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Abstract

We propose a new computationally-efficient first-order algorithm for Model-
Agnostic Meta-Learning (MAML). The key enabling technique is to interpret
MAML as a bilevel optimization (BLO) problem and leverage the sign-based SGD
(signSGD) as a lower-level optimizer of BLO. We show that MAML, through
the lens of signSGD-oriented BLO, naturally yields an alternating optimization
scheme that just requires first-order gradients of a learned meta-model. We term the
resulting MAML algorithm Sign-MAML. Compared to the conventional first-order
MAML (FO-MAML) algorithm, Sign-MAML is theoretically-grounded as it does
not impose any assumption on the absence of second-order derivatives during meta
training. In practice, we show that Sign-MAML outperforms FO-MAML in various
few-shot image classification tasks, and compared to MAML, it achieves a much
more graceful tradeoff between classification accuracy and computation efficiency.

1 Introduction

Humans can learn new tasks quickly based on prior knowledge or experience with similar tasks. A
meta-learning algorithm resembles this in a way such that given previous exposure to relevant tasks,
new tasks can be learned with a small amount of data. To do this, it involves a meta(or upper)-learner
whose job is to update parameters of a base(or lower)-learner which aims to solve a specific task (e.g.
image classification) at hand. This ‘learning to learn’ hierarchical structure can be viewed as solving
a bilevel optimization (BLO) problem, in which the solution to the lower-level problem provides
useful feedback for updating the solution of an upper-level problem [ 1, 2]. Recent works have studied
the optimization-based meta-learning approach targeting on different parameters associated with
the base learner, such as learning a good weight initialization [3-5], and updating neural network
architectures [6—8].

Within the optimization-based meta-learning family, Model-Agnostic Meta-Learning (MAML) is
a popular method that has been widely applied to solving computer vision and natural language
processing tasks [9—11]. In-depth empirical and theoretical understanding of MAML has also been
provided in [4, 12—14]. Through the lens of BLO, MAML is composed of an upper-level optimization
step (which updates weight initialization of a model), and a sequence of lower-level steps (which
adapt this initialization to different specific tasks). Despite the effectiveness of MAML, it is difficult
to scale to large models and datasets due to the need of second-order derivatives during model training
[4, 15]. A first-order variant (FO-MAML) solves this problem by ignoring [3] or estimating [13]
second-order derivatives in practice at the cost of introducing meta-gradient estimation error.
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Contributions In this work, we aim to design a computationally-efficient and theoretically-
grounded MAML algorithm that only relies on first-order derivatives in its implementation. To
this end, we propose Sign-MAML by integrating MAML with signSGD [ 6] and show its advantages
over FO-MAML and MAML. Our contributions are summarized below:

o (Formulation-wise) In §3, we revisit MAML through the lens of BLO and identify a tight connection
between its computation efficiency and the choice of a lower-level optimizer.

o (Methodology-wise) In §4, we leverage signSGD to unroll the lower-level problem of MAML
and theoretically show that this naturally leads to a first-order alternating optimization method,
Sign-MAML, whose computation is exactly as efficient as FO-MAML.

e (Application-wise) In §5, we conduct extensive experiments to demonstrate the advantage of
Sign-MAML in computation efficiency and accuracy. In particular, we show that Sign-MAML
has computational costs similar to those of FO-MAML while providing significantly improved
accuracy for few-shot tasks.

2 Related Work

Meta-learning A surge of recent works have been devoted to developing theory and algorithms of
MAML [2, 5, 13, 14, 17]. For example, the ‘Almost No Inner Loop’ (ANIL) algorithm was proposed
in [5], which dissects the meta-learning into two phases: training the initialization of a meta-model,
and partially fine-tuning the classification head of the meta-model. Compared to the conventional
MAML algorithm, ANIL yields a reduced computation cost due to the use of partial fine-tuning
instead of the end-to-end full fine-tuning. However, ANIL still needs second-order derivatives during
meta training. To overcome such a computation bottleneck, the work [13, 17] proposed to use the
finite difference of function values or first-order gradients to estimate the high-order derivatives
involved in MAML. However, the resulting gradient/Hessian estimation may not be unbiased and
could lead to an unexpected large estimation variance [18]. Another first-order method proposed in
[4] simplifies meta gradient computation by using the difference between initial and adapted weights.
Here, we focus on the design of lower-level optimizer to speed up computation. Besides optimization-
based meta-learning, other algorithms such as metric-based and model-based meta-learning have also
been developed [2, 19-23]. In this work, we focus on the optimization-based meta-learning.

Bilevel optimization Bilevel optimization is applied to solve problems that exhibit two-level
hierarchical structure in which the solution to the lower-level problem is an input to the upper-level
problem. Solvers for BLO problems can be either deterministic or stochastic. Under deterministic
BLO appraoch, two commonly used methods are approximate implicit differentiation (AID) based
and iterative differentiation (ITD) based. For both methods, the lower-level problem is solved by
gradient descent (GD). For the upper-level problem, AID-based methods obtain meta-gradients
through implicit gradients [24] whereas ITD-based methods rely on backpropagation [25, 26]. In
recent years, stochastic approaches have gained a lot of attentions due to its fast convergence and
scalability. Ghadimi and Wang [27] proposed a method to obtain lower and upper-level gradients
through stochastic approximations. Hong et al. [28] developed a method that solves lower and
upper-level problems simultaneously with lower and upper-level step sizes at two different scales.

Sign-based optimization methods signSGD [16] utilizes the sign of gradients as the descent
direction for FO non-convex optimization and demonstrates a convergence rate comparable to that of
stochastic gradient descent (SGD). Liu et al. [29] proposed zeroth-order signSGD (ZO-signSGD)
for solving optimization problems where first-order derivatives are difficult or infeasible to obtain,
demonstrating lower estimation variance when compared to conventional ZO-SGD schemes [18, 30].
In adversarial machine learning, fast gradient sign method (FGSM) has been commonly used for
generating prediction-evasion adversarial attacks [3 1] and for training an adversarially robust deep
neural network [32].

3 Problem Statement

In this section, we begin by presenting the problem of MAML and interpreting it through the lens of
BLO (bilevel optimization). Next, we illustrate the limitations of existing solutions to MAML and
elaborate on our research objective.



BLO setup of MAML Considering P tasks where each task 7;,4 € [P] is sampled from a task
distribution, MAML seeks to solve the following problem from a bilevel optimization perspective:

minimize L(x) == 5 327 4;(y(x); DyeY)
subjectto y;(x) € argmin 4;(y';D;"), Vie[P]={1,...,P}, 1)
y/

where x is the weight initialization of a model, y (x) is the optimal weight after the model is fine-
tuned for task ¢ with ¢;, DF* and Dy?! as the task-specific loss, training (support) set and validation
(query) set respectively.

A generic BLO formulation of the MAML problem (1) is then given by

minimize f(x,y*(x)) subjecttoy™(x) € argmin g(x,y), (2)
x ~— y
Upper-level problem

Lower-level problem

where a lower-level solution is used as an input to minimize the upper-level objective f. The MAML
problem (1) is a special case of the BLO formulation (2): The upper-level objective function L(x)
in (1) is not an exact bi-variate function f(x,y) as (2); Instead, L(x) relies only on a lower-level
solution y*, which is a function of x.

Second-order derivatives requested in MAML Conventionally, MAML [3] solves the lower-
level problem of (1) through a m-step SGD unrolling. Let ¢;(y’) = (;(y'; Dy?), Ui(y') =
¢;(y'; DsT), and x, denote the model initialization at the kth upper-level iteration, the original
MAML algorithm is then given by

(0) (m)

Lower-level: y; ” (xx) = xx; ¥, (Xk) = ygm_l)(xk) - B Vy/éi(y’) (7= ey 3)
Y Xk
m-step SGD unrolling
L
Upper-level: xj+1 = Xk — a5 >Vl ™ (%), 4)

i=1

where «, f > 0 are learning rates of SGD used for upper-level and lower-level optimization, re-

spectively. Substituting the lower-level SGD unrolling into the upper-level SGD step, the overall
optimization step to update the optimizee variable x is given by [3, 4]

P m-—1

1 .
Xgp+1 = X — QFZ H (I - 6 Vf,,&-(y’)

i=1 n=0

> Vy’fi(y,)‘y/:ygm)(xk)a (5)

y'=y" (xx)

Meta-gradient w.r.t. x
where V?,/ denotes the second-order derivatives with respect to (w.r.t.) the variable y’. In (5), the

computation involving Vf,,fi (y’) is costly for large neural networks and datasets, and this cost
increases with the number of fine-tuning steps.

Research objective To resolve the difficulty induced by second-order derivatives, FO-MAML
assumes them to be 0 in the computation [3]. This would introduce an error into the meta-gradient
in (5), and may hamper its generalization ability. In fact, a generalization gap as large as 6% is
observed for tasks such as 20-way 1-shot on Omniglot dataset between MAML and FO-MAML [15].
Fallah et al. [13] present a Hessian-free MAML which has improved theoretical convergence over
FO-MAML but its empirical performance or efficiency has not been studied. From (5), we see the
cause of high computation cost is rooted in the coupling between lower and upper-level problems
in which backpropagation has to loop through the entire lower-level optimization trajectory. To
bypass this, Rajeswaran et al. [1 5] proposed implicit MAML (iMAML) to directly solve the BLO
problem (2) using the implicit gradient method. However, IMAML needs (an approximation of) a
matrix inversion operation to calculate an implicit gradient. Among the aforementioned algorithms,
FO-MAML is the computationally lightest but yields a poorer optimization accuracy. By contrast,
MAML and iMAML have improved generalization ability but higher computational costs. Spurred
by above, we ask:

How to develop an assumption-least first-order MAML algorithm that enjoys the dual advantages of
low computation cost and high optimization accuracy?



4 Sign-MAML: Advancing MAML by SignSGD

In this section, we first present the method of signSGD unrolling to solve the BLO problem (2). Then
we apply the achieved results to the case of MAML to establish our Sign-MAML method. At the end,
we highlight the differences between FO-MAML and Sign-MAML.

BLO solver based on signSGD unrolling We propose to unroll the lower-level problem in (2)
using signSGD [16]. The last step of a m-step unrolling via signSGD is given by

y™ = y(m=1 _ Bsion(V,g(x, y™ V), ©)

where sign(-) denotes element-wise sign operation, 5 > 0 is the lower-level learning rate, and y(©

can be a random starting point. Substituting (6) into problem (2) with y*(x) = y("™), we have the
following variant of the original BLO problem

minimize f(x,y(™ (x)), @)
where we explicitly express y(") as a function of x. To optimize x, we resort to GD/SGD
df (xx, y ™ (x1))
o——,
dx

where o > 0 is the upper-level learning rate and % is the descent step index. In (8), the key step is to
compute the gradient w.r.t. x, namely,

df (x5, y ™ (x1)) _ 0 (xi, vy (x1)) N dy ™ (x1,) " Of (xk,y™ (xx))

®)

Xk+1 = Xk —

9
dx ox dx dy ’ ©
where W = Vxf and % denote the partial and full derivatives of f w.r.t. the variable x

respectively. Based on (6) and the key fact that % = 0 (holding almost surely), we have
dy(m) (Xk)T B dy(m—l) (Xk>T B _ dy(O) (Xk)—r (10)

dx N dx - dx '
Substituting (10) into (9), we achieve

df (xx, y "™ (xx)) _ Of (xx, y™ (xx)) + dy O (xx) T Of (x, y™ (1)) an

dx ox dx dy

This implies that when signSGD is used to unroll the lower-level problem, we can naturally reach a
first-order alternating optimization method:

y-step: signSGD unrolling (6) (12)

0 (e y ™ (06)) dy®xs) T 90,y (1))
ox dx Oy ’

X-Step: Xp41 = Xgp — QU (13)

Sign-MAML: MAML based on signSGD unrolling We now apply (12) and (13) to the case of
MAML in which y(?)(x;) = x; and the dependence of upper objective of MAML on x is only

through y(x). They lead to dym;%‘ﬁ = I and %(:)(x’“)) = 0. These two simplifications
render (13) to

P
1
Xt =Xk —ap ) Vy ()

(14)

y'=y{™ (xp)

At the first glance, the upper-level MAML update with signSGD unrolling is the same as FO-
MAML. However, the key difference lies in the choice of lower-level optimizer: signSGD unrolling
naturally leads to (14). By contrast, FO-MAML requires making the assumption of V3, ¢;(y’) = 0
in (5). Hence, we regard using signSGD unrolling as the ‘authentic’ first-order method, and we name
our algorithm as Sign-MAML shown in Algorithm 1. We also remark that in addition to signSGD, the



gradient sign-based momentum method [16] is another possible alternative to generate the first-order
MAML approach via gradient unrolling.

Algorithm 1 Sign-MAML

1: fork=1,2,...do
2: Sample P tasks from a task distribution

3 fori=1,2,...,Pdo

4 Initialize y§0> (xk) = Xg

5: Obtain ygm) by signSGD unrolling (6)
6 end for

7 Compute x4 using (14);

8: end for

S Experiments

The central questions that we aim to address with our experiments are: @ Can Sign-MAML perform
better than FO-MAML without increasing computation cost? @ Can Sign-MAML perform comparably
to MAML but with less computation time? To this end, we measure the test accuracy and train time
per upper-iteration of Sign-MAML, together with baselines (FO-MAML and MAML) in N-way and
K -shot image classification tasks.

5.1 Experiment setup

Datesets We conduct experiments on Fewshot-CIFAR100 (FS-CIFAR100) and MinilmageNet
datasets [22, 33]. The FS-CIFAR100 dataset has 600 images of size 32 x 32 in each of the 100 classes
from CIFAR100 [34]. We partition the 100 classes into 60 classes , 20 classes and 20 classes for train,
validation and test respectively following Oreshkin et al. [33]. The MinilmageNet dataset has 600
images of size 84 x 84 in each of the 100 classes. We partition the 100 classes into 64 classes, 16
classes and 20 classes for train, validation and test respectively following Ravi and Larochelle [35].

Architectures For MinilmageNet, we use a neural network consisting of 4 convolutional layers
with 32 filters in each layer used in Ravi and Larochelle [35]. For FS-CIFAR100, we also use the
4-layer convolutional neural newtork but with 64 filters in each layer. For both neural networks, each
convolution operation is followed by batch normalization, ReL.U activation and 2 x 2 max pooling.

Implementation details We use a = 0.001 as the upper-level learning rate, m = 1 fine-tuning
step for training (unless otherwise specified), m = 10 fine-tuning steps for testing, and P = 4 as the
batch size of tasks across all experiments. To setup the lower-level learning rate /3, since different
optimizers (e.g., signSGD vs. SGD) are used, we perform a grid search on /3 and pick the one with
the best validation performance (see Appendix A for details). We utilized the existing implementation
of FO-MAML and MAML in the 1earn?2learn Python package [36] and adapt it to implement
Sign-MAML.

5.2 Results and Discussions

In what follows, we first show the results of Sign-MAML, FO-MAML and MAML on FS-CIFAR100
for different N-way and K -shot classification tasks. We then provide a detailed comparison between
Sign-MAML and FO-MAML, which fall into the first-order optimization category, given various
choices of N and K on MinilmageNet. Furthermore, we show the effectiveness of Sign-MAML
when different fine-tuning steps are used.

FS-CIFAR100 results Table 1 presents the performance of Sign-MAML versus MAML and FO-
MAML on FS-CIFAR100 for 5-way 1-shot classification, 5-way 5-shot classification, 10-way 1-shot
classification and 10-way 5-shot classification. Compared to MAML, Sign-MAML performs slightly

'Our codes are available at https://github.com/chenfan95/Sign-MAML
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Table 1: FS-CIFAR100 classification results, which include accuracy (upper-level numbers) and computation
time per meta-iteration in seconds (lower-level numbers). For accuracy, the + shows 95% confidence intervals
over 1000 test-time tasks. For computation time, the £ shows standard deviation over 1000 meta iterations.

Scenario MAML FO-MAML Sign-MAML
5-way 1-shot 358+14% 327+13% 375+14%
0.058 £0.003  0.032 £ 0.003  0.032 £ 0.003
5-way 5-shot 488 +07% 458+08% 495+07%
0.073 £0.008 0.048 £ 0.006 0.049 £ 0.006
10-way 1-shot 209+08% 21.4+08% 225+08%
0.064 +0.004 0.039 £ 0.003  0.039 £ 0.003
10-way 5-shot 209+04% 309+04% 305+05%
0.106 £0.016  0.067 £ 0.015 0.067 £+ 0.016

better for all tasks and takes only half computation time per iteration. Compared to FO-MAML, Sign-
MAML achieves a remarkable increase of 4.8% and 3.7% in accuracy for 5-way 1-shot classification
and 5-way 5-shot classification, respectively. Moreover, it has very similar computation cost as
FO-MAML for all tasks. Overall, Sign-MAML is a competitive method in both performance and
computation efficiency when compared to FO-MAML and MAML.

Sign-MAML vs. FO-MAML In Figure 1, we present the classification accuracy of Sign-MAML
and FO-MAML in a variety of few-shot learning setup, with N € {2,5,7,10} ways and K €
{1,2,3,4,5} shots on MinilmageNet. We compare algorithms in the computation-lightest regime
using 1 gradient unrolling step. As we can see, if the tasks become more challenging, namely, with
higher N and lower K, then Sign-MAML performs much better than FO-MAML. For example, Sign-
MAML achieves an accuracy that is 7.5% higher than FO-MAML for 10-way 1-shot classification.
The performance gap becomes larger as N increases or K decreases. Moreover, for the cases where
FO-MAML outperforms Sign-MAML, the performance gaps (1 - 3%) are smaller than the cases
where Sign-MAML outperforms FO-MAML (1 - 8 %). The above results suggest that Sign-MAML
can be a better approach when challenging tasks are present.

SIGN-MAML FO-MAML
71.8+2.6 77.5£1.6 79.9+1.2 81.7+1.1 83.70.9
~ 71826 R Lo S R ~ 73.5%2.6 79.3+1.5 81.6+1.2 82.61.1 84.9+0.9
42.9+15 51.3+1.1 55.420.9 58.1+0.8 60.7+0.7
i [T R 55 4£0.9 58, 1£0.8 60,720 1n 36.2+1.3 49.6+1.0 53.30.9 60.7+0.8 62.6+0.7
2 2
© ©
= =
~ [ 43-6=0.9 47.6:0.8 50.6+:0.7 52.1+0.6 ~ 26.8+1.0 39.2+0.8 44.1%0.7 48.6+0.6 50.0+0.6

(+7.0) (+4.4) (+3.5) (+2.0) (+2.1)

27.7%0.9 35.5+0.7 38.8+0.6 42.3+0.5 42.9+0.5
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Figure 1: MinilmageNet classification results of Sign-MAML and FO-MAML for different ways and shots.
Numbers in each cell are accuracy with its 95 % confidence interval over test tasks. Numbers inside bracket
represent the performance improvement (+) or degradation (—) of Sign-MAML over FO-MAML. A or red
region indicates the scenario in which Sign-MAML is or worsen than FO-MAML in accuracy.

Meta-learning vs. fine-tuning steps In Figure 2, we present the classification accuracy as well
as the computation cost versus the number of fine-tuning steps. Here we focus on the case of



10-way 2-shot classification on MinilmageNet. It can be seen from Figure 2 (a) that Sign-MAML
outperforms FO-MAML at each setup of the fine-tuning step, and the test accuracy increases rapidly
at the beginning and saturates towards the end. In addition, Figure 2 (b) shows that the accuracy
improvement of Sign-MAML over FO-MAML is not at the cost of computation complexity. Clearly,
Sign-MAML and FO-MAML take the very similar computation cost, which increases linearly with
the number of fine-tuning steps (see Appendix C for results of 5-way 2-shot classification and 7-way
2-shot classification on MinilmageNet).
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S1.0
.38 2
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g o
Q32 £o7
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30 FO-MAML © FO-MAML
— 0.6
1 2 3 4 5 1 2 3 4 5
Fine-tuning Steps Fine-tuning Steps
(a) Accuracy 10-way 2-shot (b) Time 10-way 2-shot

Figure 2: 10-way 2-shot MinilmageNet classification against the choice of the number of fine-tuning steps: (a)
classification accuracy and (b) computation time, with the same format as Table 1.

Take-away: Based on the aforementioned results, we find that @ Sign-MAML typically performs
better than FO-MAML for challenging tasks without losing computation efficiency. @ Sign-MAML
can match or exceed the performance of MAML with less computation time.

6 Conclusion

In this paper, we show that signSGD can be used as an efficient gradient unrolling scheme to advance
MAML (model-agnostic meta-learning). Specifically, the study of MAML through the lens of BLO
(bilevel optimization) enables us to customize a ‘lower-level’ optimizer to ‘fine-tune’ meta model
over task-specific losses. We theoretically show that if signSGD is used as the lower-level optimizer,
then MAML can be equivalently transformed into the first-order alternating optimization method,
termed Sign-MAML. Empirically, we also demonstrate that compared to the conventional MAML
and FO-MAML approaches, Sign-MAML places a more graceful tradeoff between accuracy and
computation cost. Particular, in a series of challenging few-shot image classification tasks (which
involve more classes and less data samples), Sign-MAML yields a consistent improvement over
baselines.

References

[1] Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

[2] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in
neural networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126—1135.
PMLR, 2017.

[4] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms,
2018.



[5] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157,
2019.

[6] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[7] Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-learning of
neural architectures for few-shot learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12365-12375, 2020.

[8] Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang,
and Shenghua Gao. Towards fast adaptation of neural architectures with meta learning. In
International Conference on Learning Representations, 2019.

[9] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast
context adaptation via meta-learning. In International Conference on Machine Learning, pages
7693-7702. PMLR, 2019.

[10] Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos. Investigating meta-learning algorithms for
low-resource natural language understanding tasks. arXiv preprint arXiv:1908.10423, 2019.

[11] Zequn Liu, Ruiyi Zhang, Yiping Song, and Ming Zhang. When does maml work the best?
an empirical study on model-agnostic meta-learning in nlp applications. arXiv preprint
arXiv:2005.11700, 2020.

[12] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. arXiv
preprint arXiv:1810.09502, 2018.

[13] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-
based model-agnostic meta-learning algorithms. In International Conference on Artificial
Intelligence and Statistics, pages 1082-1092. PMLR, 2020.

[14] Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning with
task-specific adaptation over partial parameters. arXiv preprint arXiv:2006.09486, 2020.

[15] Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with
implicit gradients. 2019.

[16] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pages 560-569. PMLR, 2018.

[17] Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, and
Yunhao Tang. Es-maml: Simple hessian-free meta learning. arXiv preprint arXiv:1910.01215,
2019.

[18] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43-54,
2020.

[19] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for
one-shot image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

[20] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning.
arXiv preprint arXiv:1703.05175, 2017.

[21] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1199-1208, 2018.

[22] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for
one shot learning. Advances in neural information processing systems, 29:3630-3638, 2016.



[23] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International conference on
machine learning, pages 1842—1850. PMLR, 2016.

[24] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and
Edison Guo. On differentiating parameterized argmin and argmax problems with application to
bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.

[25] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In International Conference on Machine Learning,
pages 3748-3758. PMLR, 2020.

[26] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International Conference on Machine Learning, pages 4882-4892. PMLR,
2021.

[27] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

[28] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework
for bilevel optimization: Complexity analysis and application to actor-critic. arXiv preprint
arXiv:2007.05170, 2020.

[29] Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle. In
International Conference on Learning Representations, 2018.

[30] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013.

[31] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[32] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[33] Boris N. Oreshkin, Pau Rodriguez, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning, 2019.

[34] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[35] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

[36] Sébastien M. R. Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstanti-
nos Saitas Zarkias. learn2learn: A library for meta-learning research, 2020. URL http:
//learn2learn.net.


http://learn2learn.net
http://learn2learn.net

A Hyperparameter Search

In this section, we provide more details on hyperparameter tuning for the lower-level learn-
ing rate. For Sign-MAML, the search range is [0.0035,0.005,0.0065,0.0075,0.01]; for FO-
MAML, the search range is [0.06,0.08,0.1,0.12,0.14,0.16]; for MAML, the search range is
[0.06,0.08,0.1,0.12,0.14, 0.16]. If the initial optimal learning rate happens at the end of the range,
we continue search in that direction until we find a better one that is within range. For example, if the
optimal learning rate initially found is 0.16, then we may search 0.18 and 0.2. If 0.18 outperforms
0.16 and 0.2, we stop at this point; if 0.2 outperforms the other two, we repeat the process and search
further.

B Train Loss
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Figure 3: Train loss for MinilmageNet 5-way 5-shot classification. The lower-level learning rates for Sign-
MAML, FO-MAML and MAML are 0.005, 0.06 and 0.06 respectively. Meta-batch size is 32.

C Additional results on MinilmageNet for different fine-tuning steps
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Figure 4: MinilmageNet classification against the choice of the number of fine-tuning steps: (a) 5-way 2-shot

classification accuracy, (b) 7-way 2-shot classification accuracy, (c¢) 5-way 2-shot computation time and (d)
7-way 2-shot computation time.
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