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Abstract

Multi-agent reinforcement learning (MARL) has emerged as a powerful framework
for modeling autonomous agents that independently optimize their individual ob-
jectives. However, in mixed-motive MARL environments, rational self-interested
behaviors often lead to collectively suboptimal outcomes situations commonly
referred to as social dilemmas. A key challenge in addressing social dilemmas lies
in accurately quantifying and representing them in a numerical form that captures
how self-interested agent behaviors impact social welfare. To address this chal-
lenge, externalities in the economic concept is adopted and extended to denote the
unaccounted-for impact of one agent’s actions on others, as a means to rigorously
quantify social dilemmas. Based on this measurement, a novel method, Learning
Optimal Pigovian Tax (LOPT) is proposed. Inspired by Pigovian taxes, which are
designed to internalize externalities by imposing cost on negative societal impacts,
LOPT employs an auxiliary tax agent that learns an optimal Pigovian tax policy to
reshape individual rewards aligned with social welfare, thereby promoting agent
coordination and mitigating social dilemmas. We support LOPT with theoret-
ical analysis and validate it on standard MARL benchmarks, including Escape
Room and Cleanup. Results show that by effectively internalizing externalities that
quantify social dilemmas, LOPT aligns individual objectives with collective goals,
significantly improving social welfare over state-of-the-art baselines.

1 Introduction

Reinforcement learning [42] achieved remarkable efficacy across diverse domains [32, 21, 18, 52] and
has been successfully extended to multi-agent settings, especially in fully-cooperative scenarios [46,
26, 49]. Nevertheless, prevalent centralized multi-agent reinforcement learning (MARL) methods
that utilize team rewards [13, 41, 38, 37, 7] are encumbered by inherent limitations in their scalability
to large agent populations and are fundamentally deemed unsuitable for self-interested agents in
mixed-motivation environments. While decentralized learning paradigms [43, 40, 2], wherein agents
independently optimize their individual rewards, provide a more natural modeling approach for self-
interested behavior. Yet, these methods frequently encounter difficulties in facilitating coordination
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among agents. In many real-world environments with mixed motives—particularly those involving
exclusionary or subtractive common-pool resources [36, 22, 23]—rational, self-interested behavior
often leads to collectively suboptimal outcomes. These situations are known as social dilemmas.

The concept of social dilemma, originating from economics, refers to situations in which individually
rational decision-making leads to collectively suboptimal outcomes [19]. Specifically, these scenarios
arise when mutual cooperation would generate universal benefits, yet agents are incentivized to
defect due to the prospect of greater individual gain from non-cooperative behavior. In the context of
mixed-motivation MARL, social dilemmas are formally characterized as conflicts between individual
reward maximization and the optimization of joint or collective returns [22]. This framing reflects a
core economic insight: strategies that are rational from an individual agent’s perspective can produce
inefficient or undesirable outcomes at the group level. Accordingly, a central challenge in mixed-
motivation MARL research is the development of theoretically grounded mechanisms to accurately
quantify and represent social dilemmas in a numerical form that captures how self-interested agent
behaviors impact social welfare. This involves not only assessing the long-term influence of self-
interested agent policies on social welfare but also designing learning algorithms capable of aligning
individual incentives with collective welfare over extended time horizons.

Established economic theory has long applied the concept of externalities to explain social dilem-
mas [44, 8, 6]. An externality arises when the actions of one economic agent directly affect the
utility or production possibilities of others without these effects being accounted for in market trans-
actions [30]. These impacts on individual utility or production capacities collectively contribute to
changes in social welfare. Positive externalities arise from actions that benefit social welfare, while
negative externalities result from actions that harm it. Based on this theoretical foundation, many
policy instruments—both market-based and non-market-based—have been developed to mitigate the
negative impacts of externalities and resolve corresponding social dilemmas [35, 1, 5]. A prominent
example is the Pigovian tax/allowance [5, 28], such as carbon tax *, which levies taxes on any
market activity that generates negative externalities and provides allowances to which bring positive
externalities [34], thereby incorporating these effects into market prices. This process known as
externality internalization.

Inspired by economic theory, we introduce externality into mixed-motivation MARL to address the
challenge of accurately quantifying and representing social dilemmas in a numerical form. This
theoretical perspective offers a clear way to describe MARL dilemmas, where an agent’s actions may
impact others without those effects being reflected in its own reward—creating externalities. Building
on this insight, we further propose a learning-based solution that leverages Pigovian tax/allowance
mechanisms to alleviate these issues by subsidizing behaviors with positive externalities and taxing
those with negative ones. The proposed method, Learning Optimal Pigovian Tax (LOPT), introduces
a centralized agent, referred to as the tax planner which learns to allocate tax and allowance rates
by maximizing the long-term global reward. This learning process is proven to be equivalent to
approximating the optimal Pigovian tax, which reflects the value of externalities. The learned rates
are then used to design a novel reward shaping mechanism, termed optimal Pigovian tax reward
shaping, which shapes each agent’s local reward to reflect how its actions impact overall social
welfare. Compared to existing handcrafted or performance-driven reward shaping methods for
addressing social dilemmas, LOPT offers a theoretically sound shaping approach based on optimal
Pigovian tax, which is computed by optimizing social welfare. This ensures theoretical guarantees
while demonstrates superior empirical effectiveness and adaptability.

The primary contributions of this paper are as follows:

- Externality theory is introduced in MARL to quantify and represent social dilemmas numerically,
providing a theoretically grounded framework for capturing the impact of self-interested agent
behaviors on social welfare.

- A centralized tax/allowance mechanism based on reward shaping LOPT is proposed to
approximate the optimal Pigovian tax and internalize the externalities of self-interested agents in
mixed-motivation MARL tasks, thereby aligning individual agent incentives with social welfare and
addressing social dilemmas.

*The carbon tax [29] serves as a widely cited Pigovian tax, making the implicit social costs of carbon
emissions explicit by pricing them into market transactions.
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- Experiments in the Escape Room and challenging Cleanup environments demonstrate the
effectiveness of the proposed mechanism in alleviating social dilemmas in MARL.

2 Externality in MARL
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Figure 1: Externality [30]. The gap between social marginal cost and the private cost is externality.

This section illustrates the concept of externality in MARL and introduces a formalism for measuring
it, enabling the visualization of social dilemmas. First, the concept of externality in economics is
explained, with the graphical analysis † shown in Figure 1. Consider a firm i that produces a product
ai to meet consumer demand. Simultaneously, the firm generates pollution, which negatively impacts
social welfare. Let us denote the quantity of produced ai as qi. The price of ai is determined by
a function that depends on both the quantity produced qi and the market demand for ai. Defining
the market demand as qri , the profit function is represented as Pi(q

r
i , qi). The target of the firm is to

maximize such utility:
ui (qi, q

r
i ) = qi × Pi (q

r
i , qi) . (1)

Let us analyze N firms indexed i = 1, 2, ..., N , each firm i producing a product ai. Naturally, i
aims to maximize its profit by following (1). However, the production process inevitably generates
activities not reflected in market transactions, such as pollution (which harms social welfare) or
job creation (which benefits social welfare). To properly account for these externalities, social
welfare assessments must incorporate these non-market activities. Therefore, we define the impact
of such activities for each firm i as a function xi(qi) based on the quantity of product ai produced.
Consequently, social welfare can be represented as:

U =
∑

i(ui (qi, q
r
i ) + xi(qi)). (2)

The externality is caused by these activities that are not reflected in market transactions, with the
economic definition as:

Definition 1. An externality occurs whenever one economic actor’s activities affect another’s
activities in ways that are not reflected in market transactions [30].

The influence xi can be used to measure the externality. When xi > 0, it represents a positive
externality. When xi < 0, it represents a negative externality. We can express the Pigovian tax as a
function ti(qi) based on the quantity of product ai produced. The after-tax utility for firm i is:

ui (qi, q
r
i ) = qi × Pi (q

r
i , qi)− ti (qi) . (3)

Here, the Pigovian tax ti(qi) is designed to internalize the externality by making the firm’s private cost
align with the social cost, with the tax value directly proportional to the influence xi. This ensures
that addressing externalities is rooted in accurately quantifying the impact xi of an actor’s activities
on others. Similarly, in the context of multi-agent reinforcement learning (MARL), externalities can
also emerge as a key concept, where agents’ actions influence the outcomes or rewards of other agents

†Without considering social costs, the firm will seek to minimize its Private Marginal Costs at the expense
of social welfare. By considering social costs, a firm can reduce the Social Marginal Cost, thereby promoting
social welfare.
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in ways that are not captured by their individual local rewards. By drawing an analogy between
economic markets and MARL environments, an agent’s action can be viewed as a form of market
behavior, while its local reward corresponds to its individual payoff or utility. The externalities in this
context then represent the unintended effects of an agent’s actions on others, which aligns closely
with the fundamental economic definition of externality. By extending this analogy, we can formalize
the idea of externality in MARL as follows:
Definition 2. An externality occurs whenever an agent’s actions affect others in ways that are not
reflected in individual local rewards.

A decentralized MARL scenario is examined with an N -player partially observable general-sum
Markov game on a finite set of states S. At each timestep, each agent i ∈ {1, . . . , N} receives a
d-dimensional observation oi ∈ Rd from the observation functionO : S ×{1, . . . , N} → Rd, which
maps the current environment state s ∈ S and agent identity to an individual observation. Based
on its observation oi, agent i selects an action ai ∈ Ai according to its policy πi(ai | oi), where Ai

denotes the action space of agent i. which transitions to the next state s′ according to the transition
function P (s′ | s,a) where a = (a1, . . . , aN ) denotes the joint action. Agents then receive their
individual extrinsic rewards ri = Ri(s,a). Each agent aims to maximize its long-term γ-discounted
payoff:

Qi(s,a) = E
[∑T

t=0 γ
tri(s

t,at)
∣∣ s0 = s,a0 = a

]
. (4)

The social welfare of the scenario is defined as a global long-term γ-discount payoff as follows:

Q(s,a,x)=E
[∑T

t=0 γ
t
∑N

i=1(ri (s
t,at)+xi (s

t, ati))
∣∣s0=s,a0=a

]
, (5)

where xi(s
t, ati) represents the influence of agent i on other agents in the scenario, and x denotes the

joint influence {xi}Ni=1. In this setting, each agent’s behavior inevitably affects the rewards of other
agents. Consequently, social welfare is equivalent to:

Q(s,a) = E
[∑T

t=0 γ
t
∑N

i=1 ri (s
t,at)

∣∣ s0 = s,a0 = a
]
.

The optimal joint policy yields the following social welfare:

Q∗(s,a∗) = E
[∑T

t=0 γ
t
∑N

i=1 ri (s
t,at)

∣∣ s0 = s,a0 = a∗
]
,

where a∗ represents the optimal joint action derived from the optimal joint policy. According to
Definition 2, the externality of agent i can be defined as follows:

Ei
(
s,a∗−i, ai

)
= Q∗ (s,a∗)−Q

(
s,a∗−i, ai

)
, (6)

where a−i
∗ represents the joint optimal action excluding ai, and ai is the current action of agent i.

Based on (1), an Optimal Pigovian Tax reward shaping approach can be proposed to address external-
ities in MARL and resolve social dilemmas. The optimal Pigovian tax-based reward shaping can be
expressed as:

Fi (s,a−i
∗, ai) = Q∗ (s,a∗)−Q (s,a−i

∗, ai) . (7)
The agent i receives a modified reward with the reward shaping:

r̂i
(
st,at

)
= ri

(
st,at

)
+ Fi (s,a−i∗, ai) , (8)

which successfully internalizes the externality.

The Prisoner’s Dilemma, a classic example of a social dilemma, is illustrated in Figure 2. In this
scenario, two agents must independently choose between cooperation and defection. While the payoff
matrix in Figure 2(a) shows that mutual cooperation maximizes collective welfare, defection remains
the dominant strategy for each agent under self-interested reasoning. This misalignment between
individual rationality and social welfare leads to an outcome with the lowest utility. The core of
the Prisoner’s Dilemma lies in the divergence between private incentives and social costs, which
can be captured by the concept of externalities. Each agent neglects the negative externality their
actions impose on the other. By quantifying these externalities through Equation 6 and applying
Optimal Pigovian Tax reward shaping as defined in Equation 7, we transform the payoff structure
into the revised matrix shown in Figure 2(b). In this modified matrix, the dominant strategy shifts
to "Cooperate," demonstrating that by internalizing externalities via Optimal Pigovian Tax reward
shaping, the social dilemma inherent in the Prisoner’s Dilemma can be resolved.
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Figure 2: Pigovian Tax/Allowance for Prisoner’s Dilemma.

3 Learning Optimal Pigovian Tax

In this section, LOPT will be explained in detail. As illustrated in Figure 3, it comprises two major
components: (1) A centralized agent called Tax Planner that learns to allocate Pigovian tax and
allowance rates by maximizing the long-term global rewards; (2) A reward shaping mechanism
based on the learned tax/allowance allocation policy that internalizes each agent’s externality, thereby
aligning individual incentives with social welfare and effectively addressing social dilemmas. LOPT

update

Joint
Action

Reward Function

...

Local Observation

Pigavian Tax
Update

Social
Welfare

Figure 3: The Architecture of the LOPT. The centralized agent Tax planner allocate the Pigovian
tax/allowance within a functional percentage formulation. Reward shaping is established based on
the Pigovian tax/allowance to alleviate the social dilemmas.

is designed to learn the Optimal Pigovian Tax reward shaping described in (7) to internalize each
agent’s social cost. The Pigovian tax rewards is reformulated as:

F i
∗
(
st,at−i

∗
, ati

)
=
∑N

j=0 rj
(
st,at

∗)−∑N
j=0 r

j
(
st,at−i

∗
, ati

)
.

Pigovian tax reward shaping within percentage tax/allowance is formulated as:

F i
θ,δ

(
st,at−i

∗
, ati

)
= −θiri

(
st,at−i

∗
, ati

)
+ δi(s

t,at)

N∑
j=0

θjrj

(
st,at−i

∗
, ati

)
,

where θ represents the tax rates for all agents, θi is the specific tax rate for agent i, while δ denotes
the allowance rates for all agents, and δi is the specific allowance rate for agent i. The Optimal
Pigovian Tax reward shaping can be learned by determining appropriate values for θ and δ, such
that each F i

θ,δ

(
st,a−it∗, ati

)
equals F i ∗

(
st,at−i

∗
, ati

)
. However, since tax and allowance rates

vary among different agents in different situations, it is necessary to represent θ and δ as functions
of the current joint state and action. Therefore, the Pigovian tax reward shaping within percentage
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tax/allowance is reformulated as:

F i
θ,δ

(
st,at−i

∗
, ati

)
= −θi(st,at)ri

(
st,at−i

∗
, ati

)
+ δi(s

t,at)

N∑
j=0

θj(s
t,at)rj

(
st,at−i

∗
, ati

)
.

Theorem 1. If other agents’ actions are treated as part of the environment for any agent i at any
timestep t, there always exists typical θi(st,at) and δi(s

t,at) to let the F i
θ,δ

(
st,at−i

∗
, ati

)
equal to

the F i
∗
(
st,at−i

∗
, ati

)
.‡

This theorem shows that the Pigovian tax reward shaping within percentage tax/allowance can reach
the optimum in a specific condition. The theorem is proven in Appendix. B. The reward shaping
function could be treated as follows:

F i
θ,δ (s

t,at) = F i
θ,δ

(
st,at−i

∗
, ati

)
.

The central challenge is how to learn appropriate tax and allowance rate functions. As shown in
Figure 3, we address this by introducing a centralized tax planner that treats tax and allowance rate as
its action space and learns to maximize social welfare. The optimal Pigovian tax based on reward
shaping is applied to internalize each agent’s externality and solve the social dilemmas. In this form,
the tax planner aims to learn the tax rates θ and allowance rates δ for all agents within the MARL
task.
Theorem 2. If the interactive influences from other agents are not considered, when the policy of
tax planner ⟨θi (st,at) , δi (st,a)⟩ maximizes the social welfare, the typical F i

θ,δ

(
st,at−i

∗
, ati

)
will

qualitatively equivalent to the F i
∗
(
st,at−i

∗
, ati

)
.

Theorem 2 provides a key theoretical foundation for our approach, demonstrating that training the
tax planner as a centralized reinforcement learning agent to maximize total social welfare implicitly
approximates the optimal Pigovian tax. This theoretical equivalence is particularly significant, as it
implies that LOPT can explicitly quantify externalities in MARL by capturing social dilemmas
and internalize the broader societal impacts of self-interested agent behavior. In doing so, it directly
addresses the core challenge of resolving social dilemmas in multi-agent reinforcement learning, as
outlined in this paper. The complete proof is presented in Appendix B.

Guided by this insight, we formalize the tax planner as a reinforcement learning agent defined by the
tuple ⟨Sp,Op,Ap,Rp⟩, where at each timestep t: (1). The planner observes the global state and all
agents’ joint actions otp = ⟨st,at⟩; (2). selects taxes and allowances for agents atp = ⟨θt, δt⟩;(3).
receives a reward equal to the sum of all agents’ rewards, rtp. Thus, the tax planner optimizes the
cumulative social welfare:

max
πp

Jp := Eπp

[∑
t = 0T rp(o

t
p, a

t
p)
]
.

In short, by leveraging reinforcement learning to maximize social welfare, our method implicitly
derives and implements optimal Pigovian tax-based reward shaping—providing a principled and
practical solution to accurately quantify and mitigate social dilemmas in MARL.

In the training process, we use the approximated state-action function Qp(op, ap) to replace the
cumulative reward rp(o

t
p, a

t
p), and the objective function then becomes:

maxπp
Jp := Eπp

[Q (op, ap)] .

Typically, a policy gradient-based optimization [31] method is applied to train the tax planner. The
gradient loss is therefore defined as follows:

L(ϕp) = E
π
ϕp
p

[
∇

π
ϕp
p

log πp

(
atp

∣∣ otp)Qp,πp
ϕp

(
otp, a

t
p

)]
,

where the tax planner’s policy function parameters are represented by ϕp. Additionally, to maintain
balance between tax and allowance, the tax planner needs to minimize the following entropy f(πp)
during the learning process:

f(πp) =
∣∣∣∑T

t=0

∑T
i=0 F

i
θ,δ

(
ot,at−i

∗
, ati

)∣∣∣ ,
‡Here we assume that the tax only occurs when the agent i get an reward ri ̸= 0, because in reinforcement

learning, its profit will only be shown in the step where r ̸= 0.
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As a result, the gradient loss L (ϕp) can be denoted as:

E
π
ϕp
p

[
∇

π
ϕp
p

log πp

(
atp | otp

)
Qp,π

ϕp
p

(
otp, a

t
p

)]
+ ηf

(
πϕp
p

)
, (9)

where η is a hyperparameter weighting the entropy f(πp).

In light of the learning process of the tax planner, other general agents are trained using the approxi-
mated Optimal Pigovian Tax reward shaping as follows:

L (ϕi) = E
π
ϕi
i

[
∇

π
ϕi
i

log πi (ai | s) Q̂i,π
ϕi
i (s,a)

]
, (10)

where function Q̂i,π
ϕi
i (s,a) is defined as

ri(s,a) + F i
(
s,a−i∗ , ai

)
+ γmaxa′ Q̂i,π

ϕi
i (s′,a′) .

The typical learning process of LOPT is outlined in Algorithm 1 (Appendix), and its performance is
demonstrated through experiments in the Escape Room and Cleanup environments.

4 Experiment

Environments We conduct experiments on both the ESCAPE ROOM [50] and the CLEANUP [15]
environments, the details are summarized as follows:

-1-1 -1 -1

-1 -1+10

(a) Escape Room (N = 3,M = 2)

Agents

Cleaning 
Beam

Apple

Waste

River

(b) Cleanup(N = 5)

Figure 4: Environment Examples

Escape Room (ER): In an Escape Room game ER(N , M ), where N > M , N agents as players aim
to escape from the room (Figure 4(a)). In this environment, there are 3 available states: door, lever,
and start (the initial state), where agents are able to take actions to keep or change their states. An
agent is able to open the door, then receive an extrinsic reward of +10, and end the current episode if
and only if no less than M other agents pull the lever. Otherwise, agents will receive an extrinsic
penalty of −1 for making any state change. When agents try to maximize their rewards egoistically,
they tend to stay in current positions to avoid punishments or move to the door and wait for others to
pull the lever that will never happen, which creates a social dilemma. In our experiments, settings of
(N = 2,M = 1) and (N = 3,M = 2) are applied.

Cleanup: In a Cleanup game with N agents (Figure 4(b)), agents get an extrinsic reward of +1 by
harvesting an apple and aim to collect as many apples as possible. Apples are spawned at a variable
rate, which decreases linearly as the aquifer fills with waste over time. If the waste density reaches
the depletion threshold, no more apples will spawn, so agents must clean waste without any extrinsic
reward, creating a social dilemma. At each timestep t, agents observe their surroundings as an image
and perform one of the following actions:{

move left, move right, move up, move down, stay,
rotate clockwise, rotate counterclockwise, fire cleaning beam

}
,

where the move” / rotate” actions change the positions/directions of agents in the map, the stay”
action waits at the original positions and does nothing, and the fire cleaning beam” action allows
agents to fire cleaning beams (with width 3) to clean wastes (the beam cannot penetrate wastes). To
verify how the proposed LOPT resolves the social dilemma, we initialize each episode with sufficient
wastes and no spawned apple, then experiment with N = 2 on a 7× 7 map and a 10× 10 map, where
the latter applies lower depletion threshold and apple respawn rate. Finally, a more complex scenario
of N = 5 Cleanup games with a larger 18× 25 map and a much lower apple respawn rate is used to
explore the generalizability and scalability of our proposed method.
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Implementation and Baselines We compared several baseline approaches in our experiments.
First, we evaluated standard reinforcement learning algorithms including Policy Gradient (PG) for
Escape Room, and Actor-Critic (AC) along with Proximal Policy Optimization (PPO) for Cleanup.

We then examined state-of-the-art methods for addressing social dilemmas: LIO [50] and its decen-
tralized variant LIO-dec, which learn to incentivize cooperation through reward-sharing; Inequity
Averse (IA) [15], which promotes cooperation via inequity-averse social preferences; Model of Other
Agents (MOA) [17], which uses counterfactual reasoning to model agent interactions; and Social
Curiosity Module (SCM) [14], which combines curiosity and empowerment rewards.

For specific environments, we implemented various method combinations. In Escape Room, we
compared LIO, LIO-dec, and Policy Gradient variants with discrete and continuous reward-giving
actions (PG-d/c). The Cleanup(N = 2) evaluation included LIO, IA, MOA, SCM, and Actor-Critic
variants (AC-d/c), while the more complex Cleanup(N = 5) scenario focused on MOA and SCM.
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Figure 5: Results on Escape Room Environment. (5(a), 5(b)) shows the learning curves of the
proposed LOPT; which converges to the optimum and successfully solves the Escape Room social
dilemmas. (5(c), 5(d)) shows LOPT is able to end the episode in a single 1 step without any betrayal.
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(b) N = 2, (10× 10)
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Figure 6: Results on Cleanup Environment. (6(a), 6(b)) shows the learning curves for the proposed
LOPT in Cleanup(N = 2); (6(c)) shows the learning curves for the proposed LOPT in Cleanup(N =
2) with the fixed-orientated assumption. (6(d)) scales to a more complex environment with N = 5.
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Figure 7: Rewards for Each Agent with Different Behaviors in Escape Room Environment. LOPT
internalizes externalities and redistributes rewards among agents with taxes and allowances.
Results Our experiments demonstrate that the proposed LOPT successfully resolves social dilem-
mas by approximating externalities among agents in MARL problems and modeling the optimal
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Pigovian tax reward shaping. This approach internalizes the externalities, enabling convergence
toward optimal solutions even in complex scenarios. In both Escape Room and Cleanup environments,
LOPT implements effective tax/allowance schemes and redistributes rewards among agents, thereby
internalizing externalities and guiding agents to develop social-good behaviors (both cooperative and
competitive), which significantly accelerates learning curves. Additionally, compared to baseline
methods, the internalized externalities in our proposed LOPT result in fewer betrayals, leading to a
more stable learning process.

Escape Room. In both ER(N = 2,M = 1) and ER(N = 3,M = 2) settings, Figures 5(a) and 5(b)
demonstrate that LOPT rapidly converges to optimal values (8 and 9 respectively) by leveraging
optimal Pigovian tax incentives. PG agents completely fail due to selfish optimization, while PC-d/c
agents exhibit high variance and suboptimal performance. Although LIO and LIO-dec achieve
near-optimal results, they display instability and betrayal-related fluctuations are absent to LOPT. The
optimal solution requires only 1 step (M agents pull levers, N −M open door). Figures 5(c) and 5(d)
confirm that LOPT consistently achieves this efficiency, unlike other methods. Figure 7 reveals
the underlying mechanism: LOPT taxes "Winner" agents (those creating negative externalities)
and rewards "Cooperator" agents (those generating positive externalities), effectively internalizing
externalities through Pigovian incentives.
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Figure 8: An Example Rollout for Cleanup(N = 5) Environment. (8(a)) visualizes this example
rollout, where agents apply different social-good behaviors and divisions of laborers (cleaner, har-
vester, and part-time) emerge. (8(b)) shows the approximated optimal Pigovian tax reward shaping
by the proposed LOPT. (8(c)) shows the reward shaping process of the LOPT in this episode, which
demonstrates how the LOPT internalizes externalities for agents with different socially contributed
behaviors.

Cleanup. We evaluate LOPT on Cleanup with both simple (N = 2) and complex (N = 5)
scenarios. For N = 2, we remove LIO’s rotation-action restriction, testing on 7 × 7 and 10 × 10
maps. Figures 6(a) and 6(b) show LOPT achieves near-optimal social welfare, while LIO fails
to learn efficient policies. AC-d performs well on 7 × 7 but poorly scales to 10 × 10. Other
baselines reach near-optimum on 7 × 7, but IA and AC-c degrade severely on 10 × 10 compared
to AC, PPO, SCM, and MOA. Even with fixed-orientation (Figure 6(c)), LOPT maintains stable
performance by properly internalizing externalities, while LIO shows instability due to potential
incentive misalignment. We then compare the proposed LOPT with PPO, SCM, and MOA baselines,
which have shown better scalability, in the more complex Cleanup(N = 5) scenario, where an
18× 25 large map and applied apple respawn rate are applied. Figure 6(d) shows that our proposed
LOPT is able to scale to more complex scenarios and internalize the approximated externalities
by learning optimal Pigovian tax reward shaping, which effectively helps agents to learn in social
dilemmas. To demonstrate how LOPT estimates externalities and influences agent behaviors, we
analyze their actions and reward redistribution. Figure 8(a) shows a Cleanup game with N = 5
agents: Initially, agents 1, 2, and 4 clean waste (exceeding the depletion threshold) to accelerate apple
spawning. Agent 4 becomes a full-time cleaner while agent 1 transitions to part-time harvesting.
Agent 2 becomes another part-timer, balancing harvesting with waste cleaning, while agents 0 and
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3 remain full-time harvesters. LOPT naturally induces labor specialization (cleaners, harvesters,
and part-timers) by internalizing externalities, effectively addressing the social dilemma. Figure 8(c)
reveals the mechanism: Harvesters (0, 3) pay heavy taxes for negative externalities; part-timers (1, 2)
receive allowances for cleaning but pay taxes for harvesting; cleaner 4 gains substantial allowances
for positive externalities. The system provides near-optimal Pigovian tax incentives (Figure 8(b)) to
guide agents toward superior outcomes. Additional results appear in Appendix D.3.

5 Conclusion

In this paper, we introduce externality theory to measure the influence of agents’ behavior on social
welfare. Based on this theoretical foundation in the MARL domain, we propose the Learning Optimal
Pigovian Tax method to address social dilemmas. We construct a centralized agent, Tax Planner,
which learns the tax/allowance allocation policy for each agent. Through Optimal Pigovian Tax reward
shaping, each agent’s externality is internalized, encouraging behaviors that benefit social welfare. Our
experiments demonstrate the superiority of the proposed mechanism in alleviating social dilemmas in
MARL. For future work, we aim to develop a decentralized Pigovian tax/allowance mechanism to
learn reward shaping that internalizes agents’ externalities while reducing computational complexity.
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A Related Work

Our work, LOPT, is motivated by the challenge of fostering cooperation among independently
learning agents in intertemporal social dilemmas (ISDs) [22]. In ISDs, agents pursue individual
long-term returns, but mutual defection often leads to suboptimal collective outcomes and degraded
social welfare over time.

A.1 Limitations of Conventional MARL in ISDs

Conventional Multi-Agent Reinforcement Learning (MARL) algorithms designed for fully coop-
erative tasks [13, 41, 38, 24, 25, 10] struggle with ISDs due to their assumption of aligned agent
incentives. In contrast, ISDs feature mixed motivations, where agents’ local optima may conflict with
collective well-being.

Several approaches attempt to address this by incorporating reward shaping or intrinsic motivation [12,
15, 47]. However, these methods often rely on hand-crafted heuristics or evolution-based adaptations
to other agents’ behaviors, limiting generality and scalability. More recent approaches, like LIO [50],
enable agents to learn incentives for others, while some studies explore mechanism or information
design [27] in fully cooperative contexts. Yet, these methods typically lack a unified economic
rationale for shaping rewards.

A.2 Externality Theory and Economic Inspiration

LOPT is grounded in externality theory [30], which provides a principled framework for aligning
individual incentives with social welfare—a central challenge in ISDs. In both non-market [1] and
market economies [35], various mechanisms have been developed to internalize externalities, such as
the Pigovian tax [5], which penalizes behaviors that impose social costs.

Our approach adopts a learning-based Pigovian tax framework to shape agent incentives and mitigate
negative externalities. This aligns with economic findings that reward structures significantly influence
cooperative behavior in repeated settings. For instance, [39] demonstrates that limited feedback
and longer interaction horizons promote cooperation in human queueing systems, emphasizing
the role of information and interaction design. Similarly, [4] shows that optimal mechanisms in
competitive markets are sensitive to network structures, reinforcing the importance of structural
design in multi-agent coordination.

Moreover, [33] highlights the theoretical interchangeability of taxes and subsidies under certain
conditions, broadening the space of policy tools for influencing agent behavior. While LOPT focuses
on tax-based shaping, its theoretical foundation can naturally extend to subsidy schemes depending
on fairness or implementation considerations.

Our design also draws structural inspiration from the AI Economist [51], employing a two-stage ar-
chitecture to learn tax policies. However, LOPT specifically targets ISDs in MARL and distinguishes
itself by leveraging externality theory to inform its reward shaping paradigm.

A.3 Structural Solutions to ISDs: Centralized vs. Decentralized

Beyond reward shaping, recent work has explored structural interventions for ISDs, drawing parallels
to economic governance models. These can be categorized into:

• Centralized boundaries [9, 16], which emulate government-like authorities to regulate
agent behavior.

• Decentralized sanctions [3, 20, 48, 45, 11], which enable agents to punish others for
socially harmful behavior.

LOPT follows the centralized boundaries paradigm, introducing a centralized tax planner that learns
to enforce Pigovian taxes based on global observations. Unlike previous centralized approaches, such
as [9], which uses arbitrary allocation for shared resources, or [16], which introduces a fixed tax
mechanism, LOPT learns a dynamic tax policy tailored to the environment. Furthermore, our method
is theoretically supported by externality theory, providing a principled foundation for shaping agent
behavior.
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B Proof

Theorem 1. If other agents’ actions are treated as part of the environment for any agent i at any
timestep t, there always exists typical θi(st,at) and δi(s

t,at) to let the F i
θ,δ

(
st,at−i

∗
, ati

)
equal to

the F i
∗
(
st,at−i

∗
, ati

)
.

Proof. We make classified discussions for any agent i create negative externality, agent i create
positive externality. For any agent i which creates a negative externality at timestep t: the agent will
not receive any allowance, so the allowance rate function δi(s

t, ati) is equal to 0. And the tax rate can
be written as:

θi(s
t, ati, a

t
−i

∗
) =

Ei(st, at−i
∗
, ati)

ri(st, ati, a
t
−i

∗
)
, (11)

θi(s
t, ati, a

t
−i

∗
) =

Q(st,at
∗
)−Q(st, at−i

∗
, ati)

ri(st, ati, a
t
−i

∗
)

(12)

And as the interactive influence from other agents is not considered, other agents’ optimal action
at−i

∗ can be seen as a part of the environment, and this optimum has a fixed result. Therefore, like the
reinforcement learning method with an advantage function, for each agent i, the advantage function
based on the current joint state and action can also be found in the tax rate, where:

Q(st,at
∗
) = A0

i (s
t,at)×Q(st,at),

Q(st, at−i
∗
, ati) = A1

i (s
t,at)×Q(st,at),

ri(s
t, ati, a

t
−i

∗
) = A2

i (s
t,at)× ri(s

t,at).

(13)

Then the tax rate for agent i becomes:

θi(s
t, ati, a

t
−i

∗
) =

(A0
i (s
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i (s

t,at))×Q(st,at)
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,

θi(s
t,at) =

(A0
i (s
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i (s
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(14)

Then it is proven that for any agent i which generates negative externality, there always exists typical
θi(s

t,at) and δi(s,a
t) to let the F i

θ,δ

(
st,at−i

∗
, ati

)
equivalent to the F i

∗
(
st,at−i

∗
, ati

)
.

Similarly, for any agent i which generates positive externality, there also exists typical θi(st,at) and
δi(s

t,at) to satisfy the condition above.

This proves that if the interactive influence from other agents is not considered, for any agent i at any
timestep t, there always exists typical θi(st,at) and δi(s,a

t) to let the F i
θ,δ

(
st,at−i

∗
, ati

)
equivalent

to the F i
∗
(
st,at−i

∗
, ati

)
.

Theorem 2. If the interactive influences from other agents are not considered, when the policy of
tax planner ⟨θi (st,at) , δi (st,a)⟩ maximizes the social welfare, the typical F i

θ,δ

(
st,at−i

∗
, ati

)
will

qualitatively equivalent to the F i
∗
(
st,at−i

∗
, ati

)
.

Proof. Here we use the method of "reduction to absurdity." Suppose that there exists an agent i which
generates negative externality, and the learned F i

θ,δ

(
st,at−i

∗
, ati

)
does not qualitatively equivalent to

the F i
∗
(
st,at−i

∗
, ati

)
. The reason why agent i will choose the selfish behavior which harms social

welfare without reward shaping is because its individual reward shows:

ri(s
t, at−i

∗
, ati) > ri(s

t,at
∗
). (15)

And the effect of the Optimal Pigovian Tax reward shaping is to let any ati ∈ Ai hold the following
constraint:

ri(s
t, at−i

∗
, ati) + F i

θ,δ(s
t, at−i

∗
, ati) < ri(s

t,at
∗
). (16)

As we suppose that its typically learned reward shaping does not qualitatively equivalent to the
Optimal Pigovian Tax reward shaping. That means there exists some ati ∈ Ai, which causes:

ri(s
t, at−i

∗
, ati) + F i
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∗
, ati) > ri(s

t,at
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). (17)
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This means agent i within its optimal policy π∗
i would like to choose the behavior ati rather than the

behavior in optimal joint actions at∗. Then if we use the tax planner’s learned policy π
ϕp
p to describe

the tax rate allocation, which means there exists another tax planner’s policy π∗
p , letting:

E
π
ϕp
p

[
T∑

t=0

rp
(
stp, a

t
p

)]
< Eπ∗

p

[
T∑

t=0

rp
(
stp, a

t
p

)]
. (18)

Thus we have shown that if any learned reward shaping of agent i is not qualitatively equivalent to
the Optimal Pigovian Tax reward shaping, the tax planner’s learned policy is not optimal.

C Algorithm

Algorithm 1 LOPT: Learning Optimal Pigovian Tax

1: Initialization: all general agents’ policy parameters {ϕi}, tax planner’s policy parameters ϕp;
2: for each iteration do
3: Generate a joint state-action trajectory with shaped rewards and tax/allowance rates as {τ};
4: for each state-action pair with shaped reward for each agent i, i.e., ⟨si,a, ri + Fi⟩ in {τ} do
5: Compute the new ϕ̂i by gradient ascent on (10);
6: end for
7: for each tax planner state-action pair with global reward ⟨op, ap, rp⟩ in {τ} do
8: Compute the new ϕ̂p by gradient ascent on (9);
9: end for

10: ϕi ← ϕ̂i, ϕp ← ϕ̂p, for all i ∈ N.
11: end for
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D Experiment

D.1 Implementations

The policy and value functions in LOPT are implemented as neural networks (detailed architecture
provided in Appendix. D.2). Training is conducted on a virtual machine hosted on a GPU server
equipped with four NVIDIA GTX 2080 Ti GPUs, a 24-core CPU, and 32 GB of DRAM.

We implemented the LOPT in both Escape Room and Cleanup environments. At each timestep t, the
global observation otglobal from the joint state st, and the joint action at are fed to the tax planner
as input. To better handle our challenging environments, we provide a “bank” variable to the tax
planner to save rewards from taxes as available budgets for allowances, which supports the more
sophisticated tax/allowance mechanism. Then, the current bank state otbank and joint reward rt are
also introduced to the observation:

otp =
〈
otglobal,a

t, otbank, rt
〉
.

The tax planner outputs the joint tax rate θt and the joint allowance rate δt. In addition, the tax
planner outputs. Also, it outputs a percentage for rewards withdrawn from the bank as the budget
ratio abankt . So, the action for the current time step is:

apt =
〈
θt, δt, atbank

〉
.

In addition, the entropy f(πp) is weighted by a hyperparameter η in (9) Concretely, in both en-
vironments with N agents, otbank and at are scalers, while at, rt, θt and δt are N dimensional
vectors. In the Escape Room games, the tax planner agent observes a multi-hot vector global states
otglobal ∈ {0, 1}d from the joint state st, where d = 3N . And in the Cleanup games, the global
observation otglobal is the global visual normalized RGB observation with the same width and height
of the applied map.

In the Escape Room environment, the policy network for the tax planner is defined as follows: 1). a
dense layer h11 of size 64 takes otglobal as input and 3 dense layers h1i, i = 2, 3, 4 of size 32 for at,
otbank, and rt respectively; 2). the outputs of dense layers h1i, i = 1, 2, 3, 4 are concatenated and fed
to a dense layer h2 of size 32; 3). the output of dense layer h2 is fed to 3 dense layers h3i, i = 1, 2, 3
of sizes 1, N , N and activation functions sigmoid, sigmoid, softmax, then output as abankt , θt, δt
respectively. While in the Cleanup environment, the policy network for the tax planner is defined as
follows: 1). the global observation otglobal is firstly fed to a convolutional layer conv1 of kernel size
3× 3, stride 1 and 6 filters; 2). the output of the convolutional layer conv1, at, otbank, and rt are fed
to 4 two-layer dense layers h2i, i = 1, 2, 3, 4 of size 32 and 32 respectively; 3). the outputs of dense
layers h2i, i = 1, 2, 3, 4 are concatenated and fed to an LSTM of cell size 128; 4). at last, the output
of the LSTM is fed to the dense layers and output as abankt , θt, δt respectively.

The settings of hyperparameters for baselines follow their previous work [15, 17, 50, 14]. For all
experiments, the tuned hyperparameters of all baselines and LOPT are given in Table. 2-4 in the
appendix D.2, where: α is the learning rate; αschedule is a list that contains the step and weight pairs
for the learning rate scheduler; η is the weight for the entropy f(πp); ϵ in [50] decays linearly from
ϵstart to ϵend by ϵdiv episodes; β is coefficient for the entropy of the policy.
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D.2 Hyperparameter

Parameters N = 2,
7× 7 map

N = 2,
10× 10 map

N = 2, 10× 10
map fixed orientations

N = 5,
18× 25 map

appleRespawnProbability 0.5 0.3 0.3 0.05
wasteSpawnProbability 0.5 0.5 0.5 0.5

thresholdDepletion 0.6 0.4 0.4 0.4
thresholdRestoration 0.0 0.0 0.0 0.0

rotationEnabled ✓ ✓ ✗ ✓
view_size 4 7 7 7
max_steps 50 50 50 1000

Table 1: Experiment Settings for Cleanup Environment.

Hyperparameters N = 2 N = 3
PG PG-d PG-c LIO LIO-dec LOPT PG PG-d PG-c LIO LIO-dec LOPT

α 1e−4 1e−4 1e−3 1e−4 1e−4 1e−3 1e−4 1e−4 1e−3 1e−4 1e−4 1e−3
η - - - - - 0.95 - - - - - 0.95

ϵstart 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5
ϵend 0.05 0.05 0.1 0.1 0.1 0.05 0.05 0.05 0.1 0.3 0.3 0.05
ϵdiv 100 100 1000 1000 1000 100 100 100 1000 1000 1000 100
β 0.01 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0.1 0.01 0.01 0.01

Table 2: Hyperparameter Settings for Escape Room Environment.

Hyperparameters 7× 7 map 10× 10 map
AC AC-d AC-c IA LIO PPO MOA SCM LOPT AC AC-d AC-c IA LIO PPO MOA SCM LOPT

α 1e−3 1e−4 1e−3 1e−3 1e−4 2.52e−3 2.52e−3 2.52e−3 2.52e−3 1e−3 1e−3 1e−3 1e−3 1e−4 1.26e−3 1.26e−3 1.26e−3 2.52e−3
αschedule - - - - - [ (5e5, 1.26e−3), (2.5e6, 1.26e−4) ] - - - - - [ (1e7, 1.26e−4) ] [(5e5, 1.26e−3), (1e7, 1.26e−4)]

η - - - - - - - - 0.95 - - - - - - - - 0.95
ϵstart 0.5 0.5 0.5 0.5 0.5 - - - - 0.5 0.5 1.0 0.5 0.5 - - - -
ϵend 0.05 0.05 0.05 0.05 0.05 - - - - 0.05 0.05 0.05 0.05 0.05 - - - -
ϵdiv 100 100 100 1000 100 - - - - 5000 1000 1000 5000 1000 - - - -
β 0.1 0.1 0.1 0.1 0.1 1.76e−3 1.76e−3 1.76e−3 1.76e−3 0.01 0.01 0.1 0.01 0.01 1.76e−3 1.76e−3 1.76e−3 1.76e−3

Table 3: Hyperparameter Settings for Cleanup(N = 2) Environment.

Hyperparameters PPO MOA SCM LOPT
α 1.26e−3 1.26e−3 1.26e−3 1.26e−3

αschedule [ (2e7, 1.26e−4), (2e8, 1.26e−5) ] [(2.5e7, 1.26e−4)]
η - - - 0.95
β 1.76e−3 1.76e−3 1.76e−3 1.76e−3

Table 4: Hyperparameter settings for Cleanup(N = 5).
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D.3 Addtional Experiment Results

In this section, additional results from experiments will be demonstrated. As illustrated in Figure. 9-12,
our proposed LOPT is able to internalize externalities in all of our Cleanup experiment settings and
provide approximated optimal Pigovian tax reward shaping to greatly alleviate the social dilemmas.
And for Cleanup(N = 5) environment, we further show the relationship among the environmental
states of the numbers of apples and wastes and the tax/allowance schemes given by the LOPT, where
proper tax/allowance schemes are given for agents with different socially contributed behaviors in
Figure 13(a), Figure 13(b), and Figure 13(c) Also, Figure. 13(d) shows that the LOPT encourages
agents to clean wastes efficiently and maintains the density of wastes at a relatively low level so that
the apples are spawned at a relatively high rate. Also, we provide visualized and analyzed results
from example rollouts in Cleanup(N = 2) with both the 7× 7 and the 10× 10 maps.
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Figure 9: An Example Rollout for Cleanup(N = 2) Environment with A 7× 7 Map.
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Figure 10: An Example Rollout for Cleanup(N = 2) Environment with A 10× 10 Map.
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Figure 11: Number of Apples and Wastes in the Environment
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Figure 12: An Example Rollout for Cleanup(N = 2) Environment with A 10× 10 Map and Fixed
Orientations.
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Figure 13: An Example Rollout for Cleanup(N = 5) Environment, supplemental results for Figure 8.
(13(a), 13(b), 13(c)) illustrate relationship of environmental states (the number of apples/wastes)
and the tax/allowance schemes given by the LOPT for 3 types of agents with different socially
contributed behaviors. (13(d)) shows the amount for apples and wastes during the episode.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claim made in abstract and introduction is that we introduce external-
ities to denote to quantify social dilemmas in MARL and LOPT is proposed to internalize
externalities and solve social dilemmas.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of the work in section. 5 as our work is centralized
so it is necessary to reduce computational complexity.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the proof in Appendix. B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementations in appendix. D.1 and the hyperparameter in
appendix. D.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Due to limited time, the code has not been sorted out yet.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental setting/details are provided in Appendix. D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We use the 95% confidence interval to show the learning curve.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources are reported in this Appendix. D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is conducted with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers or websites that produced the code package or
dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper doesn’t release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM does not impact the core methodology, scientific rigorousness, or
originality of the research in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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