Stacked Denoising Autoencoders for Mortality Risk
Prediction Using Imbalanced Clinical Data
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Abstract—Clinical data, such as evaluations, treatments, vital
sign and lab test results, are usually observed and recorded at
hospital systems. Making use of such data to help physicians
evaluating the mortality risk of in-hospital patients provides an
invaluable source of information which ultimately help improving
the health-care services. Therefore, quick and accurate prediction
of mortality can be critical for physicians to make intervention
decisions. In this work, we introduce a predictive Deep Learning
model aiming to evaluate the mortality risk of in-hospital
patients. Stacked Desoising Autoencoder (SDA) is trained using
a unique time-stamped dataset (King Abdullah International
Research Center - KAIMRC) which is naturally imbalanced.
The work is compared to common deep learning approaches
using different methods for data balancing. The proposed model
demonstrated here to overcome the problem of imbalanced data
and outperform common deep learning approaches with an
accuracy of 77.13% for the Recall macro.

Index Terms—Mortality risk, Deep Learning, Stacked Desois-
ing Autoencoder,King Abdullah International Research Center,
Data Imbalance, Recall Macro

I. INTRODUCTION

Predicting the mortality risk of patients is a major concern
for physicians in the medical domain. Accurate prediction of
the mortality (referred in some studies as discharge type) can
introduce improvable heath care services for the survival of
patients. The quick and timely interpretation of clinical data
is needed by physicians to improve patients outcome [1]. Thus,
the early prediction of in-hospital mortality risk is one of the
major areas of interest for research.

Patient clinical data usually comprises of a set of readings
for vital signs and lab tests. The data used in this study is
the King Abdullah International Research Centre (KAIMRC)
dataset [2]. It is a unique time-stamped dataset that contains a
full history of patient’s details, vital signs and lab test readings
for each patient’s visit.

The availability of this data can bring considerable oppor-
tunities for machine learning research. However, there are
several common issues that can accompany the collection of
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the clinical data, such as irregular or missing data. A major
challenge in building machine learning solutions to understand
clinical data is the imbalanced nature of the data [3]. Imbal-
ance happens when the presence of one class in the dataset
is more than the counterpart class. Most clinical datasets
(including KAIMRC) are subject to this problem [4]. The
distribution of the dataset classes can effect the performance
of most classification algorithms. Batista et al. [3] placed
emphasis on the imbalanced data problem as an obstacle for
machine learning by applying ten different balancing solutions
to 25 different datasets. Depending on the dataset and it’s
size, this problem is traditionally solved either by artificially
creating more samples for the minority class or eliminating
samples from the majority class.

Autoencoders were introduced by Hinton et al. [5] in
1986. The Autoencoders are unsupervised learning algorithms
as they are used to learn representation of the input from
unlabelled data [6]. Autoencoders have been used effectively
in tasks that involve dimensions reduction and single-class
learning (anomaly detection) [7]. They can learn the corre-
lations between the input features by transforming the input
into a latent space with new encoded dimensions. Decoding
the latent space to original input can help the Autoencoder to
learn hidden features, correlations and patterns of the data.

In this work, we investigate the performance of the Au-
toencoder models to predict the mortality risk of in-hospital
patients using KAIMRC clinical data. Since the proposed
data is naturally imbalanced, we formulate the mortality risk
classification problem as a problem of anomaly detection
(patient discharged home as normal and died as abnormal)
and use the Autoencoders with unlabelled data.

To the best of our knowledge, this work is the first to inves-
tigate the use of a predictive model for mortality prediction in
general (regardless of the health problem) using the Stacked
Denoising Autoencoder (SDA). The proposed model is trained
and tested using single class of KAIMRC dataset. The main



contributions of this paper are:

o Applying SDA to predict the mortality risk after 24 hours
of in-hospital patients admission using clinical data.

« Studying the impact of different data scaling methods and
data corruption levels on the performance of the proposed
models.

o Comparing the performance of the SDA model (trained
on single-class) with common deep learning algorithms
(trained on over-sampled binary-classes)

II. RELATED WORK

The prediction of a patient mortality risk is usually eval-
uated by physicians using traditional scoring systems, such
as Simplified Acute Physiology Score (SAPS), EuroSCORE,
Acute Physiology and Chronic Health Evaluation (APACHE),
Mortality Probability Models (MPMs) and Pediatric Risk of
Mortality (PRISM) [8]. Physicians use these for different
clinical conditions. These systems differ in the used clinic
and biologic variables but they all aim to calculate the mor-
tality score. The most common traditional scoring system
that physicians use as an indicator for patient acuity status
is the Simplified Acute Physiology Score (SAPS). A SAPS
score is calculated manually using 14 clinical and biological
variables after the first 24 hours of patient admission [9].
EuroSCORE, for instance, is another scoring system which
is used to calculate the patients mortality risk after a heart
surgery [10].

With the help of Electronic Health Records (EHR), clin-
ical data developed into an interesting frontier for machine
learning research. The traditional acuity scoring methods were
accompanied with some shallow machine learning algorithms
for the forecast of mortality status. The Ghassemi et al. model
[11], used Multi-Task Gaussian Process, achieved better when
adding the SAPS scores to the input features. Luo et al. [1]
converted MIMIC-II time series into graphs representation to
discover temporal patterns [12]. Extracted patterns were then
grouped using a non-negative matrix factorization method. The
groups were used with the Logistic Regression (LR) classifier
for mortality risk prediction.

Neural networks have also been used for mortality predic-
tion for specific health conditions such as the mortality of
pneumonia patients which was investigated by Caruna et al.
[13] using two different models of neural network. Another
study by Celi et al. [14] who employed LR, the Bayesian
Network (BN) and the Artificial Neural Network (ANN) using
MIMIC dataset for predicting the mortality of acute kidney in-
jury (1,400 cases) and Subarachnoid Hemorrhage (223 cases)
patients. They used SAPS and EuroSCORE results to compare
with the results of their models. Another study by Shi et al.
[15] compared the neural network with LR for the prediction
of mortality after doing a liver cancer surgery with an accuracy
of 84%. The conventional neural network models in these
studies have achieved a better performance and outperformed
shallow models such LR and BN [16]. However, the above
studies are not comparable to our work as their models are
used to predict the mortality for patients with a specific health

condition whereas our proposed model is trained to learn to
predict the mortality for 97 health conditions.

Since our proposed models investigate the use of deep
learning techniques to predict the patients mortality risk (dis-
charge type) using patients clinical data, we focus on recent
studies that applied deep learning models. In recent years,
Deep Learning models have shown powerful capabilities of
analyzing and understanding complex clinical data in a variety
of medical applications. However, deep neural networks mod-
els have not been explored for the prediction of the mortality
risk for in-hospital patients [17].

A deep learning model, the Long Short-Term Memory
(LSTM), was used by Harutyunyan et al. [17] to predict the
mortality using the MIMIC-III dataset [18]. This study used
the LSTM for mortality risk classification after 48 hours of pa-
tient admission. Their model achieved 86.25% using the Area
Under the Receiver Operator Curve (AUROC) and %51.69
using the Area Under the Precision-Recall Curve (AUPRC).
However, the dataset used in this study was imbalanced (90%
discharged home and 10% for died). Therefore, using the
AUROC (86.25% ) measure for the model evaluation can
be misleading as it gives same weight for both minority and
majority classes [19]. However, the AUPRC (%51.69) can be
more sensible measure for evaluating models trained using
imbalanced data.

In this work, we propose the use of the SDA for mortality
risk prediction. Unlike previous studies that formulated the
mortality prediction into binary classification problem for
specific health conditions and with the data of 48 hours
after admission, this work investigates the performance of
predicting an in-hospital patient’s mortality risk in general
(regardless of the health condition types) and after only 24
hours of patient admission using a unique dataset (KAIMRC).

III. DATASET

KAIMRC is one of the leading institutions in health research
in the Middle East. The KAIMRC ! dataset was collected by
Ministry of National Guard Health Affairs (NGHA) from three
main National Guard Hospitals 2.

The KAIMRC dataset contains the full history of patients
for the period between 2010 and 2015. In addition, it contains
41 million time-stamped lab test readings, such as Blood Urea
Nitrogin (BUN), cholesterol (Chol) and Mean Corpuscular
Hemoglobin (MCH). It also holds time-stamped data about
vital signs, such as Body Mass Index (BMI) and Hypertension.
Other important features were also collected from each visit,
such as visit type (in-patient, or emergency), gender, patient
visit age, service type (such as Cardiology, Neurology or En-
docrinology), length of stay (LOS) and discharge type (home,
referred to another hospital, patient died or administrative
reason discharge).

TAccess to KAIMRC dataset can be obtained upon an official request to
KAIMRC.
2Western, Central and Eastern regions of Saudi Arabia.
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Fig. 1. Proposed SDA Model

A. Data Pre-processing

Each patient visit is described by a set of measures. These
are represented as episodes. The episodes contain the data
list of irregularly collected vital signs and lab readings. In
addition to that, the non-sequential data (gender, age and
service provided) are also integrated into the episodes.

For the purpose of our experiment (predicting the mortality
after 24 hours), only the data of the patients with two or more
days of length of stay were considered. Patient visits with
less than two days of hospitality have been excluded. The
patients discharged with administrative reasons have also been
excluded making the experimental data set size to 3,557 patient
visits (Table I).

TABLE I
STATISTICS OF KAIMRC DATASET

Characteristic Overall Used
Number of patient visits 14,609 3,557
Number of features 500+ 86
Number of different health conditions 99 97
Number of patient visit types 4 2
Number of discharge types 8 2

There are 86 features: gender, age, service, specialty, visit
type and 81 vital signs and lab results . To give an early
prediction for the discharge type of a patient visit, the values
for the first day of the patient visit are selected to train and test
the proposed models. Some features are frequently changing
as they may have been collected on an hourly basis, such as
vital signs. In these cases, the average value for these readings
on that day are used. In case of missing readings, the first
available value for that readings taken on the next days is

3For space reasons the full list of features can not be listed here.

considered. If there are no readings taken in the whole visit,
we consider it to be missing data and replace them with zeros.

1) Imbalanced Data: Normally the in-hospital patient mor-
tality after admission event is rare compared with patients
being discharged home. The majority of the patient visits of
KAIMRC dataset are labelled with discharge home (95%).
The remaining 5% of the data are labelled with patient
died. It is noticeable that the experimental dataset is severely
imbalanced. We propose investigating common solutions to
overcome the problem of imbalanced data for the base-line
models. Over-sampling is applied on the samples with minor-
ity labels. The Synthetic Minority Over-Sampling Technique
(SMOTE) [20] is one of the common methods for over-
sampling. SMOTE is based on the synthetic creation of new
examples of the minority class. The nearest neighbours of the
created samples are randomly chosen based on the number of
needed examples.

There are several versions of the SMOTE algorithm to
evaluate and solve the imbalance problem. Borderline SMOTE
(bSMPTE) is a version of SMOTE that considers the examples
close to the minority borderlines during the process of over-
sampling [21] [22]. Support Vector Machine SMOTE (SVM-
SMOTE) [20] is another version that uses SVM classifier to
create number of synthetic examples around the negative class
points [23]. In this work, we applied bSMOTE and SVM-
SMOTE methods to overcome the problem of imbalanced data
when using the supervised learning algorithms in the base-line
models.

2) Data Scaling: Data scaling is a process of making the
ranges for the dataset features into the same scale. This process
is usually part of the data pre-processing task. Normalization
and standardization are two common methods for data scaling.
Normalization uses minimum and maximum values for each



feature to re-scale values between O and 1. Standardization
changes the distribution of the feature values to be centred on
0 and the standard deviation of 1. These methods can be used
as part of data pre-processing and before building and feeding
the models with the input data.

IV. METHODS

Autoencoder networks have shown capability for tasks that
involve anomaly detection. Unlike other deep learning meth-
ods, Autoencoders are trained using unsupervised algorithms
that can learn from single-class data, attempting to represent
it’s input x as reconstructions r. The Autoencoder networks
consist of an encoder function h = f(z), and a decoder
function which generates the reconstructions using the decoder
function r = g(h) [24] [25]. A Stacked Autoencoder (SA) uses
more than one encoding and/or decoding layers (functions).
The output of each layer is used as input for the successive
layer.

The Autoencoder’s main task is to minimize the error
(called reconstruction error) between the input values x and
the reconstructions using loss functions L (Eq. 1).

Lz, g(f(x))) (D

The identity function problem occurs when the Autoencoder
network cannot extract important features from the input and
memorize the data instead of learning the patterns. This can
be avoided by limiting the number of units in the hidden
layers be to less than the number of input units. This means
mapping the input to a lower dimensional space (new features).
This can help the network to learn correlations between the
input features. These encoded-aggregated features are called
latent-features. On the other hand, having a greater number of
hidden units can also be helpful for the Autoencoder network,
especially when imposing sparsity on the hidden units.

The Denoising Autoencoder (DAE) is an extended version
of the basic Autoencoder. DAE tends to force the hidden units
to extract features from a corrupted version Z of the original
input x. Decoding the corrupted input can help the network
to learn extracting important features and avoid the identity
function problem by undoing the corruption. The DAE tries
to minimize the reconstruction error using = (Eq. 2).

L(z,9(f(2))) 2

In our work, we investigate the performance of a Stacked
Denoising Autoencoder (SDA) model using a sequences of
patient observations as input x : x1,x2,...Tgg. We use the
Mean Squared Error (MSE) function (Eq. 3) to calculate the
reconstruction error after fitting the model with the test data.

n

1 2
MSE =~ Z(y r) 3)

=1

V. MODELS AND EXPERIMENTAL SETUP

The input layer for the SDA neural network model contains
three stacked hidden layers for the encoder, as shown in Fig 1.
Prior to the encoder, a noise is added to the input layer using
the Gaussian noise method [26]. The first layer of the encoder
was attached with a dropout of 0.1. The number of neurons
for the encoder layers are 256, 128 and 64 respectively. Tanh
activation function is used in the first layer and relu is used for
remaining encoder layers. The model also contains two hidden
layers for the decoder. The first decoding hidden layer holds
128 neurons with relu and the second hidden layer holds 90
neurons with tanh activation function.
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The SDA model is trained and validated using 80% and 10%
respectively of the majority class data only. The remaining
10% of the majority class is then used along with minority
class data (anomaly samples) for testing. The model uses
RMSprop optimizer with Mean Squared Error as loss function.
Before preforming the prediction on the test data, the model



TABLE II
CLASSIFIERS PERFORMANCE FOR MORTALITY RISK PREDICTION

Model | Over-Sampling | Scaling | F1 macro | Recall macro | Precision macro
SVM None Norm 0.4845 0.5000 0.4700
Stand 0.4868 0.4998 0.4745
bSMOTE Norm 0.6195 0.7525 0.5968
Stand 0.6416 0.7688 0.6106
SVM-SMOTE Norm 0.6566 0.6960 0.6420
Stand 0.6572 0.7652 0.6236
MLP None Norm 0.6706 0.6581 0.7270
Stand 0.6297 0.6291 0.6394
bSMOTE Norm 0.6442 0.6778 0.6270
Stand 0.6535 0.6580 0.6521
SVM-SMOTE Norm 0.6502 0.6690 0.6394
Stand 0.6384 0.6320 0.6502
LSTM None Norm 0.6518 0.6319 0.6982
Stand 0.6552 0.6405 0.6757
bSMOTE Norm 0.6628 0.6814 0.6539
Stand 0.6483 0.6417 0.6616
SVM-SMOTE Norm 0.6598 0.6908 0.6562
Stand 0.6394 0.6222 0.6667
SA None Norm 0.7310 0.7403 0.7242
Stand 0.6204 0.6130 0.6376
SDA None Norm 0.7405 0.7713 0.7292
Stand 0.6192 0.6120 0.6357

Table II: Shows the performance metrics for the base-line, SA and SDA classifiers.

was trained for 100 epochs. In our experiment, we investigated
the performance of the model with the first 24 hours patient
data after admission. Since the test data are imbalanced, we
report F1-macro, Recall-macro and Precision-macro scores to
evaluate the performance of the proposed models. A threshold
is then chosen to decide on the outliers (anomalies) based on
the calculated MSE values (Eq. 3).

A. Base-line Models

We compare our results against three commonly used base-
line models: Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP) and Long Short-Term Memory (LSTM)
[24] [27]. These models need balanced data. Therefore an
over-sampling method is used to generate more samples from
the minority class data. bSMOTE and SVM-SMOTE over-
sampling methods are used for balancing the data.

VI. RESULTS

Table II shows the performance metrics obtained using
SVM, MLP, LSTM, SA and SDA models. The models are
trained with and without over-sampling. In case of over-
sampling, bSMOTE and SVM-SMOTE are used for data
balancing and training the models. To evaluate the models
accurately and robustly, only real data from both classes
are used for testing (no artificially generated samples are
used for testing). For training the base-line models, real data
from the majority class with the over-sampled data from the
minority class are used. Table II shows the results when the
models are trained with scaled data using normalization and
standardization techniques. SDA model with normalization,
achieved an accuracy of 74.05% for Fl-macro, 77.13% for
Recall-macro and 72.92% for Precision-macro. This result is

outperforming the models in the related work section and the
base-line.

In table II, the results emphasize the impact of the method
used for scaling the data when applying SA and SDA. Scaling
the data using the normalization in SDA model achieved
74.05% for Fl-macro while standardization achieved signif-
icantly less results with 61.92% in the same model using the
same data. The test data points with reconstruction error values
are presented in Fig 2 and Fig 3. The predicted data using
standardization contrasts with the reconstruction error value
for normal and anomalous data points. The results also show
that the Autoencoders (SA and SDA) can perform better when
noise is added to the input layer. The Gaussian noise provides
the Autoencoder with more generalized input which helps the
model to detect the anomalies.

Table II also shows that balancing the data using over-
sampling algorithms (bSMOTE and SVM-SMOTE) for deep
learning models (MLP and LSTM), has a minor impact on
the result compared to the imbalanced data. This is not the
case for SVM models, which show better accuracy when using
artificially balanced data.

VII. DISCUSSION AND CONCLUSION

The task of predicting the mortality risk can be challenging.
Fig 4 demonstrates this challenge by visualizing the overlap
in the SDA latent space in the test data between the two
classes using t-SNE [28]. In this paper, we investigated a
novel application of the Stacked Denoising Autoencoder for
in-hospital patients mortality risk prediction. The proposed
model, using patients clinical data from a variety of health
conditions and without intensive feature engineering, achieved
promising results using only the first 24 hours data for patients
after admission. The model was trained using only the majority



class data of KAIMRC dataset. It was tested using a mixture
of majority and minority classes.

Our model outperformed the base-line classifiers and
achieved an accuracy of 74.05% for Fl-macro, 77.13% for
Recall-macro and 72.92% for Precision-macro. The results for
these measures also outperformed the deep learning model

51

.69% for AUPRC using two days data) in the literature

of this work. The proposed model (SDA) gives promising
mortality risk prediction results within 24 hours only of
patients admission. This can be very significant for clinicians
to make quicker intervention decision to provide an improved
health-care services to the patients (especially for those under

the

risk of mortality). Further work may investigate the impact

of applying different techniques for handling the missing data
in KAIMRC data.
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