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ABSTRACT

The Lowest Unique Positive Integer (LUPI) game is a multiplayer game where
participants attempt to choose the smallest number that no one else selects. While
previous studies model LUPI using Poisson–Nash equilibrium assumptions, our
work introduces a novel Q-learning-based approach to achieve equilibrium with-
out the need for specific distribution assumptions, such as Poisson. We demon-
strate that our Q-learning model successfully emulates the Nash equilibrium while
allowing flexibility in the number of players, providing a more robust and prac-
tical solution for real-world applications like real-time bidding (RTB) systems.
We compare our model’s performance against existing Poisson-based strategies,
showcasing improved accuracy and adaptability. Furthermore, we apply our
model to the Swedish Limbo lottery data and observe significant deviations from
theoretical predictions, highlighting the strength of learning-based approaches in
dynamic, real-world scenarios.

1 INTRODUCTION

The Lowest Unique Positive Integer (LUPI) game is a simple multiplayer game where the partici-
pants independently select integers from 1 to ∞ simultaneously (or capped by some fixed K, de-
pending on the variant played). The objective is to choose the smallest number that no other player
has selected, in which case there is a unique winner or no winners at all Simon (2023).

We consider the LUPI game as a normal-form game, a notion that has been defined in Nowé et al.
(2012). The Nash equilibrium (NE) is a key concept in game theory; it is a state where all players
follow strategies that are optimal responses among the other ones. Nash (1950) demonstrated that
every normal-form game has at least one Nash equilibrium, which may involve mixed strategies. In
other words, once a Nash equilibrium occurs, no player in the game can improve their payoff by
unilaterally deviating from the equilibrium strategy profile.

In Östling et al. (2011), playing according to the Poisson equilibrium strategy has been tested
against the real data from the Swedish lottery game called Limbo, introduced by the government-
owned Swedish gambling monopoly Svenska Spel on 29 January 2007. Despite the complexity and
counter-intuitive properties of the equilibrium strategy, they find it surprisingly close to the observed
data. However, notable deviations from the equilibrium prediction are present, including some be-
haviourally interesting fine-grained discrepancies.

The LUPI players were unaware of the total number of bets. While they could access information
about the current count of bets made during the day, they had to place their bets before the daily
game closure, thus lacking certainty about the total number of participating players for that day. In
Östling et al. (2011), it is assumed that the number of players follows a Poisson distribution with
parameter n, where n represents the expected number of players. However, the actual number of
players in the Swedish LUPI game varies considerably from day to day, which does not align well
with the cross-day variance implied by the Poisson assumption. Nevertheless, the Poisson–Nash
equilibrium is likely the only computable equilibrium benchmark. Moreover, under the Poisson
assumption, Östling et al. (2011) and Pigolotti et al. (2012) derived a recursive formula for a unique
symmetric Nash equilibrium for LUPI.

In our study, we employ Q-learning techniques to reach the Nash equilibrium. Our model offers the
flexibility to adjust the number of players arbitrarily. This means that we do not assume a priori

1



Under review as a conference paper at ICLR 2024

any particular distribution such as the Poisson distribution or alike. It is worthwhile mentioning that
despite a rather theoretical nature, LUPI games, and their possible strategies may be used as a basis
for optimising real-time bidding (RTB) systems in reverse auctions, which are the standard ways for
publishers to auction off their ad space to advertisers (see Simon (2023); Zeng et al. (2007); Zhao
et al. (2014); Zhou et al. (2015) for more details).

2 SWEDISH LUPI LOTTERY GAMES AND RELATED WORKS

In the study conducted by Östling et al. (2011), the LUPI game was thoroughly examined, assuming
that the number of players follows a Poisson distribution, thus characterising the game as a Poisson
game. For further information on the theory of Poisson games, one can refer to Myerson (1998) and
Myerson (2000).

Players in a game have individual reward functions that depend on the actions of other players, mak-
ing the definition of a desired game outcome often ambiguous. It is unrealistic to expect participants
to maximise their payoffs, as achieving this goal simultaneously for all players may not be feasible.
A central solution concept in game theory is the Nash equilibrium (NE). In a Nash equilibrium,
the players all adopt mutual best replies, meaning that each player chooses the best response to the
strategies currently employed by the other players. The following definition of NE is provided in
(Nowé et al., 2012, Definition 14.3):

Definition 2.1 A strategy profile σ = (σ1, . . . , σn) is termed a Nash equilibrium if, for each player
k, the strategy σk constitutes the best response to the strategies σ−k of the other players.

Hence, when a Nash equilibrium is in play, no participant in the game can enhance their payoff by
unilaterally altering their equilibrium strategy profile. Consequently, no player has an incentive to
change their strategy, and a simultaneous strategy change by multiple players would be required to
disrupt the Nash equilibrium.

Myerson (1998) demonstrated the existence of an equilibrium in all games involving population
uncertainty with finite action and type spaces, which encompasses Poisson games.

It was demonstrated in Östling et al. (2011) how to derive the formula for the Nash Equilibrium
specifically for the Poisson LUPI Game when one allows for a varying number of players, as opposed
to the fixed number, as this assumption simplifies the computation of the equilibrium if the number
of players is Poisson-distributed. The authors suggested that the Poisson–Nash equilibrium is likely
the only computable equilibrium benchmark. The authors also explored the real-world version of the
LUPI game, the Limbo game, posing the question: do the Limbo players adhere to the Poisson–Nash
equilibrium benchmark? To investigate this, they assumed that the number of players is Poisson
distributed with a mean equal to the empirical daily average number of choices (53,783). This
assumption, however, is flawed due to the actual variation in the number of bets across different
days being significantly greater than what the Poisson distribution would predict.

The authors compared the Poisson equilibrium with the field data and found the equilibrium surpris-
ingly close, given its complexity and counter-intuitive nature. However, significant deviations from
the equilibrium prediction were evident. Moreover, the authors asked whether an alternative theory
could account for both the surprising accuracy of the equilibrium prediction and the systematic de-
viations observed. To explore this, they posited that different players engage in varying levels of
iterated strategic thinking within a cognitive hierarchy (CH).

They stressed that the aim of the cognitive hierarchy model was not merely to better fit the data
than the Poisson–Nash model but also to demonstrate how individuals with limited computational
capacity might initially approach and eventually converge to such a complex equilibrium. However,
they noted that the cognitive hierarchy model only provides indicative evidence of this convergence
and should, therefore, be considered an initial step towards a more formal investigation using a
learning model.

Theoretical and behavioural analyses suggest reasons why the ‘incorrect’ theory (Poisson–Nash)
might closely mirror actual behaviour in practical scenarios, despite significant empirical discrep-
ancies in the variance of n. One rationale is that in straightforward cases (where it is possible to
compute the Nash equilibrium for a fixed number of players without resorting to a Poisson dis-
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tribution), the equilibria for zero variance (fixed n) and for Poisson variance are nearly identical.
However, this observation, based on a limited set of examples, may not be universally applicable.

Their second point highlights that field data from Sunday and Monday sessions, characterised by
a lower n and reduced standard deviation, show choices very similar to those on other days, de-
spite the variance in n being roughly double. This finding is noteworthy. Nonetheless, given the
larger variance in player numbers in the field data compared to that assumed in the Poisson–Nash
equilibrium, the Poisson–Nash model can only serve as an approximation.

3 GAME THEORY AND MULTI-AGENT REINFORCEMENT LEARNING

For generalities related to Q-learning we refer the reader to Sutton (2018). The central idea of
game theory is to model strategic interactions as a game between a set of players. A game is a
mathematical object, which describes the consequences of interactions between player strategies in
terms of individual payoffs. Different representations for a game are possible. We shall focus on the
so-called normal-form games, in which game players simultaneously select an individual action to
perform. In line with (Nowé et al., 2012, Definition 14.1) we introduce the following definition.

Definition 3.1 A normal-form game is a tuple (n,A1,...,n, R1,...,n), where

• 1, . . . , n is a collection of participants in the game, called players;

• Ak is the individual (finite) set of actions available to player k;

• Rk : A1 × . . . × An → R is the individual reward function of player k, specifying the
expected payoff he receives for a play a ∈ A1 × . . .×An.

A game is played by allowing each player (say, the kth out of n) to independently select an individual
action a from its private action set Ak. The combination of actions of all players constitutes a joint
action or action profile a from the joint action set A = A1 × . . .×An. For each joint action a ∈ A,
Rk(a) denotes kth agent’s expected payoff.

A strategy σk : Ak → [0, 1] is an element of µ (Ak), the set of probability distributions over the
action set Ak of player k. A strategy is called pure if σk(a) = 1 for some action a ∈ Ak and 0
for all other actions, otherwise, it is called a mixed strategy. A strategy profile σ = (σ1, . . . , σn) is
a vector of strategies, containing one strategy for each player. An important assumption which is
made in normal-form games is that the expected payoffs are linear in the player strategies, i.e., the
expected reward for player k for a strategy profile σ is given by:

Rk(σ) =
∑
a∈A

n∏
j=1

σj (aj)Rk(a)

with aj the action for player j in the action profile a.

Depending on the reward functions of the players, a classification of games can be made. When all
players share the same reward function, the game is called an identical payoff or common interest
game. In the reinforcement learning setting, agents are considered players in a normal-form game,
which is played repeatedly to enhance their strategy over time. In a repeated game, all changes in
the expected reward are attributed to alterations in the strategy by the players.

There is no changing environment state or state transition function external to the agents. Hence,
repeated games are sometimes also referred to as stateless games. Despite this limitation, these
games can already present a challenging problem for independent learning agents and are well-
suited to test coordination approaches.

Since the expected rewards depend on the strategy of all agents, many multi-agent RL approaches
presume that the learner can observe the actions and/or rewards of all participants in the game.
This enables the agent to model its opponents and to explicitly learn estimates over joint actions.
However, it could be argued that this assumption is unrealistic, as in multi-agent systems which are
physically distributed, this information might not be readily available.
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As it is generally impossible for all players in a game to maximise their payoff simultaneously,
most RL methods aim to achieve Nash equilibrium play. Nash Jr (1950) demonstrated that every
normal-form game has at least one Nash equilibrium, possibly in mixed strategies.

4 THE Q-LEARNING ALGORITHM SETTINGS FOR THE LUPI GAME

The Q-learning approach applied here adapts the Bellman equation, simplified for the stateless set-
ting. The update rule for Q-values in this case is represented as:

Q(a)← Q(a) + α[r(t)−Q(a)],

where Q(a) is the expected reward for action a, α is the learning rate, and r(t) is the immediate
reward received from performing action a at time t.

We employ Q-learning in the independent setting, i.e., each player maintains an individual vector
of estimated Q-values Qk(a) (a ∈ Ak), where k denotes the player’s number. The players learn
the Q-values over their own action set and do not utilize any information about other players in the
game, except for knowing if no one won (if applicable). Each episode represents another day of the
game. The k-th player has the same reward function Rk, which is 1 when the player won, -1 when
they lost, and -0.1 when no one won.

Each player chooses an action based on the current state and the Q-table, using a combination of
ε-greedy and softmax strategies. Specifically, with probability ε (set to 0.95), a random action is
chosen (exploration), while with probability 1 − ε, an action is selected using the softmax strategy
(exploitation). The strategy for ε-greedy can be described as:

a =

{
random action, with probability ε,

argmaxa Q(a), with probability 1− ε.

The softmax function used here is a scaled version, where the temperature parameter T (set to 0.15)
regulates the degree of randomness in action selection. The probability of selecting action a based
on Q-values is given by:

P (a) =
exp(Q(a)/T )∑
a′ exp(Q(a′)/T )

,

where a lower temperature T implies less randomness and a higher temperature leads to more diverse
action choices.

In our implementation of Q-learning, the following parameters were selected:

• Learning rate (α) = 0.01

• Number of episodes (NUM EPISODES) = 3000

The α parameter controls the learning rate, where a lower value results in slower adjustment of the
Q-values, while a higher value may lead to faster but potentially unstable convergence.

5 COMPARISON TO NASH EQUILIBRIA

In this section, we analyze the unique symmetric Nash equilibrium for LUPI under the Poisson
assumption with an expected player count of n. The equilibrium, expressed as (pn(1), pn(2), . . .),
was originally identified by Östling et al. (2011) and Pigolotti et al. (2012). The recursive expression
for this equilibrium is given by:

pn(1) =
ln(1 + n)

n
,

and for subsequent terms:

pn(k + 1) = pn(k) +
1

n
ln

(
1− npn(k)e

−npn(k)
)
.
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We also refer to Srinivasan & Simon (2024) for asymptotics and continuous approximations for
these. Below, we present a graphical comparison between this theoretically derived Nash equilib-
rium and the Nash equilibrium estimated through our Q-learning agent. The comparison visually
illustrates how well the Q-learning algorithm approximates the theoretical equilibrium under the
Poisson assumption.

Figure 1

Figure 1 demonstrates the robustness of the Q-learning algorithm in converging to the Nash equi-
librium. The minimal discrepancies observed between the theoretical predictions and the empirical
results indicate the high accuracy and reliability of the Q-learning method in this context.

6 ANALYSIS OF THE LIMBO LOTTERY GAME

We have applied our Q-learning agent to the Limbo lottery game, a Swedish lottery introduced
by Svenska Spel in 2007. For our analysis, we first examined 49 days of data from the Limbo
game, observing that none of the selected numbers each day were smaller than the winning number.
The data used in this analysis are publicly available Östling et al. (2011). To refine our analysis,
we excluded the top 700 most popular numbers, leaving a set of approximately 1,000 potentially
winning numbers out of the 100,000 possible choices, which implied an estimated 1% chance of
winning.

We then tested the performance of our Q-learning agent by incorporating its choices into this dataset.
Over 49 rounds (days), we simulated the agent’s participation in the game, checking whether it
would win under the given conditions. The agent succeeded in winning 8 rounds, which corresponds
to a win rate of approximately 16.33%. This result indicates that our agent was able to outperform
the expected baseline probability of winning, demonstrating the effectiveness of our approach in
real-world lottery scenarios like Limbo.

Here, according to the theoretical distribution, values greater than 20 are seldom chosen. However,
we notice that in the actual game, higher values tend to win; see Tables 1–2 for the details.
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Table 2: Comparison of predicted agent wins with theoretical outcomes over 49 days.

Day Wins Win Indicator Players
Agent Pred. Actual Wins Theo. Wins Agent Win? Theo. Win?

1 1618 7178 4 0 0 59993
2 6847 5168 6 0 0 50446
3 6813 5425 4 0 0 42226
4 5866 5866 5 1 0 45508
5 6025 5942 3 0 0 45928
6 7811 7194 1 0 0 57126
7 6387 6387 5 1 0 43363
8 6336 5619 3 0 0 58431
9 7133 5855 7 0 0 69030

10 6518 6518 3 1 0 60144
11 9819 6711 1 0 0 54920
12 4022 6636 5 0 0 64725
13 8396 5374 5 0 0 43203
14 2730 2730 5 1 0 63040
15 483 5103 2 0 0 52785
16 6904 5844 11 0 0 44502
17 1748 6899 8 0 0 57684
18 365 6296 1 0 0 59272
19 3805 6995 1 0 0 58458
20 2216 8343 5 0 0 45740
21 3949 7167 1 0 0 49826
22 2291 8833 3 0 0 41953
23 9052 8357 7 0 0 48034
24 337 8072 3 0 0 52159
25 660 6619 6 0 0 55411
26 431 3691 7 0 0 40267
27 2611 7137 3 0 0 62832
28 1857 7098 3 0 0 38133
29 1690 7798 3 0 0 58936
30 4768 4768 6 1 0 54489
31 7923 6851 3 0 0 40062
32 1901 6996 10 0 0 64423
33 1992 7911 1 0 0 54938
34 6082 6082 2 1 0 47127
35 6327 6327 10 1 0 40005
36 2673 4506 5 0 0 61477
37 3678 3678 2 1 0 55240
38 9880 5913 3 0 0 54518
39 631 5389 3 0 0 61259
40 3693 6843 3 0 0 56371
41 5212 5212 3 1 0 49496
42 5585 5585 9 1 0 61404
43 2603 6567 10 0 0 50985
44 9516 6778 2 0 0 57265
45 6246 6246 2 1 0 47350
46 9218 7891 3 0 0 61156
47 584 6436 1 0 0 58425
48 9538 6633 3 0 0 48978
49 4871 4871 7 1 0 47116
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Table 1: Summary Statistics

Statistic Value
Total rounds 49
Total wins 8
Win percentage rate 16.33%
Theoretical total wins 0
Theoretical win percentage rate 0.00%
Average number of participants 52982

Figure 2: The probability distribution chart for k = 100.

Next, we slightly modified the results from the actual game, meaning we limited the maximum
selectable number to number=1000. There was no chance of winning, so we set the best choice to a
winning one (if there was a winning choice, we did not change it), and we removed the best choices
to give a 10% chance of winning. Specifically, considering the results lower than the winning one,
we removed 100 numbers with the fewest selections. Then we calculated the average number of
players, which was approximately 16,000. We trained the agent for this number of players and
checked the theoretical results. The agent won 6 rounds out of 49, while the theoretical ‘agent’ won
nothing. The tables below present these results (see Table 3 and Table 4).

Table 3: Summary Statistics

Statistic Value
Total rounds 49
Total wins 6
Win percentage rate 12.24%
Theoretical total wins 0
Theoretical win percentage rate 0.00%
Average number of participants 16608

6.1 CONCLUSIONS

The presented figure compares the theoretical Nash equilibrium with the probability distribution of
our trained agents over multiple game iterations. As shown in Figure 3, the theoretical distribution,
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Figure 3: The probability distribution chart for k = 1000.

which assumes a Poisson distribution of players, predicts a nearly uniform strategy. However, as
evident from the plots above, our agents, trained using Q-learning, deviate from this theoretical
prediction, particularly for higher values of k, where their probability distribution exhibits significant
fluctuations.

The large standard deviation observed for higher k values suggests that our agents explore a wider
range of strategies, likely as a result of the Q-learning process optimising for a fixed number of par-
ticipants. This exploration allows agents to discover non-trivial strategies that are not captured by
the theoretical model. Despite the noise and variation, our agents’ performance, as indicated by the
summary statistics, exhibits a superior win rate compared to the theoretical prediction, further sup-
porting the hypothesis that Q-learning agents find more effective strategies in real-world scenarios
with fixed n (see Table 3).

Figure 3 highlights a key difference: while the theoretical Nash equilibrium assumes optimal play
under Poisson-distributed participants, our agents’ learning approach adapts to the fixed number
of players, leading to more successful outcomes. The deviation from the theoretical distribution
indicates that, in complex environments where theoretical assumptions do not hold, learning-based
agents can outperform static equilibrium models.

In conclusion, these findings suggest that the theoretical model, based on unrealistic assumptions,
may not be sufficient to capture the true dynamics of the game. In contrast, learning algorithms such
as Q-learning, tailored to specific game conditions, provide a more robust and effective method for
strategy development, as demonstrated by the higher win rate achieved by our agents.
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Table 4: Comparison of predicted agent wins with theoretical outcomes over a 49-day period

Day Wins Win Indicator Players
Agent Pred. Actual Wins Theo. Wins Agent Win? Theo. Win?

1 16 536 349 0 0 13848
2 409 655 959 0 0 11956
3 577 994 641 0 0 17891
4 64 772 755 0 0 19483
5 359 230 718 0 0 12588
6 666 850 322 0 0 12962
7 223 402 791 0 0 13027
8 309 839 864 0 0 15806
9 168 168 19 1 0 12172

10 929 970 444 0 0 19353
11 490 490 969 1 0 15388
12 771 934 469 0 0 33743
13 598 344 727 0 0 11023
14 954 284 614 0 0 16063
15 6 922 201 0 0 35014
16 509 284 8 0 0 15461
17 844 349 136 0 0 15474
18 809 740 518 0 0 22671
19 759 251 680 0 0 14943
20 89 658 89 0 0 15575
21 662 300 761 0 0 20399
22 736 794 782 0 0 16212
23 686 280 210 0 0 19311
24 667 690 482 0 0 11865
25 850 695 297 0 0 12848
26 300 274 897 0 0 8644
27 911 733 95 0 0 13332
28 255 445 189 0 0 11147
29 125 945 209 0 0 16385
30 284 284 346 1 0 14614
31 557 162 186 0 0 13064
32 366 835 995 0 0 18501
33 520 675 499 0 0 26034
34 141 141 622 1 0 19922
35 698 505 837 0 0 13501
36 85 85 315 1 0 19321
37 64 906 337 0 0 19038
38 850 504 82 0 0 22818
39 885 585 120 0 0 18061
40 485 485 13 1 0 11838
41 695 344 120 0 0 18644
42 24 915 77 0 0 18323
43 700 564 113 0 0 15096
44 725 885 683 0 0 14256
45 367 596 891 0 0 13414
46 339 206 814 0 0 9528
47 965 844 108 0 0 17589
48 510 870 167 0 0 14130
49 945 660 466 0 0 21562
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