Published as a conference paper at COLM 2025

Hawkeye: Model Collaboration for Efficient Reasoning

Jianshu She!”, Zhuohao Li?*’, Zhemin Huang?, Qi Li*, Peiran Xu?,
Haonan Li!, Qirong Ho'!

!Mohamed bin Zayed University of Artificial Intelligence (MBZUALI)
2University of California, Los Angeles

3Stanford University

4Independent Researcher

Abstract

Chain-of-Thought (CoT) reasoning has demonstrated remarkable effective-
ness in enhancing the reasoning abilities of large language models (LLMs).
However, its efficiency remains a challenge due to the generation of exces-
sive intermediate reasoning tokens, which introduce semantic redundancy
and overly detailed reasoning steps. Moreover, computational expense
and latency are significant concerns, as the cost scales with the number of
output tokens, including those intermediate steps. In this work, we observe
that most CoT tokens are unnecessary, and retaining only a small portion
of them is sufficient for producing high-quality responses. Inspired by this,
we propose HAWKEYE %, a novel post-training and inference framework
where a large model produces concise CoT instructions to guide a smaller
model in response generation. HAWKEYE quantifies redundancy in CoT rea-
soning and distills high-density information via reinforcement learning. By
leveraging these concise CoTs, HAWKEYE is able to expand responses while
reducing token usage and computational cost significantly. Our evaluation
shows that HAWKEYE can achieve comparable response quality using only
35% of the full CoTs, while improving clarity, coherence, and conciseness
by approximately 10%. Furthermore, HAWKEYE can accelerate end-to-end
reasoning by up to 3.4x on complex math tasks while reducing inference

cost by up to 60% .

1 Introduction

The emergence of reasoning-capable large language models (LLMs) (OpenAl et al., 2024;
DeepMind, 2024; Guo et al., 2025) has recently made headlines. Equipped with Chain-
of-Thought (CoT) reasoning(Wei et al., 2023), these models “think” by producing lengthy
internal reasoning traces before generating a final response. This reasoning paradigm
decomposes complex questions and applies multiple strategies to verify and refine answers,
mimicking human-like problem solving. It has proven particularly effective for tasks
that require fine-grained, step-by-step logical synthesis, such as mathematics and code
generation (Zhang et al., 2022; Sprague et al., 2024).

However, such test-time compute scaling is inefficient, as a large portion of the generated
“thinking” tokens is redundant. While long CoTs can improve reasoning quality, generat-
ing them during inference introduces significant overhead. For example, the OpenAl ol
model (OpenAl et al., 2024) uses up to 40K tokens, whereas GPT-40 averages around 4K
tokens for the same query (Patel, 2024), leading to a 10x increase in KV cache memory
usage. Moreover, post-training and deployment of reasoning models are extremely costly.

* Equal contribution.

¥ Project website: link

t HAWKEYE has been open-sourced at GitHub and models are available at Huggingface.
§ Correspond to <jianshu.she@mbzuai.ac.ae>

https://zhuohaol.com/Hawkeye/
https://github.com/Jianshu1only/Efficient_CoT
https://huggingface.co/Jianshu001/Efficient_CoT_DeepSeek-R1-Distill-Qwen-7B

Published as a conference paper at COLM 2025

@—» Thinking Redundant R @ Slow thinking and responses
CoTs @ Frequent interruption by faults
LLM

SLM

GRPO

Thinking I R
_I . | ‘.| Hawkeye Thinking + Responses ”‘I
.. Reward =

\Length penalty Exact match

_J © Fast thinking and accurate responses
@© Low serving cost and less token usage

Figure 1: Overview of HAWKEYE and Comparison with Existing Reasoning Models. HAWK-
EYE restructures the reasoning pipeline through model collaboration: a large model gen-
erates critical Chain-of-Thought (CoT) instructions, while a small model expands these
instructions into complete responses to improve readability. The small model is fine-tuned
using reinforcement learning on high-density CoTs. HAWKEYE enables fast, efficient, and
cost-effective reasoning by reducing token usage without sacrificing response quality.

Knowledge distillation is often necessary to improve accessibility in reinforcement learn-
ing (RL)-based post-training. For example, the API cost of OpenAl ol is approximately
6x higher than that of GPT-40. As reasoning models continue to scale at inference time,
improving their efficiency has become an increasingly urgent challenge.

Although prior work has explored improving the test-time compute efficiency of reasoning,
many approaches remain limited to self-reflection or multi-turn CoT tuning. For instance,
Cheng & Durme (2024) reduce computational overhead by streamlining intermediate rea-
soning steps, while Wu et al. (2025) systematically examine the trade-off between efficiency
and precision in large-scale reasoning. Additionally, Fu et al. (2024) introduce request
tracking and scheduling based on model certainty, enabling early stopping to meet service-
level objectives (SLOs) for latency-sensitive users. However, these methods do not address
the fundamental challenge of overthinking in reasoning models: How can we measure
reasoning redundancy and effectively exploit it to enable more efficient thinking and
generation?

In this work, we propose HAWKEYE, a fast, efficient, and cost-effective CoT reasoning
pipeline that is adaptable to a wide range of reasoning models. Our key insight spans
both the inference and post-training stages. At inference time, we find that only the crit-
ical 20% of tokens meaningfully contribute to the final answer, while the remaining 80%
introduce redundancy and can be safely removed. We provide a comprehensive assessment
of this phenomenon across several popular reasoning models and diverse datasets. Dur-
ing post-training, we leverage reinforcement learning to guide models in identifying and
retaining only the most informative tokens, enabling high-density reasoning. HAWKEYE
introduces model collaboration, wherein a powerful model generates concise reasoning
instructions, and small models expand them into human-readable responses. By retaining
only critical CoTs and discarding redundant tokens during inference, HAWKEYE signifi-
cantly reduces CoT reasoning complexity and cost, while maintaining—or even improv-
ing—response quality across datasets of varying difficulty levels (e.g., GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), MATHS500 (Lightman et al., 2023), AIME). In our
evaluation, HAWKEYE achieves up to a 67.6% reduction in reasoning tokens, a 62% reduction
in serving cost, and a 3.4 x speedup in end-to-end reasoning compared to state-of-the-art
reasoning models.

Our contributions can be summarized as follows:

1. We propose a novel reasoning paradigm, HAWKEYE, which utilizes model collabora-
tion for efficient reasoning. In this setup, a large model generates concise reasoning
instructions, which a small model then expands into full responses. HAWKEYE
significantly reduces both computational and financial costs while preserving the re-

Published as a conference paper at COLM 2025

Original CoT Reasoning Process Hawkeye: Instruction Reasoning Process
Question M Hawkeye Thinking Deepseek-R1-Distilled-Quwen-7B-Hawkeye (LLM)
The roots of the equation $2x~2-mxtn=0$ sun to 6 AN
and multiply to 10. What is the value of $m#ns? The quadratic equation \(2x*2 - mx + n = 0\) has roots that sum to
\(\frac{mH2H) and multiply to \(\frac{n}{2}\). Given that these sums and
products equal \(6\) and \(10\), respectively: \[\frac{m}{2} = 6 \quad \Right
Ao — arrow \quad m = 12\] \[\frac{n}{2} = 10 \quad \Rightarrow \quad n = 20\] Adding
Thinking + G i A= = these values together gives: \[m + n = 32\ , \[\boxed{32}\]
Okay, so I have this equation here: \(2x*2 - mx + n = 0\). They& I Only 72 tokens ©
told me that the sum of the roots is 6 and the product is 10. Hawkeye Instruction
Hnm, I need to find \(m + n\). Alright, let's see how to
approach this. Hawkeye Expansion 1 Quen2.5-0.5B (SLM)
First off, I remember something called Vieta's formulas from §
algebra class. The given solution correctly identifies the values of \(m\) and \(n\) from &=
<Omitted> the equations derived from the properties of the roots of a quadratic ;'
Sum of roots = \(-b/a = -(-m)/2 = m/2\). Product of roots = equation. <Omitted> Based on the reasoning provided: 1. The roots of the
\(c/a = n/2\) quadratic equation \(2x"2 - mx + n = 0\) are given by the sum and product of
But wait, in the problem statement, they say the sum of the the roots: \[x_1+ x_2 = \frac{-b}a} = \frac{m}{2} \] \[x_1 \cdot x_2
roots is 6 and the product is 10. So that gives us two equations: = \frac{cHa} = \frac{n}{2} \] . 2. We know from the problem statement that:
1)Sum: \(m/2 = 6\) \[x_1 + x_2 = 6 \implies \frac{m}{2} = 6 \implies m = 12 \] Also, since
2)2) Product: \(n/2 = 10\) \(x_I \cdot x_2 = 10\): \[\frac{n}{2} = 10 \implies n = 20 \] 3. Therefore,
<Omitted> we have: \[m +n =12 + 20 = 32 \]
the value is \(\boxed{32}\). So, the value of \(m + n\) is \(\boxed{32}\).
More than 600 tokens & Only 110 tokens ©

Figure 2: An example of HAWKEYE reasoning. The red highlights marks critical tokens that
cannot be removed. HAWKEYE generates a high density of critical tokens and reduces token
usage by over 70% (600 — 182 tokens). More examples can be found in Appendix C.

sponse quality. We provide both empirical and theoretical evidence demonstrating
the effectiveness of this collaborative reasoning framework.

2. We present the first systematic study of CoT redundancy, showing that excessive
reasoning tokens are a widespread phenomenon across various tasks. Our analysis
reveals that a substantial portion of these tokens can be removed using a principled
compression strategy without degrading output quality.

3. We curate a high-quality CoT dataset and fine-tune a reasoning model using rein-
forcement learning to optimize CoT generation. This approach reduces CoT length
by over 75% compared to the original large model while maintaining performance,
with only a 4% drop in accuracy on the evaluated dataset.

2 Related Work

Chain of Thought Chain-of-Thought (CoT) reasoning has become a dominant approach
in recent reasoning models such as OpenAl ol (OpenAl et al., 2024) and DeepSeek-R1 (Guo
et al., 2025). It generates rationales for questions and encourages models to think before
responding. The quality of CoTs is critical, as errors can propagate due to the auto-regressive
nature of generation. Several approaches have been proposed to optimize CoT reasoning,
including self-consistency (Wang et al., 2023), least-to-most prompting (Zhou et al., 2022),
Graph of Thoughts (Yao et al., 2023a), and ReAct (Yao et al., 2023b).

Inefficiency in Reasoning Models Despite the success of reasoning models, step-by-step
thinking is often lengthy and incurs substantial computational overhead. To address this
issue, recent studies have focused on improving reasoning efficiency. For example, Han et al.
(2024) propose generating token budget-aware prompts for CoT reasoning. Building on this
idea, Xu et al. (2025); Luo et al. (2025); Arora & Zanette (2025) introduce token limit hints
to encourage more informative reasoning steps. Beyond token budget methods, Ma et al.
(2025) identify a direction in the model parameter space that effectively controls the length
of CoTs. Other research (Liu et al., 2024) explores reasoning shortcuts to further reduce
unnecessary steps. However, these methods often rely on manually tuned hyperparameters
and lack the capacity to automatically balance reasoning efficiency and answer accuracy.

Reinforcement Learning in LLMs Reinforcement learning (RL) has shown strong results
in post-training reasoning models. Early work (Rafailov et al., 2023) aligned models with
human feedback (RLHF) using classic algorithms like PPO (Schulman et al., 2017) and
TRPO (Schulman et al., 2015). To improve scalability, methods such as DPO (Rafailov et al.,
2023) and GRPO (Shao et al., 2024) reformulated alignment as a ranked contrastive loss
over human preferences. Modern RL approaches avoid explicit value function estimation
while preserving preference-aligned learning. DeepSeek-R1 (Guo et al., 2025)) demonstrated

Published as a conference paper at COLM 2025

GPT-40 instructs Claude 3.5 Sonet instructs Grok 3 instructs

60
50
40

llama3.1-1B llama3.1-1B 20 llama3.1-1B
llama3.1-1B-Instruct 10 llama3.1-1B-Instruct —e— Ilama3.1-1B-Instruct
qwen2.5-0.5B-Instruct —e— qwen2.5-0.5B-Instruct qwen2.5-0.5B-instruct

Accuracy (%)

N
5 8 8 g 3
N ow oA o o
5 8 5 8 3

—
)

0 20 40 60 80 100 o 20 40 60 80 100 0 20 40 60 80 100
Compression Rate

Figure 3: To examine redundancy in Chain-of-Thought (CoT) reasoning, smaller models
(LLaMA3.1-1B, Qwen2.5-0.5B) were guided by larger models (GPT-40, Claude 3.5 Sonnet,
Grok 3) to generate CoTs for GSM8K. The CoTs were refined via LLM-assisted feedback by
removing (1) repeated, (2) filler-like, and (3) overly fine-grained tokens. Compression rate is
defined as the ratio of remaining to original token count. Results indicate that 60%-80% of
CoT tokens are redundant across most models. See Appendix A for experimental details.

that large-scale RL post-training notably boosts reasoning performance over supervised
fine-tuning (SFT).

3 HAWKEYE

In this section, we present the design details of HAWKEYE, our framework for efficient
post-training and reasoning inference. The core idea behind HAWKEYE's post-training is to
minimize redundancy in intermediate reasoning tokens and accelerate reasoning, thereby
reducing cost while enhancing CoT quality. During inference, HAWKEYE introduces a novel
paradigm in which a large language model (LLM) guides smaller language models (SLMs)
to generate answers based on distilled CoTs. HAWKEYE achieves nearly a 50% reduction in
cost and significantly faster inference without sacrificing response quality.

3.1 CoT Redundancy

Reasoning models such as DeepSeek-R1 and OpenAl ol leverage intermediate Chain-of-
Thoughts (CoTs) to decompose problems and produce more accurate responses on chal-
lenging tasks. However, the quality of these CoTs is critical, as errors can propagate due to
the auto-regressive nature of generation. While techniques such as self-consistency (Wang
et al., 2022), Tree-of-Thought (Yao et al., 2023a), Graph-of-Thought (Besta et al., 2024), and
Skeleton-of-Thought (Ning et al., 2023) enhance CoT reasoning through various optimiza-
tions, they largely overlook CoT token efficiency — a factor that can significantly affect
overall performance.

We observe that CoT reasoning often contains substantial redundancy due to (1) repeated
hints, (2) filler phrases (e.g., “Well,” “Let me double-check”), and (3) overly fine-grained
steps. Prior work (Han et al., 2024; Ma et al., 2025; Liu et al., 2024) has reported similar
findings. To further investigate this, we designed an experiment to visualize the redundancy,
as shown in Figure 3. We selected several small models that lack strong reasoning capabili-
ties and instructed them using CoTs generated by reasoning models. This setup ensures
that the models themselves do not introduce bias into the experiment. We compressed the
CoTs by selectively removing intermediate steps (note: the final answer is not provided
in this experiment). Accuracy remains stable until the compression rate approaches 70%
(highlighted in Figure 3). This indicates that nearly 70% of intermediate CoT tokens can
be safely removed without significantly affecting accuracy. We further conducted experi-
ments on various benchmarks and reasoning models, and observed consistent results (see
Appendix A). By refining positive samples and removing redundant tokens, we are able to
reduce token usage by nearly 70% while still producing high-quality responses. We refer to
the retained tokens as logic-bearing tokens, as they typically convey logical or mathematical
reasoning (Figure 2).

Published as a conference paper at COLM 2025

Our preliminary results demonstrate the significant redundancy present in CoT reasoning.
However, leveraging this redundancy remains challenging due to two key issues: (1)
identifying critical CoTs is difficult, as there is a lack of efficient metrics to quantify their
importance; and (2) existing methods (Ma et al., 2025) are difficult to adapt for online
serving, rendering real-time reasoning infeasible. To address these challenges, we fine-tuned
a DeepSeek-R1-distilled Qwen-7B HAWKEYE model offline via reinforcement learning. We
found that the model effectively streamlines its reasoning process by focusing on a minimal
set of critical steps, and it exhibits strong generalization capabilities. A detailed discussion
is provided in Section 3.2.

3.2 HAWKEYE: post-training

Guo et al. (2025) employs a rule-based GRPO approach for post-training, thereby endowing
the R1 model with state-of-the-art reasoning capabilities. Inspired by this post-training
paradigm, we employ GRPO to fine-tune a 7B model, enabling it to generate more concise
and accurate CoT instructions.

As shown in Figure 3, we observe that CoT density achieves an optimal trade-off between
compression rate and performance when the compression rate ranges from 0.6 to 0.8 rel-
ative to the original. This allows for a reduction in length while preserving the original
information. Based on this observation, we set the starting point of the length penalty to
0.3 in our experiments and apply a quadratic penalty proportional to the number of tokens
exceeding this threshold.

Algorithm 1 GRPO fine-tuning of Model A for compressed Chain-of-Thought generation

Require: Policy model 71y (Model A), frozen response model (Model B), training dataset
D = {(gi,a;, cl(.mg) }, instruction prompt s, length penalty weight A, target compression
ratio « (set to 0.3)

1: while Model A not converged do

2 for each mini-batch {(g;,a;,¢; ®)}, C D do

3 for each (g, a, c®"8) in mini-batch do

4: ¢ < ModelA(q)

5: 4 < ModelB(g, ¢, s)

6 P+ A-max(0, len(c) —a - len(c"rig))2

7 R < EM(4,a) — P

8: 6« 0+nVglogm(c|q)-R

9: end for

10: end for

11: end while

12: return Fine-tuned parameters ¢

DeepSeek-R1’s reward model evaluates only the exact match between the generated output
and the ground-truth answer, along with the length of the CoTs, without imposing explicit
constraints on the generation process. Accordingly, HAWKEYE's fine-tuning framework
incorporates a small model as the answer generator, with the exact match reward computed
based on its final output.

We fine-tune Model A (policy 71p) using GRPO to generate CoT instructions. For each
training pair (g, a, corig), Model A generates a CoT ¢, and a weaker, frozen Model B produces
aresponse d based on (g, ¢, s), where s is a fixed instruction prompt. The reward is computed
as

R =EM(a,a) — A - max (0, len(c) — 0.3 len(corig))z,

where EM is the exact match score and len(-) denotes token count. The model is updated via
policy gradient:

0+ 0+aVylogmy(c|q)-R.

Published as a conference paper at COLM 2025

This design choice encourages the large model to generate CoTs that are not only truncated
but also more coherent and interpretable, thereby enhancing the small model’s ability to
follow the reasoning and produce correct answers. As a result, this approach mitigates
reward hacking, where the large model might otherwise bypass reasoning and directly
output the answer. Empirical results, as shown in Figure 4, indicate that omitting the small
model leads to an abrupt reduction in CoT length in pursuit of higher rewards, whereas
incorporating the small model results in a more gradual and controlled decrease, aligning
more closely with the intended reward structure.

5009 W) —— Without small model 100 [v G Aanas
A With small model 04 kit M
4001 il » —100 iy
\ H‘ o ’}f’
c ! B -300 j
3 200 g
2 —4001
el
~5001
100 —— Without small model
—600 Wth small model
0L, ‘ : : : -700 1 ‘ : : :
0 50 100 150 200 0 50 100 150 200
train/global_step train/global_step
(a) CoT length across training steps. Without a (b) Reward trajectory during training. Both
small model, the policy collapses to extremely converge to similar reward scores, but a small
short CoTs in pursuit of higher rewards. model can help avoiding reward hacking.

Figure 4: Effects of incorporating a small model during CoT generation. Including a small
model stabilizes CoT length and mitigates reward hacking while achieving comparable
reward scores.

3.3 HAWKEYE: inference

Drawing upon the findings presented in Section 3.1, we decompose the reasoning workflow
of HAWKEYE into two phases. In the first phase, a large language model (LLM) constructs
the core logical framework, thereby establishing a foundational structure for reasoning.
In the second phase, a smaller language model (SLM) leverages this structured outline to
generate comprehensive final responses. As illustrated in Figure 1, the SLM effectively
elaborates on the distilled and logically rigorous reasoning traces (CoTs) derived from the
LLM, ultimately producing complete and coherent answers.

Figure 2 provides a comparative analysis of two representative instances from HAWKEYE.
The tokens explicitly highlighted in red represent essential components that encapsulate
key reasoning steps, whose retention is critical to preserve reasoning fidelity. Empirical
evaluations demonstrate that, through our reinforcement learning-enhanced instruction
methodology, HAWKEYE achieves superior knowledge distillation compared to existing
reasoning-based models.

Formally, our inference procedure can be articulated as follows:

X¢41 ~ SLM (x<¢ | prompt = [g;c])

In this formulation, ¢ denotes a validated chain-of-thought, recognized explicitly as a reliable
reasoning trajectory. Consequently, the SLM is strategically guided to elaborate c into a fully
developed response.

Notably, the concept of two-step decoding using the same model was proposed as early
as 2023 and has been demonstrated to be effective (Kojima et al., 2023; Lightman et al.,,
2023; Li et al., 2024). However, the question of how to obtain high-quality instructions
for the second-step decoding remains underexplored. Existing studies predominantly rely
on self-prompting strategies. In contrast, we explicitly introduce a dual-model decoding
process during fine-tuning. As we demonstrate in the next section, our method improves
both response quality (Figure 6) and throughput (Figure 7).

Published as a conference paper at COLM 2025

3.4 Experimental Setup

We build HAWKEYE based on PyTorch and perform evaluations on 8 NVIDIA H100 GPUs.
Our baseline includes DeepSeek-R1-Distilled-Qwen-7B, a reasoning model capable of both
reasoning and answering. We select MATH, MATH500, GSM8K, and AIME as our eval-
uation benchmarks. These benchmarks encompass complex reasoning tasks that span
mathematics and commonsense reasoning.

4 Evaluation

4.1 Response Quality

HAWKEYE inference requires collaborative decoding between a large model and a small
model. We evaluated the accuracy of DeepSeek-R1-Distill-Qwen-7B and HAWKEYE across
various math datasets. As shown in Figure 5, HAWKEYE exhibits an accuracy drop ranging
from 3% to 6% on MATH500, MATH, and GSM8K. However, once the large model generates
the corresponding reasoning chain as an instruction—rather than directly providing a com-
plete answer—the decoding process of the small model becomes more flexible, allowing
the use of different system prompts or fine-tuning with specific datasets. This flexibility en-
ables various enhancements, such as employing a safety-focused SLM to ensure responsible
outputs or leveraging an RLHF-tuned model to better align with human preferences. In our
experiments, we used Qwen2.5-0.5B-Instruct to generate the final response, optimizing
for decoding efficiency.

100

T [DeepSeek-R1-Distill-Qwen-7B
—I— T | 1|2 Hawkeye Reasoning
80 { [Qwen2.5-0.5B
+
S
< 60
>
T T
@ i
.4
=}
o 40
Q
<
20 £
0

MATH500 MATH GSM8K AIME
Datasets

Figure 5: Exact match accuracy on MATH500, MATH, GSMSK, and AIME. HAWKEYE
achieves comparable accuracy to the baseline while significantly reducing computational
cost and token usage.

To assess whether the decoding process remains aligned with the original question and to
assess the quality of responses generated by the 0.5B model, we conducted a comparative
analysis using GPT-40, Grok-3, and Claude-3.5. Specifically, we employed the LLM-as-
Judge to compare the original outputs and those of the 0.5B model across five dimensions:
Coherence, Completeness, Clarity, Correctness, and Conciseness. Results are presented in Figure 6,
and detailed evaluation procedures are provided in Appendix B.

The results demonstrate that a more concise CoT strategy, combined with the 0.5B model,
achieves performance comparable to that of the original model. Moreover, this approach
exhibits superior performance in Clarity, Conciseness, and Coherence, highlighting its potential
to enhance the user-friendliness of the decoding process.

4.2 System Latency

To rigorously assess the inference acceleration capabilities of HAWKEYE, we conduct an end-
to-end latency evaluation, measuring the time span from initial user prompt processing to
final token generation. Our benchmarking is implemented using SGLang (Zheng et al., 2024),

Published as a conference paper at COLM 2025

GPT-40 Claude 3.5 Sonet Grok 3
Completeness Completeness Completeness

.:‘ CoHerence CoHerence CoHerence

Correcthess Correcthess Correcthess

onciseness

DeepSeek-R1-Distill-Qwen-7B
Hawkeye (0.5B SLM)
Hawkeye (7B SLM)

Figure 6: Response quality evaluated using LLM-as-Judge benchmarks (GPT-40, Claude
3.5 Sonnet, Grok 3), scored across five aspects. Model collaboration is shown to improve
response quality. Notably, increasing the size of the SLM (from 0.5B to 7B in our evaluation)
offers limited additional benefit. See Appendix B for experimental settings.

a5 Performance Comparison (10cc) 45 Performance Comparison (100cc)
Original Thinking + Response Original Thinking + Response
40 Original Thinking 401 64.3% Original Thinking
35 Hawkeye Thinking 351 Hawkeye Thinking
Hawkeye Response Hawkeye Response
30 30
1%] %)
225 2 257 58.2%
o o
@ 20 9 2 20
9 45.5% 2
15 54.2% 15
10 107 20.5%
5 18.2% 5 —
Le—
. . . 0 . . .
Math500 Math GSM8K Math500 Math GSM8K
(a) Time to Last Token - Concurrency = 10 (b) Time to Last Token - Concurrency = 100

Figure 7: Time to last token under two concurrency levels (10 and 100) across different
reasoning pipelines. Original Thinking refers to CoT generation by the DeepSeek-R1-
Distill-Qwen-7B model, while Hawkeye Thinking utilizes compressed CoTs to improve
token efficiency. Percentage labels indicate the latency reduction achieved by HAWKEYE.
As concurrency increases, HAWKEYE’s advantage becomes more pronounced (e.g., from
45.5% to 64.3% on MATH500), demonstrating better scalability by mitigating unnecessary
reasoning.

which facilitates concurrent handling of multiple requests and enables precise recording
of processing times for individual queries. Table 1 systematically presents the inference
acceleration achieved by HAWKEYE across the complete reasoning pipeline. In the Hawkeye
framework, the generated output can be decomposed into two components: the thinking
tokens, which are enclosed within the special markers [Think] and [/Think], and the
response tokens. The “"HAWKEYE (Full)” setting denotes the complete reasoning process,
encompassing both the CoT reasoning sequence produced by the large model (i.e., the
[Think] ... [/Think] segment) and the final response generated by the small model. In
contrast, the "HAWKEYE (CoT-only)” setting considers only the large-model CoT reasoning
tokens, excluding the subsequent response tokens.

Under a concurrency level of 10, HAWKEYE demonstrates inference speedups of up to 1.6x,
2.1x, and 2.5x relative to the baseline on GSM8K, MATH500, and MATH, respectively,
while utilizing only 55.7%, 41.1%, and 38.3% of the original total token counts. When the
concurrency is increased to 100, the speedup factors further improve to 1.8x, 3.4x, and 2.8x,

Published as a conference paper at COLM 2025

Dataset Method Concurrency Time per Req (s) | Avg TBT Tokens |
Baseline (Full) 10 3.69 0.013 297.0
HAWKEYE (CoT only) 10 2.37 0.014 165.7
HAWKEYE (Full) 10 2.81 0.009 301.7
GSMBK Baseline (Full) 100 5.13 0.016 331.0
HAWKEYE (CoT only) 100 2.93 0.017 171.0
HAWKEYE (Full) 100 3.75 0.011 332.0
Baseline (Full) 10 14.95 0.013 1136.54
HAWKEYE (CoT only) 10 7.11 0.015 471.0
HAWKEYE (Full) 10 8.31 0.011 771.4
Math500 Baseline (Full) 100 36.20 0.021 1463.80
HAWKEYE (CoT only) 100 10.74 0.022 474.9
HAWKEYE (Full) 100 13.34 0.017 765.8
Baseline (Full) 10 13.09 0.014 942.08
HAWKEYE (CoT only) 10 5.14 0.014 361.23
Math HAWKEYE (Full) 10 6.23 0.011 565.33
Baseline (Full) 100 21.26 0.024 908.08
HAWKEYE (CoT only) 100 7.48 0.022 332.50
HAWKEYE (Full) 100 9.58 0.016 582.10
Baseline (Full) 10 93.48 0.016 5943.90
AIME HAWKEYE (CoT only) 10 66.60 0.016 4168.20
HAWKEYE (Full) 10 68.90 0.015 4722.50

Table 1: Overall performance comparison across various datasets. Time per Req denotes average
latency per request and Tokens denotes the average token count per request.

Dataset Method Acc Tokens Compression Rate (%)

GSMBSK CoT-Valve (QwQ-32B-Preview) 95.1% — 94.0% 741.1 — 352.8 52.4
Hawkeye (DeepSeek-R1-Distill-Qwen-7B) ~ 90.7% — 88.9% 331.0 — 171.0 48.3

MATH O1-Pruner (QwQ-32B-Preview) 90.6% — 91.0% 2191.0 — 1385.0 36.7
Hawkeye (DeepSeek-R1-Distill-Qwen-7B) 92.3% — 89.4% 942.0 — 361.0 61.7

MATH500 Hawkeye (DeepSeek-R1-Distill-Qwen-7B) 80.1% — 75.5% 1463.0 — 474.9 67.5

Table 2: Performance comparison between CoT-Valve, O1-Pruner, and Hawkeye across GSMSK,
MATH, and MATH500 datasets. Compression Ratio is calculated as the percentage reduction in CoT

tokens.

with corresponding token utilization reductions to 36.6%, 32.4%, and 36.6% of the baseline

total tokens. See Figure 7 for detailed latency comparisons.

4.3 Cost Estimation and Saving

100
O~ 10 Concurrent Requests
—~ 801 O 100 Concurrent Requests
X
= o
-
2 6018
O
[®)]
£ 40; 2 a
>)
()
wn 201
01— - : -
GSM8k MATH500 MATH AIME
Dataset

(a) Comparison of serving cost between HAWK-
EYE and DeepSeek-R1, presented as a percentage

scale.

102
(e}
o o
101<
v
2 L =
o]
O 10°4 A 2
A
O~ OpenAl ol
o O DeepSeek-R1
10714 X A~ Hawkeye
GSM8K MATH500 MATH AIME

Dataset

(b) Average serving cost under concurrency lev-
els of 10 and 100 across various datasets. The
y-axis is shown on a logarithmic scale.

Figure 8: Serving cost for HAWKEYE

Published as a conference paper at COLM 2025

Let Creq denote the cost per request, Ti, the number of input tokens, Py, the price per input
token, Tyt the number of output tokens, Pyt the price per output token, and R the total
number of requests. The serving cost is calculated as follows:

The cost per request is given by:

Creq = (Tin X Pin) + (Tout X Pout)

The total cost Cipyy is then:
Ciotal = Creq X R

For the baseline comparison, we assume a fixed average input token count T, per dataset,
with all requests being cache hits. Current API prices vary by model capability; for instance,
OpenAl ol has Poyt = $60/M tokens, while DeepSeek-R1 has Pyt = $2.19/M tokens. We
similarly compute the serving cost of HAWKEYE and compare it with the baseline.

As the Figure 8 shows, due to the output token count saving, HAWKEYE costs less up
to 98.40% and 59.09% than OpenAl-ol and DeepSeek-R1. Notably, the AIME dataset
only appears in the 10 concurrent requests since it doesn’t have sufficient data for higher
concurrency.

5 Conclusion

In this work, we introduce HAWKEYE, a novel paradigm for efficient reasoning via model
collaboration. HAWKEYE enables a large model to generate concise and informative Chain-
of-Thought (CoT) instructions, which are subsequently expanded by a smaller model
to produce coherent and accurate responses. This collaborative reasoning framework
significantly reduces redundancy in intermediate reasoning steps.

Extensive evaluations across multiple reasoning benchmarks (e.g., GSM8K, MATHS500,
AIME) demonstrate that HAWKEYE achieves comparable or even improved response quality,
while reducing reasoning token usage by 50%-70% and accelerating inference by up to 3.
These results suggest that combining instruction distillation with small-model generation
offers a promising pathway toward scalable and cost-effective reasoning systems without
sacrificing performance.

10

Published as a conference paper at COLM 2025

References

Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025.
URL https://arxiv.org/abs/2502.04463.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al.
Graph of thoughts: Solving elaborate problems with large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17682-17690, 2024.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning
through dense representations, 2024. URL https://arxiv.org/abs/2412.13171.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers
to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Google DeepMind. Gemini 2.0 flash thinking, 2024. URL https://deepmind.google/
technologies/gemini/flash-thinking/.

Yichao Fu, Junda Chen, Sigi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and
Hao Zhang. Efficiently serving llm reasoning programs with certaindex. arXiv preprint
arXiv:2412.20993, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiging Ma, and Zhenyu Chen.
Token-budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205.
11916.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi.
Symbolic chain-of-thought distillation: Small models can also “think” step-by-step, 2024.
URL https://arxiv.org/abs/2306.14050.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.
URL https://arxiv.org/abs/2305.20050.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and
Zheng Zhang. Can language models learn to skip steps? In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naigiang Tan, Xiaochun
Cao, and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning
pruning, 2025. URL https://arxiv.org/abs/2501.12570.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve:
Length-compressible chain-of-thought tuning, 2025. URL https://arxiv.org/abs/2502.
09601.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang.

Skeleton-of-thought: Prompting llms for efficient parallel generation. arXiv preprint
arXiv:2307.15337, 2023.

11

https://arxiv.org/abs/2502.04463
https://arxiv.org/abs/2412.13171
https://deepmind.google/technologies/gemini/flash-thinking/
https://deepmind.google/technologies/gemini/flash-thinking/
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2306.14050
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2502.09601

Published as a conference paper at COLM 2025

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky,
Aiden Low, and Alec Helyar et. al. Openai ol system card, 2024. URL https://arxiv.
org/abs/2412.16720.

Dylan Patel. Inference math, simulation, and ai megaclusters, 2024. URL https://github.
com/ScalingIntelligence.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. Advances in Neural Information Processing Systems, 36:53728-53741, 2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pp. 1889-1897.
PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa,
Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not
to cot? chain-of-thought helps mainly on math and symbolic reasoning. arXiv preprint
arXiv:2409.12183, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models. arXiv preprint arXiv:2203.11171, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models, 2023. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large lan-
guage models, 2023. URL https://arxiv.org/abs/2201.11903.

Zonggian Wu, Baoduo Xu, Ruochen Cui, Mengmeng Zhan, Xiaofeng Zhu, and Lei Feng.
Rethinking chain-of-thought from the perspective of self-training, 2025. URL https:
//arxiv.org/abs/2412.10827.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by
writing less. arXiv preprint arXiv:2502.18600, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
Advances in neural information processing systems, 36:11809-11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In International
Conference on Learning Representations (ICLR), 2023b.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought
prompting in large language models. arXiv preprint arXiv:2210.03493, 2022.

Lianmin Zheng, Liangsheng Yin, Zhiqgiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu,
Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient exe-
cution of structured language model programs. Advances in Neural Information Processing
Systems, 37:62557-62583, 2024.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting
enables complex reasoning in large language models. arXiv preprint arXiv:2205.10625,
2022.

12

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://github.com/ScalingIntelligence
https://github.com/ScalingIntelligence
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2412.10827
https://arxiv.org/abs/2412.10827

Published as a conference paper at COLM 2025

A Appendix A

We use the following prompt to generate a CoT towards GSM8K dataset:

You are a helpful and thoughtful math tutor. Carefully work through the following
problem step by step using clear reasoning and intermediate calculations. Explain
your logic thoroughly, but do not give the final answer.

Problem:

jInsert the problem here;

Let’s think step by step.

A1l Case Study

We first request the model to generate full Chain of Thought:

Problem: Rory orders 2 subs for $7.50 each, 2 bags of chips for $1.50 each, and 2
cookies for $1.00 each for delivery. There’s a 20% delivery fee added at checkout,
and she wants to add a $5.00 tip. What will her delivery order cost?
CoT:
To find the total cost of Rory’s delivery order, we will break it down step by step.
First, we calculate the cost of the subs. Rory orders 2 subs at $7.50 each, so the cost of
the subs is:

Cost of subs = 2 x 7.50 = 15.00

Next, we calculate the cost of the chips. Rory orders 2 bags of chips at $1.50 each, so
the cost of the chips is:

Cost of chips = 2 x 1.50 = 3.00

Then, we calculate the cost of the cookies. Rory orders 2 cookies at $1.00 each, so the
cost of the cookies is:

Cost of cookies = 2 x 1.00 = 2.00

Now, we calculate the subtotal. The subtotal is the sum of the costs of the subs, chips,
and cookies:
Subtotal = 15.00 + 3.00 + 2.00 = 20.00

Next, we calculate the delivery fee. There is a 20% delivery fee added at checkout, so
the delivery fee is:
Delivery fee = 0.20 x 20.00 = 4.00

Finally, Rory wants to add a $5.00 tip. Therefore, the total cost including the tip is:
Total cost with tip = 20.00 + 4.00 + 5.00

At this point, the total cost of Rory’s delivery order can be calculated.

Then we ask the model to preserve only some important tokens in CoT and compress the
CoT to a certain level compared to the full CoT (80%, 60%, 40%, 30%, 20%, 10%).

13

Published as a conference paper at COLM 2025

Prompt for Chain-of-Thought Revision

You are given a detailed step-by-step reasoning (Chain-of-Thought) for solving
a problem. Your task is to revise the explanation while keeping approximately
(compression ratio)% of the original tokens unchanged. Make light edits for clarity
or style if needed, but preserve the overall structure, meaning, and majority of the
wording. Do not shorten or skip steps.

The key requirement is to retain the most important information in the original
reasoning, ensuring that the core logic and steps are preserved.

Original CoT:

<Insert the original Chain-of-Thought here>

Revised CoT:

The compressed CoT should be:

CoT Compressed to 80%

Rory orders 2 subs at $7.50 each, totaling:

2 x 7.50 = 15.00
2 chips at $1.50 each:

2 x 1.50 = 3.00
2 cookies at $1.00 each:

2 x 1.00 = 2.00

Subtotal:
15.00 + 3.00 + 2.00 = 20.00

Delivery fee (20% of subtotal):
0.20 x 20.00 = 4.00

Add a $5.00 tip:
20.00 + 4.00 + 5.00

Total cost can now be computed.

CoT Compressed to 60%

2 subs: $15.00
2 chips: $3.00
2 cookies: $2.00

Subtotal:
15+3+2=20
Delivery fee:
02x20=4
Tip: $5.00
Total is:
20+4+5

CoT Compressed to 40%

Calculate item costs: subs = $15, chips = $3, cookies = $2.
Subtotal = $20.

Add delivery fee (20%) = $4.

Add tip = $5.

Published as a conference paper at COLM 2025

CoT Compressed to 30%

Get subtotal from items: 15 + 3 + 2 = 20.
Calculate 20% delivery fee = 4.
Add tip = 5.

CoT Compressed to 20%

Item total = 20.
Fee = 4.
Tip =5.

CoT Compressed to 10%

Items add up to 20.
Add delivery and tip.

Published as a conference paper at COLM 2025

B Appendix B

In evaluation of response quality, we use LLM-as-a-Judge to rate the response from clarity,
completeness, coherence, correctness, and conciseness. We used the following prompt to
rate the response:

You are given a response to a specific math problem. Your task is to evaluate
the response based on the following five criteria: clarity, completeness, coherence,
correctness, and conciseness. Provide a score for each dimension based on the
standards outlined below:

1. Clarity (1-5): - Does the response clearly explain each step of the reasoning? - Is
the language used straightforward and easy to understand? - A score of 5 means
the explanation is exceptionally clear with no ambiguity, while 1 means it is very
difficult to follow.

2. Completeness (1-5): - Does the response address all parts of the question? - Does
it include all necessary calculations and intermediate steps? - A score of 5 means
the response covers all required steps and details, while 1 means critical parts of the
problem are missing.

3. Coherence (1-5): - Are the steps and reasoning logically connected? - Does the
response flow smoothly from one step to the next without any sudden jumps or
gaps in logic? - A score of 5 means the response is well-structured and the reasoning
is seamlessly connected, while 1 means the explanation is disjointed and hard to
follow.

4. Correctness (1-5): - Does the reasoning lead to the correct result? - Are the
intermediate steps logically sound and consistent with the problem statement? - A
score of 5 means the solution is correct and matches the question exactly, while 1
means there are significant errors in reasoning or calculation.

5. Conciseness (1-5): - Does the response avoid unnecessary information or repe-
tition? - Is it efficient without sacrificing important details? - A score of 5 means
the response is brief yet thorough, while 1 means it includes excessive or irrelevant
information.

Provide your evaluation below, giving a score from 1 to 5 for each criterion and
explaining your reasoning behind the scores.

16

Published as a conference paper at COLM 2025

C Appendix C

As Figure 2 shows an example of the CoT comparison between Deepseek-distilled-qwen-7B
model and HAWKEYE model, we show more examples in this sections.

Question: Find the common ratio of the infinite geometric series:

DeepSeek-R1-Distill-Qwen-7B Output (Full)

To find the common ratio of an infinite geometric series, I know that each term is
multiplied by a constant ratio, r, to get the next term.

So, let’s denote the first term as a; and the second term as a;. Then, the common
ratio r can be found by dividing the second term by the first term: r = a5 /a;.
Given the series: a1 = —3/5and a, = —5/3.

Calculating r: r = (=5/3)/(—=3/5).

Dividing fractions involves multiplying by the reciprocal, sor = (—5/3) * (5/ —3) =
25/9. But wait, 25/9 is greater than 1, which might be a problem because for an
infinite geometric series to converge, the absolute value of the common ratio must be
less than 1. Since |25/9| > 1, the series might not converge. However, the problem
asks for the common ratio regardless of convergence, so ¥ = 25/9. But let me double-
check my calculations. First term: -3/5 Second term: -5/3 Third term: -125/27 Let
me check the ratio between the second and third term:

r=(=125/27)/(=5/3) = (125/27) % (3/5) = (125 x 3) /(27 x 5) = 375/135 = 25/9

Yes, it’s consistent. So the common ratio is 25/9. But wait, if the common ratio is
25/9, which is approximately 2.777..., that’s a large ratio. Typically, in such problems,
the ratio is a simple fraction like 2 or 3. Maybe I made a mistake somewhere. Let me
recalculate: First term: -3/5 Second term: -5/3 .So, r = ap/a; = (—=5/3)/(=3/5) =
(=5/3) * (—5/3) = 25/9. Wait, is that right? Let me verify: (-5/3) divided by (-3/5)
is equal to (-5/3) multiplied by (5/-3). Wait, no, the reciprocal of (-3/5) is (-5/3). So,
it’s (-5/3) * (-5/3) = 25/9. Yes, that seems correct. So, the common ratio is indeed
25/9. But let me check the third term to see if it follows the same ratio. Third term
should be a3 = a, xr = (—=5/3) * (25/9) = (—125)/27. Which matches the given
third term. So, it is consistent. Therefore, despite the ratio being greater than 1, the
common ratio is 25/9. But just to be thorough, let me consider if there might be a
different interpretation. Alternatively, maybe the series is written with a typo or
something, but as given, it's -3/5,-5/3, -125/27,... So, each term is being multiplied
by (25/9) to get the next term. Therefore, the common ratio is 25/9. But I'm a bit
surprised because 25/9 is a large ratio. Maybe I should express it as a mixed number,
but 25/9 is already in simplest terms. Alternatively, maybe the problem expects the
absolute value or something, but the question just asks for the common ratio. So, I
think the answer is 25/9. But let me check once more: First term: -3/5 Multiply by
25/9: (-3/5)*(25/9) = (-75) /45 = (-5) /3, which is the second term.

Then, second term: (-5)/3 * 25/9 = (-125) /27, which is the third term. Yes, so it’s
consistent.

Final Answer

. o . .. |25
The common ratio of the infinite geometric series is 9t

17

Published as a conference paper at COLM 2025

HAWKEYE Output

To find the common ratio of the infinite geometric series:

0 5 5
5 3 27
Step 1: Identify the first term (1) and the second term (ay).
=8 -5
1— 5 s 2 — 3

Step 2: Use the formula for the common ratio (r):

Final Answer:

18

Published as a conference paper at COLM 2025

Question: The graph of the parabola defined by the equation
y=(x—2)24+3

is rotated 180 degrees about its vertex, then shifted 3 units to the left, then shifted 2
units down. The resulting parabola has zeros at x = a and x = b. Whatis a + b?

DeepSeek-R1-Distill-Qwen-7B Output (Full)

Question: A parabola given by the equation y = (x — 2)? + 3 undergoes the follow-
ing transformations:

- Rotated 180 degrees about its vertex, - Shifted 3 units left, - Shifted 2 units down.
What is the sum a + b of the zeros x = a and x = b of the resulting parabola? Alright,
so I need to figure out this problem where a parabola is transformed in a few steps,
and then I have to find the sum of its zeros. Let me try to break it down step by step.
First, the original parabola is given by the equation y = (x — 2)2 + 3. I know that
this is a standard parabola in vertex form, which is y = a(x — h)? + k, where (h, k) is
the vertex. So in this case, the vertex is at (2, 3). Since the coefficient is positive, it
opens upwards, which is the standard shape.

Now, the first transformation is rotating the parabola 180 degrees about its vertex.
Hmm, rotating 180 degrees about the vertex... I think that would flip the parabola
upside down. So, if it was opening upwards before, it will now open downwards
after the rotation. How does that affect the equation?

I remember that rotating a graph 180 degrees around a point changes the direction
of the parabola. So, in terms of the equation, that would mean changing the sign of
the coefficient. The original equation is y = (x — 2)? + 3. If we rotate it 180 degrees
about its vertex, the coefficient of the squared term will change from positive to
negative. So, the new equation should be y = —(x —2)2 + 3.

Wait, let me make sure. If we rotate 180 degrees, it’s like reflecting over the vertex
point, which in this case is (2,3). So, yes, that would flip the parabola. So, the
equation becomes y = —(x — 2)? + 3. Got that.

Next transformation is shifting the parabola 3 units to the left. Shifting left or right
affects the x-coordinate of the vertex. Since it’s 3 units to the left, we need to subtract
3 from the x-coordinate of the vertex. The original vertex was at (2,3). So, shifting
left 3 units would bring it to (2 —3,3) = (—1,3).

How does this affect the equation? In the vertex form, shifting left by 3 units means
replacing x with x + 3. So, starting from y = —(x — 2)2 + 3, replacing x with x + 3
gives:

y=—((x+3)—22+3=—(x+1)2+3

So now the equation is y = —(x +1)% + 3.

Next transformation is shifting 2 units down. Shifting down affects the y-coordinate
of the vertex. The current vertex is at (—1,3). Shifting down 2 units would bring it
to (—1,1).

In the equation, shifting down 2 units means subtracting 2 from the entire function:

y=—(x+1)2+3-2=—(x+1)>+1
Now, I need to find the zeros of this resulting parabola. Set y = 0:

0= —(x+124+1=(x+1)P=1=x+1=+1=x=00rx= -2
Therefore,a = 0,b= —2,anda+b = —2.

Final Answer:
-—2

Published as a conference paper at COLM 2025

HAWKEYE Output

To determine a + b for the resulting parabola, follow these steps:

1. Original Parabola: - Equation: y = (x —2)? + 3 - Vertex: (2,3)

2. Rotation: - Rotating 180° about the vertex changes the equation to y = —(x —
2)2+3.

3. Shift 3 Units to the Left: - Replace x with x +3: y = —(x +1)% + 3.

4. Shift 2 Units Down: - Subtract 2 from the equation: y = —(x +1)2 + 1.

5. Find Zeros: -Sety = 0: —(x +1)2+1=0= (x +1)2=1=x=0o0rx = —2.
6. Sum of Zeros: -a+b =0+ (-2) = 2.

20

	Introduction
	Related Work
	Hawkeye
	CoT Redundancy
	Hawkeye: post-training
	Hawkeye: inference
	Experimental Setup

	Evaluation
	Response Quality
	System Latency
	Cost Estimation and Saving

	Conclusion
	Appendix A
	Case Study

	Appendix B
	Appendix C

