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Abstract
We show that state-of-the-art self-supervised
language models can be readily used to ex-
tract relations from a corpus without the need
to train a fine-tuned extractive head. We
introduce RE-Flex, a simple framework that
performs constrained cloze completion over
pretrained language models to perform un-
supe rvised relation extraction. RE-Flex uses
contextual matching to ensure that language
model predictions matches supporting evi-
dence from the input corpus that is relevant to a
target relation. We perform an extensive exper-
imental study over multiple relation extraction
benchmarks and demonstrate that RE-Flex out-
performs competing unsupervised relation ex-
traction methods based on pretrained language
models by up to 27.8 F1 points compared to
the next-best method. Our results show that
constrained inference queries against a lan-
guage model can enable accurate unsupervised
relation extraction.

1 Introduction

Relation extraction is a fundamental problem in
constructing knowledge bases from unstructured
text. The goal of relational extraction is to identify
mentions of relational facts (i.e., binary relations
between entities of interest) in a text corpus. Tradi-
tionally, relation extraction systems leverage super-
vised machine learning approaches to train special-
ized extraction model for different relations (Dong
et al., 2014; Shin et al., 2015). However, advances
in natural language understanding models, and
specifically contextual models such as BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019),
have shifted the focus towards general relation ex-
traction where a single natural language model is
used for extraction across different relations (Levy
et al., 2017).

A key idea behind general relation extraction
is to leverage question answering (QA) models

and use the reading comprehension capabilities of
modern natural language models to identify rela-
tion mentions in text. For example, the relation
drafted by can be completed for the subject
Stephen Curry by answering the question Who
drafted Stephen Curry? State-of-the-art
results, here, leverage fine-tuned QA models over
self-supervised contextual representations (Devlin
et al., 2018; Radford et al., 2018). Initial ap-
proaches (Levy et al., 2017) learn these extrac-
tive QA models by exploiting annotated question-
answer pairs and following a supervised setting.
While effective in domains related to the annotated
question-answer data, supervised extractive QA
approaches can fail to generalize to new domains
for which annotations are not available (Dhingra
et al., 2018). For this reason, more recent ap-
proaches (Lewis et al., 2019) propose to use auto-
matically generated question-answer pairs for train-
ing and adopt a weakly-supervised setting (Lewis
et al., 2019). However, noisy or inaccurate training
data leads to a significant drop in performance.

In this work, we revisit the problem of general
relation extraction and show that one can perform
unsupervised relation extraction by directly using
the generative ability of self-supervised contex-
tual language models and without training a fine-
tuned QA model. We build upon the recent obser-
vation that modern language models encode the
semantic information captured in text and are ca-
pable of generating answers to relational queries
by answering cloze queries that represent a rela-
tion (Petroni et al., 2019). For instance, the previ-
ous extraction example can be transformed to the
cloze query Stephen Curry was drafted
by [MASK] and the language model can be used
to predict the most probable value for the masked
token. Further, recent works (Radford et al., 2019;
Petroni et al., 2020) shows that prefixing cloze
queries with relevant information, i.e., relevant
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context, can improve extraction accuracy by uti-
lizing the models’ reading comprehension ability
(Radford et al., 2019; Petroni et al., 2020). While
promising, we show that an out-of-box application
of these methods to general relation extraction falls
short of extractive QA models. The core limitation
is that of factual generation: language models do
not memorize general factual information (Petroni
et al., 2019), and are liable to predict off-topic or
non-factual tokens (See et al., 2017).

We proposed a novel two-pronged approach that
ensures factual predictions from a contextual lan-
guage model. First, given an extractive relational
cloze query and an associated context, we propose
a method to restrict the model’s answer to the query
to be factual information in the associated context.
Our methods introduces a context-constrained in-
ference procedure over language models and does
not require altering the pre-training algorithm. The
method relies on redistributing the probability mass
of the language model’s initial prediction to to-
kens only present in the context. By restricting
the model’s inference to be present in the context,
we ensure a factual response to a relational cloze
query. This strategy is similar to methods used
in unsupervised neural summarization (Zhou and
Rush, 2019) to ensure factual summary generation.
Second, we introduce an unsupervised solution to
determining whether the context associated with
the query contains an answer to a relational query.
We propose an information theoretic scoring func-
tion to measure how well a relation is represented
in a given context, then cluster contexts into “ac-
cept” and “reject” categories, denoting whether the
contexts express the relation or not.

These are the two components of our unsuper-
vised relation extraction system, RE-Flex. We show
that RE-Flex enables fully unsupervised relation ex-
traction using self-supervised language models. We
present an extensive experimental evaluation of RE-
Flex against state of the art general relation extrac-
tion methods across several settings. We demon-
strate that RE-Flex outperforms methods that rely
on weakly supervised QA models (Dhingra et al.,
2018; Lewis et al., 2019) by up to 27.8 F1 points
compared to the next-best method, while it can
even outperform methods that rely on supervised
QA models (Levy et al., 2017) by up to 12.4 F1

points in certain settings. Our results demonstrate
that by constraining language generation, RE-Flex
yields accurate unsupervised relation extractions.

2 Related Work

Typical relation extraction relies on rule-based
methods (Soderland et al., 1995) and supervised
machine learning models that target specific re-
lation types (Hoffmann et al., 2011; Dong et al.,
2014; Shin et al., 2015). These approaches are lim-
ited to predefined relations and do not extend to
relations that are not specified during training. To
alleviate this problem, open information extraction
(OpenIE) (Banko et al., 2007) proposes to repre-
sent relations as unstructured text. However, in
OpenIE different phrasings of the same relation
can be treated as different relations, leading to re-
dundant extractions. To address this issue, Uni-
versal Schema (Riedel et al., 2013) uses matrix
factorization to link OpenIE relations to an existing
knowledge base to distill extracted relations.

More recently, question answering has become
a popular method to extract spans from text. Levy
et al. (2017) showed that casting relation extrac-
tion as a QA problem can enable new, unseen re-
lations to be extracted without additional training.
Advances in large self-supervised language mod-
els (Radford et al., 2018) have enabled QA mod-
els to achieve human level performance on some
datasets (Rajpurkar et al., 2016). Because these
models are trained on a slot-filling objective, there
has been a branch between methods that use a QA
head to extract spans from input, and methods that
use token generation capability of language mod-
els to perform information extraction. Both are
relevant to our work.

Many QA-based methods have been proposed to
identify spans from text. Das et al. (2018) present
a reading comprehension model based on the archi-
tecture of Chen et al. (2017) to track the dynamic
state of a knowledge graph as the model reads the
text. Li et al. (2019) proposes a multi-turn QA sys-
tem to extract relational fact triplets. Xiong et al.
(2019) maps evidence from a knowledge base to
natural language questions to improve performance
in the general QA setting. Most relevant QA sys-
tems to our work are the recent works of Lewis et al.
(2019) and Dhingra et al. (2018), which propose
weak supervision algorithms to generate QA pairs
over new corpora, and train models on these QA
pairs.

There are also many generative methods that
rely only on a language model to generate the an-
swer to queries. Radford et al. (2019) show that
self-supervised language models can generate an-
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[X] was created by [Y]

Cloze Template

Candidate Context-Entity pairs
Input per relation

RE-Flex Framework

- Score candidate contexts using given template
2. Context Rejection

- Reject bottom portion of score distribution

3. Relation Extraction

- Expand the anchor token to include descriptors

- Use language model to obtain prediction distribution
- Smooth prediction distribution over context tokens

Output per relation
ObjectSubject

Henry 
Moore

Large Interior 
Form

J. R. R. 
TolkeinSindarin

Girl in White Vincent 
van Gogh

1. Initialize Cloze TemplatesLarge Interior Form, 1953-54 is a 
sculpture by Henry Moore…

Large 
Interior Firm

Girl in White… was painted by 
Vincent Van Gogh… Girl in White

……

created_by

Relation
- Identify the anchor token from smoothed distribution

Figure 1: The RE-Flex Framework Overview

swers to questions. Petroni et al. (2019) show that
given natural language cloze templates that repre-
sent relations, masked language models (Devlin
et al., 2018) can answer relational queries directly.
Petroni et al. (2020) extends on this work to show
that retrieving factual evidence to associate with
relation queries can further benefit answer gener-
ation. Logan et al. (2019) present a knowledge
graph language model that can choose between
outputting tokens from a base vocabulary, or enti-
ties from a linked knowledge base. Bosselut et al.
(2019) show that language models can generate
commonsense knowledge bases if pretrained on
another corpus and fine-tuned on a commonsense
knowledge base.

3 Problem Statement

We consider a slot filling form of relation extrac-
tion: given incomplete relations, we must complete
the relations using evidence from an underlying
text source. We assume a set of input relations
R. For each relation r ∈ R, we assume access
to a collection of entity-context candidate pairs.
Let ECr denote this collection for relation r. We
consider each pair (e, c) ∈ ECr to be candidate
evidence that some span in c completes relation
r for the given entity mention e. If we consider
the context to be composed of a sequence of to-
kens c = (c1, c2, . . . , cn), we must return some
subsequence a = (ci, ..., ci+m) such that the rela-
tion r(e, a) holds, or ∅ if c does not express the
relation for the given entity.

Furthermore, we represent each relation with a
cloze template, a natural language representation
of what the relation is attempting to capture. We de-
fine a cloze template for relation r to be a sequence
of tokens t = (t1, . . . , tsub, . . . , tobj , . . . , tk),
where tsub and tobj are special tokens denoting
the expected locations of the subject and object

entities of the relation. For each (e, c), we sub-
stitute the special token tsub with e. Let t(e) =
(t1, . . . , e, . . . , tobj , . . . , tk) denote this substitu-
tion. We form our final cloze query by concatenat-
ing the context c to the cloze task t(e) and denote
the close query q(e, c) = [c, t(e)].

Given a cloze query q(e, c), we express relation
extraction as the following inference task: predict
if there is a subsequence of the context c that
correctly completes the special token tobj in
the close task t(e), otherwise return ∅. As an
example, consider the relation drafted by. An
example candidate entity-context pair in the pair
set for the relation is (Stephen Curry, The
Warriors drafted Steph Curry.). Us-
ing the relational template tsub was drafted
by tobj , we form our full cloze query for the pair:
The Warriors drafted Steph Curry.
Stephen Curry was drafted by tobj .

4 The RE-Flex Framework

An overview of RE-Flex is shown in Figure 1.
Given a target relation, RE-Flex assumes as in-
put a set of entities, a set of candidate contexts,
and a cloze template expressing the relation. The
output of RE-Flex is a table containing instances
of this relation for the input entities. RE-Flex is
built around two key parts: 1) context rejection and
2) anchor token identification and token expansion.
In the first part, RE-Flex determines if the cloze
query for a candidate entity-context pair does not
contain a valid mention of the target relation, and
hence, we must return ∅. In the second part, given
the valid entity-context pairs for the target relation,
RE-Flex identifies the subsequence in the corre-
sponding context that completes the relation for the
given entity. We describe each part next.



4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

4.1 Context Rejection

For each relation r, we must determine which of
the candidate pairs (e, c) ∈ ECr express relation r
for entity e, and return ∅ for those that do not. The
problem can be naturally considered as a clustering
problem, where we group elements of ECr into
an accept cluster Ic or a reject cluster I−c. Given
this regime, we must develop a general method
to determine how well a given entity-context pair
(e, c) expresses a target relation. Using the natural
language representation of the relation, we formu-
late a scoring function to measure how much each
context expresses the relation. We then determine
a threshold on these scores to partition the pairs.

We propose the following mechanism: First, we
leverage the fact that the cloze template t for a
target relation r is the natural language representa-
tion of the relation and assume that it captures the
intention of the relation. We formulate a scoring
function f(c, t(e)) which takes as input a context
c and t(e)—the cloze template where we have sub-
stituted tsub = e—and returns a measurement of
how well each token in the template is captured in
a given context. Second, for some threshold ε, if
f(c, t(e)) > ε, we assign the corresponding pair
(e, c) to Ic, and to I−c otherwise.

To design f , we reason about co-occurrence: if
each word in the template co-occurs many times
with any word in the context, the relation is likely
to be expressed. We define f as follows:

f(c, t(e)) =
1

|t(e)|

|t(e)|∑
i=0

max
j∈[1,|c|]

PMI(t(e)[i], c[j])

where PMI is the Pointwise Mutual Information
(PMI) (Church and Hanks, 1990), |t(e)| and |c| are
the total number of tokens in the cloze task t(e)
and the context c respectively, t(e)[i] denotes the
token in position i of the cloze task t(e), and c[j]
denotes the token in position j of context c. For
two words x and y, PMI is defined as PMI(x, y) =
log

pq(x,y)
p(x)p(y) , where pq(x, y) is the probability that

x and y co-occur in a q-gram in the corpus and
p(x) is the marginal probability of x occurring in
the corpus; we set q = 5.

We estimate PMI using the cosine similarity be-
tween the word embeddings produced by optimiz-
ing the skip-gram objective over a target corpus
(Mikolov et al., 2013). This approach does not suf-
fer from missing values in the PMI matrix, as an
empirical estimate of the PMI matrix might (Levy

and Goldberg, 2014). More formally we have: Let
vx ∈ Rd and vy ∈ Rd be the word embeddings for
two words x and y produced by training the model
described in Mikolov et al. (2013). As proven in
Arora et al. (2016), we have that:

PMI(x, y) ≈ 〈vx, vy〉
||vx||||vy||

Given this metric, we now turn to how ε is com-
puted. We use a simple inlier detection method to
determine ε. We assume that entity-candidate con-
texts for each relation r are relatively well-aligned,
i.e., the majority of elements in ECr contain a true
mention of relation r for the entity associated with
each element. Let Qr denote the set of all possible
correct entity-context pairs for r. We assume that
for any valid pair (e, c) the score f(c, t(e)) follows
a normal distributionN (µr, σ

2
r ), and hence, we ex-

pect that for most entity-context pairs the similarity
scores to the cloze task associated with the relation
will be centered around the mean µr. Given the
above modeling assumptions, we estimate µr and
σ2r as follows:

µt =
1

|ECr|
∑

(e,c)∈ECr

f(c, t(e))

σ2t =
1

|ECr|
∑

(e,c)∈ECr

(f(c, t(e))− µt)2

Given the above, we let ε is ε = µr − λσr where λ
is a hyperparameter. We assign all (er, cr) pairs to
Ic if f(cr, tr) > ε, and assign the rest to I−c. For
all pairs in I−c, we return ∅.

4.2 Relation Extraction

We discuss how RE-Flex performs relation extrac-
tion given a valid entity-pair context. For this
part, we assume access to a pre-trained contextual
language model—in RE-Flex we use RoBERTa
(Liu et al., 2019). For a valid entity-context pair
(e, c) for relation r, we construct the cloze query
q(e, c) = [c, t(e)] by replacing the subject mask
token tsub in the relation cloze template t with e,
and given the sequence q(e, c) we identify the span
of tokens α in c that should replace the object mask
token tobj in t(e) to correctly complete relation r
for entity e.

At a high-level, we follow the next process to
identify span α: first, we consider the raw pre-
dictions of the pre-trained model for tobj , and
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smoothen the scores of these predictions by re-
stricting valid predictions to correspond only to
tokens present in the context c; we pick the context
token with the highest final score, which we refer
to as the the anchor token. Second, given the an-
chor token in c, we return an expanded span from
c that contains descriptors of the anchor token. We
describe each of these two steps next.

Anchor token identification We focus on the
first step described above. Given an entity-context
pair (e, c) that contains a true mention of relation
r, the desired answer to the cloze query q(e, c)
corresponds to a span of tokens α in c. The task of
anchor token identification is to identify any word
in span α. To identify such a token, we constraint
the inferences of the pre-trained model to tokens in
the context c.

Given the cloze query q(e, c) = [c, t(e)], also de-
noted hereafter q for simplicity, we first use the pre-
trained model, denoted hereafter by M , to obtain a
prediction for the masked token tobj (see Section 3).
Let V denote the vocabulary of all tokens present
in the domain of consideration. For each token
v ∈ V , we can use model M to obtain a probabil-
ity that v should be used to complete the masked
token tobj . Let pq,M (v) = p(tobj = v; q(e, c),M)
denote this probability for token v.

To obtain a factual prediction, we reassign the
above probability mass to the tokens that are con-
tained only in the context c. We leverage the con-
textual model M for this step. For the token at
each position in the context sequence c, we find all
tokens in V that are semantically compatible with
it, given the cloze query q(e, c), and assign their
mass to b. Consider the i-th position in the context
c. We define the new probability mass for token
c[i], denoted by zq,M (c[i]), as:

zq,M (c[i]) =
∑
v∈V

pq,M (v) ·D(c[i], v)

where D(c[i], v) is a non-negative normalized
score indicating the semantic compatibility be-
tween tokens c[i] and v. We have:

D(c[i], v) =
exp(d(c[i], v))∑|c|
j=1 exp(d(c[j], v))

where the unnormalized scores d(c[i], v) are de-
fined using the contextual embeddings obtained by
model M .

More formally, let qe,c(v) be the sequence
corresponding to the cloze query q(e, c) after

we replace the masked object token tobj in the
cloze template of the target relation with some
token v ∈ V . That is for context c =
{c1, c2, . . . , cn}, entity e, and the cloze tem-
plate t = {t1, . . . , tsub, . . . , tobj , . . . , tk}, we have
qe,c(v) = {c1, . . . , cn, t1, . . . , e, . . . , v, . . . , tk}.
Given model M and sequence qe,c(v), let
M(qe,c(v))[k] ∈ Rd be the contextual embedding
returned by M for the token at the k-th position
of sequence qe,c(v). We define the unnormalized
score d(c[i], v) as:

d(c[i], v) = cos(M(qe,c(v))[i],M(qe,c(v))[obj])

where cos(A,B) denotes the cosine similarity be-
tween two vectors, and obj denotes the position of
object token set to v in sequence qe,c(v).

An exact computation of zq,M (c[i]) would re-
quire |V | forward passes. Instead, we propose to
approximate zq,M (c[i]). In practice, the language
model’s output distribution over the vocabulary has
low entropy. Thus, we expect pq,M (v) to be zero
for most v ∈ V . Therefore, we can approximate
zq,M (c[i]) by only summing over the top-k tokens
for the probability mass pq,M . We define a set of
proposal tokens Ṽ to be these top-k tokens. Empir-
ically, we find that filtering out punctuation from Ṽ
also increases performance. We take the position
of the anchor token in c, denoted by aout to be:

aout = argmax
i∈{1,...,|c|}

∑
v∈Ṽ

pq,M (v) ·D(c[i], v)

This approximation only requires k + 1 forward
passes to compute the final prediction. We examine
the effect of setting different k in Appendix E.

Anchor token expansion We use a simple mech-
anism to expand the single-token anchor to a multi-
token span. Given an off-the-shelf NER model, we
do the following: if the anchor word is within a
named entity, return the entire entity. Otherwise,
return just the anchor word. While this approach al-
lows us to support multi-token answers, its quality
is highly correlated to that of the NER model. In
practice, we do not find this to be a limiting factor
because most entities tend to span few tokens. We
experimentally evaluate the effect of using NER
to obtain multi-token spans in Appendix E. We
choose this approach as our focus is on studying if
language models can be used directly for relation
extraction and not decoding.
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5 Experimental Evaluation

We compare RE-Flex against several competing
relation extraction methods on four relation extrac-
tion benchmarks. The main points we seek to val-
idate are: (1) how accurately can RE-Flex extract
relations by utilizing contextual evidence, (2) how
does RE-Flex compare to different categories of
extractive models.

5.1 Experimental Setup

We describe the benchmarks, metrics, and methods
we use in our evaluation. We discuss implementa-
tion details in Appendix D.

5.1.1 Datasets and Benchmarks

We consider four relation extraction benchmarks.
The first two, T-REx (Elsahar et al., 2018) and
Google-RE1, are datasets previously used to evalu-
ate unsupervised QA methods (Petroni et al., 2020),
and are part of the LAMA probe (Petroni et al.,
2019). We also consider the Zero-Shot Relation
Extraction (ZSRE) benchmark (Levy et al., 2017),
which is a dataset originally used to show that read-
ing comprehension models can be extended to gen-
eral relation extraction. Finally, we adapt the TAC
Relation Extraction Dataset (TACRED) (Zhang
et al., 2017a) to the slot filling setting utilizing
a protocol similar to that used in Levy et al. (2017).
We present the adaptation procedure, as well as a
full table of benchmark characteristics in Appendix
C. For the T-REx and Google-RE datasets all in-
puts correspond to entity-context pairs that contain
a valid relation mention. On the other hand, ZSRE
and TACRED contain invalid inputs for which the
extraction models should return ∅. We refer to
the first two datasets as the LAMA benchmarks,
while the latter two are general relation extraction
benchmarks.

5.1.2 Competing Methods

We consider three classes of competing methods:
1) models that rely on the generative ability of
language models, 2) weakly-supervised QA mod-
els trained on an algorithmically aligned set of
question-answer pairs, and 3) supervised QA mod-
els trained on human annotated question-answer
pairs. We go into further details about these meth-
ods in Appendix D.

1https://code.google.com/archive/p/
relation-extraction-corpus/

Generative Methods We compare to the naive
cloze completion (NC) method of Petroni et al.
(2019), which queries a masked language model to
complete a cloze template representing a relation,
without an associated context. We also consider
the method of Petroni et al. (2020) (GD), which
concatenates the context to the cloze template, and
greedily decodes an answer to the relational query.
This method is the same as that used in Radford
et al. (2019) to show language models are unsuper-
vised task learners. We use the RoBERTa language
model (Liu et al., 2019) for both these baselines.

Weakly-supervised QA Methods We compare
against two proposed weakly-supervised QA meth-
ods. The first method (Lewis et al., 2019) (UE-
QA) uses a machine translation model to create
questions from text using an off-the-shelf NER
model, then trains a question answering head on
the generated data to extract spans from text. The
second method (Dhingra et al., 2018) (SE-QA) is
a semi-supervised approach to QA. It also uses
an NER model to generate cloze-style question-
answer pairs and then trains a QA model on these
pairs. Authors provide generated data for both
methods, which we use to train a BERT-Large QA
model (Devlin et al., 2018).

Supervised QA Methods Finally, we compare
against three supervised QA models trained on
human-annotated question-answer pairs. We train
BiDAF (Seo et al., 2016), extended to be able to
predict no answer (Levy et al., 2017) on Squad
2.0 (Rajpurkar et al., 2018). Additionally, we train
BERT-Large on Squad 2.0 (B-Squad) and the train-
ing set of ZSRE (B-ZSRE). For Google-RE and
T-REx, we do not allow these models to return ∅.

5.1.3 Metrics

We follow standard metrics from Squad 1.0 (Ra-
jpurkar et al., 2016) and evaluate the quality of
each extraction using two metrics: Exact Match
(EM) and F1-score. Exact match assigns a score
of 1.0 when the extracted span matches exactly the
ground truth span, or 0.0 otherwise. F1 treats the
extracted span as a set and considers the precision
and recall (at the token level) between tokens in
the predicted span and tokens in the ground truth
span. For each relation, we compute the average
EM and F1 scores and then average these scores
across relations. In the last step, we do not assign
weights to different relations.

 https://code.google.com/archive/p/ relation- extraction- corpus/
 https://code.google.com/archive/p/ relation- extraction- corpus/
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Category Dataset Metric RE-Flex Generative Weakly-supervised Supervised
NC GD UE-QA SE-QA BiDAF B-Squad B-ZSRE

NCR
T-REx EM 56.0 22.9 43.2 14.2 21.2 35.5 42.2 46.2

F1 56.0 22.9 43.7 19.3 28.2 46.6 52.0 52.7

Google-RE EM 87.2 5.6 75.6 51.9 19.7 53.9 52.9 70.5
F1 87.2 5.6 75.7 65.0 25.3 74.8 76.5 75.8

CR
ZSRE EM 43.7 14.1 27.7 16.7 17.3 40.2 66.5 82.0

F1 46.9 14.9 30.7 23.7 24.9 49.0 74.1 84.8

TACRED EM 49.4 9.0 25.6 17.5 13.9 49.3 56.9 54.4
F1 50.1 9.0 26.3 22.0 18.6 53.7 61.1 55.3

Table 1: Performance for all methods on the four benchmarks. Datasets are divided into two categories, no context
rejection (NCR) and context rejection (CR), denoting whether the dataset requires that ∅ be returned for any
examples. Bold values highlight the best method. Red and blue values denote worse or better performance than
RE-Flex, respectively.

5.2 End-to-end Comparisons

We evaluate the performance of RE-Flex against
all competing methods for different benchmarks.
The results are shown in Table 1.

5.2.1 LAMA Benchmarks
We focus on the LAMA benchmarks, which con-
sist of the Google-RE and T-REx datasets. For
these benchmarks, the context always contains the
answer to the relational query, and the answer is
a single token. We analyze the performance of
RE-Flex against each group of baselines.

Comparison to Generative Methods We first
compare the performance of RE-Flex to that of
the generative methods NC and GD. We see that
RE-Flex outperforms NC by 33.1 F1 on T-REx
and 81.6 F1 on Google-RE. We see that GD also
outperforms NC. This observation suggests that
retrieving relevant contexts and associating them
with relational queries significantly increases the
performance of generative relation extraction meth-
ods, as opposed to relying on the model’s memory.

Compared to GD, RE-Flex shows an improve-
ment of 12.3 F1 on T-REx and 12.3 F1 on Google-
RE. We attribute this gain on RE-Flex’s ability to
constrain the language model’s generation to to-
kens only present in the context.
Takeaway: Restricting language model inference
ensures more factual predictions, and is key to accu-
rate relation extraction when using the contextual
language model directly.

Comparison to Weakly-supervised Methods
We compare RE-Flex to UE-QA and SE-QA, which
both construct a weakly-aligned noisy training
dataset and fine-tune an extractive QA head on
the produced examples. RE-Flex outperforms both
approaches, yielding improvements of 27.8 F1 on

Method ZSRE TACRED
EM F1 EM F1

No rejection 40.0 43.4 39.1 39.5
With rejection 43.7 46.9 49.4 50.1

Table 2: Context rejection ablation on ZSRE.

T-REx and 22.2 F1 on Google-RE compared to the
best performing method for each dataset.

Additionally, we see that, on these benchmarks,
GD (despite yielding worse results than RE-Flex)
also outperforms UE-QA and SE-QA. This result
suggests that training on noisy training data can
severely hamper downstream performance.

Takeaway: Using weak-alignment to train a QA
head often leads to poor results, and it is better
to use the model’s generative ability instead. Be-
low, we show that this behavior extends to general
relation extraction benchmarks.

Comparison to Supervised Methods We find
the surprising result that RE-Flex is better than all
supervised methods. We believe the results can be
attributed to the fact that the language model is able
to capture the subset of relations in these datasets
quite well. This finding is also supported by the
fact that GD also yields comparable accuracy to
the supervised methods.

As we examine below, this behavior is not as
pronounced when considering the general relation
extraction setting. Still, we are able to assert that
for specific relation subsets, our inference proce-
dure is able to outperform standard QA models.

Takeaway: Our findings strongly support that con-
textual models capture certain semantic relations
(Petroni et al., 2019, 2020), but to outperform the
performance of supervised models we still need
RE-Flex’s fine-tuned inference procedure.
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5.2.2 General Relation Benchmarks
We now focus on ZSRE and TACRED, which are
more reflective of our problem statement. Here,
we must assert whether a candidate context con-
tains a true expression of the relation, and produce
multiple token spans as answers.

Comparison to Generative and Weakly-
supervised Methods We see that RE-Flex
significantly outperforms all generative and
weakly-supervised methods on these benchmarks.
We outperform the next best method by 22.0 F1

on ZSRE and by 28.1 F1 on TACRED. In this
realistic context, using the contextual language
model without fine-tuning the corresponding
inferences falls short, while a noisily trained
QA head also exhibits poor performance. To
understand if these results are to be attributed to
RE-Flex’s ability to reject contexts, we ablate the
performance of RE-Flex with and without enabling
context rejection (Section 4.1). The results are
shown in Figure 2. We see that context rejection
leads to increased performance. For example, in
TACRED it boosts RE-Flex’s F1 score by more
than 10 points. We also see that even without
the context rejection, RE-Flex outperforms these
classes of methods by up to 13.2 F1 compared
to the next best method. This finding suggests
that the combination of fine-tuned inference and
context rejection leads to good performance.
Takeaway: In addition to restricted inference, in-
corporating context rejection is necessary for the
general relation extraction setting. This finding is
consistent with that for the LAMA benchmarks.

Comparison to Supervised Methods We com-
pare to supervised QA baselines on the general
relation extraction benchmarks. Here, all compet-
ing approaches are trained on human annotated QA
pairs. We find that RE-Flex performs comparably
to BiDAF but falls short of the fine-tuned BERT-
based QA models. Recall that BiDAF relies on
a simpler attention-flow model, and does not use
self-supervised language representations, as BERT
does. The best performing BERT baselines see
an average improvement of 37.9 F1 on ZSRE and
10 F1 on TACRED compared to RE-Flex. How-
ever, as we show next, there is a significant number
of relations for which RE-Flex outperforms the
BERT-based baselines for even up to 40 F1 points
in TACRED and up to 60 F1 points in ZSRE.

To better understand RE-Flex’s behavior beyond

20% of relations

6% of relations

Figure 2: Histogram breakdown of differences between
F1 performances between RE-Flex and the best per-
forming supervised methods for each of the ZSRE and
TACRED benchmarks. We see that for many cases
the unsupervised approach of RE-Flex outperforms the
fully-supervised BERT-based baselines.

the averaged F1, we record the difference in F1

scores between RE-Flex and each BERT baseline
on a per relation basis. Histograms of these re-
sults can be found in Figure 2. On TACRED, RE-
Flex outperforms the best method for 20% of re-
lations and comes within 20.0 F1 for 26% of re-
lations. For ZSRE, RE-Flex outperforms the best
method for 6% of relations, and comes within 20.0
F1 for another 12% of relations. These results
show that for certain relations, RE-Flex can per-
form competitively or even better with supervised
methods. We note that the relations which RE-Flex
performs better than the baselines tend to be simple
many-to-one relations which are likely to be clearly
stated in succinct ways. For example, RE-Flex out-
performs baselines on the cause of death and
religious affiliation relations.

Finally, we note the performance drop of B-
ZSRE when applied to the TACRED dataset. Both
QA models perform similarly on TACRED, which
does not have a QA training set associated with
it. This shows that supervised QA models exhibit
some bias towards the underlying corpus they are
trained on, which supports claims in previous work
(Dhingra et al., 2018). We further expand on this
result in Appendix F.
Takeaway: We find a significant number of rela-
tions for which RE-Flex outperforms even fully-
supervised QA models. These relations tend to
be simple many-to-one relations, where the fact is
clearly expressed in the context.
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6 Conclusion

We introduced RE-Flex, a simple framework that
constrains the inference of self-supervised lan-
guage models after they have been trained. We
perform an extensive experimental study over mul-
tiple relation extraction benchmarks and demon-
strate that RE-Flex outperforms competing relation
extraction methods by up to 27.8 F1 points com-
pared to the next-best unsupervised method.
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A Implementation Details

We set RE-Flex’s top-k parameter (see Section 4.2)
to 16. We tune the λ parameter, when applicable,
on the provided development sets of the datasets.
Additionally, we tune whether to use the NER ex-
pansion, again using the development sets of the
datasets. These hyperparameters are tuned using a
standard grid search. We use Fairseq’s implemen-
tation of RoBERTa-large2 as our self-supervised
language model. For the embeddings of the context
rejection mechanism, we use the FastText library
(Bojanowski et al., 2017). For the token embed-
dings of the anchor identification model, we first
collect an embedding for each subword (RoBERTa
uses byte-pair subword encodings) by flattening
the output representation of all of the RoBERTa-
large decoder layers for each subword into a single
vector. Because we operate on the token and not
the subword level, we obtain a token representation
by averaging all subword vector embeddings that
compose a token. Examining the effect of our em-
bedding choices is out of the scope of this work,
and we leave it as a future analysis.

As stated in our construction of B̃ (Section 4.2),
we filter any punctuation predicted. For named
entity recognition and noun phrase chunking (used
for identifying multi-token extractions in RE-Flex),
we use the en web core lg model of the spaCy
library3. We train and run all models on a single
NVIDIA V100 32GB memory GPU.

B Qualitative Results

We provide few qualitative examples of extractions
from ZSRE obtained by the different methods. The
examples are shown in Figure 3. The first two
examples highlight two accurate extractions from
RE-Flex, while the third example an incorrect ex-
traction. These examples also highlight the weak-
ness of the UE-QA and SE-QA methods: many
times they extract an incorrect large sequence from
the input context.

C Dataset Details

TACRED adaptation to slot filling Relation Ex-
traction Dataset (Zhang et al., 2017b) is a relation
classification dataset. The original task is to predict
the relation of a subject and object pair given a
supporting context. There are 41 possible relations,

2https://github.com/pytorch/fairseq
3https://spacy.io/

R: production company(Lawless Range, ?)
T: Lawless Range was produced by [Y]
Q: Which production company is involved with lawless range
C: Lawless Range is a 1935 Western film released by Republic Pictures, 
directed by Robert N. Bradbury and starring John Wayne.
RE-Flex: Republic Pictures
UE-QA: Republic Pictures, directed by Robert N. Bradbury
SE-QA:1935 Western film released by Republic Pictures, directed by Robert N. 
Bradbury and starring John Wayne. 
B-Squad: Republic Pictures,
B-ZSRE: Republic Pictures,

R: military branch(David Semple, ?)
T: David Semple served in the [Y]
Q: Who did David Semple serve for?
C: Lieutenant-Colonel Sir David Semple MD (1856 -- 1937) was a British 
Army officer who founded the Pasteur Institute at Kasauli in the Indian state 
of Himachal Pradesh.
RE-Flex: British Army
UE-QA: the Pasteur Institute at Kasauli in the Indian state of Himachal Pradesh.
SE-QA: Himachal Pradesh.
B-Squad: British Army
B-ZSRE: Pasteur

R: publisher(FIFA Soccer 95, ?)
T:  FIFA Soccer 95 is published by  [Y]
Q: What company published FIFA Soccer 95?
C: FIFA Soccer 95 is a 1994 sports video game developed by EA Canada's 
Extended Play Productions team and published by Electronic Arts.
RE-Flex: EA Canada's
UE-QA: Extended Play Productions
SE-QA: Electronic Arts.
B-Squad: Electronic Arts.
B-ZSRE: Electronic Arts.

Figure 3: Example extractions from ZSRE for the dif-
ferent methods. Here, R indicates the target relation, T
the cloze template used, Q the corresponding question
required by the QA-based models, and C the provided
context for the extraction task.

with an additional relation labelled “no relation”
to denote an example whose sentence does not ex-
press the relation between the subject and object.
We convert the dataset to our slot filling setting
by considering the subject and relation known for
each example, and setting the task to predict the
object. Following the established process of Levy
et al. (2017) for adding realistic negative examples,
we distribute all examples labelled no relation
to relations sharing the same head entity, and set
the target object for each to be ∅.

Dataset characteristics A table of dataset char-
acteristics can be found in Table 3.

D Competing Methods Implementation
Details

All generative baselines are implemented using
Fairseq (Ott et al., 2019). Following the imple-
mentation of (Lewis et al., 2019), we train a BERT-
Large model on the provided training datasets of
(Lewis et al., 2019) and (Dhingra et al., 2018) for
the UE-QA and SE-QA baselines. These training

https://github.com/pytorch/fairseq
https://spacy.io/
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Benchmark Relation in Context Extraction Type Underlying Corpus # of Relations Total Samples

T-REx Implicit Relation
Mention Single-Token Wikipedia 41 34,039

Google-RE Exact Relation
Mention Single-Token Wikipedia 3 5,528

ZSRE Possibly Irrelevant
Context Multi-Token Wikipedia 120 42,635

TACRED Possibly Irrelevant
Context Multi-Token TAC-KBP 41 6,357

Table 3: We consider four benchmarks that vary with respect to the type of target extractions, the quality of context
to relation alignment, and the underlying corpus.

Method ZSRE TACRED
EM F1 EM F1

No expansion 42.4 46.1 49.6 50.3
NER expansion 36.4 39.2 42.9 43.3
Tuned expansion 43.7 46.9 49.4 50.1

Table 4: Effect of token expansion on ZSRE dataset.

datasets are collected over a snapshot of Wikipedia,
which is the underlying corpus of three of our four
benchmarks. We use the HuggingFace Transform-
ers library (Wolf et al., 2019) for our implemen-
tation of all QA models except BiDAF, for which
we use a slightly altered version of the original
author’s code (Levy et al., 2017).

E Microbenchmarks

We evaluate the effect of different components of
RE-Flex on its end-to-end performance.

Context rejection analysis We first examine the
effect of RE-Flex’s context rejection mechanism.
In Table 2, we measure the performance with and
without context rejection on the datasets which re-
quire context rejection. We find that on the ZSRE
dataset, the rejection increases F1 by 3.5. On TA-
CRED, F1 increases by 10.6 F1 with context re-
jection. In both cases, context rejection positively
impacts performance.

Anchor expansion analysis We examine the ef-
fect of expanding the anchor token in RE-Flex. To
examine this behavior in more details, we evaluate
RE-Flex by considering single-token only extrac-
tions, multi-token extractions using NER expan-
sion, and a tuned expansion that chooses either
to expand or not to expand based on performance
on the development set for each dataset. The re-
sults are shown in Table 4. We see that with tuned
expansion, F1 increases by 0.8 F1 on ZSRE, and
decreases by 0.2 F1 on TACRED. In fact, utilizing
NER expansion for all relations leads to a decrease
of 6.9 F1 on ZSRE and 7.0 F1 on TACRED. We
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Figure 4: Effect of parameter k on F1 for Google-RE.

conclude that what additional information to in-
clude in a prediction is determined by the informa-
tion need of each relation, and meeting this need
for general relations is left for future work.

Approximation analysis We examine the trade-
offs between performance, runtime, and the approx-
imation parameter k described in Section 4.2. We
set the batch size to 1 to for this analysis. Results
for the three Google-RE relations are shown in Fig-
ure 4. Our measurements show that our choice of
k = 16 leads to high-quality results while having
an acceptable runtime.

F Biases of QA Models

Given that RE-Flex outperforms all supervised
methods for T-Rex and Google-RE, we perform
a detailed analysis to understand the reason behind
this limitation of QA models. We suspect these re-
sults can be partially attributed to the construction
of these settings, where the expected response is a
single token; however QA models are more likely
to predict multi-token spans because their training
data is biased towards longer spans.

We have the following finding from our results:
B-ZSRE, which is trained on entity length answer
spans, performs better than the B-Squad baseline
by 17.6 EM. As both models are the exact same
architecture, but trained on different QA datasets,
we can attribute this difference to biases in span
length. We further verify this span length bias by
conducting an error breakdown on these datasets.
For each QA model, we consider each example
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Figure 5: Error categorization of QA-based methods.
For RE-Flex all errors belong to the No overlap group.

which returns an EM of 0, and classify the exam-
ple based on whether the predict has no overlap
with the ground truth, or by how much longer the
prediction is.

We present the results in Figure 5. We see that
on Google-RE, the majority of the errors commit-
ted by BiDAF and B-Squad, both trained on Squad
2.0, are because the predictions are longer than the
expected answer by one or two tokens. B-ZSRE
does not exhibit these error ratios, instead primarily
missing the answer entirely. On T-REx, all mod-
els primarily miss the ground truth entirely. We
attribute this finding to the fact that evidence in
T-REx is weaker and does not have explicit lexi-
cal clues to select answer spans. Training these
models using contexts with weaker evidence might
improve relation extraction performance.
Takeaway: Supervised QA models are biased to-
wards the span lengths in their training set, and
struggle when given weaker evidence contexts.


