemental

material?

Answer: [No]

Justification: Due to limited time, the code has not been sorted out yet.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

including code, unless this is central to the contribution (e.g., for a new open-source

benchmark).

• The instructions should contain the exact command and environment needed to

run to reproduce the results. See the NeurIPS code and data submission guidelines

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more

details.

• The authors should provide instructions on data access and preparation, including

how to access the raw data, preprocessed data, intermediate data, and generated data,

etc.

• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the

results?

Answer: [Yes]

Justification: Experimental setting/details are provided in Appendix. D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appro-

priate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use the 95% confidence interval to show the learning curve.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, con-

fidence intervals, or statistical significance tests, at least for the experiments that

support the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated

(for example, train/test split, initialization, random drawing of some parameter, or

overall run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,

call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the

hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables

or figures symmetric error bars that would yield results that are out of range (e.g.

negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how

they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the

computer resources (type of compute workers, memory, time of execution) needed to

reproduce the experiments?

Answer: [Yes]

Justification: Compute resources are reported in this Appendix. D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments

that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is conducted with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require

a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative

societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact

specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied

to particular applications, let alone deployments. However, if there is a direct path to

any negative applications, the authors should point it out. For example, it is legitimate

to point out that an improvement in the quality of generative models could be used

to generate deepfakes for disinformation. On the other hand, it is not needed to point

out that a generic algorithm for optimizing neural networks could enable people to

train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is

being used as intended and functioning correctly, harms that could arise when the

technology is being used as intended but gives incorrect results, and harms following

from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation

strategies (e.g., gated release of models, providing defenses in addition to attacks,

mechanisms for monitoring misuse, mechanisms to monitor how a system learns

from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,

image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by

requiring that users adhere to usage guidelines or restrictions to access the model or

implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors

should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best

faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in

the paper, properly credited and are the license and terms of use explicitly mentioned and

properly respected?

Answer: [Yes]

Justification: We cite the original papers or websites that produced the code package or

dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a

URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the

license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of

the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to

the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-

tion provided alongside the assets?

Answer: [NA]

Justification: The paper doesn’t release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,

limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose

asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either

create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the

paper include the full text of instructions given to participants and screenshots, if applicable,

as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should

be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data

collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or

institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you

should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the

guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity

(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or

non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,

scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLM does not impact the core methodology, scientific rigorousness, or

originality of the research in the paper.

Guidelines:

• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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