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CAN GENERATIVE AI SOLVE YOUR IN-CONTEXT
LEARNING PROBLEM? A MARTINGALE PERSPECTIVE
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ABSTRACT

This work is about estimating when a conditional generative model (CGM) can
solve an in-context learning (ICL) problem. An in-context learning (ICL) problem
comprises a CGM, a dataset, and a prediction task. The CGM could be a multi-
modal foundation model; the dataset, a collection of patient histories, test results,
and recorded diagnoses; and the prediction task to communicate a diagnosis to a
new patient. A Bayesian interpretation of ICL assumes that the CGM computes
a posterior predictive distribution over an unknown Bayesian model defining a
joint distribution over latent explanations and observable data. From this perspec-
tive, Bayesian model criticism is a reasonable approach to assess the suitability
of a given CGM for an ICL problem. However, such approaches—like posterior
predictive checks (PPCs)—often assume that we can sample from the likelihood
and posterior defined by the Bayesian model, which are not explicitly given for
contemporary CGMs. To address this, we show when ancestral sampling from the
predictive distribution of a CGM is equivalent to sampling datasets from the poste-
rior predictive of the assumed Bayesian model. Then we develop the generative
predictive p-value, which enables PPCs and their cousins for contemporary CGMs.
The generative predictive p-value can be used in a statistical decision procedure to
determine when the model is appropriate for an ICL problem. Our method only
requires generating queries and responses from a CGM and evaluating its response
log probability. Using large language models, we empirically evaluate our method
on tasks involving tabular data, imaging data, and natural language data.

1 INTRODUCTION

An in-context learning (ICL) problem comprises a conditional generative model (CGM), a dataset,
and a prediction task (Brown et al., 2020; Dong et al., 2022). For example, the CGM could be a
pre-trained multi-modal foundation model; the dataset could be a collection of patient histories, test
results, and patient diagnoses; and the prediction task could be to communicate the diagnoses to a new
patient with a given history and test results (Nori et al., 2023). This problem is complex, demanding
accuracy in diagnosis and appropriate communication to the patient. This complexity challenges our
ability to assess whether the model is appropriate for the dataset and prediction task.

One interpretation of ICL is that a CGM prompted with in-context examples produces data (either
responses or examples of the prediction problem) from a posterior predictive under a Bayesian model
(Müller et al., 2021; Xie et al., 2021). A natural question arises when we accept this premise, “Is the
Bayesian model a good model for the prediction problem?” This is the question asked by the field of
Bayesian model criticism. This field has produced many methods; however, they typically assume
access to key components defined by the Bayesian model. Namely, the model likelihood and model
posterior. In this work we show how to do model criticism in ICL using contemporary generative AI,
specifically how to implement posterior predictive checks (PPCs) (Guttman, 1967; Rubin, 1984) and
their cousins when we only have access to the predictive distribution. The result is a practical and
interpretable test on whether the model is appropriate for a given ICL problem.
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Input: proof once again that if the
filmmakers just follow the books

Label: negative
Input: is impressive
Label: positive
Input: the top japanese animations
Label: positive
Input: a spoof comedy
Label: positive

(a) SST2 ICL dataset xn

Input: follows the formula , but throws
in too many conflicts to keep
the story compelling .

(b) query z.

Label: negative, Label: negative,
Label: negative, Label: negative,
Label: negative, Label: negative

(c) CGM responses y

Input: a) Should teens use the diet
plans on tv?

b) Can you help me with a diet
plan?

Label: different
Input: a) What’s a good way to address

back pain?
b) How can I cure my back pain?

Label: similar

(d) MQP ICL dataset xn

Input: a) Can dementia cause ANS dysfunction?
If so how?

b) How can dementia cause ANS dysfunction?

(e) query z.

Label: different, Label: different,
Label: similar, Label: similar,
Label: different, Label: similar

(f) CGM responses y

Figure 1: Examples of solvable and unsolvable ICL problems for Llama-2 7B Touvron et al. (2023).
On the left, we have (a) an ICL dataset xn from a sentiment analysis task Socher et al. (2013), (b)
a new query z, and (c) some responses y sampled from the CGM pθ(y | z, xn). The CGM solves
the problem by responding correctly with “negative”. On the right, the dataset (d) and query (e) are
taken from the medical question pairs task McCreery et al. (2020). The true label is “similar,” but the
model frequently responds incorrectly with “different,” and does not solve the problem.

2 WHAT IS AN IN-CONTEXT LEARNING PROBLEM?

We formalize an ICL problem as a tuple (f∗, xn,θ): a prediction task f∗, a dataset xn, and a
conditional generative model (CGM) θ. The prediction task defines the joint distribution of queries
z and their responses y. In turn, the set of valid responses to a user query implies a reference
distribution over responses p(y | z, f∗). The dataset xn = {(zi, yi)}ni=1 comprises n query and
response examples of the prediction task; zi, yi ∼ p(z, y | f∗). A practical data abstraction sees
the decomposition of queries and responses into elements called tokens. As such, queries and
responses—by extension, examples and datasets—are represented as sequences of tokens. For
example, (z, y) ≡ (tz1, t

z
2, . . . , t

y
1, t

y
2, . . . ) ≡ (tx1, t

x
2, . . . ). A conditional generative model θ defines

a predictive distribution over the next token in an example txj given previous example tokens and tx<j ,
and a tokenized dataset; pθ(txj | tx<j , x

n). Through ancestral sampling, the CGM defines additional
predictive distributions over responses pθ(y | z, xn), examples pθ(z, y | xn), and datasets pθ(x | xn).
Figure 1 illustrates examples from two different ICL tasks. Figures 1a to 1c gives an example from the
SST2 sentiment prediction task for which Llama-2 7B frequently yields accurate answers. Figures 1d
to 1f gives an example from the medical questions pairs (MQP) prediction task for which Llama-2
7B yields random answers on average. As we illustrate next, there are several reasons why model
generated responses or examples may be inappropriate for the ICL task f∗.

3 WHAT IS A MODEL?

Let θ again denote a model, but now the model could be Bayesian linear regression, a Gaussian
process, or perhaps even a large language model (LLM). A model defines a joint distribution pθ(x, f)
over observable data x = {x1, x2, . . . } = {(z1, y1), (z2, y2), . . . } and latent explanations f . The
notation f denotes both tasks and explanations, but we will distinguish between them. The model
joint distribution factorizes in terms of the model prior pθ(f) over explanations and the model
likelihood pθ(x | f) over observable datasets given an explanation; pθ(x, f) = pθ(x | f)pθ(f). From
a frequentist perspective, the prior distribution over f would be ignored and a model would define a
set of distributions over datasets indexed by f; {pθ(x | f) : f ∈ F}. A model θ alongside data xn

further defines the posterior pθ(f | xn) and posterior predictive pθ(x | xn) =
∫
pθ(x | f) dPθ(f | xn)

distributions, which specify the conditional distributions of explanations and new observations given
the observed data. See Appendix A for a deeper discussion on each of these distributions.
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Are CGMs Models? Modern CGMs often lend access to only the marginal pθ(x) or posterior
predictive pθ(x | xn) rather than an explicit representation of f . So why do we discuss latent variables
like f? First, if the model θ is exchangeable (i.e., pθ(x) is invariant to permutations of the data), de
Finetti’s theorem (de Finetti, 1937; Hewitt & Savage, 1955) ensures that pθ(x) can be expressed as a
mixture over a latent variable f , leading to a decomposition of the form

∫
pθ(x | f) dPθ(f). Therefore,

assuming we adopt a unique representation of f , we can define pθ(x, f) as the joint distribution over
the latent variable f and the data implied by the mixture. Alternatively, if pθ(x) approximates an
exchangeable distribution p(x), as in ICL problems, then the statement pθ(x, f) is a convenient abuse
of notation, representing p(x, f). We assume that either of these conditions hold.

4 A MODEL IS A CHOICE TO BE CRITICISED

A model θ defined over an observation space X is used make inferences informed by observations
from that space xn. Inferences about the probability of the the next word given a sequence of words,
model uncertainty, and many other quantities. But a model is a choice—the practitioner makes a
modelling decision—and so it is not given that inferences made by a model are grounded in reality.

(a) linear model, linear data (b) polynomial model, polynomial data

(c) polynomial model, linear data (d) linear model, polynomial data

Figure 2: Misaligned models. Transformers (pink) are fit to either linear or polynomial data generated
by Bayesian models (blue). Model predictions align with reference models for in-distribution tasks
(Figures 2a and 2b), but are too conservative (Figure 2c) or too confident (Figure 2d) for OOD tasks.

Figure 2 illustrates inferences about the predictive distribution made by different models given
different datasets. Figures 2a and 2b—model inferences (pink) overlap with those made by the
reference model (blue) and appear purple. However, inferences made by a misaligned polynomial
model—Figure 2c—are much wider that those made by the reference linear model. And inferences
made by a misaligned linear model—Figure 2d—are more narrow than those of the reference
polynomial model, which results in the model being confident and wrong. Similarly, a very general
LLM may have compromised data efficiency for rare domains, while a highly specialized LLM may
no longer generalize beyond its domain. These examples illustrate that while models are used to
quantify empirical facts—like the frequency of an event occurring—they also carry a subjective
aspect that needs to be considered when using model inferences in practice. This consideration guides
our question of when a model will provide reliable inferences for a given ICL problem.

Much of the discussion around the reliability of CGMs has focused on “hallucination” detection,
prediction, and mitigation (Dziri et al., 2021; Su et al., 2022; Lee et al., 2022; Mielke et al., 2022;
Gao et al., 2023; Li et al., 2023; Varshney et al., 2023; Feldman et al., 2023; Zhang et al., 2023;
Peng et al., 2023; Lin et al., 2023; Azaria & Mitchell, 2023; Chuang et al., 2024; Burns et al., 2023;
Rimsky et al., 2023; Luo et al., 2023; Shi et al., 2024; Band et al., 2024; Li et al., 2024; Mündler
et al., 2024; Dhuliawala et al., 2024; Farquhar et al., 2024; Kossen et al., 2024; Jesson et al., 2024).
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An interesting subset is based on uncertainty quantification where inferences about the variability of
responses from the [posterior] predictive distribution (Kadavath et al., 2022; Manakul et al., 2023;
Cole et al., 2023; Chen & Mueller, 2024), or about the variability of explanations (Kuhn et al., 2023;
Elaraby et al., 2023; Lin et al., 2024; Farquhar et al., 2024; Jesson et al., 2024) are used to predict
model hallucinations. However, none of these methods address the question of when those inferences
are to be trusted, and so each are susceptible to failure if the model is not appropriate for the task.

A growing body of work is formalizing the connection between ICL with pre-trained CGMs and
Bayesian inference (Xie et al., 2021; Müller et al., 2021; Fong et al., 2023; Lee et al., 2023; Jesson
et al., 2024; Falck et al., 2024; Ye et al., 2024). Notably, the works of Fong et al. (2023); Lee et al.
(2023); Jesson et al. (2024); Falck et al. (2024); Ye et al. (2024) show how to transform Bayesian
functionals of the model likelihood pθ(x | f) and model posterior pθ(f | xn) into functionals of the
model predictive distribution pθ(x | xn), which can be computed by contemporary CGMs. These
works pave the way for using Bayesian model criticism techniques such as posterior predictive checks
as a response to our ressearch question. In the following we formalize how this is done.

5 POSTERIOR PREDICTIVE CHECKS ARE MODEL CRITICS FOR ICL PROBLEMS.

Posterior predictive checks (Rubin, 1984; Meng, 1994; Gelman et al., 1996; Moran et al., 2023) are
Bayesian model criticism methods that use the model posterior predictive to assess the suitability of a
model to make inferences informed by a set of observations. A model’s ability to explain observed
data is quantified by the posterior predictive p-value, which is derived from a test of the hypothesis
that the data are generated according to the model θ. Following Moran et al. (2023), we assume
access to main xn and holdout xtest sets of observations, both distributed according to the reference
likelihood p(x | f∗) for a specific task f∗. The class of PPCs pertinent to our discussion assess
“goodness-of-fit” by asking how well a model fit to a set of observations xn explains the holdout
observations xtest. To measure the goodness-of-fit, a PPC defines a discrepancy function, like the
negative log marginal model likelihood gθ(x, x

n) := −
∑

zi,yi∈x log pθ(zi, yi | xn), or the negative
log model likelihood gθ(x, f) := −

∑
zi,yi∈x log pθ(zi, yi | f). Both of these measures will be lower

for observations that are well explained by the model, and higher for those that are not.

Defining a goodness-of-fit measure is only half of the story. A PPC needs a way to assess what
makes a relatively high or relatively low value of the discrepancy function. To do this, a reference
distribution of values is defined by measuring the discrepancy function over datasets sampled from
the model posterior predictive distribution. The posterior predictive p-value is then evaluated as

pppc :=

∫∫
1
{
gθ(x, ·) ≥ gθ(x

test, ·)
}
dPθ(x | f)dPθ(f | xn). (1)

The PPC locates the value of the discrepancy function for the holdout data gθ(xtest, ·) in the distribution
of the discrepancy function under the model gθ(X, ·). The more often the discrepancy (intuitively, the
loss) of the data generated under the model is greater than or equal to the discrepancy of the holdout
data, the more confident we can be that the model explains the holdout data well. Conversely, if the
discrepancy of the holdout data is commonly greater than that of the data generated under the model,
we should be less confident that the model explains the holdout data, and thus be skeptical about the
models capacity to solve the ICL problem. Algorithm 2 in Appendix D describes a pppc estimator.

6 THE GENERATIVE PREDICTIVE p-VALUE AND HOW TO ESTIMATE IT

CGMs—like LLMs or Diffusion models (Ho et al., 2020; Gulrajani & Hashimoto, 2023)—do not
explicitly provide the joint distribution over observations and explanations. At best, they give the
model posterior predictive pθ(x | xn) as a black box instead of an integral of the likelihood pθ(x | f)
over the posterior pθ(f | xn). This is a problem for discrepancy functions that depend on f .

Our solution to this problem relies on the intuition that a sufficiently large dataset xN := {zi, yi}Ni=1

generated according to the model likelihood xN ∼ pθ(x | f) given an explanation f contains roughly
the same information as the explanation itself. For an identifiable Bayesian model, the model posterior
pθ(f | xN ) concentrates around the unique generating explanation f as N →∞. Therefore, it makes
sense to express functions of explanations f , like the likelihood pθ(x | f), which are not defined under
a typical CGM, as functions of large datasets, like the predictive pθ(x | xN ), which are defined.
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But, if we are only given the n examples comprising xn, where do the additional N − n examples
come from? The generation of sufficiently large datasets is done by ancestrally sampling from
the model predictive distribution pθ(z, y | xn) to generate hypothetical completions xn+1:N of the
observed ICL dataset xn (also called predictive resampling by Fong et al. (2023)):

zn+1, yn+1 ∼ pθ(z, y | xn), zn+2, yn+2 ∼ pθ(z, y | xn, zn+1, yn+1), . . .

Adding generated examples to the conditional of the predictive step-by-step can be thought of as
reasoning toward one explanation by imagining a sequence of sets of observations that are consistent
with a shrinking set of explanations as the sequence length increases. As a stochastic process, it
reasons toward a different explanation each time a completion of xn is generated by N − n examples.

Building off this intuition, we define martingale and generative predictive p-values below. We prove
that under general conditions the martingale predictive p-value is equal to the posterior predictive
p-value. We then show how to estimate the generative predictive p-value for a given ICL problem.

6.1 THE MARTINGALE PREDICTIVE P-VALUE

Our method is built on Doob’s theorem for estimators (Theorem 2). This theorem helps us transform
statements about the random variable h(F)—a function of explanations F—to statements about the
random variable E[h(F) | X1,X2, . . . ,Xn], which is a function of observations (X1,X2, . . . ,Xn).
Thus, we can proceed without direct access to pθ(z, y | f)and pθ(f | xn) and define a p-value that
depends on infinite datasets x∞ := (xi, yi)

∞
i=1 rather than f

pmpc :=

∫∫
1
{
gθ(x, x

∞) ≥ gθ(x
test, x∞)

}
dPθ(x | x∞)dPθ(x

n:∞ | xn). (2)

Doob’s Theorem is an application of martingales, so—in line with the current literature (Fong et al.,
2023; Lee et al., 2023; Falck et al., 2024)—we call this formulation the martingale predictive p-value.

The main theoretical result of this paper establishes the equality of the posterior and martingale
predictive p-values; Equations (1) and (2). We formalize this statement in the following theorem.
Theorem 1. Let F ∼ Pθ, and X1,X2, . . . i.i.d ∼ Pf

θ. pppc = pmpc under Conditions 1 to 3 and∫
| log pθ(xm | f)|dPθ(f) <∞ : ∀xm ∈ Xm.

Proof. The proof makes use of Doob’s Theorem and is presented in Appendix C.

6.2 THE GENERATIVE PREDICTIVE P-VALUE

The martingale predictive p-value cannot be exactly computed because it is impossible to generate
infinite datasets. Thus, we define the generative predictive p-value that clips the limits to infinity by
some feasibly large number N to estimate Equation (2) as

pgpc :=

∫∫
1
{
gθ(x, x

N ) ≥ gθ(x
test, xN )

}
dPθ(x | xN )dPθ(x

n:N | xn). (3)

The generative predictive p-value enables us to replace distributions that depend on latent mechanisms
f or infinite datasets x∞ with ones that depends on finite sequences. The cost of using finite N is
estimation error between pgpc and pppc. A formal analysis of this error is left to future work.

6.3 CGM ESTIMATORS FOR THE GENERATIVE PREDICTIVE P-VALUE

We derive an estimator for the generative predictive p-value in Equation (3) that uses Monte Carlo
estimates to approximate the integrals. Algorithm 1 describes the estimation procedure. The steps
that distinguish the generative predictive algorithm from the posterior predictive algorithm are given
in Lines 2 to 5. There, completions xNi of length N are sampled from the predictive distribution to
approximate sampling a mechanism fi. This is in contrast to sampling an explanation directly from
the model posterior as shown in Algorithm 2 Line 2 of Appendix D. When sampling replication
data xi in Lines 6 to 9, the predictive distribution is conditioned on xNi and n new examples are
independently sampled. The procedure is repeated M times, and the p-value is estimated empirically.
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Algorithm 1 p̂gpc

Require: data {xn, xtest}, discrepancy function gθ(x, x
N ), # replicates M, # approx. samples N

1: for i← 1 to M do
2: xNi ← xn ▷ initialize f sample data
3: for j ← n+ 1 to N do
4: zj , yj ∼ pθ(z, y|xN ) ▷ sample example from model
5: xNi ← (xNi , zj , yj) ▷ update approximation context
6: xi ← () ▷ initialize replicant data
7: for j ← 1 to n do
8: zj , yj ∼ pθ(z, y|xNi ) ▷ sample example from model
9: xi ← (xi, zj , yj) ▷ update replicant data

10: return 1
M

∑M
i=1 1

{
gθ(xi, x

N
i ) ≥ gθ(x

test, xNi )
}

▷ estimate p-value

7 EMPIRICAL EVALUATION

This section reports the following empirical findings: (1) The generative predictive p-value is an
accurate predictor of model capability in tabular, natural language, and imaging ICL problems. (2)
The p-value computed under the NLL discrepancy is also an indicator of whether there are enough
in-context examples n. (3) The number of generated examples N − n interpolates the p-value
between the posterior predictive p-value under the NLML discrepancy and the NLL discrepancy
using the model posterior pθ(f | xn) and likelihood pθ(x | f). These findings show that the p-value
computed under either discrepancy yields an accurate predictor of whether generative AI can solve
your in-context learning problem. If you also need to know whether there are enough in-context
examples, we suggest using the NLL discrepancy function. If computational efficiency is a primary
concern, we suggest using the NLML discrepancy as dataset completion generation is not required.

Models. We evaluate our methods using two model types. For tabular and imaging tasks, we use a
Llama-2 regression model for sequences of continuous variables (Jesson et al., 2024). The model
is optimized from scratch for next token (variable or pixel) prediction following the procedure of
Touvron et al. (2023). For natural language tasks, we use pre-trained Llama-2 7B (Touvron et al.,
2023) and Gemma-2 9B (Team, 2024) LLMs (Gemma-2 9B results are reported in Appendix H).

(a) in-distribution tabular task (b) OOD tabular task

Figure 3: Two randomly sampled tabular data tasks. For in-distribution tasks, (Figure 3a) confidence
intervals align with response variability around the function. For OOD tasks (Figure 3b) the confidence
intervals are misaligned, leading to inaccurate predictions, even with more in-context examples.

Data. For tabular tasks, queries z are sampled uniformly from the interval [−2, 2]. Responses y are
drawn from a normal distribution with a mean µ(z), parameterized by either a random 3rd-degree
polynomial (in-distribution), a random ReLU neural network (in-distribution or OOD), or a radial
basis function (RBF) kernel Gaussian process with a length scale of 0.3 (OOD). The training data
comprise 8000 unique in-distribution datasets with 2000 z − y examples each. An in-distribution
ReLU-NN task is illustrated in Figure 3a. The mean function µ(z) is plotted by the blue line, and the
blue shaded region outlines the 95% CI of pθ(y | z, f∗). An OOD GP task is illustrated in Figure 3b.
In-distribution test data comprise a set of 200 new random datasets with 500 z− y examples each.
The OOD test data comprise 200 random datasets with 500 z− y examples each.
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(a) In-capability (b) Out-of-capability

Figure 4: Natural language in-capability vs. out-of-capability tasks. Green solid lines are the ICL
error rate for Llama-2 7B. Gray dashed lines are the random guessing error rate. We define SST2 and
AG News as in-capability, as the error rates are significantly lower than random guessing. We define
Medical QP and RTE as out-of-capability, as the error rates are similar to random guessing.

For pre-trained LLM experiments, the delineation between in- and out-of-distribution is opaque.
Instead, we use in-capability or out-of-capability to differentiate between tasks a model can or
cannot perform well. Figure 4a illustrates in-capability tasks where the error rate of Llama-2 7B
is considerably better than random guessing. The in-capability data are the SST2 (Socher et al.,
2013) sentiment analysis (positive vs. negative) and AG News Zhang et al. (2015) topic classification
(World, Sports, Business, Sci/Tech) datasets. Figure 4b illustrates out-of-capability tasks where the
error rate is only marginally better than random. The out-of-capability data are the Medical Questions
Pairs (MQP) (McCreery et al., 2020) differentiation (similar vs. different) and RTE (Dagan et al.,
2006) natural language inference (entailment vs. not entailment) datasets.

(a) SVHN (in-distribution) (b) MNIST (near OOD) (c) CIFAR-10 (far OOD)

Figure 5: Generative fill completions on the SVHN, MNIST, and CIFAR-10 test sets. Completions
are sensible for the in-distribution task, but contain artifacts and hallucinations for the OOD tasks.

For imaging ICL experiments, we use SVHN for in-distribution data (Netzer et al., 2011), MNIST as
“near” OOD data (LeCun et al., 1998), and CIFAR-10 as “far” OOD data (Krizhevsky et al., 2009).
Our Llama-2 regression model takes a sequence of flattened, grayscale, 8x8 images as input. It is
fit to random sequences of 16 images from the SVHN "extra" split, which has over 500k examples.
A series of in-distribution generative fill tasks is shown in Figure 5a. In each row, the model is
prompted with three in-context examples and asked to complete the missing half of the 4th example.
Each completion in the “fill” column is sensible, even when the completed number differs from the
“real” number. Figure 5b illustrates completions for near-OOD MNIST tasks. We see in rows 1, 2,
3, and 6 that the fills are often sensible, but the model is prone to hallucinating odd completions
(row 4) and artifacts (row 5). Figure 5c illustrates completions for far-OOD CIFAR-10 tasks. The
completions are surprisingly consistent at this resolution, but as the result in row 4 demonstrates, the
model hallucinates completions from its domain.

Discrepancy functions. We evaluate the p-value using discrepancy functions defined as

gθ(x, x
(·)) := − 1

|x|
∑

zi,yi∈x

1

|(zi, yi)|
∑

tj∈(zi,yi)

log pθ(tj | t<j , x
(·)),
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where |(zi, yi)| is the number of tokens in the evaluated example. Following this template, the per-
token negative log marginal likelihood (NLML) is written gθ(x, x

n) and an estimate of the per-token
the negative log-likelihood (NLL) is written gθ(x, x

N ), where xN is generated as in Algorithm 1.

Predicting model capability. The p-values are calculated using either Algorithm 1 or Algorithm 3.
Selecting a significance level α yields a binary predictor of model capability 1{pgpc < α}; a model
is predicted incapable if the estimated generative predictive p-value is less than the significance level.
We report results for significance levels α ∈ [0.01, 0.05, 0.1, 0.2, 0.5]. For the NLL discrepancy
function, replication data x is independently sampled from the likelihood under a hypothetical dataset
completion pθ(z, y | xN ). For the NLML discrepancy function, replication data is independently
sampled from the predictive distribution pθ(z, y | xn).

Figure 6: Evaluation metrics for GPC performance.

Metric Equation

False Positive Rate (FPR) False Positives
False Positives+True Negatives

Precision True Positives
True Positives+False Positives

Recall True Positives
True Positives+False Negatives

F1 Score 2·Precision·Recall
Precision+Recall

Accuracy True Positives+True Negatives
Total Number of Predictions

Evaluation metrics. We evaluate the capa-
bility predictor using standard metrics: FPR
measures in-capability tasks misclassified as
out-of-capability, Precision reflects correctly
identified out-of-capability tasks, and Recall
measures correctly detected out-of-capability
tasks. F1 Score and Accuracy assess overall
performance (see Figure 6 for definitions).

We also provide the distribution of p-values
across tasks to assess how confidently the
model distinguishes between the different
ICL problems. Lower p-values indicate stronger confidence that a model cannot solve a problem.

7.1 THE GENERATIVE PREDICTIVE p-VALUE ACCURATELY PREDICTS MODEL CAPABILITY

Tabular data. We first evaluate whether the generative predictive p-value effectively predicts
OOD tabular data tasks. The parameters for Algorithm 1 are M = 40 replications and N − n =
200 generated examples. The ICL dataset xn size is varied from n = 2 to n = 200. Figure 7
plots precision, recall, F1, and accuracy curves and shows that the p-value estimates under either
discrepancy function provide non-trivial OOD predictors for all α settings.

Figure 7: Tabular OOD detection. Metric values vs. context length. In-distribution functions are from
unseen random ReLU-NNs. OOD functions are from an RBF kernel GP. Both discrepancy functions
yield better than random OOD predictors for a range of α settings.

Natural language ICL. Next, we evaluate whether the generative predictive p-value effectively
predicts out-of-capacity natural language tasks. The parameters for Algorithm 1 are M = 20
replications and N − n = 10 generated examples. The ICL dataset xn size is varied from n = 4 to
n = 64. Figure 8 plots precision, recall, F1, and accuracy curves and shows that the p-value estimates
under the NLL discrepancy provide non-trivial (accuracy > 0.5) out-of-capability predictors in the
domain of natural language for all α settings. The NLML discrepancy gθ(x, x

n) is also generally
robust outside of the small n and small α setting.

Generative fill. Finally, we evaluate whether the generative predictive p-value effectively predicts
OOD generative fill tasks. The parameters for Algorithm 1 are M = 100 replications and N − n = 8
generated examples The ICL dataset xn size is varied from n = 2 to n = 8. Figure 9 plots the
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Figure 8: Llama-2-7B out-of-capability detection. Metric values vs. context length. In-capability
tasks are from SST2 and AG News datasets. Out-of-capability tasks are from RTE and MQP datasets.
Both discrepancy functions yield better than random OOD predictors for a range of α settings.

OOD prediction metric curves and shows that the p-value estimates under either discrepancy function
provide non-trivial (accuracy > 0.666̄) OOD predictors for all α settings.

Figure 9: Generative fill OOD detection. Metric values vs. context length. In-distribution tasks are
from the SVHN test set. Near and far OOD tasks are from the MNIST and CIFAR-10 test sets. Both
discrepancy functions yield better than random OOD predictors for a range of α settings.

Discussion. Figures 7 to 9 reveal several trends. First, the NLML discrepancy (blue) yields better
precision, indicating that it is less likely to misclassify an in-capability ICL problem as unsolvable.
Second, the NLL discrepancy (purple) yields higher recall, indicating that it is less likely to misclassify
an out-of-capability ICL problem as solvable. Third, the NLL discrepancy with significance level
α = 0.05 yields a generally more accurate predictor than the NLML discrepancy function for any
significance level in the set evaluated. Finally, the recall of a predictor under the NLML discrepancy
is sensitive to the number of in-context examples n. Next, we look deeper into the relationship
between dataset size and the discrepancy functions.

7.2 THE NLL DISCREPANCY ALSO INDICATES WHETHER YOU HAVE ENOUGH DATA

(a) NLL (b) NLML (c) Risk (d) Accuracy

Figure 10: With equal accuracy, the NLML discrepancy can yield a classifier with lower risk.
Figures 10a and 10b are scatter plots of response RMSE vs. p-values for each discrepancy function.
Points are coded by ICL dataset size n. Figure 10c Risk vs. n. Figure 10d Accuracy vs. n.

Both discrepancy functions yield accurate predictors of model capability, but the NLL discrepancy
tells us if there are enough in-context examples to reliably solve a task. We use prediction RMSE
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over task responses to measure reliability. Figures 10a and 10b plot the RMSE against the p-values
computed under the NLL and NLML discrepancies for in-distribution polynomial tabular tasks. We
see that lower p-values correlate with higher RMSE for the NLL discrepancy, but not for the NLML
discrepancy. This information is useful for reducing risk in autonomous recommendation systems
that respond if the p-value is greater than the significance level α. For example, at α = 0.1, the NLL
discrepancy reduces the generation of responses with high error because it accounts for the number
of examples provided. Taking the risk as the sum of task RMSEs for tasks predicted as in-capability,
Figures 10c and 10d show that the NLL discrepancy results in substantially reduced risk, even when
the accuracies of each predictor are matched. Figure 14 in the appendix gives further insight into how
the distributions of p-values evolve with dataset size for each discrepancy function.

7.3 THE NUMBER OF GENERATED EXAMPLES N − n INTERPOLATES THE p-VALUE ESTIMATE
BETWEEN THE NLML AND THE IDEAL NLL DISCREPANCIES

Figure 11: The p-value is interpolated between the NLL estimate and the NLML estimate as
completion size N − n grows from 0 to∞.

Inspection of Equations (1) to (3) shows that the dataset completion size N − n should interpolate
p-value estimates between pppc computed with the NLML discrepancy and with the NLL discrepancy
using the likelihood and posterior of a Bayesian model. To verify this, we use a reference Bayesian
polynomial regression model to compute the pppc. We use our Llama-2 regression model fit to datasets
generated from the reference model likelihood under different explanations to compute the pgpc. We
let datasets generated by random ReLU-NNs serve as OOD tasks. Figure 11 demonstrates that our
expectation is true. Specifically, the p-value estimates at N −n = 2 are distributionally close to those
calculated under the NLML, and they more closely approximate those calculated under the reference
NLL discrepancy as we increase N − n to 100. The latter observation is also illustrated in Figure 13.

Since the p-values from either discrepancy accurately predict model capability, the choice depends
on whether the added computational cost of generating dataset completions is justified. If you
need to know whether there are enough in-context examples to generate an accurate response—a
necessity in risk-sensitive applications—then we recommend using the NLL discrepancy function.
If computational efficiency or the cost of response deferral are primary concerns—practical user
experience concerns—we suggest using the NLML discrepancy.

8 CONCLUSION

This work introduces the generative predictive p-value, a metric for determining whether a Conditional
Generative Model can solve an in-context learning problem. It extends Bayesian model criticism
techniques like PPCs to generative models by sampling dataset completions from the model’s
predictive distribution to approximate sampling latent explanations from a Bayesian model posterior.
Empirical evaluations on tabular, natural language, and imaging tasks show that the generative
predictive p-value can effectively identify the limits of model capability, distinguishing between
in-capability and out-of-capability tasks for models like Llama-2 7B and Gemma-2 9B. This approach
is a practical method to assess model suitability that advances Bayesian model criticism for CGMs.
While we have focused on model capability prediction, the p-value estimates could also be used
for model selection or as a general measure of task uncertainty. We are eager to explore extensions
beyond ICL tasks to improve the reliability of generative AI systems.
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A MODEL INTUITION

In this section we give an interpretation of the component parts of a Bayesian model, how they
are used to make inferences about uncertainty, and how to relate inferences in classical domains to
inferences in more complex domains like language.

The model prior pθ(f) can be thought of as a library over the possible explanations a model could
ascribe to observations. It is a special kind of library, where the probability of finding an explanation
in the library at random is also defined. The model prior encodes everything “known” to a model;
all the latent patterns available as explanations for—or an index of all the probability distributions
ascribable to—any set of observations. The model prior may or may not assign non-zero probability
to an explanation f equivalent to a given ICL problem task f∗. If no such explanation has coverage
under the prior, then the model may not be able to provide an accurate solution to the ICL problem.

(a) linear model, linear data (b) polynomial model, polynomial data

(c) polynomial model, linear data (d) linear model, polynomial data

Figure 12: Examples of misaligned model and data combinations. Transformer models (pink) are fit
to either linear or polynomial noisy data defined by reference Bayesian models (blue).

For example, a Bayesian linear regression model with fixed noise, defines the part of the prior over
explanations pθ(f) related to the outcome y as a set of coefficient vectors; a set of hyperplanes. If the
ICL dataset and prediction task are characterized by a linear relationship between continuous valued
queries and responses—illustrated in Figure 12a—the prior would be suitable for the ICL problem.
However, if they are characterized by polynomial relationships—illustrated in Figure 12c—then the
relationship would not have coverage under the prior and the precision of responses under the model
would be limited by the capacity of a hyperplane to fit a polynomial surface. By analogy, a LLM
that is pre-trained or fine-tuned on a large set of integrals expressed in natural language may have
the functional capacity to integrate; generalize to unseen functions and domains of the classes and
spaces covered in the training set. So if the ICL dataset and task are related to the integration of
polynomials, the learned library of mappings from text to token distributions may be appropriate for
that ICL problem. However, if the LLM training corpus did not contain content related to calculus,
then learned library of mappings may not include the functional capability to solve the ICL problem.

The model likelihood pθ(x | f) encodes the variety of observations x that could be generated
according to a given explanation f . The variety encoded by this distribution is often called aleatoric
uncertainty—aleatory is a pretentious word for random—which refers to the inherent randomness
over generated datasets when sampling according to the likelihood under a given explanation f . For
example, given the explanation implied by a fair coin, we will still be uncertain whether the outcome
of a single coin flip will be heads or tails. More contemporarily, if you are already familiar with this
concept and I were to say, “I would like to share the idea of aleatoric uncertainty with you,” you would
know which idea I want to share, but, before reading this paragraph, you would be uncertain about
how I would share it with you. When the model likelihood pθ(x | f) is indexed by an explanation
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that is equivalent to the task f ≡ f∗, then pθ(x | f) is equal to the reference likelihood p(x | f∗). So
even though we may be uncertain about which dataset would be generated according to the model
likelihood, we could still be certain that the generated dataset would correspond to the task. However,
if there is a discrepancy between the model and reference likelihood then the model may not be
suitable for the in-context learning problem.

The model posterior

pθ(f | xn) =
pθ(x

n | f)pθ(f)∫
pθ(xn | f)dPθ(f)

,

encodes variety over explanations that could have generated a specific set of observations xn. This
variety is often called epistemic uncertainty. Epistemic is a pretentious term referring to knowledge,
conveying that we may not yet know which explanation f among subset of reasonable explanations
best explains possible datasets x under the ICL problem.

For example, given only four observations—say, two heads and two tails—the sample mean estimate
for the probability of observing heads is 0.5. However, we may still be uncertain about whether
the coin generating the outcomes was fair or biased because the variance of that estimate is still a
non-negligible 0.0625 when we assume the coin is actually fair. Related to our contemporary example,
if I only say, "I would like to share an idea with you," you can probably imagine an abundance of
ideas that I could be referring to and thus still be uncertain about which one I have chosen to share.

A relevant feature of epistemic uncertainty is that it is reducible as we observe more context. In
the coin flip example, as we observe more outcomes, our certainty about the probability of heads
increases. In the second example, you may have a better idea about the class of ideas I may share
based on what has been presented thus far.

As a function of both the model likelihood and prior, the model posterior inherits the limitations of
both. But it also provides information about whether an in-context learning problem can be solved
reliably. Namely, variety over explanations is indicative of being uncertain about which task the ICL
dataset corresponds to. This variety can lead to the model generating responses corresponding to
tasks other than f∗. But it may also be indicative of when more examples (larger n) can improve the
quality of solutions to an in-context learning problem.

The model posterior predictive

pθ(x | xn) =
∫

pθ(x | f)dPθ(f | xn),

is derived from the model to generate new observations x given past observations xn. Poetically, the
model posterior predictive gives the model a voice to respond to observations with observations. The
model posterior predictive convolves the model likelihood of the observations given an explanation
with the model posterior over explanations. This process entangles variety over explanations after
observing a dataset xn and variety over observations x for each specific explanation f; the model
posterior predictive entangles aleatoric and epistemic uncertainty.

Model inferences. A model θ defined over an observation space X is used make inferences about
observations from that space xn. Inferences like the probability of the the next word given a sequence
of words, model uncertainty, and countless other things. But a model is a choice—the practitioner
makes a modeling decision—and so the inferences derived from observations under a model may or
may not be grounded in reality.

Figure 12 illustrates inferences about the predictive distribution made by different models given
different datasets. When the data and model are well aligned— Figures 2a and 12b—model inferences
(pink) overlap with those made by the reference model (blue) and appear purple. However, inferences
made by a misaligned polynomial model—Figure 12c—are much wider that those made by the
reference linear model. And inferences made by a misaligned linear model—Figure 12d—are more
narrow than those ogf the reference polynomial model, which results in the model being confident
and wrong. Similarly, a very general LLM may have compromised data efficiency for rare domains,
while a highly specialized LLM may no longer generalize beyond its domain.

These examples illustrate that while models are used to quantify empirical facts—like the frequency
of an event occurring—they also carry a subjective aspect that needs to be considered when using
model inferences in practice. This consideration guides our question of when a model will provide
reliable inferences for a given ICL problem.
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B DEFINING MODEL CAPABILITY FOR AN IN-CONTEXT LEARNING PROBLEM

In this section, we formalize the idea that, “a model can solve an ICL problem.” A formal definition
must account for two things: (1) the model may generate undesired responses because the context
does not adequately specify the task, and (2) the model may generate undesired responses despite the
context precisely specifying the task. The definition below accounts for both.
Definition 1. An ICL problem comprises a model θ, a dataset xn = {zi, yi}ni=1 ∼ p(xn | f∗), and a
task f∗. Assume that valid responses y to user queries z ∼ p(z | f∗) are distributed as p(y | z, f∗)
under the task. Finally, let A(z, f∗) denote any set of responses satisfying

Pr(Y ∈ A(z, f∗) | z, f∗) ≥ 1− ϵ. (4)

The model θ is called capable of solving the ICL problem if

lim
n→∞

∫
1 {y ∈ A(z, f∗)} dPθ(y | z, xn) ≥ 1− ϵ. (5)

Equation (4) defines a set of valid responses y to any query z given the task f∗. Jesson et al. (2024)
call this a (1− ϵ)-likely set. For example, the set could be a confidence interval in a regression task
or a set of semantically equivalent ways to express positive sentiment in an open-ended sentiment
analysis task. The 1− ϵ set gives us a formal and general way to express the notion of a desirable
response for a given query and task. Equation (5) then says that a model is capable if the probability
that a generated response belongs to the set of valid responses converges to be at least 1− ϵ as the
size of the dataset grows; as the context more precisely specifies the task. This definition accounts
for condition (1) through the limit, allowing for capable models with too few in-context examples
to be called capable. The indicator accounts for both conditions by counting the number of times
model-generated responses fall inside the 1− ϵ set; a general measure of accuracy.

In addition to accounting for the above conditions, this definition allows the model predictive
distribution to collapse to subsets of A(z, f∗)—even deterministic responses—and still be called
capable. This attribute is preferable to a definition of capability that requires the model predictive
distribution to converge to the reference distribution, which would exclude many practical models.

While this definition is general, there are still practical limitations to consider. For example, an
infinitely deep and wide random transformer with a finite maximum sequence length might be capable
of solving most problems under this definition; however, its data efficiency may be so poor that we
fill the context window before it can generate accurate responses. Similarly, even if the model could
accommodate infinitely long sequences, the available data may exhausted before the model generates
desirable responses. These scenarios are extreme examples of the over-parameterized case illustrated
in Figure 2c.

This discussion also sheds light on the propensity for a classifier using the NLML p-value to produce
false negatives (misclassify out-of-capability tasks as in-capability). Focusing on the z > 0.5 region
of Figure 3b, the model will be predicted as in-capability because the model predictive distribution
covers the data for small in-context learning dataset sizes. It is not until the model sees 100 examples
that the misalignment between the predicted and reference distributions becomes apparent. The NLL
discrepancy addresses this failure mode, as discussed.

C PROOFS FOR THEORETICAL RESULTS

We restate our formalization and assumptions for convenience. Observable examples (z, y) ∈ X
are modeled by the (X ,A)-random variable Xi and explanations f ∈ F are modeled by the (F ,B)-
random variable F, where A and B are the relevant sigma algebras. For each f ∈ F , let the model θ
define a probability measure Pf

θ on (X ,A). Let the model θ further define a probability measure
Pθ on (F ,B). And let Pθ and Pf

θ define the joint measure Mθ over ((X1,X2, . . . ),F). Finally,
we overload the notation “∼.” It means “sampled according to” when referring to the relationship
between a random variable instance and a density or distribution; e.g., x ∼ pθ(x). And it means
“distributed as” when referring to the relationship between a random variable and a probability
measure; e.g., X ∼ Pf

θ. Our method rests on Doob’s theorem for estimators (Doob, 1949), which
assumes the following three conditions.
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Condition 1. The observation X and explanation F spaces are complete and separable metric
spaces.

Condition 2. The set of probability measures {Pf
θ : f ∈ F} defined by the model θ is a measurable

family; the mapping f 7→ Pf
θ(A) is measurable for every A ∈ A.

Condition 3. The model θ is identifiable;

f ̸= f ′ ⇒ Pf
θ ̸= Pf′

θ . (6)

Given these conditions we can state Doob’s theorem.

Theorem 2. Doob’s Theorem for estimators. Let F ∼ Pθ and X1,X2, . . . i.i.d ∼ Pf
θ. Assume

Conditions 1 to 3 and a measurable function h : F → R such that
∫
|h(f)|dPθ(f) <∞, then

lim
n→∞

E[h(F) | X1,X2, . . . ,Xn] = h(F) a.s. [Mθ]. (7)

Proof. Miller (2018) provides a detailed proof of this theorem.

Lemma 3. Let F ∼ Pθ, and X1,X2, . . . i.i.d ∼ Pf
θ. Assume Conditions 1 to 3 and let

{
∫
| log pθ(xm | f)|dPθ(f) <∞ : ∀xm ∈ Xm}. Then,

gθ(x,F) = −
1

|x|
log pθ(x | F) = −

1

|x|
log pθ(x | X∞) = gθ(x,X

∞).

Proof.

pθ(x | F) = lim
n→∞

∫
pθ(x | f)dPθ(f | X1, . . . ,Xn)

= lim
n→∞

∫
pθ(x | f,X1, . . . ,Xn)dPθ(f | X1, . . . ,Xn)

= lim
n→∞

pθ(x | X1, . . . ,Xn)

g(x,F) = − 1

|x|
log pθ(x | F)

= − 1

|x|
log lim

n→∞
pθ(x | X1, . . . ,Xn)

= lim
n→∞

− 1

|x|
log pθ(x | X1, . . . ,Xn)

= − 1

|x|
log pθ(x | X∞)

= g(x,X∞)

Theorem 2. Under the conditions of Lemma 3,

pppc = pmpc

Proof. Define an alternative probability model such that F ∼ Pxn

θ and X1,X2, . . . i.i.d ∼ Pf,xn

θ . Let
pa, Pb, and ga denote the relevant quantities respecting this model. For example, pa(y | x) = pθ(y |
x, xn) and Pa(f) = Pθ(f | xn). Note that pθ(x | f) = pθ(x | f, xn) = pa(x | f) since X and Xn are
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independent when f is known.

pppc =

∫∫
1
{
gθ(x, f) ≥ gθ(x

test, f)
}
dPθ(x | f)dPθ(f | xn)

=

∫
1
{
ga(x, f) ≥ ga(x

test, f)
}
dPa(x, f)

=

∫
1
{
ga(x, f) ≥ ga(x

test, f)
}
dPa(x, f, x

n+1:∞)

=

∫∫
1
{
ga(x, f) ≥ ga(x

test, f)
}
dPa(x, | f, xn+1:∞)dPa(f, x

n+1:∞)

=

∫∫
1
{
ga(x, x

n+1:∞) ≥ ga(x
test, xn+1:∞)

}
dPa(x | f, xn+1:∞)dPa(f, x

n+1:∞) Lemma 3

=

∫∫
1
{
ga(x, x

n+1:∞) ≥ ga(x
test, xn+1:∞)

}
dPa(x | xn+1:∞)dPa(x

n+1:∞)

=

∫∫
1
{
gθ(x, x

∞) ≥ gθ(x
test, x∞)

}
dPθ(x | x∞)dPθ(x

n+1:∞ | xn)

= pmpc

D POSTERIOR PREDICTIVE P-VALUE ALGORITHM

Algorithm 2 details the procedure for calculating the posterior predictive p-value in Equation (1) given
train data xn, test data xtest, a discrepancy function gθ(x, f), and the nuber of replication datasets to
generate M .

Algorithm 2 p̂ppc

Require: data {xn, xtest}, discrepancy function gθ(x, f), # replicates M
1: for i← 1 to M do
2: fi ∼ pθ(f | xn) ▷ sample explanation f
3: xi ← () ▷ initialize replicant data
4: for j ← 1 to n do
5: zj , yj ∼ pθ(z, y|fi) ▷ sample example from model likelihood
6: xi ← (xi, zj , yj) ▷ update replicant data
7: return 1

M

∑M
i=1 1

{
gθ(xi, fi) ≥ gθ(x

test, fi)
}

▷ estimate p-value

E LITE GENERATIVE PREDICTIVE P-VALUE ALGORITHM

Algorithm 3 p̂lite
gpc

Require: data {xn, xtest}, a discrepancy function gθ(x, x
n), # replicates M

1: for i← 1 to M do
2: xi ← () ▷ initialize replicant data
3: for j ← 1 to n do
4: zj , yj ∼ pθ(z, y | xi, xn) ▷ sample example from model
5: xi ← (xi, zj , yj) ▷ update replicant data
6: return 1

M

∑M
i=1 1

{
gθ(xi, x

n) ≥ gθ(x
test, xn)

}
▷ estimate p-value

Algorithm 3 summarizes a “lite” version of the estimator that forgoes approximate sampling from the
model posterior and likelihood. Instead, it samples replication data directly from the model predictive
distribution and calculates the discrepancy functions with respect to the observed data xn rather than
a dataset completion xN .

19



Published as a conference paper at ICLR 2025

F ADDITIONAL FIGURES

Figure 13: Scatter plots demonstrating that pgpc becomes a better approximation of pppc with increas-
ing dataset completion size N − n.

(a) Polynomial Tabular (b) ReLU-NN Tabluar (c) Natural language (d) Generative fill near

Figure 14: The generative predictive p-value against dataset size n

Figure 15a shows p-values as a function of the ICL dataset xn size n (context length). We see
that there is clear separation between the estimated generative predictive p-values p̂gpc for the in-
distribution test set (solid lines) and the OOD dataset (dashed lines). The separation is robust across
different ICL dataset sizes and the two discrepancy functions we test.

(a) Generative predictive p-values (b) False Positive Rate (NLML) (c) False Positive Rate (NLL)

Figure 15: Simulated regression task. The generative predictive p-value against dataset size n and
it’s relationship to the false positive rate. The first figure shows the generative predictive p-values,
and the second and third figures show the false positive rate with the NLML and NLL discrepancy
functions, respectively.

Figure 15b plots the FPR for the capability detector defined by p̂gpc the with NLML discrepancy. We
see that the FPR is stable across ICL dataset size n and that the FPR aligns well with the significance
level α. Figure 15c plots the FPR for the capability detector defined by p̂gpc the with NLL discrepancy.
In contrast, the FPR decreases with increasing ICL dataset size.

Figure 16a shows p-values under the Llama-2 7B model as a function of the ICL dataset xn size
n (context length). Again, we see a clear separation between the estimated generative predictive
p-values p̂gpc for the in-capability (solid lines) and the out-of-capability (dashed lines) tasks. The
separation is robust across different ICL dataset sizes and the two discrepancy functions we test.

Figure 16b plots the FPR for the capability detector defined by p̂gpc the with NLML discrepancy. We
see that the FPR trends up with increasing ICL dataset size n and approaches the significance level α.
Figure 16c plots the FPR for the capability detector defined by p̂gpc the with NLL discrepancy. As for
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(a) Generative predictive p-values (b) False Positive Rate (NLML) (c) False Positive Rate (NLL)

Figure 16: Natural language task. The generative predictive p-value against dataset size n and it’s
relationship to the false positive rate. The first figure shows the generative predictive p-values, and the
second and third figures show the false positive rate with the NLML and NLL discrepancy functions,
respectively.

the simulated regression data, the FPR starts to decrease with increasing ICL dataset size, but for
lower α values the trend begins to reverse.

G CHOICE OF DISCREPANCY FUNCTION
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Figure 17: Comparison of two models: Model 1 exhibits high epistemic uncertainty, while Model 2
exhibits high aleatoric uncertainty. The posterior predictive distribution is shown alongside samples
of f and the test point xtest. Note that the numerical values in the plot differ from the example in the
text for visual clarity. The discrepancy function g(x, f) helps distinguish these cases by evaluating
how likely xtest is under different values of f .

It might not be immediately clear when to use one discrepancy function over another. In this section
we argue that in general one should prefer to use g(x, f) when possible as it can identify when the
model has high uncertainty about the value of f .

To illustrate this difference, imagine two models. The first model has posterior p1(f | xn) =
N(0, 1) and likelihood p1(x | f) = N(f, 0.0001). The second model has posterior p2(f | xn) =
N(0, 0.0001) and likelihood p2(x | f) = N(f, 1). In both models, the posterior predictive is
essentially the same standard normal, p(x | xn) = N(0, 1). However, in the first model, the posterior
predictive variance is due to epistemic uncertainty (we are unsure about the correct f ), while in the
second model, it is due to aleatoric uncertainty (we are confident about f , but the task is inherently
stochastic). Figure Figure 17 illustrates this scenario.

Now assume that we have a test point xtest = 0.5. Ideally, we want to say that the second model does
a good job of predicting this data point because the task is well specified, while the first one does not
because we are still uncertain about the task. That is, the first model assigns high probability to many
values of f where xtest is unlikely.

Depending on the discrepancy we choose, we may or may not be able to distinguish between the two
scenarios and reject the correct model. For example, if we use
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g(x, xn) := −
∑

zi,yi∈x

log p(zi, yi | xn),

log p(zi, yi | xn) is the same for both models and we will have identical p-values, which will indicate
that both models are suitable—an undesirable outcome.

On the other hand, if we use

g(x, f) := −
∑

zi,yi∈x

log p(zi, yi | f),

the p-values will be quite different. For the first model, many values of f will fall far away from xtest

when computing

pppc :=

∫ ∫
1{g(x, f) ≥ g(xtest, f)} dP (x | f) dP (f | xn).

As a result, g(xtest, f) will be much lower than g(x, f), and the PPC will be quite low. However,
in the second model, this will not happen, as all values of f will be sampled around 0, and xtest

is a reasonable observation for a normal distribution centered at f ≈ 0 with standard deviation 1.
Therefore, using the f -dependent PPC provides the desired behavior because it informs us when the
model is confused about the task. Although we have used an example for illustrative purposes, the
same behavior holds generally.

H GEMMA-2 9B RESULTS

Figure 18b shows that the in-capability vs. out-of-capability distinction is also sensible for the
Gemma-2 9B model. So we conduct the same analysis for Gemma-2 9B that we did for Llama-2 7B
in Section 7.

(a) Llama 2 7B (b) Gemma 2 9B

Figure 18: Natural language in-capability vs. out-of-capability tasks.

Figure 19a shows p-values under the Gemma-2 9B model as a function of the ICL dataset xn size n
(context length). We see a clear separation between the estimated generative predictive p-values p̂gpc
for the in-capacity SST2 data (solid lines) and the out-of-capacity MQP dataset (dashed lines), but
only for the NLML discrepency. The separation is robust across different ICL dataset sizes.

Figure 19b plots the FPR for the capability detector defined by p̂gpc the with NLML discrepancy. We
do not see the same stability of the FPR across ICL dataset size n that we saw for the Llama-2 7B
model. Instead the FPR decreases with increasing n for all significance level α. Figure 19c plots
the FPR for the capability detector defined by p̂gpc the with NLL discrepancy. We see that the false
positive rate is high for all values. These findings are reflected in the Precision curves on the left
hand side of Figure 20. We again see in the Recall curve that the NLL discrepancy leads to a more
sensitive predictor than the NLML discrepancy. The F1 and Accuracy curves show that the NLML
based p-value leads to a much more effective predictor for Gemma-2 9B.
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(a) Generative predictive p-values (b) False Positive Rate (NLML) (c) False Positive Rate (NLL)

Figure 19: Natural language task with Gemma-2 9B. The generative predictive p-value against dataset
size n and it’s relationship to the false positive rate. The first figure shows the generative predictive
p-values, and the second and third figures show the false positive rate with the NLML and NLL
discrepancy functions, respectively.

Figure 20: Natural language model suitability detection ablation. Precision, recall, F1, and accuracy
metrics vs. number of in-context examples. SST2 ICL datasets are taken to be in-capability for
Gemma-2 9b. MQP ICL datasets are taken to be out-of-capability for Gemma-2 9b.

23


	Introduction
	What is an in-context learning problem?
	What is a model?
	A model is a choice to be criticised
	Posterior predictive checks are model critics for ICL problems.
	The generative predictive p-value and how to estimate it
	The martingale predictive p-value
	The generative predictive p-value
	CGM estimators for the generative predictive p-value

	Empirical evaluation
	The generative predictive p-value accurately predicts model capability
	The NLL discrepancy also indicates whether you have enough data
	The number of generated examples N-n interpolates the p-value estimate between the NLML and the ideal NLL discrepancies

	Conclusion
	Acknowledgments
	Model intuition
	Defining model capability for an in-context learning problem
	Proofs for theoretical results
	Posterior predictive p-value algorithm
	Lite generative predictive p-value algorithm
	Additional figures
	Choice of discrepancy function
	Gemma-2 9B results

