
Turning the Tables: Enabling Backward Transfer via
Causal-Aware LoRA in Continual Learning

Chaoyang Li1,2 Runze Ye1 Jianyang Qin1 Jinhao Cui1

Lingzhi Wang1 Ning Hu2

Qing Liao1,2∗
1Harbin Institute of Technology, Shenzhen, China

2Peng Cheng Laboratory, Shenzhen, China
{22b951022, 24S151081, 22b351005, cuijinhao}@stu.hit.edu.cn,

{hun}@pcl.ac.cn, {wanglingzhi, liaoqing}@hit.edu.cn

Abstract

Current parameter-efficient fine-tuning (PEFT) methods have shown superior per-
formance in continual learning. However, most existing PEFT-based methods focus
on mitigating catastrophic forgetting by limiting modifications to the old task model
caused by new tasks. This hinders backward knowledge transfer, as when new tasks
have a strong positive correlation with old tasks, appropriately training on new
tasks can transfer beneficial knowledge to old tasks. Critically, achieving backward
knowledge transfer faces two fundamental challenges: (1) some parameters may
be ineffective on task performance, which constrains the task solution space and
model capacity; (2) since old task data are inaccessible, modeling task correlation
via shared data is infeasible. To address these challenges, we propose CaLoRA, a
novel causal-aware low-rank adaptation framework that is the first PEFT-based
continual learning work with backward knowledge transfer. Specifically, we first
propose parameter-level counterfactual attribution (PaCA) that estimates the causal
effect of LoRA parameters via counterfactual reasoning, identifying effective pa-
rameters from a causal view. Second, we propose cross-task gradient adaptation
(CaGA) to quantify task correlation by gradient projection and evaluate task affinity
based on gradient similarity. By incorporating causal effect, task correlation, and
affinity, CaGA adaptively adjusts task gradients, facilitating backward knowledge
transfer without relying on data replay. Extensive experiments across multiple
benchmarks and continual learning settings show that CaLoRA outperforms state-
of-the-art methods. In particular, CaLoRA better mitigates catastrophic forgetting
by enabling positive backward knowledge transfer.

1 Introduction

Recently, parameter-efficient fine-tuning (PEFT) [1–7] has emerged as a promising technology
for continual learning (CL), offering a feasible solution to maintain performance on old tasks and
improving learning capabilities for new ones [8]. Among the most widely adopted techniques include
prompt-tuning [1–4], adapter-tuning [9–11], and low-rank adaptation (LoRA) [6, 7, 12, 13], all of
which primarily address catastrophic forgetting [1, 6, 9, 12]. These methods employ two fundamental
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Table 1: Comparison of PEFT-based continual learning methods.
Method Data Replay-Free Efficient Inference Backward Transfer
CodaPrompt [20](CVPR’23) ✓ × ×
HidePrompt [21](NeurIPS’23) × × ×
InfLoRA [6] (CVPR’24) ✓ ✓ ×
SAPT [13] (ACL’24) × ✓ ×
SD-LoRA [7] (ICLR’25) ✓ ✓ ×
CaLoRA(ours) ✓ ✓ ✓

strategies: selectively incorporating old task parameters during new task learning [1, 3, 7, 9, 13], or
ensuring orthogonal updates to new task parameters relative to old ones [6, 12].

Although most existing continual learning methods based on PEFT effectively mitigate catastrophic
forgetting [1, 3, 6, 9], the parameter-freezing strategy inherently limits backward knowledge transfer
by treating updates for new tasks as potential interference with old tasks [6, 12, 14]. The learning
parameters of new tasks do not necessarily conflict with those of old tasks [15, 16]. When the
new task is positively correlated with old ones, it can facilitate backward knowledge transfer by
contributing beneficial information to old tasks [16]. However, existing continual learning methods
based on PEFT have not yet explored the backward knowledge transfer, as shown in the Table. 1.

This motivates us to propose a novel continual learning approach based on PEFT that addresses
forgetting and enhances old tasks through effective backward knowledge transfer. To achieve this, it
is essential to understand when and how backward knowledge transfer occurs. When a new task is
strongly correlated with old tasks, it creates favorable conditions for knowledge transfer [15, 16]. In
this case, if this transfer is positive (i.e., the new task can transfer beneficial knowledge to old tasks),
we can promote backward knowledge transfer by optimizing parameters beneficial to old tasks during
the training of the new task. Conversely, if the transfer is negative (i.e., the new task interferes with
old tasks), it is necessary to protect old task knowledge to mitigate catastrophic forgetting.

However, realizing the above objective faces two key challenges:(1) Although existing PEFT methods
can achieve performance comparable to full-parameter training by tuning only a few parameters,
some parameters may be ineffective in enhancing performance [17–19]. Moreover, as the number of
tasks increases, the parameter solution space for new tasks becomes increasingly constrained by old
tasks, leading to worse performance [15]. (2) Since data from old tasks is not replayable, traditional
methods for modeling task correlation via shared data are infeasible [7, 15, 16].

To address these challenges, we propose CaLoRA, a novel causal-aware low-rank adaptation frame-
work, which is the first PEFT-based continual learning work to enable backward knowledge transfer.
Specifically, to tackle the first challenge, we propose the parameter-level counterfactual attribution
(PaCA) method that estimates the causal effect of LoRA parameters via counterfactual reasoning.
PaCA enables the model to identify effective parameters with strong causal effects for the current task
while reducing the influence of ineffective ones, enhancing its ability to learn future tasks. To address
the second challenge, we propose the cross-task gradient adaptation (CaGA) method, which measures
task correlation by gradient projection and computes task affinity based on gradient similarity in
the task space. By jointly leveraging causal effect, task correlation, and affinity, CaGA adaptively
adjusts task gradients, enabling effective backward knowledge transfer without data replay. The key
contributions of this paper are summarized as follows:

• We propose CaLoRA, a novel causal-aware low-rank adaptation framework, which is the
first PEFT-based continual learning work to mitigate catastrophic forgetting more effectively
by actively enabling backward knowledge transfer.

• We propose parameter-level counterfactual attribution to identify effective parameters via
counterfactual reasoning, reducing the influence of ineffective parameters in current tasks
and expanding the capacity for future tasks.

• We propose cross-task gradient adaptation that adaptively adjusts task gradients based on
causal effect, task correlation, and affinity, enabling backward knowledge transfer without
data replay.

• Extensive experiments on multiple benchmarks under various task settings demonstrate that
CaLoRA consistently outperforms existing state-of-the-art methods in continual learning.
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2 Related Work

2.1 Parameter-Efficient Fine-Tuning.

Parameter-efficient fine-tuning (PEFT) methods involve freezing a pre-trained model and introducing
fewer parameters than full fine-tuning, often achieving comparable or even superior performance
[22, 23]. For instance, the Adapter[9–11, 18, 24] incorporates small modules at various layers of the
pretrained model, tuning only these additional modules for task adaptation. Prompt-tuning [4, 25] and
prefix-tuning [26] introduce learnable tokens into the input for the pretrained model, adjusting only
these tokens to fit specific tasks. Low-rank adaptation (LoRA) [19, 22, 27] reparameterizes pre-trained
weights with two low-rank matrices, tuning solely these matrices for downstream adaptation.

2.2 Continual Learning.

Continual learning focuses on sequentially acquiring knowledge from new tasks while maintaining
performance on old ones [28, 29]. Existing approaches primarily fall into three categories: replay-
based, regularization-based, and expansion-based methods. Replay-based methods [30–34] mitigate
forgetting by storing and reusing samples from old tasks. Regularization-based techniques [35–37]
constrain updates to parameters critical for old tasks through designing a penalty term. Expansion-
based approaches [38, 39] dynamically adjust model capacity to accommodate new tasks while
preserving learned knowledge.

Recently, PEFT has shown effectiveness in continual learning by mitigating catastrophic forgetting,
including prompt-tuning, adapter-tuning, and LoRA. Specifically, prompt-tuning methods [1–3]
introduce learnable prompt tokens into transformer layers. For example, L2P [1], DualPrompt
[40], and CODA-Prompt [20] integrate Vision Transformers (ViTs) with learnable embeddings
with prompts, thereby improving knowledge retention as new tasks are learned. Building on these,
HiDe-Prompt [21] further stores old task samples to enhance performance. Adapter-tuning methods
[10, 11] often insert lightweight learnable modules into transformer layers, like C-ADA [11] designs
a parameter-extensible continual adapter layer in the pre-trained model. LoRA [12, 22] updates the
pre-trained weights with low-rank matrices. For instance, InfLoRA [6] prevents interference between
tasks by constraining new task updates to the orthogonal space of old tasks. SD-LoRA [7] decouples
the learning of the magnitude and direction of LoRA components. Moreover, SAPT [13] aligns
the PEFT block (including prompt and LoRA) via a shared attentive module and replays old task
samples to improve performance. Despite these advances, existing PEFT-based continual learning
methods fail to simultaneously satisfy all desirable properties outlined in Table 1. To bridge this gap,
we propose CaLoRA, a novel causal-aware low-rank adaptation framework that enables backward
knowledge transfer without data replay.

3 Methodology

Fig. 1 illustrates the CaLoRA framework, which incorporates parameter-level counterfactual
attribution (PaCA) and cross-task gradient adaptation (CaGA). First, PaCA estimates causal ef-
fects of LoRA parameters via counterfactual reasoning, which identifies effective parameters from
a causal view. Second, CaGA measures task correlation and affinity to determine conditions for
knowledge transfer. CaGA further adapts gradients based on causal effects, task correlation, and
affinity, thereby promoting beneficial knowledge transfer. More details are in subsections 3.2 and 3.3.

3.1 Preliminaries

Problem Definition. Continual learning tackles the challenge of sequentially learning from mul-
tiple tasks, where each task Tt in the sequence {T1, . . . , TT } is associated with a distinct dataset
Dt = {(xj

t , y
j
t )}

|Dt|
j=1 . Here, xj

t denotes an input sample and yjt its corresponding label, with |Dt|
representing the dataset size. The model fΘ, parameterized by Θ, is trained exclusively on Dt when
learning task Tt. The training objective for the t-th task is defined as (1):

L(Dt; Θ) =
1

|Dt|

|Dt|∑
j=1

L
(
fΘ(x

j
t ), y

j
t

)
, (1)
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Figure 1: The CaLoRA framework consists of two components. First, Parameter-level Counterfactual
Attribution estimates causal effects of parameters via counterfactual reasoning, identifying effective
parameters from a causal view. Second, Cross-task Gradient Adaptation assesses task correlation and
affinity to determine conditions for effective knowledge transfer. It further adapts gradients based on
causal effects, task correlation, and affinity, thereby promoting backward knowledge transfer.

where L denotes the loss function. The ultimate goal in continual learning is to train the model fΘ to
ensure good performance not only on the new task Tt but also on all old tasks {T1, . . . , Tt−1}.
Revisit Low-Rank Adaptation. LoRA [22] aims to constrain parameter updates to a low-rank
subspace during fine-tuning. Given a pre-trained weight matrix W ∈ RdO×dI for a specific pretrained
layer with input dimension dI and output dimension dO, LoRA re-parameterizes it by introducing
two low-rank matrices: A ∈ Rr×dI and B ∈ RdO×r, where r ≪ min(dI , dO). Here, A reduces the
dimensionality, and B restores it. The modified forward pass becomes z = Wh+BAh, where
h is the input and z is the output. LoRA initializes B to zeros and A with a Gaussian distribution,
keeping W fixed while fine-tuning only A and B. To achieve the goal of continual learning, given
the task sequence {T1, . . . , TT }, each task has two trainable matrices. The output of the t-th task at
the specific layer is modified as Eq. (2). The LoRA of the t-th task updates parameter matrices ATt

and BTt with gradient (i.e., GTt = ∇WTt
L(DTt ;WTt)) for every step s by Eq.(3).

zTt
= WTt

h = Wh+

t∑
k=1

BTk
ATk

h = WTt−1
h+BTt

ATt
h, (2)

ATt,(s+1) ← ATt,(s) − ηB⊤
Tt,(s)

GTt
, BTt,(s+1) ← BTt,(s) − ηGTt

A⊤
Tt,(s)

. (3)

3.2 Parameter-level Counterfactual Attribution

Although LoRA constrains parameter updates to a low-rank subspace, existing studies have demon-
strated that such low-rank constraints do not guarantee that all parameters are effective in improving
task performance [17–19]. In continual learning scenarios, this limitation becomes particularly
challenging because new task parameters are typically constrained (e.g., via gradient orthogonality
[6, 12, 14]) to protect old tasks. It is worth noting that when ineffective parameters from old tasks are
used to constrain new tasks, it not only fails to alleviate catastrophic forgetting but may also harm
new task performance [15]. To address this, we propose a parameter-level counterfactual attribution
(PaCA) method that uses counterfactual reasoning to assess the causal effects of low-rank parameters,
identifying the effective parameters with strong causal effect.

Specifically, to quantify the causal effect of an individual parameter WTt,(i,j) in the parameter matrix
WTt ∈ RdO×dI , we first perform a causal intervention by setting the parameter to zero [41–43],
generating the counterfactual weight matrix WTt,¬(i,j). The individual causal effect is then defined
as the change in loss when a parameter is included versus excluded [44–46], as shown in Eq. (4):

ETt,(i,j) = L(Dt; do(WTt,(i,j) = 0))− L(Dt;WTt) = L(Dt;WTt,¬(i,j))− L(Dt;WTt), (4)

where do(WTt,(i,j) = 0) refers to a causal intervention operation that sets WTt,(i,j) to zero. However,
directly computing the causal effect by intervening on each parameter is computationally prohibitive.
To address this, we approximate the counterfactual lossL(Dt;WTt,¬(i,j)) using a second-order Taylor
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expansion [47] around the original weight matrix WTt . This leads to the quadratic approximation
shown in Eq. (5):

ETt,(i,j) ≈ L(Dt;WTt
)− ∂L(Dt;WTt

)

∂WTt,(i,j)
∆WTt,(i,j) +

1

2

∂2L(Dt;Wt)

∂W 2
Tt,(i,j)

∆W 2
Tt,(i,j)

− L(Dt;WTt
)

= −∂L(Dt;WTt
)

∂WTt,(i,j)
∆WTt,(i,j) +

1

2

∂2L(Dt;WTt
)

∂W 2
Tt,(i,j)

∆W 2
Tt,(i,j)

,

(5)
where ETt

∈ RdO×dI , ∆WTt,(i,j) = WTt,(i,j) −WTt,¬(i,j). We define the first-order causal
effect as the term involving only the first-order derivative, while the second-order causal effect
includes both first- and second-order terms. Since directly computing the second-order term incurs
quadratic complexity, we employ a diagonal Hessian approximation in practice [48], which reduces
the computational cost to linear time [47]. This way enables scalable computation for both causal
effect approximations. When ETt,(i,j) is positive, it indicates that removing the parameter will lead
to an increase in the task loss, suggesting that the parameter is causally essential for improving
task performance. Conversely, when ETt,(i,j) is negative, the parameter is ineffective. Finally,
to map the causal effect ETt to a weight between 0 and 1, we apply the softmax function to get
ÊTt = Softmax(ETt). A larger value of ÊT t(i, j) reflects a stronger causal effect of the parameter
on task performance. Prioritizing such effective parameters during the current task training not only
reduces the influence of ineffective ones but also enhances the model’s ability to learn further tasks.

3.3 Cross-task Gradient Adaptation

After obtaining the causal effects of the parameters, another key challenge is accurately estimating
the correlation between the new task and old tasks. This is crucial to ensure that the causal effects
can be effectively integrated with task correlation to refine old tasks appropriately. To achieve this,
we propose a cross-task gradient adaptation (CaGA) method that selectively updates parameters
beneficial to old tasks when learning a new one. Specifically, we first quantify task correlation through
cross-task gradient projection to evaluate the possibility of knowledge transfer. Then, we compute
task affinity via gradient similarity to assess whether the transfer is beneficial (positive transfer)
or detrimental (negative transfer). Based on these measures, we identify the gradient components
of the new task that are most advantageous to old tasks. Finally, we perform a targeted update by
emphasizing the gradient components that are causally effective for the new task and those that are
beneficial to old tasks, thereby enabling potential backward knowledge transfer.

Task Correlation. To determine whether the new task meets the conditions for backward knowledge
transfer to old tasks, we characterize the correlation between the input subspaces of old and new tasks
using gradient projection [15, 16]. Specifically, given any new task Tt (t ∈ [2, T ]) with gradient
GTt ∈ RdO×dI , its correlation with a old task Tk (k ∈ [1, t− 1]) is defined as CTt→Tk

:

PTt→Tk
= UTk

U⊤
Tk
GTt

, CTt→Tk
=
∥PTt→Tk

∥2
∥GTt

∥2
, CTt→Tk

∈ (0, 1) , (6)

where PTt→Tk
∈ RdO×dI denotes the projection of the gradient of Tt onto the input subspace of

Tk, and UTk
= [u1, ...,ur] ∈ RdO×r is the base for the input subspace of Tk obtained via singular

value decomposition (SVD) (see Appendix A for details). Intuitively, the norm of projected gradient
(i.e.,∥PTt→Tk

∥2) serves as a proxy for the correlation between the input subspaces of the two tasks,
because the gradient lies within the span of the input features [6, 15, 16, 49]. A higher correlation score
CTt→Tk

indicates that GTt projects strongly onto the input subspace of Tk, suggesting substantial
input subspace overlap and favorable conditions for backward knowledge transfer [15, 16].

Task Affinity. We introduce task affinity to assess whether the knowledge transfer from the new task
to old tasks is beneficial. Since the similarity of task gradients within a shared parameter space can
reflect inter-task relationships [46, 50], we quantify these relationships by computing the directional
similarity between the projected gradient component of the new task onto the input space of the old
tasks and the gradient of the old tasks themselves. Specifically, for any new task Tt(t ∈ [2, T ]), we
define the task affinity matrix ŜTt→Tk

∈ RdO×dI to denote whether it has a positive transfer to the
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old task Tk(k ∈ [1, t− 1]). The j-th column vector ŜTt→Tk,(:,j) is defined as Eq. (7):

STt→Tk,(j) =
PTt→Tk,(:,j)

∥PTt→Tk,(:,j)∥2
·

GTk,(:,j)

∥GTk,(:,j)∥2
, ŜTt→Tk,(:,j) =


+1dO

∈ RdO , if STt→Tk,(j) > 0

0dO
∈ RdO , if STt→Tk,(j) = 0

−1dO
∈ RdO , if STt→Tk,(j) < 0

,

(7)
where GTk,(:,j) denotes the j-th column vector of the gradient of Tk and STt→Tk,(j) ∈ [−1, 1]
measures the similarity between the j-th column vectors of PTt→Tk

and GTk
in the input subpace

of Tk. The set {+1dO
,0dO

,−1dO
} denotes all possible values of task affinity, where each is a

dO-dimensional column vectors with entries in {+1, 0,−1}, used to indicate the affinity between
corresponding columns of the new and old task gradients.

Adaptive Gradient Correction. To enable effective backward knowledge transfer, we propose a
adaptive gradient correction strategy to selectively update parameters under three cases: (1) If the new
task exhibits no significant correlation to old tasks (indicating no potential for backward knowledge
transfer) or the task affinity is zero, the strategy focuses on updating effective parameters with strong
causal effects, without considering the impact on old tasks; (2) If the new task is strongly correlated
to the old tasks (indicating potential for transfer), but the task affinity is negative, suggesting that the
new task interferes with the old tasks, the strategy protects the parameters of the old tasks to prevent
catastrophic forgetting; (3) If the new task demonstrates both strong correlation and positive task
affinity with the old tasks (enabling effective backward knowledge transfer), it selectively updates the
parameters that benefit the old tasks, thereby facilitating knowledge migration. To implement these
adaptive updates, we introduce a gradient correction term, denoted as ĜTt :

P̂Tt→Tk
= CTt→Tk

· PTt→Tk

∥PTt→Tk
∥2

, ĜTt
= ÊTt

◦GTt
◦

[
1dO×dI

+

t−1∑
k=1

ŜTt→Tk
◦ P̂Tt→Tk

]
, (8)

where P̂Tt→Tk
denotes the gradient projection of Tt, weighted by its correlation with the input space

of Tk, capturing the extent to which optimizing the parameter space of Tt affects that of Tk. 1dO×dI

denotes an all-ones matrix of dimension dO × dI , · indicates scalar multiplication, and ◦ represents
the element-wise (Hadamard) product of matrices. Finally, the LoRA of task Tt updates its parameter
matrices ATt

and BTt
at each training step s using the corrected gradient defined in Eq. (9).

ATt,(s+1) ← ATt,(s) − ηB⊤
Tt,(s)

ĜTt , BTt,(s+1) ← BTt,(s) − ηĜTtA
⊤
Tt,(s)

. (9)

In the Eq. (8), the corrected gradient ĜTt can adaptively adjust the gradient of task Tt at each iteration
to achieve better knowledge transfer. Let GTt,(:,j) denote the j-th column vector of the gradient
for task Tt. When the values of P̂Tt→Tk,(:,j) are very small (i.e., ĜTt,(:,j) ≈ ÊTt,(:,j) ◦GTt,(:,j)) or
when ŜTt→Tk,(:,j) is a zero vector (i.e., ĜTt,(:,j) = ÊTt,(:,j) ◦GTt,(:,j)), it indicates that the new
task has no significant influence on old tasks. In this case, parameter updates based on ĜTt,(:,j)

can proceed only based on causal effects, without interfering with old task knowledge. In contrast,
when P̂Tt→Tk,(:,j) contains large values and ŜTt→Tk,(:,j) is a vector of -1, it indicates that a conflict
between new ans old tasks. To resolve this, the corrected gradient is computed as ĜTt,(:,j) =

ÊTt,(:,j) ◦
[
GTt,(:,j) −

∑t−1
k=1 P̂Tt→Tk,(:,j) ◦GTt,(:,j)

]
, which removes gradient components aligned

with old tasks. Updating the parameters based on this residual gradient helps mitigate catastrophic
forgetting. Finally, when the values in P̂Tt→Tk,(:,j) are large, and ŜTt→Tk,(:,j) is a vector of 1, it
indicates that the new task positively contributes to old tasks. In this case, ĜTt,(:,j) selectively
incorporates advantageous components from GTt,(:,j) to promote backward knowledge transfer.

3.4 Algorithm and Time Complexity

Algorithm. CaLoRA adaptively updates the LoRA parameters based on the gradient correction
terms during the training process. As shown in Algorithm 1, given the data Dt of the current task
t, CaLoRA first estimates the causal effect of the LoRA parameters at the current step s. For new
tasks Tt(t > 1), it calculates the correlation and affinity between the new task and the old tasks at the
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Algorithm 1 CaLoRA for Continual Learning

Input: datasets: D = {Dt}t=T
t=1 , pretrained model fW (·), training steps S

Output: model fW (·) with learned parameters {WTt}Tt=1
1: for Dt in D do
2: Initialize ATt

and BTt
.

3: for s ∈ [1, . . . ,S] do
4: Estimate causal effect ÊTt,(s) at step s by ÊTt,(s) = Softmax(ETt,(s)).
5: if t > 1 then
6: Measure task correlation CTt→Tk,(s) at step s by Eq. (6).
7: Quantify task affinity ŜTt→Tk,(s) at step s by Eq. (7).
8: Calculate gradient correction term ĜTt,(s) at step s by Eq. (8).
9: end if

10: Update ATt,(s+1), BTt,(s+1) using Eq. (9).
11: Save the optimal task gradient in the task memory.
12: end for
13: end for

current step s. Finally, CaLoRA adaptively updates the LoRA parameters based on the causal effect,
task correlation, and affinity.

Time Complexity Analysis. Given a pretrained weight matrix W ∈ RdO×dI , PaCA estimates
causal effects via a second-order Taylor expansion with a diagonal Hessian approximation. Both
the first-order and second-order terms have a time complexity of O(dO × dI), making the overall
complexity of PaCA linear and comparable to a standard backward pass. This computation can be
efficiently parallelized and seamlessly integrated into the training process. In a task sequence of
T tasks, for each new task, each gradient projection and affinity computation costs O(dO × dI),
leading to a total overhead of O((t− 1)× dO × dI). Thus, the per-task complexity is approximately
O(t× dO × dI). The total complexity for the entire sequence is O

(∑T
t=1 t× dO × dI

)
.

4 Experiment

4.1 Experimental Setups

Dataset. We conduct experiments on two natural language processing (NLP) benchmarks (i.e,
SuperNI [51] and Long Sequence [52]) and a computer vision (CV) benchmark (i.e., ImageNet-R
[53]). Specifically, following prior work [13], both the SuperNI and Long Sequence benchmarks
consist of 15 tasks, each evaluated under two different task orders. ImageNet-R is derived from 200
ImageNet classes through various artistic transformations. For the ImageNet-R benchmark, in line
with previous studies [6, 7, 20], it is split into 5, 10, and 20 tasks, corresponding to 40, 20, and 10
classes per task, respectively. Further details on the benchmarks are provided in Appendix B.

Metrics. Let AccTt,Tk
denote the testing performance (Accuracy for classification tasks and

Rouge-L [54] for other tasks, more details are provided in the Appendix B) on the k-th task af-
ter training t-th task. The evaluation metrics are defined as follows: (1) Average Performance
(AP) [55] reflects the mean performance across all tasks after training on the final task, i.e.,
AP = 1

T

∑T
t=1 AccTT ,Tt ; (2) Forgetting Rate (F.Ra) [55] denotes the extent of knowledge for-

gotten across the first t − 1 tasks, i.e., F.Ra = 1
T−1

∑T−1
t=1

(
maxT−1

k=1AccTk,Tt
−AccTT ,Tt

)
; (3)

Forward Transfer (FWT) [56] measures the influence of old task knowledge on learning new tasks,
i.e., FWT = 1

T

∑T
t=1 AccTt,Tt

−AccTt
, where AccTt

refers to the performance of training task Tt
individually; (4) Backward Transfer (BWT) [57] assesses the impact of learning new tasks on old
tasks, i.e., BWT = 1

T−1

∑T−1
t=1 (AccTT ,Tt

−AccTt,Tt
).

Comparison Baselines and Training Details. We evaluate CaLoRA against nine PEFT-based
continual learning baselines, including SeqLoRA, L2P [1], CodaPrompt [20], HidePrompt [21],
O-LoRA [12], InfLoRA [6], SAPT-P [13], SAPT-LoRA [13], and SD-LoRA [7]. CaLoRA is a
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Table 2: Overall results (mean ± std over 3 random seeds) on SuperNI benchmark with two task
orders, evaluated using the T5-Large model. Bold indicates the best values, underline presents the
second-best values.

Method
Order 1 with 15 tasks Order 2 with 15 tasks

AP±std↑ F.Ra±std↓ FWT±std↑ BWT±std↑ AP±std↑ F.Ra±std↓ FWT±std↑ BWT±std↑
SeqLoRA 5.41±0.54 30.73±0.71 -17.32±0.18 -28.54±0.86 7.86±0.62 35.55±0.51 -9.76±0.16 -30.81±0.78

L2P 15.65±0.45 7.12±0.41 -19.86±0.89 -3.33±0.23 9.97±0.31 17.50±0.66 -16.94±0.74 -12.20±0.32

CodaPrompt 21.31±0.24 5.12±0.31 -0.86±0.15 -3.31±0.44 16.11±0.74 12.24±0.61 -7.65±0.93 -10.37±0.54

HidePrompt 26.45±0.34 3.61±0.25 -0.17±0.14 -3.42±0.37 25.22±0.81 10.33±0.33 -3.21±0.52 -5.01±0.23

O-LoRA 23.66±0.93 29.22±0.72 -0.41±0.31 -24.38±1.03 27.21±0.88 21.25±0.96 0.44±0.23 -18.96±0.73

InfLoRA 43.56±0.63 1.45±0.45 0.15±0.32 -2.51±0.26 41.82±0.55 1.88±0.13 1.14±0.24 -2.71±0.36

SAPT-P 42.38±0.56 1.72±0.34 2.52±0.44 -1.11±0.27 41.55±0.68 1.77±0.36 1.01±0.35 -0.94±0.26

SAPT-LoRA 51.76±0.71 0.88±0.11 2.21±0.41 -0.75±0.25 50.09±0.36 1.76±0.23 1.54±0.33 -1.28±0.41

SD-LoRA 45.91±0.53 1.31±0.26 2.11±0.31 -2.13±0.22 44.37±0.76 1.71±0.19 1.55±0.36 -2.06±0.31

CaLoRA 54.42±0.55 0.25±0.14 2.98±0.21 0.35±0.21 52.76±0.67 0.85±0.11 2.22±0.33 0.18±0.19

model-agnostic continual learning framework compatible with any transformer-based pre-trained
model (e.g., T5, LLaMA-2, and ViT). Following prior works [13, 7], CaLoRA is applied to the
query and value projections within the attention modules of all Transformer blocks in each pretrained
model. To ensure a fair comparison with recent works on the two NLP benchmarks, we implement
CaLoRA based on the pre-trained T5 (0.77B and 3B) [58] and LLaMA-2 (7B) [59] models. The
ranks of LoRA are set to 4 and 8 for the LLaMA-2 and T5 models, respectively. For the ImageNet-R
benchmark, following existing works [7], we use the ViT-B/16 backbone [60] supervised pre-trained
on ImageNet 21K as the pre-trained model, and the rank of LoRA is set to 10. All experiments are
conducted with 3 H800 and 4 V100 GPUs. More training details are provided in Appendix C.

4.2 Main Results

Results on Different Task Orders and Model Scales. Tables 2 and 3 report continual learning
performance under different task orders on two NLP benchmarks. CaLoRA consistently outperforms
state-of-the-art baselines, including SAPT-P, SAPT-LoRA, and SD-LoRA. Specifically, Table 2
highlights CaLoRA’s superior performance on the SuperNI benchmark. Under Order 1, it achieves an
average performance gain of 2.66, with improvements of 0.46 in forward transfer and 1.1 in backward
transfer, while reducing forgetting rate by 0.63. Similar gains are observed under Order 2, with
increases of 2.67, 0.67, and 1.12 in average performance, forward transfer, and backward transfer,
respectively, and a 0.86 reduction in forgetting rate. Table 3 shows that CaLoRA also excels on the
Long Sequence benchmark. For Order 1, it improves average performance by 1.81, forward transfer
by 0.83, and backward transfer by 1.44, while reducing forgetting rate by 1.05. Under Order 2, it
achieves gains of 1.29, 0.88, and 1.34 in the respective metrics, with a 0.91 reduction in forgetting
rate. Figure 2 further compares CaLoRA against three competitive baselines across three scaled

Table 3: Overall results (mean ± std over 3 random seeds) on Long Sequence benchmark with two
task orders, evaluated using the T5-Large model. Bold indicates the best values, underline presents
the second-best values.

Method
Order 1 with 15 tasks Order 2 with 15 tasks

AP±std↑ F.Ra±std↓ FWT±std↑ BWT±std↑ AP±std↑ F.Ra±std↓ FWT±std↑ BWT±std↑
SeqLoRA 7.34±0.45 80.44±1.13 0.99±0.24 -76.10±0.97 14.11±0.55 74.88±0.79 0.77±0.21 -71.24±0.89

L2P 58.35±0.71 20.31±0.65 1.23±0.21 -15.1±0.34 58.10±0.61 22.76±0.42 1.55±0.31 -18.34±0.56

CodaPrompt 65.33±0.77 11.21±0.35 1.87±0.26 -7.65±0.46 64.43±0.89 13.35±0.56 1.67±0.31 -10.31±0.67

HidePrompt 69.78±0.41 7.85±0.25 2.11±0.14 -4.01±0.35 69.12±0.86 6.43±0.46 1.81±0.32 -7.21±0.44

O-LoRA 70.14±0.64 7.87±0.24 -7.10±0.32 -4.04±0.31 70.26±0.55 5.11±0.30 -7.88±0.21 -5.56±0.37

InfLoRA 80.26±0.76 2.21±0.13 0.65±0.27 -3.27±0.45 78.21±0.64 2.99±0.31 0.38±0.32 -4.05±0.24

SAPT-P 79.84±0.45 2.45±0.14 3.35±0.24 -1.45±0.21 77.68±0.61 2.76±0.24 2.26±0.29 -2.04±0.26

SAPT-LoRA 82.81±0.66 1.21±0.13 2.23±0.21 -1.15±0.16 80.66±0.72 2.46±0.33 2.01±0.32 -1.91±0.25

SD-LoRA 81.35±0.55 1.76±0.32 2.51±0.34 -2.71±0.29 78.98±0.68 3.21±0.33 2.33±0.39 -2.77±0.31

CaLoRA 84.62±0.63 0.16±0.55 4.18±0.39 0.29±0.13 81.95±0.49 1.55±0.32 3.21±0.45 -0.57±0.12
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Figure 2: Comparative performance of CaLoRA against suboptimal baselines across three scaled
pretrained models: T5-Large (0.77B), T5-XL (3B), and LLaMA-2 (7B).

Figure 3: Variation of the performance of different methods during the learning of ImageNet-R.

pre-trained models on two NLP benchmarks in the order 1. The results demonstrate that CaLoRA
consistently delivers superior continual learning performance regardless of model size.

Results across Varied Task Lengths. Table 4 presents the comparative results on the ImageNet-R
benchmark for both 10-task and 20-task continual learning scenarios. CaLoRA demonstrates con-
sistent superiority over all baseline methods in both task lengths. In the 10-task setting, CaLoRA
surpasses the second-best baselines (i.e., SD-LoRA and SAPT-LoRA) with improvements: 1.48 in
average performance, 0.67 in forward transfer, and 1.4 in backward transfer, while simultaneously
achieving a 0.78 reduction in forgetting rate. The advantages persist in the more challenging 20-task
setting, where CaLoRA maintains leads of 1.16, 0.73, and 0.97 in the respective metrics, along
with a 0.57 decrease in forgetting rate. Complementing these quantitative results, Figure 3 visually
demonstrates CaLoRA’s superior learning trajectory compared to three suboptimal continual learning
methods on the ImageNet-R benchmark. The accuracy curves reveal that CaLoRA maintains consis-
tently higher performance throughout the entire learning process, not just at the final evaluation stage.
Additional supporting results are provided in Appendix D. In particular, these results demonstrate that
CaLoRA more effectively mitigates catastrophic forgetting by enabling positive backward knowledge
transfer, in comparison to several baseline methods.

Table 4: Overall results (mean ± std over 3 random seeds) on ImageNet-R (10/20 tasks) benchmark
with the ViT-B/16 backbone. Bold (underline) indicates the best (second-best) values.

Method
10 tasks 20 tasks

AP±std↑ F.Ra±std↓ FWT±std↑ BWT±std↑ AP±std↑ F.Ra±std↓ FWT±std↑ BWT±std↑
SeqLoRA 62.45±0.68 22.41±0.58 0.86±0.21 -17.61±0.33 50.86±0.43 32.16±0.68 0.73±0.13 -14.22±0.37

L2P 67.66±0.48 15.15±0.27 1.07±0.21 -13.69±0.71 64.64±0.41 19.81±0.63 0.79±0.19 -12.75±0.63

CodaPrompt 71.28±0.41 9.67±0.32 1.71±0.23 -9.32±0.47 67.25±0.33 11.83±0.45 1.21±0.17 -8.46±0.54

HidePrompt 72.62±0.34 8.38±0.45 1.76±0.23 -10.33±0.57 69.88±0.39 9.36±0.53 1.43±0.31 -8.73±0.42

O-LoRA 72.15±0.45 5.32±0.36 -0.97±0.24 -6.42±0.31 66.23±0.28 7.81±0.63 -0.81±0.17 -5.81±0.37

InfLoRA 73.62±0.34 4.11±0.35 0.56±0.23 -4.16±0.43 68.79±0.36 6.89±0.35 0.67 ±0.21 -4.39 ±0.34

SAPT-P 72.82±0.54 5.33±0.41 2.26±0.45 -2.21±0.37 68.08±0.35 7.95±0.45 2.15±0.31 -1.16±0.31

SAPT-LoRA 75.32±0.54 3.25±0.35 3.23±0.41 -1.25±0.32 72.68±0.46 5.25±0.33 3.21±0.21 -0.89±0.13

SD-LoRA 76.24±0.32 3.11±0.31 3.51±0.32 -1.71±0.23 74.52±0.43 5.31±0.35 3.25±0.26 -1.94±0.23

CaLoRA 77.72±0.36 2.33±0.27 4.18±0.33 0.15±0.19 75.68±0.45 4.68±0.31 3.98±0.23 0.08±0.21
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Table 5: Ablation results on SuperNI benchmark with two task orders, evaluated using the T5-Large
model. Bold (underline) indicates the best (second-best) values.

Parameter Updating Strategy
Order 1 with 15 tasks Order 2 with 15 tasks

AP ↑ F.Ra ↓ FWT ↑ BWT ↑ AP↑ F.Ra ↓ FWT ↑ BWT ↑
w/o Task Correlation (TaC) 53.15 0.61 1.97 -0.42 50.83 1.33 2.01 -0.61
w/o Task Affinity (TaA) 51.41 0.95 1.52 -1.19 47.66 2.83 1.53 -1.26
w/ Causal Effect (CaE) 44.86 2.18 0.41 -3.45 43.72 2.83 0.51 -2.21
w/ CaE+Gradient Projection 45.05 1.81 0.93 -1.95 44.13 1.73 0.76 -1.77
w/ Gradient Projection (GradProj) 43.35 1.86 0.53 -2.12 42.16 2.33 0.21 -2.28
w/ GradProj+TaC 45.57 1.61 1.21 -1.23 44.36 1.71 1.06 -1.66
w/ GradProj+TaC+TaA (w/o CaE) 48.89 1.08 2.23 -0.54 47.21 1.66 2.04 -0.71
CaLoRA 54.42 0.25 2.98 0.35 52.76 0.85 2.22 0.18

4.3 Ablation Studies.

To evaluate the impact of each design component in CaLoRA, we conduct ablation studies using
seven parameter update strategies, with the results summarized in Table 5. The ablation settings are
as follows: (1) w/o Task Correlation (TaC) and (2) w/o Task Affinity (TaA) remove task correlation
and affinity when optimizing the gradient, respectively; (3) w/ Causal Effect only uses the causal
effect to constrain the task gradient; (4) w/ CaE+Gradient projection applies both causal effect and
naïve gradient projection, without task correlation or affinity; (5) w/ Gradient Projection (GradProj)
employs only naïve gradient projection, excluding causal effect, task correlation, and affinity; (6) w/
GradProj+TaC combines gradient projection and task correlation, without task affinity or causal effect;
(7) w/ GradProj+TaC+TaA incorporates gradient projection, task correlation, and affinity, excluding
causal effect. As shown in Table 5, the causal effect significantly improves average performance,
while gradient projection, task correlation, and task affinity are essential for alleviating forgetting and
enhancing both forward and backward knowledge transfer.

5 Conclusion

In this work, we go beyond the conventional focus on mitigating catastrophic forgetting and explore
backward knowledge transfer in PEFT-based continual learning. To this end, we propose CaLoRA,
a novel causal-aware low-rank adaptation framework explicitly designed to facilitate backward
knowledge transfer. We introduce parameter-level counterfactual attribution (PaCA) to estimate the
causal effect of parameters, and cross-task gradient adaptation (CaGA) to estimate task correlation and
affinity. CaGA adaptively adjusts gradients based on these measures, enabling backward knowledge
transfer without data replay. Extensive experiments on multiple benchmarks demonstrate that
CaLoRA consistently outperforms existing state-of-the-art methods.

Limitations. CaLoRA has two limitations: (1) Although it avoids data replay, it requires storing old
task gradients, which can lead to increased memory overhead when the number of tasks or parameter
dimensionality is large. Future work will explore task correlation based on parameter function space
modeling; (2) The method assumes clear task boundaries, which limits its applicability. Future work
will extend CaLoRA to more general online continual learning scenarios by modeling perturbations
in the space of task parameters.

Broader Impacts. In this work, we propose CaLoRA to explore backward knowledge transfer in
PEFT-based continual learning. We believe that this work will have a positive social impact. By
improving the efficiency and scalability of continual learning, CaLoRA has the potential to reduce
the computational cost and energy consumption associated with retraining large models from scratch,
thus contributing to more sustainable AI development.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and Section 1 have claimed the contributions and scope in the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The framework design have been fully described in the Section 3 and the
training details are provided in the subsection 4.1 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The key code can be found in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to the subsection 4.1 and Appendix B and C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to main results in the subsection 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to the subsection 4.1 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and the reasearch conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators of datasets are properly credited by citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper provides a detailed description of the use of T5 and Llama2 as
pre-trained models in the subsection 4.1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Singular Value Decomposition

Let G ∈ RdO×dI denote a matrix (in our case, the gradient matrix of a task). The singular value
decomposition of G is:

G = UΣV ⊤, (10)

where U ∈ RdO×dO contains the left singular vectors (column-orthonormal), V ∈ RdI×dI contains
the right singular vectors, Σ ∈ RdO×dI is a diagonal matrix whose diagonal entries are the singular
values {σ1, σ2, . . . , σr}, with σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and r = rank(G).

For a given task Tk, let GTk
∈ RdO×dI denote the task gradient matrix. Applying singular value

decomposition (SVD) to GTk
, we obtain:

GTk
= UTk

ΣTk
V ⊤
Tk
. (11)

We then extract the top-r left singular vectors UTk
= [u1,u2, . . . ,ur] ∈ RdO×r, corresponding to

the r largest singular values, which capture the dominant directions of the gradient space. These
vectors form an orthonormal basis that spans the input subspace relevant to task Tk.

This gradient-based subspace projection method provides a theoretically grounded and computation-
ally tractable method for quantifying task correlation [6, 15, 16]. By leveraging SVD, we extract
meaningful input subspaces. By measuring the normalized projection of new gradients onto old
subspaces, we obtain a reasonable task correlation that facilitates the analysis of backward knowledge
transfer among tasks.

B Additional Dataset Details

Two NLP Benchmarks. Following previous work [13], we adopt SuperNI and Long Sequence as
the NLP benchmarks to evaluate continual learning methods for large language models (LLMs).
These benchmarks’ detailed descriptions and evaluation metrics are presented in Table 6. We
consider two different task orders for each benchmark, as shown in Table 7. Specifically, the
SuperNI Benchmark [51] comprises a diverse set of NLP tasks, each accompanied by expert-written
instructions, facilitating rigorous and realistic evaluation in continual learning settings. It consists
of 15 sequential tasks. For each task, 1,000 instances are randomly sampled for training, and 100
instances are used for validation and testing. The Long Sequence Benchmark [52] also includes 15
classification tasks, specifically designed for continual learning with LLMs. For each task, 1,000
training samples are randomly selected, and 500 samples per class are used for both validation and
testing. This benchmark emphasizes challenges in handling long-context dependencies and task
diversity in a sequential learning setting.

Table 6: The details of two NLP benchmarks.
SuperNI Benchmark Long Sequence Benchmark

Dataset name Task Metric Dataset name Task Metric
1. task639 dialogue generation Rouge-L 1. Yelp sentiment analysis accuracy
2. task1590 dialogue generation Rouge-L 2. Amazon sentiment analysis accuracy
3. task1729 dialogue generation Rouge-L 3. DBpedia topic classification accuracy
4. task181 information extraction Rouge-L 4. Yahoo topic classification accuracy
5. task748 information extraction Rouge-L 5. AG News topic classification accuracy
6. task1510 information extraction Rouge-L 6. MNLI natural language inference accuracy
7. task002 question answering Rouge-L 7. QQP paragraph detection accuracy
8. task073 question answering Rouge-L 8. RTE natural language inference accuracy
9. task591 question answering Rouge-L 9. SST-2 sentiment analysis accuracy
10. task511 summarization Rouge-L 10. WiC word sense disambiguation accuracy
11. task1290 summarization Rouge-L 11. CB natural language inference accuracy
12. task1572 summarization Rouge-L 12. COPA question and answering accuracy
13. task363 sentiment analysis accuracy 13. BoolQA boolean question and answering accuracy
14. task875 sentiment analysis accuracy 14. MultiRC question and answering accuracy
15. task1687 sentiment analysis accuracy 15. IMDB sentiment analysis accuracy
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Table 7: Different task orders of two NLP benchmarks.
Order SuperNI Benchmark Long Sequence Benchmark
1 task1572 → task363 → task1290 → task181 →

task002 → task1510 → task639 → task1729 →
task073 → task1590 → task748 → task511 →
task591 → task1687 → task875

MNLI → CB → WiC → COPA → QQP →
BoolQA → RTE → IMDB → Yelp → Amazon
→ SST-2 → DBpedia → AG News →
MultiRC → Yahoo

2 task748 → task073 → task1590 → task639 →
task1572 → task1687 → task591 → task363 →
task1510 → task1729 → task181 → task511 →
task002 → task1290 → task875

Yelp → Amazon → MNLI → CB → COPA →
QQP → RTE → IMDB → SST-2 → DBpedia
→ AG News → Yahoo → MultiRC → BoolQA
→ WiC

The CV Benchmark. We adopt the ImageNet-R dataset [53], which consists of 200 ImageNet
[61] classes rendered through various artistic styles. Introduced into the continual learning by prior
works [6, 7], ImageNet-R has become a widely used benchmark for evaluating parameter-efficient
fine-tuning (PEFT) methods. Following prior works [6, 7, 20], we partition the dataset into 5, 10, and
20 tasks, corresponding to 40, 20, and 10 classes per task, respectively. These configurations allow
for a comprehensive assessment of the scalability and adaptability of continual learning methods
across varying levels of task granularity.

C Additional Baselines and Training Details

Baselines. We evaluate our proposed CaLoRA against nine PEFT-based continual learning baselines:
(1) SeqLoRA sequentially trains LoRA modules following the task order; (2) L2P [1] dynamically
selects and updates prompts from a fixed prompt pool based on the input; (3) CodaPrompt [20] com-
poses prompts dynamically via attention mechanisms to mitigate forgetting and improve adaptability;
(4) HidePrompt [21] introduces a hierarchical decomposition framework to enhance prompt-based
continual learning; (5) O-LoRA [12] learns each task in an orthogonal LoRA subspace and aggregates
LoRA weights at inference time; (6) InfLoRA [6] constructs task-specific LoRA subspaces to reduce
interference between previously learned and new tasks; (7) SAPT-P (SAPT-Prompt) and (8) SAPT-
LoRA are two variants of SAPT [13], which employ a shared attentive learning and selection module
to align and select appropriate PEFT strategies based on prompt tuning and LoRA, respectively; (9)
SD-LoRA [7] incrementally decouples the learning of direction and magnitude in LoRA parameters.

Training Details. All experiments are implemented using PyTorch [62] and the Transformers library
[63]. Specifically, for the two NLP benchmarks, we use the AdamW [64] optimizer in T5 and
LLaMA-2 with learning rates of 0.0003 and 0.0005, respectively. The experiments are conducted
on three H800 GPUs to enhance computational efficiency, with per-GPU batch sizes set to 2 for
LLaMA-2 and 16 for T5. For the SuperNI benchmark, the number of training epochs is set to 100 for
T5 and 50 for LLaMA-2. For the LongSequence benchmark, the number of training epochs is set to
10 for T5 and 20 for LLaMA-2. For the ImageNet-R benchmark, we follow prior work [6] and use
the Adam optimizer [65] with a learning rate of 0.0005. Each experiment is conducted on a single
H800 or V100 GPU, with the batch size uniformly set to 128. Each task is trained for 50 epochs.

Figure 4: Comparative performance of CaLoRA against suboptimal baselines across three scaled
pretrained models (T5-Large with 0.77B parameters, T5-XL with 3B parameters, and LLaMA-2 with
7B parameters) on two NLP benchmarks under order 2.
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Table 8: Overall results (mean ± std over 3 random seeds) on ImageNet-R (5 tasks) with the ViT-B/16
backbone. Bold (underline) indicates the best (second-best) values.

Method
5 tasks

AP±std↑ F.Ra±std↓ FWT±std↑ BWT±std↑

SeqLoRA 63.15±0.51 21.05±0.43 1.34±0.21 -15.11±0.24

L2P 68.99±0.39 13.44±0.31 1.86±0.25 -11.43±0.56

CodaPrompt 74.88±0.45 8.76±0.24 2.43±0.23 -8.02±0.36

HidePrompt 74.46±0.41 8.01±0.33 2.76±0.26 -8.33±0.31

O-LoRA 74.75±0.32 5.21±0.29 -0.16±0.21 -5.11±0.28

InfLoRA 75.82±0.41 3.78±0.35 0.98±0.34 -3.88±0.35

SAPT-P 75.01±0.52 3.41±0.34 3.41±0.21 -1.76±0.28

SAPT-LoRA 77.13±0.34 2.82±0.31 4.56±0.41 -0.82±0.19

SD-LoRA 78.05±0.46 2.42±0.33 4.45±0.41 -1.25±0.16

CaLoRA 79.11±0.39 1.53±0.25 4.98±0.34 0.22±0.19

Table 9: Comparison on ImageNet-R (20 tasks) in terms of computation (GFLOPs), parameters, and
storage efficiency. † indicates that the results are from SD-LoRA [7].

Method GFLOPs Learnable Parameters (M) Stored Features (M)

L2P† 70.14 0.48 0

CodaPrompt† 70.61 0.38 0

HidePrompt† 70.36 0.08 0.15

O-LoRA 35.12 0.19 0

InfLoRA† 35.12 0.37 0.10

SAPT-P 77.11 0.34 0.15

SAPT-LoRA 35.12 0.37 0.15

SD-LoRA† 35.12 0.37 0

CaLoRA 35.12 0.37 0.10

D Additional Results

Additional Results of NLP and CV Benchmarks. Figure 4 presents a comparison between CaLoRA
and three strong baselines across three different scales of pre-trained models on two NLP benchmarks
under task order 2. The results show that CaLoRA consistently achieves superior continual learning
performance across all model sizes. Table 8 presents results on five tasks from the ImageNet-R
benchmark. CaLoRA achieves the highest performance among all compared methods under the
continual learning setting. These results support the applicability of CaLoRA across both NLP and
vision tasks, demonstrating its generality in diverse continual learning scenarios.

Analysis of Computation, Parameter, and Storage Efficiency. As shown in Table 9, we compare
the inference efficiency of various PEFT-based continual learning methods across three dimensions:
GFLOPs, the number of trainable parameters, and feature storage requirements. Table 9 demonstrates
that LoRA-based methods generally achieve superior inference efficiency. Compared with most
state-of-the-art (SOTA) methods, our proposed CaLoRA does not significantly increase parameter or
computational overhead while effectively improving continual learning performance.
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