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Abstract

3D anomaly detection has recently become a significant focus
in computer vision. Several advanced methods have achieved
satisfying anomaly detection performance. However, they
typically concentrate on the external structure of 3D samples
and struggle to leverage the internal information embedded
within samples. Inspired by the basic intuition of why not
look inside for more, we introduce a straightforward method
named Internal Spatial Modality Perception (ISMP) to ex-
plore the feature representation from internal views fully.
Specifically, our proposed ISMP consists of a critical percep-
tion module, Spatial Insight Engine (SIE), which abstracts
complex internal information of point clouds into essential
global features. Besides, to better align structural informa-
tion with point data, we propose an enhanced key point fea-
ture extraction module for amplifying spatial structure feature
representation. Simultaneously, a novel feature filtering mod-
ule is incorporated to reduce noise and redundant features
for further aligning precise spatial structure. Extensive ex-
periments validate the effectiveness of our proposed method,
achieving object-level and pixel-level AUROC improvements
of 4.2% and 13.1%, respectively, on the Real3D-AD bench-
marks. Note that the strong generalization ability of SIE has
been theoretically proven and is verified in both classification
and segmentation tasks.

Introduction
3D anomaly detection (AD) plays a crucial role in industrial
and medical applications by identifying abnormalities in
complex structures. Traditional methods, such as BTF (Hor-
witz and Hoshen 2022), primarily focus on single-sample
analysis, while recent deep learning-based approaches have
improved detection by incorporating cross-sample informa-
tion. However, these methods often rely on intuitive fea-
ture extraction, which may overlook deeper anomalies. Re-
searchers are exploring different strategies to uncover finer
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(a) CPMF (Outside) (b) ISMP (Inside)

Figure 1: Visualization of internal and external percep-
tion. Compared with external view (CPMF), our method
(ISMP) projects from the internal view, better capturing the
different-shaped protrusions in the 3D structure.

details, with some emphasizing 3D data alone and others in-
tegrating multi-modal approaches.

The methods centered on 3D structures emphasize the
unique feature representation of the structure. For exam-
ple, (Bergmann and Sattlegger 2022) used geometric de-
scriptors with a teacher-student model to achieve promis-
ing results, while (Rudolph et al. 2022) introduced asym-
metric networks to enhance discrimination further. Addi-
tionally, (Li et al. 2023) focused on improving local feature
representations, and (Kruse et al. 2024) proposed leveraging
pose information for better anomaly detection across differ-
ent viewpoints. Despite these advancements, many methods
start from an intuitive structure, potentially leading to in-
complete information coverage. On the other hand, multi-
modal methods provide richer feature representations by in-
tegrating different data modalities. For instance, combining
RGB 2D and 3D data (Wang et al. 2023) or using indepen-
dent evaluations of both (Chu et al. 2023) has enhanced de-
tection capabilities. (Zavrtanik, Kristan, and Skočaj 2023)
leveraged depth and RGB information to identify anomalies
better, while (Bhunia, Li, and Bilen 2024) advanced 2D-3D
detection by constructing a query image database. However,
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challenges such as feature alignment losses and increased
sensor data demands persist. To address these issues, (Cao,
Xu, and Shen 2023) introduced a pseudo-modal approach
that projects 3D data into 2D images for supplementary in-
formation. While this method offers a more comprehensive
representation, it still neglects internal structural details, re-
sulting in incomplete feature coverage and reducing detec-
tion performance.

Could we shift focus toward internal information for
more comprehensive anomaly detection? To tackle the
challenges of insufficient internal information utilization
and difficulties in aligning data across different modali-
ties in anomaly detection using pseudo-modalities, we pro-
pose a novel method centered on internal spatial pseudo-
modalities. Figure 1 shows the comparison between our
method’s internal perception and counterparts that obtain
global features from the outside. Our approach effectively
captures the internal characteristics of 3D structures, even
in low-sample environments, by leveraging the internal spa-
tial features of point clouds. It facilitates better interactions
between internal structures and surface regions, creating a
complementary relationship between internal and external
information. The core of our method, the Internal Spatial
Modality Perception (ISMP) framework, includes a Spatial
Insight Engine (SIE) that captures global features, an en-
hanced feature extraction module for local details, and a fea-
ture filtering module to suppress redundant data. Together,
these components significantly improve anomaly detection
accuracy. Note that our SIE indicates strong generalization
capabilities, making it suitable for a broader range of point
cloud tasks.

The main contributions of this paper are summarized as
follows:
• To our best of knowledge, we are the first to focus on the

internal structure of point clouds, thereby improving the
extraction of internal structural features.

• A new Internal Spatial Modality Perception (ISMP) mod-
ule and an Enhanced feature extraction combined with a
feature filtering module, are designed to improve the per-
ception and alignment of local features of key points.

• The feasibility of Spatial Insight Engine (SIE) is explored
in tasks of classification and segmentation, emphasizing
the strong generalization ability of the internal spatial
pseudo-modality.

• Numerous experiments demonstrate the superiority
of ISMP, surpassing the state-of-the-art methods on
Real3D-AD with 13.1% and 4.1% improvements in P-
AUROC and O-AUROC.

2D Anomaly Detection
2D image anomaly detection, a widely studied area, typi-
cally involves two main components: feature extraction and
feature modeling. Feature extraction aims to derive discrimi-
native features that distinguish normal from anomalous data.
In contrast, feature modeling captures the distribution of
normal features and detects deviations when anomalies are
present. Early methods focused on learning features from
scratch, such as through autoencoders and inpainting tasks,

with notable approaches like RIAD, and DRAEM making
significant strides in this area (Bergmann et al. 2019; Park
et al. 2023; Zavrtanik, Kristan, and Skočaj 2021). How-
ever, recent advancements have demonstrated the effective-
ness of using pre-trained networks for anomaly detection.
Techniques like knowledge distillation, as employed in ST
and AST, align features between teacher and student net-
works to detect anomalies, addressing issues like overgen-
eralization (Yamada and Hotta 2022; Rudolph et al. 2022).
Further innovations include normalizing flow and memory
bank techniques to model normal feature distributions more
effectively (Gudovskiy, Ishizaka, and Kozuka 2021). These
developments improve 2D anomaly detection and lay the
groundwork for extending these methods to 3D and multi-
modal detection, driving further progress in the field.

3D Anomaly Detection
3D anomaly detection, such as point cloud AD, is crucial
in domains like autonomous vehicular navigation and indus-
trial inspections (Solaas, Tuptuk, and Mariconti 2024; Cui
et al. 2022). Deep learning-based anomaly detection lever-
ages neural networks to capture intricate point cloud struc-
tures. Techniques like PatchCore and its successors have
made significant strides by learning point cloud represen-
tations directly from raw data (Tu et al. 2024; Roth et al.
2022). These methods emphasize efficient feature extrac-
tion and fusion, crucial for effective anomaly detection. Ad-
vanced approaches like PointNet++ and Point Transformer
improve feature extraction by incorporating hierarchical and
attention mechanisms (Wu et al. 2024; Zhao et al. 2021;
Qi et al. 2017b). Additionally, techniques like PointMAE
and PointMLP further enhance local feature extraction and
fusion (Pang et al. 2022; Ma et al. 2022). Mathemati-
cal strategies, including coupled Laplacian eigenmaps and
locality-sensitive methods, also contribute to more nuanced
point cloud representations, enhancing 3D anomaly detec-
tion (Bastico et al. 2024; Chen et al. 2023; Bergmann and
Sattlegger 2022). Finally, point cloud coordinates, exempli-
fied by methods like FPFH, provide essential feature infor-
mation for anomaly detection (Rusu, Blodow, and Beetz
2009).

In parallel, pseudo-modality techniques, which simulate
modality data through a single modality or fabricated fea-
tures, aim to enhance feature representation by combining
diverse types of information. Recent advancements have ad-
dressed some of these shortcomings. For instance, meth-
ods discussed in (Cao, Xu, and Shen 2023) have focused
on leveraging pseudo-modal features from multiple view-
points. Building on this, (Bhunia, Li, and Bilen 2024) fur-
ther improves the capture of texture information by align-
ing and transposing 2D features onto 3D point clouds using
extensive 2D image databases for referencing. However, de-
spite these advancements, these methodologies commonly
need to work on fully exploiting the intricate internal struc-
ture of point clouds. They predominantly focus on extrinsic
information while overlooking essential internal complex-
ities. Consequently, this oversight limits their effectiveness
in fully capturing the nuanced internal features necessary for
comprehensive anomaly detection.
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Figure 2: Overview of our method. We start by matching the point cloud according to RANSAC (Li, Hu, and Ai 2021).
During the training phase, we create feature and coordinate memory banks, using enhanced feature extraction to capture local
information and constructing a local feature matrix. We extract global features using the SIE and align them with the local
ones. P1, P2, P3, and P4 are the four projection slices extracted respectively. Then, we employ a feature filtering module to
suppress redundant information, resulting in the final feature matrix. In the inference phase, we obtain the final feature matrix
and compute the nearest neighbors in the memory bank. Finally, we input the coordinates into the coordinate memory bank to
find the closest regular sample coordinates, calculating the final score of the sample points based on both memory banks.

Method
Spatial Insight Engine
Figure 2 provides an overview of our method. We have de-
veloped a robust model (SIE) that seamlessly converts 3D
point cloud structures into 2D pseudo-modal data using ad-
vanced four projection slices (P1, P2, P3, P4), as shown in
Figure 2. These meticulously designed slices conduct thor-
ough top-down and bottom-up analyses at the point cloud’s
top, middle, and bottom. More notably, the middle slice (P2,
P3) expertly partitions the point cloud into two parts, work-
ing synergistically with the other slice to extract compre-
hensive features from both segments. The visualization of
the projection slices is shown in Figure 3.

Taking the upper part of the point cloud as an example,
we explain why extracting features from the SIE can capture
more information and effectively detect anomalies.

Information Capturing Analysis. The amount of infor-
mation can be defined as:

P = {pi = (xi, yi, zi) | i ∈ {1, 2, . . . , N}}, (1)

where P is the set of points, pi represents individual points
with coordinates (xi, yi, zi), and N is the total number of
points. And the midpoint zmid is defined as:

zmid =
zmin + zmax

2
, (2)

where zmid is along the z-axis, zmin and zmax are the mini-

Figure 3: Visualization of projection slices. The images are
the original image, P1, P2, P3, and P4, respectively.

mum and maximum z-coordinates, respectively.

Itop =

N∑
i=1

(zmax − zi), (3)

where Itop is the top information, zi is the z-coordinate of
point i. Based on our SIE calculation, we have the global
information:

Iglobal =

N∑
i=1

[(zmax − zi) + max(0, zi − zmid)] . (4)



After rewriting, we have:

Iglobal = Itop +
∑

i:zi≥zmid

(zi − zmid) ≥ Itop. (5)

Therefore, we observe that Iglobal has more information
than Itop, which is standard external projection manner. The
same goes for the lower half of the point cloud. In this way,
the final information obtained by the point cloud will be
more reliable than if only external modes are used.

Anomaly Detection. Deep information contains impor-
tant exception information (Liu et al. 2024). An anomaly can
be detected when the discrepancy between the depth values
from the two views significantly deviates from the expected
range for normal points. That is

|∆D(pi)− µ∆D| > kσ∆D, (6)

where ∆D(pi) is the discrepancy between top-down and
middle-up depth values. Besides, µ∆D and σ∆D are the
mean and standard deviation of ∆D for average points re-
spectively, with k as a threshold constant.

Given these constraints, the SIE enhances global informa-
tion by observing from an internal perspective, significantly
improving anomaly detection compared to relying solely on
external spatial capture.

Enhanced Feature Extraction
Following the instructions in the relevant work, we utilize
Farthest Point Sampling (FPS) to obtain a set of center
points, treating the k-nearest neighbors around each center
point as a patch for processing (Qi et al. 2017b). Following
the PointMAE method, we derive the patch features (Pang
et al. 2022). Then, we perform feature extraction on the cen-
ter points according to FPFH, obtaining more comprehen-
sive features (Rusu, Blodow, and Beetz 2009). We have:

FPS(X) = {xi}mi=1, (7)

where X represents the original point cloud and {xi} are the
sampled center points.

For each center point xi, we define its patch Pi as:

Pi = {x ∈ X | ∥x− xi∥ ≤ r}, (8)

where r is the radius defining the neighborhood of xi. Using
PointMAE, we extract features for each patch (Pi). Then,
we use Fast Point Feature Histograms (FPFH) to further en-
hance feature representation for each center point.

Feature Filtering Module
The information extracted from the point cloud is often too
miscellaneous, and we usually need to perform noise re-
duction and other processing on the direct information ex-
tracted from the point cloud (Cao et al. 2023). The Laplacian
transform (Kipf and Welling 2017) is widely used in fea-
ture filtering to enhance the quality of features by removing
noise and redundant information. It helps in achieving bet-
ter feature representation and alignment, especially in high-
dimensional data such as point clouds (Shao et al. 2017;
Ghojogh et al. 2022). By applying the Laplacian transform,

models can achieve smoother and more accurate feature ex-
traction, which is crucial for tasks requiring precise geomet-
ric representations.

The Laplacian matrix L is denoted as:

L = D −A, (9)

where D is the degree matrix and A is the adjacency ma-
trix of the graph. This transformation allows for the en-
hancement of the overall feature quality by smoothing out
irregularities and focusing on the intrinsic geometric struc-
ture (Zeng et al. 2019).

To achieve better alignment of features from SIE and en-
hancements, we develop a controllable feature filtering mod-
ule using the Laplace transform to enhance geometric fea-
tures in point clouds. This method is outlined in pseudo-code
and relies on specific parameters. The process can be sum-
marized by the following equation:

Fill(X|α, β, γ) = Xenhanced, (10)

where α, β, and γ are the parameters that control the influ-
ence of the enhanced Laplacian, the decay rate of the weight
matrix, and the contribution of the anomaly metric, respec-
tively. X is the original feature matrix, and Xenhanced is the
resulting enhanced feature matrix. The overall implementa-
tion of this module is shown in Algorithm 1.

Algorithm 1: Feature Filtering Module
1: procedure FILTERING(X,α, β, γ)
2: n← X.shape()
3: A← 1n×n − In
4: D ← diag(A.sum(dim = 1))
5: M ← cdist(X,X, p = 2)
6: W ← exp(−β ·M) ▷ Control similarity weighting
7: A′ ← A ·W
8: D′ ← diag(A′.sum(dim = 1))
9: D′−0.5 ← diag(D′.diag()−0.5)

10: L′
sym ← In −D′−0.5 ·A′ ·D′−0.5

11: mask ← A == 0
12: masked M ←M.masked fill(mask, nan)
13: E ← nanmean(masked M, dim = 1)
14: Lfinal ← L′

sym + γ · diag(E) ▷ Adjust Laplacian matrix
15: Xenhanced ← (In + α · Lfinal) ·X ▷ Enhance features
16: Xmax ← X.max()
17: Xenhanced ← Xenhanced · (Xmax/Xenhanced.max())
18: return Xenhanced
19: end procedure

Anomaly Score Calculation
We utilize the feature memory bank MC and the coordinate
memory bank MF to compute anomaly scores. Here, we il-
lustrate the scoring process using the MF memory bank as
an example. We find the nearest neighbor in the MF for the
test object’s point-level feature P(mtest). The nearest neigh-
bor search method (Liu et al. 2023) is denoted as:

mtest,∗ = arg max
mtest∈P(xtest)

min
m′∈MF

∥mtest −m′∥2,

mF
∗ = arg min

m′∈MF
∥mtest −m′∥2.

(11)



(a) O-AUROC (↑)
Method Airplane Car Candy Chicken Diamond Duck Fish Gemstone Seahorse Shell Starfish Toffees Mean
BTF(Raw) 0.730 0.647 0.539 0.789 0.707 0.691 0.602 0.686 0.596 0.396 0.530 0.703 0.635
BTF(FPFH) 0.520 0.560 0.630 0.432 0.545 0.784 0.549 0.648 0.779 0.754 0.575 0.462 0.603
M3DM 0.434 0.541 0.552 0.683 0.602 0.433 0.540 0.644 0.495 0.694 0.551 0.450 0.552
PatchCore(FPFH) 0.882 0.590 0.541 0.837 0.574 0.546 0.675 0.370 0.505 0.589 0.441 0.565 0.593
PatchCore(PointMAE) 0.726 0.498 0.663 0.827 0.783 0.489 0.630 0.374 0.539 0.501 0.519 0.585 0.594
CPMF 0.701 0.551 0.552 0.504 0.523 0.582 0.558 0.589 0.729 0.653 0.700 0.390 0.586
RegAD 0.716 0.697 0.685 0.852 0.900 0.584 0.915 0.417 0.762 0.583 0.506 0.827 0.704
IMRNet 0.762 0.711 0.755 0.780 0.905 0.517 0.880 0.674 0.604 0.665 0.674 0.774 0.725
ISMP(Ours) 0.858 0.731 0.852 0.714 0.948 0.712 0.945 0.468 0.729 0.623 0.660 0.842 0.767

(b) P-AUROC (↑)
Method Airplane Car Candy Chicken Diamond Duck Fish Gemstone Seahorse Shell Starfish Toffees Mean
BTF(Raw) 0.564 0.647 0.735 0.609 0.563 0.601 0.514 0.597 0.520 0.489 0.392 0.623 0.571
BTF(FPFH) 0.738 0.708 0.864 0.735 0.882 0.875 0.709 0.891 0.512 0.571 0.501 0.815 0.733
M3DM 0.547 0.602 0.679 0.678 0.608 0.667 0.606 0.674 0.560 0.738 0.532 0.682 0.631
PatchCore(FPFH) 0.562 0.754 0.780 0.429 0.828 0.264 0.829 0.910 0.739 0.739 0.606 0.747 0.682
PatchCore(PointMAE) 0.569 0.609 0.627 0.729 0.718 0.528 0.717 0.444 0.633 0.709 0.580 0.580 0.620
RegAD 0.631 0.718 0.724 0.676 0.835 0.503 0.826 0.545 0.817 0.811 0.617 0.759 0.705
ISMP(Ours) 0.753 0.836 0.907 0.798 0.926 0.876 0.886 0.857 0.813 0.839 0.641 0.895 0.836

Table 1: The experimental results of (a) O-AUROC (↑) and (b) P-AUROC (↑) for anomaly detection across 12 categories of
Real3D-AD. The best and the second-best results are highlighted in red and blue, respectively. Our model achieved the best
average performance across the 12 categories for both metrics.

Calculate the nearest neighbor distance as the local feature
anomaly score sF∗ :

sF∗ = ∥mtest,∗ −mF
∗ ∥2. (12)

The anomaly score is adjusted using a re-weighting method
(Liu and Tao 2016), which is denoted as:

sF =

(
1− exp ∥mtest,∗ −mF

∗ ∥2∑
m∈N3(m∗) exp ∥mtest,∗ −m∥2

)
sF∗ . (13)

Here, N3(m
∗) represents the 3 nearest features in the MF .

Perform similar calculations using the MC to obtain the co-
ordinate anomaly score sC .

s =
sF + sC

2
. (14)

Compute the overall anomaly score for each point cloud s
by averaging the sF and sC using Equ. (14).

Experiments
In this section, we firstly evaluated the effectiveness of ISMP
in the anomaly detection task and secondly supplemented
the assessment with the generalization ability of SIE across
multiple tasks.

Implementation
Datasets. We conducted comparative experiments on two
mainstreaming datasets, namely Real3D-AD and Anomaly-
ShapeNet. (1) The Real3D-AD dataset (Liu et al. 2023)
is a high-resolution, large-scale anomaly dataset containing
1,254 samples across 12 categories. The training set for each
category includes four normal samples, while the test set for
each category contains both normal samples and anomalous
samples with various defects. (2) The Anomaly-ShapeNet

dataset (Li et al. 2023) provides 40 categories, containing
over 1,600 positive and negative samples. The training set
for each category includes four normal samples, while the
test set for each category contains both normal samples and
anomalous samples with various defects.

Baselines. We selected BTF (Horwitz and Hoshen 2022),
M3DM (Wang et al. 2023), PatchCore (Roth et al. 2022),
CPMF (Cao, Xu, and Shen 2023), RegAD (Liu et al. 2023),
and IMRNet (Li et al. 2023) for comparison. Note that
BTF(FPFH) denotes that we incorporate fast point feature
histogram (Rusu, Blodow, and Beetz 2009). The results of
these methods are obtained through publicly available code
or referenced papers.

Evaluation Metrics. For the anomaly detection task, we
use P-AUROC (↑) to evaluate pixel-level anomaly localiza-
tion capability and O-AUROC (↑) to evaluate object-level
anomaly detection capability. Higher values for both metrics
indicate a more robust anomaly detection capability.

Experimental Details. The experiments are conducted on
a machine equipped with an RTX 3090 (24GB) GPU. For
ISMP, we used the pre-trained weights of the PointMAE and
EfficientNet (Tan and Le 2020) models to complete our ex-
periments. Our parameter settings for ISMP followed those
of RegAD (Liu et al. 2023), with α set to 0.2, β set to 0.2,
and γ set to 0.001.

Main Results
Comparisons on Real3D-AD. The quantitative compar-
isons of ISMP with competing models are presented in Ta-
ble 1. We observed that other models exhibit biases in high-
precision anomaly localization tasks, making accurate local-
ization challenging. Our method achieved O-AUROC and
P-AUROC scores of 0.767 and 0.836, respectively, signifi-
cantly improving state-of-the-art (SOTA) methods.



P-AUROC (↑)
Method cap0 cap3 helmet3 cup0 bowl4 vase3 headset1 eraser0 vase8 cap4 vase2 vase4 helmet0 bucket1
BTF(Raw) 0.524 0.687 0.700 0.632 0.563 0.602 0.475 0.637 0.550 0.469 0.403 0.613 0.504 0.686
BTF(FPFH) 0.730 0.658 0.724 0.790 0.679 0.699 0.591 0.719 0.662 0.524 0.646 0.710 0.575 0.633
M3DM 0.531 0.605 0.655 0.715 0.624 0.658 0.585 0.710 0.551 0.718 0.737 0.655 0.599 0.699
Patchcore(FPFH) 0.472 0.653 0.737 0.655 0.720 0.430 0.464 0.810 0.575 0.595 0.721 0.505 0.548 0.571
Patchcore(PointMAE) 0.544 0.488 0.615 0.510 0.501 0.465 0.423 0.378 0.364 0.725 0.742 0.523 0.580 0.754
CPMF 0.601 0.551 0.520 0.497 0.683 0.582 0.458 0.689 0.529 0.553 0.582 0.514 0.555 0.601
RegAD 0.632 0.718 0.620 0.685 0.800 0.511 0.626 0.755 0.811 0.815 0.405 0.755 0.600 0.725
IMRNet 0.715 0.706 0.663 0.643 0.576 0.401 0.476 0.548 0.635 0.753 0.614 0.524 0.598 0.774
ISMP(Ours) 0.865 0.734 0.722 0.869 0.740 0.762 0.702 0.706 0.851 0.753 0.733 0.545 0.683 0.672

Method bottle3 vase0 bottle0 tap1 bowl0 bucket0 vase5 vase1 vase9 ashtray0 bottle1 tap0 phone cup1
BTF(Raw) 0.720 0.618 0.551 0.564 0.524 0.617 0.585 0.549 0.564 0.512 0.491 0.527 0.583 0.561
BTF(FPFH) 0.622 0.642 0.641 0.596 0.710 0.401 0.429 0.619 0.568 0.624 0.549 0.568 0.675 0.619
M3DM 0.532 0.608 0.663 0.712 0.658 0.698 0.642 0.602 0.663 0.577 0.637 0.654 0.358 0.556
Patchcore(FPFH) 0.512 0.655 0.654 0.768 0.524 0.459 0.447 0.453 0.663 0.597 0.687 0.733 0.488 0.596
Patchcore(PointMAE) 0.653 0.677 0.553 0.541 0.527 0.586 0.572 0.551 0.423 0.495 0.606 0.858 0.886 0.856
CPMF 0.435 0.458 0.521 0.657 0.745 0.486 0.651 0.486 0.545 0.615 0.571 0.458 0.545 0.509
RegAD 0.525 0.548 0.888 0.741 0.775 0.619 0.624 0.602 0.694 0.698 0.696 0.589 0.599 0.698
IMRNet 0.641 0.535 0.556 0.699 0.781 0.585 0.682 0.685 0.691 0.671 0.702 0.681 0.742 0.688
ISMP(Ours) 0.775 0.661 0.770 0.552 0.851 0.524 0.472 0.843 0.615 0.603 0.568 0.522 0.661 0.600

Method vase7 helmet2 cap5 shelf0 bowl5 bowl3 helmet1 bowl1 headset0 bag0 bowl2 jar0 Mean
BTF(Raw) 0.578 0.605 0.373 0.464 0.517 0.685 0.449 0.464 0.578 0.430 0.426 0.423 0.550
BTF(FPFH) 0.540 0.643 0.586 0.619 0.699 0.690 0.749 0.768 0.620 0.746 0.518 0.427 0.628
M3DM 0.517 0.623 0.655 0.554 0.489 0.657 0.427 0.663 0.581 0.637 0.694 0.541 0.616
Patchcore(FPFH) 0.693 0.455 0.795 0.613 0.358 0.327 0.489 0.531 0.583 0.574 0.625 0.478 0.580
Patchcore(PointMAE) 0.651 0.651 0.545 0.543 0.562 0.581 0.562 0.524 0.575 0.674 0.515 0.487 0.577
CPMF 0.504 0.515 0.551 0.783 0.684 0.641 0.542 0.488 0.699 0.655 0.635 0.611 0.573
RegAD 0.881 0.825 0.467 0.688 0.691 0.654 0.624 0.645 0.580 0.715 0.593 0.599 0.668
IMRNet 0.593 0.644 0.742 0.605 0.715 0.599 0.604 0.705 0.615 0.668 0.684 0.765 0.650
ISMP(Ours) 0.701 0.844 0.678 0.687 0.534 0.773 0.622 0.546 0.580 0.747 0.736 0.823 0.691

Table 2: The experimental results of P-AUROC (↑) for anomaly detection of 40 categories of Anomaly-ShapeNet. The best
and the second-best results are highlighted in red and blue, respectively. Our model achieved better performance in pixel-level
anomaly detection.

Comparisons on Anomaly-ShapeNet. In Table 2, we
quantitatively analyze the pixel-level anomaly detection re-
sults on the Anomaly-ShapeNet dataset. Due to the diversity
of the training set, Anomaly-ShapeNet presents challenges
for better utilization of features. Our method achieved a P-
AUROC score of 0.691, outperforming previous methods.

Ablation Study
Evaluation of the ISMP Efficiency. We evaluated each
module’s effectiveness on Real3D-AD, as summarized in
Table 3. The worst performance occurred with only coordi-
nates and PointMAE features, emphasizing the need for im-
proved local coordinate representation. Incorporating PFPH
around sampled points increased P-AUROC by 18.9%, and
further optimization with a feature filtering module added
another 1.8%. Without global features, O-AUROC stayed
at 65.6%, but introducing internal spatial modality features
raised it by 11.1%. Notably, using only the two outer projec-
tion slices, omitting the internal slice, produced the second-
best results, showing internal features are more reliable.
These findings confirm our model’s optimal composition.

Evaluation of the ISMP Effectivness. Our model
achieved outstanding performance but grappled with in-
ference efficiency challenges linked to incorporating extra
modality information, as evidenced in Table 4. The ISMP
lacks sufficient training and reasoning speed compared to its
competitors.

Method I-AUROC (↑) P-AUROC (↑)
ISMP 0.767 0.836
ISMPw/o I 0.656 0.827
ISMPw/o I&F 0.623 0.809
ISMPw/o I,F&E 0.594 0.620
ISMPO 0.717 0.812

Table 3: Ablation study results. I and F represent SIE and
the filter module respectively. E stands for enhanced feature
extraction. O stands for using only the external projection
and eliminating the internal projection.

Analysis of the Feature Filtering Module. The mean
and variance of feature matrices play a crucial role in
anomaly detection, as more concentrated feature distribu-
tions are beneficial for detecting anomalies (Wang et al.
2023). To further investigate the impact of the feature fil-
tering module on feature matrices under different parame-
ter settings, we present the effects of various parameters on
the feature matrices in Figure 4. The variance of the fea-
ture matrix has a greater impact on distinguishing between
abnormal and normal features than the mean. Specifically,
controlling the variance in the feature matrix is crucial for
better feature distinction. Notably, features from PointMAE
resemble a standard normal distribution after normalization.



Method Training Test
RegAD 5.52 7.71
M3DM 4.50 6.43
ISMP (Ours) 2.78 4.37

Table 4: The average training and test time in terms of FPS
(↑, per sample) for models evaluated on the seahorse class.

We randomly selected one thousand feature matrices con-
forming to this distribution for feature filtering and analyzed
their effects on the mean and variance. In practice, we con-
servatively chose the parameters labeled in the diagram. Our
proposed feature filtering module ultimately exhibits con-
trollability over the features, resulting in improved feature
representations.
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Figure 4: Heatmaps of the impact of parameters α, β, γ on
mean and variance. The ordinate represents a combina-
tion of α and β, and the abscissa represents γ. The lighter
the color of the block in the figure, the larger the difference
before and after the transformation. The red marks in the fig-
ure are the parameters we selected.

Evaluation of SIE Generalization
To verify the effectiveness of SIE for the feature percep-
tion in 3D anomaly detection, we have designed two related
tasks for point clouds, namely classification and segmenta-
tion. From the results, we can observe that SIE can provide
more adequate information.

Datasets. (1) The ModelNet40 is a point cloud classifi-
cation dataset containing forty categories (Wu et al. 2015).
We use it to test the effect of SIE on classification tasks
to prove generalization. (2) The ShapeNet-Part is a point
cloud dataset commonly used for semantic segmentation. It
includes ten categories of standard household items, with
many 3D models corresponding to each category (Chang
et al. 2015). We use it to test the impact of SIE on semantic
segmentation tasks to prove generalization.

Evaluation Metrics. We use Accuracy (↑) to evaluate the
model’s capability for the point cloud classification task. For
the segmentation task, we use Instance average Intersection
over Union (IoU, ↑) to assess the model’s adaptability.

Baselines. To demonstrate its significant role in extracting
global information from point clouds, we analyzed the effect
of SIE in point cloud classification on ModelNet40, compar-
ing it with Subvolume (Qi et al. 2016), MVCNN (Su et al.
2015), PointNet (Qi et al. 2017a), and PointNet++ (Qi et al.

2017b). Moreover, we tested the role of SIE in semantic seg-
mentation on ShapeNet-Part, comparing it with Yi (Yi et al.
2016), PointNet, SSCNN (Yi et al. 2017) and PointNet++.
The results of these methods are obtained through publicly
available code or referenced papers. We employed the same
PointNet++ settings as those used in (Qi et al. 2017b).

Comparison Results on ModelNet40. We used intra-
space pseudo-modality as a crucial supplementary input for
point cloud classification in PointNet++. As shown in Ta-
ble 5, a simple feature injection is sufficient to enhance the
performance of point cloud classification, since the intra-
space pseudo-modality provides significant additional infor-
mation for point clouds. It is proved that SIE has potential in
point cloud classification tasks.

Method Input Accuracy (%)
Subvolume vox 89.2
MVCNN img 90.1
PointNet(vanilla) pc 87.2
PointNet pc 89.2
PointNet++ pc 90.7
PointNet++(SIE) pc 91.1

Table 5: Shape classification results on ModelNet40.

Comparison Results on ShapeNet-Part. Using the
global information from SIE as a supplement to features ex-
tracted by PointNet++ for part segmentation, we observed
enhanced performance, as shown in Table 6. The results
demonstrate SIE’s potential in aligning local and global in-
formation. Overall, ISMP excels in 3D anomaly detection,
while SIE shows strong generalization and robustness, mak-
ing it adaptable to other tasks.

Model IoU (%)
Yi 81.4
PointNet 83.7
SSCNN 84.7
PointNet++ 85.1
PointNet++(SIE) 85.4

Table 6: Segmentation results on ShapeNet-Part.

Conclusion
We propose a novel 3D AD method equipped with Inter-
nal Spatial Modality Perception (ISMP) to address the is-
sue of underutilizing internal information in samples. Our
approach consists of three modules, namely a novel percep-
tion module based on the Spatial Insight Engine (SIE), an
enhanced feature extraction module, and a feature filtering
module. The experimental results demonstrate the effective-
ness of our proposed method. Besides, we verified the effec-
tiveness of ISMP in the AD task and the generalization abil-
ity of SIE. Limitation. Given the limits of the test cost, we
aim to improve the model’s inference speed in future work.
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