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Abstract
This paper proposes a new method for training
debiased classifier with no bias supervision. The
key idea of the method is to employ a committee
of classifiers as an auxiliary module that identifies
bias-conflicting data and assigns large weights to
them when training the main classifier. The com-
mittee is learned as a bootstrapped ensemble so
that a majority of its classifiers are biased as well
as being diverse, and intentionally fail to predict
classes of bias-conflicting data accordingly. The
consensus within the committee on prediction dif-
ficulty provides a reliable cue for identifying and
weighting bias-conflicting data. Moreover, the
committee is trained also with knowledge trans-
ferred from the main classifier so that it gradually
becomes debiased and emphasizes more difficult
data as training progresses. On five real-world
datasets, our method outperforms previous arts
using no bias label like ours and even surpasses
those relying on bias labels occasionally.

1. Introduction
Most supervised learning algorithms for classification rely
on the empirical risk minimization (ERM) principle (Vap-
nik, 1999). However, ERM has been known to cause a
learned classifier to be biased toward spurious correlations
between predefined classes and latent attributes that appear
in a majority of training data (Geirhos et al., 2020). We
call data with spurious correlations and holding a majority
of training data bias-guiding samples, and the other bias-
conflicting samples, respectively. The issue of model bias
has often been addressed by exploiting explicit spurious
attribute labels (Kim et al., 2019; Li & Vasconcelos, 2019;
Sagawa et al., 2019; Arjovsky et al., 2019; Teney et al.,
2021; Tartaglione et al., 2021; Zhu et al., 2021) or knowl-
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edge about bias types given a priori (Bahng et al., 2020).
However, these methods are impractical because such su-
pervision and prior knowledge are costly, and the methods
demand extensive post hoc analysis.

Hence, a body of research has been conducted for learning
debiased classifiers with no additional label for spurious
attributes (Wang et al., 2021; Levy et al., 2020; Liu et al.,
2021b; Nam et al., 2020; Kim et al., 2021; Lee et al., 2021).
A common approach in this line of work is to employ an
intentionally biased classifier as an auxiliary module (Liu
et al., 2021b; Nam et al., 2020; Kim et al., 2021; Lee et al.,
2021): Samples that the biased classifier has trouble han-
dling are regarded as bias-conflicting ones and assigned
large weights when used for training the main classifier to
reduce the effect of bias-guiding counterparts. Although it
has driven remarkable success, this approach has drawbacks
due to the use of a single biased classifier. First, the quality
of the biased classifier could vary by hyper-parameters (Liu
et al., 2021a) and its initial parameter values (Fort et al.,
2019). Further, data that the biased classifier fails to handle
could include not only bias-conflicting samples but also bias-
guiding ones, which differs by the quality of the classifier.
These drawbacks limit the reliability and performance of
debiasing methods depending on a single biased classifier,
which is demonstrated in Appendix A.1.

To overcome these limitations, we propose a new method
using a committee of biased classifiers as the auxiliary
module, coined learning with biased committee (LWBC).
LWBC identifies bias-conflicting samples and determines
their weights through consensus on their prediction diffi-
culty within the committee. The committee is built as a boot-
strapped ensemble, i.e., each of its classifiers is trained from
a randomly sampled subset of the entire training dataset.
This strategy not only guarantees the diversity among the
classifiers, but also lets a majority of the classifiers be bi-
ased. Accordingly, a majority of the committee tends to
classify bias-guiding samples correctly and fails to deal
with bias-conflicting ones. The consensus on prediction
difficulty within the committee thus gives a strong cue for
identifying and weighting bias-conflicting samples. Also,
using the consensus of multiple classifiers enables LWBC to
be robust to the varying quality of individual classifiers and
consequently to focus more precisely on bias-conflicting
samples.
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Figure 1. LWBC adopts a frozen backbone trained by self-supervised learning. A committee of auxiliary classifiers fi is trained on top of
the backbone; a random subset of training data is assigned to each classifier of the committee as labeled data for supervised learning
(Eq. (1)). The committee determines the weight of each training sample based on consensus of its members, i.e., the number of members
that correctly predict the class of the sample (Eq. (2)). The main classifier g is trained using the weights by minimizing the weighted cross
entropy loss (Eq. (3)). In turn, knowledge of the main classifier is transferred to the committee through knowledge distillation (Eq. (4)).

Moreover, unlike the biased classifier trained independently
of the main classifier in the previous work, the committee in
LWBC is trained with knowledge of the main classifier as
well as the random subsets of training data. Specifically, the
knowledge is distilled in the form of classification logits of
the main classifier (Hinton et al., 2015), and each classifier
of the committee utilizes the knowledge as pseudo labels
of training data other than its own training set. We expect
that this strategy allows the committee to become debiased
gradually so that it does not give large weights to easy bias-
conflicting samples, i.e., those already well handled by the
main classifier, and focuses more on difficult ones.

Finally, we further improve the proposed method by adopt-
ing a self-supervised representation as the frozen back-
bone of the committee and the main classifier. Since self-
supervised learning is not dependent on class labels, it is
less affected by the spurious correlations between classes
and latent attributes, leading to a robust and less-biased rep-
resentation. Also, by installing the committee and the main
classifier on top of the representation, the classifiers can be
implemented efficiently in both space and time while enjoy-
ing the rich and bias-free features given by the backbone.

LWBC is validated extensively on five real-world datasets.
It substantially outperforms existing methods using no bias
label and even occasionally surpasses previous arts demand-
ing bias labels. We also demonstrate that all of the main
components contribute to the outstanding performance. The
main contribution of this paper is three-fold:

• We present LWBC, a new method for learning a debi-
ased classifier with no spurious attribute label. The use
of consensus within the committee allows LWBC to
address the limitations of previous work.

• We propose to learn the committee using knowledge
of the main classifier, unlike the previous work whose
auxiliary modules do not consider the main classifier.

• LWBC demonstrates superior performance on five real-
world datasets. It outperforms existing methods using

no additional supervision like ours and even surpasses
those relying on spurious attribute labels occasionally.

2. Proposed method
LWBC first learns a feature representation with self super-
vision, which is used as the frozen backbone providing
rich and bias-free features to downstream modules (Sec-
tion 2.1). Next, it trains a committee of m auxiliary classi-
fiers f1, f2, . . . , fm and the main classifier g on top of the
self-supervised representation (Section 2.2); thanks to the
self-supervised representation, the classifiers are designed
concisely, using only two fully-connected layers for each.

The committee identifies bias-conflicting samples and as-
signs them large weights to reduce the effect of bias-guiding
samples during the training of the main classifier. To this
end, the committee is trained as a bootstrapped ensemble of
classifiers so that a majority of its classifiers are biased as
well as diverse, and intentionally fail to predict classes of
bias-conflicting samples accordingly. The consensus within
the committee on prediction difficulty of a sample (e.g., the
number of classifiers that fail to predict its class label) thus
indicates how much likely the sample is bias-conflicting, and
is used to compute weights for training samples. Moreover,
the committee is trained also with knowledge of the main
classifier so that it gradually becomes debiased along with
the main classifier and emphasizes more difficult samples
as training progresses. Note that the committee is an auxil-
iary module used only in training and thus does not impose
additional computation or memory footprint in testing.

The overall process of LWBC is illustrated in Figure 1, and
the following sections elaborate on each step of LWBC.

2.1. Self-supervised representation learning

As the feature extractor, we train a backbone network by self-
supervised learning with BYOL (Grill et al., 2020) on the
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target dataset. A self-supervised model can capture diverse
patterns shared by data without being biased towards a par-
ticular class even the training set is biased. We empirically
demonstrate that adopting a self-supervised representation
leads to a model less biased compared with a supervised
representation.

Although the representation offers rich and less-biased fea-
tures, the main classifier can be still biased when it is trained
by ERM; the need to explore a debiasing method for a classi-
fier arises. We thus propose LWBC, a new debiasing method
illustrated in the next section.

2.2. Learning debiased classifier with biased committee

We randomly sample m subsets of the same size, denoted
by S1, ...,Sm, from the training set D with replacement.
Then m auxiliary classifiers f1, ..., fm of the committee are
initialized randomly, and each of the subsets Sl is assigned
to each auxiliary classifier fl as its training data.

The first step of LWBC is warm-up training of the commit-
tee; this is required to ensure that the committee is capable
of identifying and weighting bias-conflicting samples at the
beginning of the main training process. Given a mini-batch
B at each warm-up iteration, the committee is trained by
minimizing the cross-entropy loss below:

LCE =

m∑
l=1

∑
(x,y)∈Sl∩B

CE(fl(x), y). (1)

Since each subset is sampled from the training set dominated
by bias-guiding samples, a majority of auxiliary classifiers
are also biased. At the same time, the classifiers are diverse
due to their difference in initialization and training data.

After the warm-up stage, the main classifier and the commit-
tee are trained while interacting with each other. First, the
main classifier is trained by the weighted cross entropy loss
with the entire training set, where the sample weights are
computed by considering consensus within the committee
on prediction difficulty of the samples. Since a majority of
auxiliary classifiers have trouble to handle bias-conflicting
samples, we identity and weight bias-conflicting samples
based on the number of auxiliary classifiers predicting cor-
rectly for the samples. The weight function w is given by

w(x) =
1∑m

l=1 1(fl(x) = y)/m+ α
, (2)

where m is the size of the committee, fl is the l-th clas-
sifier of the committee, and α is a scale hyper-parameter.
The weight reflects how much the sample x is likely to be
bias-conflicting and decreases rapidly when the number of
correctly predicting classifiers increases. Then we train the
main classifier g with emphasis on the bias-conflicting sam-

Table 1. GUIDING, UNBIASED, and CONFLICTING metrics (%)
for the CelebA dataset. For methods without spurious attribute
labels, we mark the best and the second-best performance in bold
and underline, respectively.

Method Spurious
attribute label

CelebA HairColor

GUIDING UNBIASED CONFLICTING

Group DRO (Sagawa et al., 2019) ✓ 87.46 85.43±0.53 83.40±0.67
EnD (Tartaglione et al., 2021) ✓ 94.97 91.21±0.22 87.45±1.06
CSAD (Zhu et al., 2021) ✓ 91.19 89.36 87.53

ERM ✗ 87.98 70.25±0.35 52.52±0.19
LfF (Nam et al., 2020) ✗ 87.24 84.24±0.37 81.24±1.38
SSL+ERM ✗ 94.15±0.57 80.48±0.91 66.79±2.20
LWBC ✗ 90.57±2.15 88.90±1.55 87.22±1.14

ples through w by the weighted cross entropy loss below:

LWCE =
∑

(x,y)∈B

w(x) · CE(g(x), y), (3)

where B is the mini-batch.

During training, as the main classifier is gradually debiased,
samples useful for debiasing the main classifier change ac-
cordingly. To focus more on bias-conflicting samples diffi-
cult for the main classifier, we inform the quality of the main
classifier to the committee by distilling the knowledge of the
main classifier in the form of its classification logits (Hinton
et al., 2015) and transferring the knowledge by minimizing
the following KD loss:

LKD =

m∑
l=1

∑
(x,y)∈B−Sl

KL
(

soft
(
g(x)

τ

)
, soft

(
fl(x)

τ

))
,

(4)
where ‘soft’ is softmax function and τ is a temperature
parameter. Note that we apply LKD to the complement
set of Sl to avoid auxiliary classifiers in the committee
being identical to each other. By interacting with the main
classifier, the committee gradually becomes debiased along
with the main classifier. Hence, samples correctly predicted
by the main classifier are less weighted and those with
incorrect predictions are more weighted by the committee.

After the warm-up training, the main and the auxiliary classi-
fiers are alternately updated with a given mini-batch at each
iteration. First, we forward every sample in a mini-batch to
each auxiliary classifier and compute weights of the sam-
ples through Eq. (2). With the weights, the main classifier is
updated by Eq. (3) and the knowledge of the updated main
classifier is transferred to the auxiliary classifiers. The aux-
iliary classifiers are in turn updated by a linear combination
of the losses in Eq. (1) and (4). We also provide the full
description of our algorithm in Appendix A.2.

3. Experiments
3.1. Evaluation metrics

We adopt six metrics. VALIDATION / TEST: average accu-
racy on validation / test splits. GUIDING: average accuracy
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Table 2. UNBIASED and WORST-GROUP metrics (%) for the
CelebA dataset. We also report the difference between UNBI-
ASED and WORST-GROUP as GAP. For methods without spurious
attribute labels, we mark the best and the second-best performance
in bold and underline, respectively.

Method Spurious
attribute label

CelebA HairColor

UNBIASED WORST-GROUP GAP

Group DRO (Sagawa et al., 2019) ✓ 93.1±0.21 88.5±1.16 4.6
SSA (Nam et al., 2022) ✓ 92.8±0.11 89.8±1.28 3.0

ERM ✗ 95.6 47.2 48.4
CVaR DRO (Levy et al., 2020) ✗ 82.4 64.4 18.0
LfF (Nam et al., 2020) ✗ 86.0 70.6 15.4
EIIL (Creager et al., 2021) ✗ 91.9 83.3 8.6
JTT (Liu et al., 2021b) ✗ 88.0 81.1 6.9
SSL+ERM ✗ 80.5±0.9 38.5±4.1 42.0
LWBC ✗ 88.9±1.6 85.5±1.4 3.4

Table 3. VALIDATION, UNBIASED, and TEST metrics (%) evalu-
ated on the ImageNet-9 and ImageNet-A datasets. For methods
without spurious attribute labels, we mark the best and the second-
best performance in bold and underline, respectively.

Method Spurious
attribute label

ImageNet-9 ImageNet-A

VALIDATION UNBIASED TEST

StylisedIN (Geirhos et al., 2019) ✓ 88.4±0.5 86.6±0.6 24.6±1.4
LearnedMixin (Clark et al., 2019) ✓ 64.1±4.0 62.7±3.1 15.0±1.6
RUBi (Cadene et al., 2019) ✓ 90.5±0.3 88.6±0.4 27.7±2.1

ERM ✗ 90.8±0.6 88.8±0.6 24.9±1.1
BagNet18 (Brendel & Bethge, 2019) ✗ 67.7±0.3 65.9±0.3 18.8±1.15
ReBias (Bahng et al., 2020) ✗ 91.9±1.7 90.5±1.7 29.6±1.6
LfF (Nam et al., 2020) ✗ 86.0 85.0 24.6
CaaM (Wang et al., 2021) ✗ 95.7 95.2 32.8
SSL+ERM ✗ 94.18±0.07 93.18±0.04 34.21±0.49
LWBC ✗ 94.03±0.23 93.04±0.32 35.97±0.49

on bias guiding samples per class. CONFLICTING: average
accuracy on bias conflicting samples per class. UNBIASED:
average of ‘Guiding’ and ‘Conflicting’ per class. WORST-
GROUP: minimum average accuracy of group. We also
provide detailed experimental settings in Appendix A.3 and
description of datasets in Appendix A.4.

3.2. Quantitative results

LWBC shows superior classification accuracy among the
methods that do not use the spurious attribute label on the
five real-world datasets. In Tables 1 & 2, we observe LWBC
outperforms existing debiasing methods using no spurious
attribute label and shows comparable CONFLICTING perfor-
mance with methods that exploit spurious attribute labels
on CelebA, which reflects gender bias in the real world.

Table 4. CONFLICTING metric (%) evaluated on the BAR dataset.
For methods without spurious attribute labels, we mark the best and
the second-best performance in bold and underline, respectively.

Method Spurious
attribute label

BAR

CONFLICTING

ERM ✗ 35.32±0.46
ReBias (Bahng et al., 2020) ✗ 37.02±0.26
LfF (Nam et al., 2020) ✗ 48.15±0.93
LDD (Lee et al., 2021) ✗ 52.31±1.00
SSL+ERM ✗ 60.88±0.80
LWBC ✗ 62.03±0.74

Table 5. VALIDATION and TEST metrics (%) evaluated on the
NICO dataset. For methods without spurious attribute labels,
we mark the best and the second-best performance in bold and
underline, respectively.

Method Spurious
attribute label

NICO

VALIDATION TEST

Cutout (DeVries & Taylor, 2017) ✓ 43.69 43.77
RUBi (Cadene et al., 2019). ✓ 43.86 44.37
IRM (Arjovsky et al., 2019) ✓ 40.62 41.46
Unshuffle (Teney et al., 2021) ✓ 43.15 43.00
REx (Krueger et al., 2021) ✓ 41.00 41.15

ERM ✗ 43.77 42.61
CBAM (Woo et al., 2018) ✗ 42.15 42.46
ReBias (Bahng et al., 2020) ✗ 44.92 45.23
LfF (Nam et al., 2020) ✗ 41.83 40.18
CaaM (Wang et al., 2021) ✗ 46.38 46.62
SSL+ERM ✗ 55.63±0.54 52.24±0.27
LWBC ✗ 56.05±0.45 52.84±0.31

Table 6. Ablation studies using WORST-GROUP metric (%) on the
CelebA HairColor dataset. We study the impact of learning from
a single biased classifier (row 2), learning by committee (row 3),
and transferring the knowledge of the main classifier (row 4). We
mark the best performance in bold.

Method CelebA HairColor

Self-sup ERM Single Committee KD WORST-GROUP

✓ ✓ ✗ ✗ ✗ 38.5±4.1
✓ ✗ ✓ ✗ ✗ 64.1±2.4
✓ ✗ ✗ ✓ ✗ 81.3±2.3
✓ ✗ ✗ ✓ ✓ 85.5±1.4

Especially, the gap between the average accuracy of groups
and worst-group accuracy of LWBC is much smaller than
the other methods, this means that our model fairly predicts
a sample belongs to each group. Table 3 shows the results
on the ImageNet-9, which is dominated by texture bias, and
the ImageNet-A, which is regarded as a bias-conflicting set
of ImageNet. LWBC is 9.7% better than CaaM (Woo et al.,
2018) on the ImageNet-A dataset, i.e., LWBC is robust to
texture bias and various ImageNet biases. In Table 4, LWBC
is 18.6% better than LDD, which is the previous state of
the art. Compared to LfF (Nam et al., 2020) and LDD (Lee
et al., 2021), which are debiasing methods with a single
biased classifier, we demonstrate that learning a debiased
classifier with the biased committee is more effective than a
single classifier scheme. In Table 5, LWBC is 13.3% better
than CaaM, i.e., LWBC is well generalized to the unseen
spurious attributes. Note that the validation and test set of
NICO have unseen context classes and are unbiased.

3.3. Ablation study

Importance of each module in LWBC. Table 6 demon-
strates through ablation studies (Liu et al., 2021b; Nam et al.,
2020; Kim et al., 2021; Lee et al., 2021): (1) learning from
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(a) ImageNet-9 (b) CelebA HairColor

Figure 2. Effect of knowledge distillation (Eq. (4)) and the size of the committee m. (a) Accuracy of the main classifier and the committee
with or without KD loss in ImageNet-9 train set (left) and unbiased validation set (right). (b) Worst-group accuracy of LCB versus the
number of classifiers within the committee, where the green dot indicates the value used in the main paper.

a single biased classifier, (2) learning with committee, and
(3) transferring the knowledge of the main classifier. First,
we train a classifier by ERM (row 1) then assign a weight
value 50 to the wrongly predicted samples and 1 to other
samples. Then re-training the classifier with the weights
(row 2). Comparing these two results demonstrates that
up-weighting scheme with a biased classifier is effective
to debiasing a classifier. Then we increase the number of
biased classifiers and compute the sample weights using our
weight function Eq. (2) (row 3). Learning with the com-
mittee shows a remarkable improvement in the worst-group
accuracy. Moreover, knowledge distillation that enables
the committee to interact with the main classifier further
improves performance (row 4).

Effectiveness of transferring knowledge of the main clas-
sifier. Figure 2(a) shows the range of unbiased validation
accuracy of classifiers in the committee and unbiased vali-
dation accuracy of the main classifier during training. The
mean accuracy of classifiers in the committee gradually in-
creases following the accuracy of the main classifier. Also,
the accuracy of the main classifier gradually increases as
training progresses. On the other hand, the accuracy of clas-
sifiers in the committee trained without KD loss does not
increase or even decrease.

Number of classifiers. We compare the results of the main
classifier trained with the different number of auxiliary clas-
sifiers. Figure 2(b) shows the worst-group accuracy versus
the number of auxiliary classifiers m on CelebA. With a
single auxiliary classifier, the main classifier shows the low-
est worst-group accuracy, but the accuracy increases as m
increases. When larger than 40, the number of classifiers
has little effect on learning the main classifier.

Impact of bootstrapping. In Table 7, we study the impact
of auxiliary classifiers trained on a subset of the training set
(‘subset’) and auxiliary classifiers trained on the full train-
ing set (‘full’). Each auxiliary classifier in the ‘full’ setting
learns from the same data, but they are differently initial-
ized. Unlike LWBC, the KD loss in Eq. (2) is calculated
using the entire training set for the ‘full’ experiment. So, the
comparison between ‘full’ and ‘subset’ shows the impact

Table 7. Ablation study using GUIDING, UNBIASED, CONFLICT-
ING, and WORST-GROUP metrics (%) on the CelebA HairColor
dataset. We study the impact of training auxiliary classifiers using
subsets of training data. The best performance is marked in bold.

Trainset GUIDING UNBIASED CONFLICTING WORST-GROUP

Full 90.40±3.76 87.00±1.48 83.60±1.14 78.0±4.3
Subset 90.57±2.15 88.90±1.55 87.22±1.14 85.5±1.4

The ratio of correctly predicted classifiers
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Figure 3. Qualitative examples on CelebA dataset. Hair color is
target and Gender is the bias.

of bootstrapping excluding the impact of random initializa-
tion. As shown in Table 7, learning with auxiliary classifiers
trained on the same full training dataset degrades the per-
formance at every metric. We believe that this is because
the auxiliary classifiers trained on a subset of the training
set are more diverse and biased than those trained on the
full training set. We also provide more ablation studies in
Appendix A.5 and qualitative results in Appendix A.6.

4. Conclusion
We have proposed a new method for learning a debiased
classifier with a committee of auxiliary classifiers. The com-
mittee is learned in a way that consensus on predictions of its
classifiers to identify and weight bias-conflicting data. The
main debiased classifier is then trained with an emphasis on
the bias-conflicting data.Moreover, we demonstrated that
self-supervised learning is a solid yet unexplored baseline
for debiasing. Coupled with a self-supervised feature extrac-
tor, our method achieved state-of-the-art by large margins
on real-world datasets.
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(a) (c)(b)

Figure 4. Analysis on the instability of a single biased classifier in mining and weighting bias-conflicting samples. The experiments are
conducted on the CelebA dataset, in which samples with blond and male attributes are bias-conflicting.

Algorithm 1 Learning a debiased classifier with a biased committee

input training set D, batch size b, size of the committee m, learning rate η, scale hyper-parameter α, balancing hyper-
parameter λ, total number of iterations t, number of warm-up iterations tw

1: Draw m random subsets S1, ...,Sm of D.
2: Initialize auxiliary classifiers of the committee {fl(x; θl)}ml=1.
3: Initialize the main classifier g(x;ϕ).
4: for j = 1, ..., tw do
5: Draw a mini-batch B = {(xi, yi)}bi=1 from D.
6: θl ← θl − η∇θlLCE ∀l = 1, ...,m Eq. (1)
7: end for
8: for j = tw + 1, ..., t do
9: Draw a mini-batch B = {(xi, yi))}bi=1 from D.

10: w(xi) = 1/(
∑m

l=1 1(fl(xi) = yi)/m+ α) ∀xi ∈ B Eq. (2)
11: ϕ← ϕ− η∇ϕLWCE Eq. (3)
12: θl ← θl − (1− λ)η∇θlLCE − λη∇θlLKD ∀l = 1, ...,m Eq. (1), Eq. (4)
13: end for

A. Appendix
A.1. Limitations of using a single biased classifier

We empirically demonstrate the limitations of debiasing methods depending on an single biased classifier in Figure 4.
Figure 4(a) shows the ratio of bias-conflicting samples to all incorrectly predicted by a single biased classifier. The ratio
highly fluctuates by the learning rate of the classifier and varies up to 4%p due to different initialization even with a fixed
learning rate, meaning that using a single biased classifier is sensitive to hyper-parameters. Figure 4(b) is a matrix of
disagreement on predictions of biased classifiers. For pairs of biased classifiers initialized differently, we measure the
number of bias-conflicting samples for which the classifiers predict differently. The results suggest that individual biased
classifiers are sensitive to initialization. Figure 4(c) shows comparisons between a single biased classifier and a committee
of biased classifiers. Higher enrichment implies more precise mining and weighting of bias-conflicting samples (Liu et al.,
2021a). The committee clearly outperforms the single biased classifier in terms of enrichment.

A.2. Algorithm for LWBC

The overall process of LWBC is given formally in Algorithm 1.

A.3. Experimental setup

Implementation details. For the training self-supervised model, we train ResNet-18 (He et al., 2016) following self-
supervised learning with BYOL (Grill et al., 2020) on the target dataset. During the self-supervised learning, a random patch
of input image is cropped, resized to 224×224 pixels, flipped horizontally at random, and distorted by a random sequence of
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brightness, contrast, saturation, hue adjustments, and grayscale conversion; since the color information is key feature to
classify HairColor class on the celebA dataset, we adopt only brightness and contrast as color distortion when it trains
celebA. Since NICO and BAR are very small dataset, we train self-supervised model from ImageNet (Deng et al., 2009)
pretrained parameters as an initial point. Except for the experiments using BAR and NICO, we train self-supervised models
from scratch. We use the self-supervised ResNet-18 as a backbone network except for the last fully connected layer. We set
the batch size to {64, 64, 128, 256}, learning rate {1e-3, 1e-3, 1e-4, 6e-3}, the size of the committee m to {30, 30, 30, 40},
the size of subset Sl to {10, 10, 80, 300}, λ to {0.9, 0.6, 0.6, 0.6}, and τ to {1, 1, 1, 2.5}, respectively for {BAR, NICO,
Imagenet-9, CelebA} and α to 0.02. Note that we average the accuracy of each training over three independent trials with
random seeds.

A.4. Datasets

CelebA. CelebA (Liu et al., 2015) is a dataset for face recognition where each sample is labeled with 40 attributes. Following
the experiment configuration suggested by Nam et al. (Nam et al., 2020), we focus on HairColor and HeavyMakeup
attributes that are spuriously correlated with Gender attributes, i.e., most of the CelebA images with blond hair are
women. As a result, the biased model suffers from performance degradation when predicting HairColor attribute on males.
Therefore, we use HairColor as the target attribute and Gender as a spurious attribute, the same as HeavyMakeup.

ImageNet-9. ImageNet-9 (Ilyas et al., 2019) is a subset of ImageNet (Russakovsky et al., 2015) containing nine super-classes.
Following the setting adopted by (Bahng et al., 2020), we conduct experiments with 54,600 training images and 2,100
validation images. ImageNet-9 tempts to have a correlated object class and image texture. We follow the evaluation scheme
adopted by (Bahng et al., 2020), and we report the unbiased accuracy of the validation set, which is computed as average
accuracy on every object-texture combination.

ImageNet-A. ImageNet-A (Hendrycks et al., 2021) contains real-world images misclassified by ImageNet-trained ResNet
50 (He et al., 2016). Since such failure is caused when a model too heavily relies on the color, textures, and backgrounds.
The ImageNet-A dataset could be a bias-conflicting set w.r.t. various ImageNet biases. This dataset is used only for
evaluating a model trained on ImageNet-9.

BAR. The Biased Action Recognition (BAR) dataset (Nam et al., 2020) is a real-world image dataset designed to evaluate
the spurious correlation between human action and place on real-world images. Originally the given training set of BAR
consists of only 100% bias-guiding samples, and its test set consists of only bias-conflicting samples. In our setting, we use
10% of the original BAR training set as validation and set the bias-conflicting ratio of the training set to 1%.

NICO. NICO (He et al., 2021) is a real-world dataset for simulating the out-of-distribution image classification task.
Following the setting used by Wang et al. (Wang et al., 2021), we use an animal subset of NICO, which is labeled with 10
object and 10 context classes for evaluating the debiasing methods. The training set consists 7 context classes per object class
and they are long-tailed distributed (e.g., most dog images are appeared ‘on grass’ the others are appeared on 6 contexts).
The validation and test set consists of 10 context classes with 3 unseen context classes per object class. We verify the ability
of debiasing a model from object-context correlations by evaluating on NICO.

A.5. Ablation study

Self-supervised representation as a solid baseline. We empirically investigate the potential of self-supervised representa-
tion as a solid baseline for the debiasing task. We train a classifier on the top of the self-supervised representation by ERM.
The results are denoted by ‘SSL+ERM’ and compared with ‘ERM’, which is a fully supervised classification model in
Table 1, 2, 3, 4, 5. ‘SSL+ERM’ outperforms not only ERM but also the previous state-of-the-art on all the datasets except
for CelebA. ‘SSL+ERM’ is less biased than the model trained by fully supervised learning.

Impact of backbone. In Table 8, we study the impact of a frozen backbone trained by self-supervised learning (row 7-9)
compared to supervised learning (row 1-3 for ERM backbone and row 4-6 for ImageNet pretrained backbone). Within the
results using the same backbone, learning with the committee and transferring the knowledge of the main classifier to the
committee improve performance in all metrics compared with the ERM classifier, regardless of the backbone. Regarding the
performance of the ERM classifier on top of each backbone (row 1, 4, 7), the ERM backbone leads to the best performance
among the three backbones since the ERM backbone is trained with class labels. However, the ERM backbone was not useful
when coupled with our method (learning with the committee and KD) dedicated to debiasing. This shows the limitation of
conventional representation based on supervised learning. Comparing ImageNet pretrained backbone and self-supervised
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Table 8. Ablation studies using UNBIASED, CONFLICTING, and WORST-GROUP metric (%) on the CelebA HairColor dataset. We study
the impact of frozen backbone trained by supervised learning on celebA (row 1-3), supervised learning on ImageNet (row 4-6), and
self-supervised learning on celebA (row 7-9). Learning by ERM (row 1, 4, 7), learning by committee (row 2, 5, 8), and transferring the
knowledge of the main classifier (row 3, 6, 9). We mark the best performance in bold.

Backbone Method CelebA HairColor

Supervised ImageNet Self-sup ERM Committee KD UNBIASED CONFLICTING WORST-GROUPon celebA pretrained on celebA

✓ ✗ ✗ ✓ ✗ ✗ 94.6±0.01 70.3±0.2 45.2±0.6
✓ ✗ ✗ ✗ ✓ ✗ 78.9±10.0 75.2±6.3 54.0±27.0
✓ ✗ ✗ ✗ ✓ ✓ 80.0±9.4 78.9±3.1 61.1±24.4

✗ ✓ ✗ ✓ ✗ ✗ 75.3±2.3 60.9±1.8 28.0±5.9
✗ ✓ ✗ ✗ ✓ ✗ 84.2±1.0 80.9±0.8 68.9±2.9
✗ ✓ ✗ ✗ ✓ ✓ 85.1±0.6 82.4±1.4 76.6±4.6

✗ ✗ ✓ ✓ ✗ ✗ 80.5±0.9 66.8±2.2 38.5±4.1
✗ ✗ ✓ ✗ ✓ ✗ 88.6±1.3 84.0±1.7 81.3±1.4
✗ ✗ ✓ ✗ ✓ ✓ 88.9±1.6 87.2±1.1 85.5±1.4

trained backbone (both are target-label-free schemes), the backbone trained by self-supervised learning is always better
than the ImageNet pretrained backbone in our experiments. We believe that this is because a frozen backbone trained by
self-supervised learning on a target dataset gives rich and bias-free features. Surprisingly, the main classifier learned by the
committee and KD on top of ImageNet pretrained frozen backbone using the same hyper-parameters outperforms LfF (Nam
et al., 2020), which demonstrates that the advantage of our method is not limited to a specific backbone network.

A.6. Qualitative results

A.6.1. CLASS ACTIVATION MAP

Figure 5 shows the class activation map (CAM) of the main classifier, those of auxiliary classifiers of the committee, and a
consensus graph on a bias-guiding sample of CelebA, and Figure 6 shows them on a bias-conflicting sample of CelebA. We
mark a classifier that correctly predicts the class of the sample in ‘correct’, otherwise ‘incorrect’.

In Figure 5, a majority of auxiliary classifiers correctly predict the class of the bias-guiding sample, but they focus on facial
appearance. Since auxiliary classifiers have a consensus on ‘correct’, the main classifier less focus on the sample during
training.

In Figure 6, a majority of auxiliary classifiers wrongly predict the class of the bias-conflicting sample because they focus
on facial appearance. Since auxiliary classifiers have a consensus on ‘incorrect’, the main classifier focuses more on the
sample during training. The main classifier does not focus on facial appearance to correctly predict both the bias-guiding
and bias-conflicting samples.

As we expected, a majority of auxiliary classifiers focus on facial appearance, i.e., auxiliary classifiers exploit gender
feature rather than HairColor feature to classify an image. However, the main classifier focuses more on HairColor
feature than the auxiliary classifiers.

A.6.2. QUALITATIVE EXAMPLES WITH WEIGHTS

Figure 7, 8, 9 show the graph of weight function in Eq. 2 and examples on weight values. As illustrated on Figure 7, 8, 9,
our method not only up-weights the bias-conflicting samples and down-weights the bias-guiding samples but also imposes
finer weight according to difficulty of a sample.
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Figure 5. Class activation maps on a bias-guiding sample of celebA and consensus graph. We mark a classifier that correctly predicts the
class of the sample in ‘correct’, otherwise ‘incorrect’.
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Figure 6. Class activation maps on a bias-conflicting sample of celebA and consensus graph. We mark a classifier that correctly predicts
the class of the sample in ‘correct’, otherwise ‘incorrect’.
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Figure 7. Qualitative examples on CelebA. HairColor is target and Gender is the bias.
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Figure 8. Qualitative examples on diving class of BAR. Action is target and Place is the bias. A majority of ‘diving’ images on
training set include a body of water or the surface of a body of water.
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Figure 9. Qualitative examples on cat class of NICO. Species is target and Context is the bias. A majority of ‘cat’ images on training
set have ‘on snow’ or ‘at home’ context.


