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ABSTRACT

Previous Test Time Adaption (TTA) methods usually suffer from training collapse
when they are transferred to complex 3D scenes for point cloud segmentation
due to the significant domain gap between the source and target data. To solve
this issue, we propose NGTTA, a stable test time adaption method guided by
non-parametric geometric features. In NGTTA, we leverage the distribution of
non-parametric geometric features on target data as an “intermediate domain”
to reduce the domain gap and guide the stable learning of the source model on
target data. Specifically, we use the source domain model and a non-parametric
geometric model to extract the embedding features and geometric features of the
point cloud, respectively. Then, a category-balance sampler is designed to filter
easy samples and hard samples in the input data to address the class imbalance
issue in semantic segmentation. Inspired by previous work, we use easy samples
for entropy minimization loss and pseudo-label prediction to fine-tune the source
domain model. The difference is that we refine the pseudo labels not only by
considering the soft voting among their nearest neighbors in the model embedding
feature space but also in the geometric space, which can prevent the accumulation
of errors caused by model feature shifts. Furthermore, we believe that hard samples
can effectively represent the distribution differences between the source domain
and the target domain. Therefore, we propose to distill the geometric features of
hard samples into the source domain model in the early stages of training to quickly
converge to an ”intermediate domain” that is similar to the target domain. By
taking advantage of the ability of the non-parametric geometric feature to represent
the underlying manifolds of the target data, our method efficiently reduces the
difficulty of the domain adaption. We conduct the main experiments on the more
challenge sim-to-real benchmark about synthetic dataset 3DFRONT and the real-
world datasets ScanNet and S3DIS for 3D segmentation task. Results show that our
method can efficiently improve the mIOU by over 3% on 3DFRONT→ ScanNet
and 7% on 3DFRONT→ S3DIS.

1 INTRODUCTION

With the development of deep learning, more and more neural networks are deployed in real-world
applications. However, current deep networks may only perform optimally when the training and
testing data share the same distribution (He et al., 2016; Krizhevsky et al., 2017). Therefore,
deep networks often struggle to generalize on the unseen data which is known as the domain
shift (Geirhos et al., 2018; Hendrycks & Dietterich, 2019; Recht et al., 2019). Unsupervised Domain
Adaptation (UDA) techniques have emerged as a popular solution for addressing domain shift in deep
learning (Saito et al., 2017; Peng et al., 2021; Wu et al., 2019; Long et al., 2017). These methods aim
to transfer knowledge from a labeled source domain to an unlabeled target domain during training.
While UDA methods have demonstrated effectiveness in improving the performance of deep networks
in the presence of domain shift, a key limitation is the requirement to have knowledge of the test data
during training. This constraint can greatly diminish the practical utility of UDA techniques.

Recently, an interesting and practical paradigm known as Test Time Adaption (TTA) is attracting
more and more attention (Wang et al., 2021; Chen et al., 2022; Niu et al., 2023; Zhang et al., 2022a).
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Figure 1: llustration of the overall pipeline. i) In Stage 1, the model was trained on the source domain
with the given label. From the source distribution, we can see that the class distribution is better
separated from each other due to the correct supervision signal. ii) In Stage 2, due to the significant
differences in feature distribution, transferring directly from S2T-Distribution to Target-Distribution
based on previous TTA methods is difficult. (For example, class distribution inside the yellow box in
Target Distribution overlaps almost completely in S2T-Distribution). iii) We use the non-parametric
geometric feature, which can be considered as the ’intermediate domain’ between the source domain
and the target domain to guide the adaptation process.
It does not need to access the training method and training data used by the model and can adapt
any trained source model to the test data in testing time. This flexibility and independence make
TTA a valuable approach for addressing domain shift in real-world scenarios. However, previous
TTA methods often perform training collapse on the 3D segmentation task, especially on the more
challenging sim-to-real benchmark proposed in (Ding et al., 2022). By digging into the failure cases,
we found the two main challenges: i) Previous TTA methods often use entropy minimization loss on
classification tasks, but when this loss is applied to segmentation tasks, it may cause the model to be
overconfident in the majority class due to the more serious class imbalance problem. ii) 3D scenes
exhibit higher complexity compared to images, and the distribution variations among different scenes
are significantly greater, so using a simple TTA method to complete this difficult process may lead to
the training collapse, which is shown in Figure 1.

The first challenge arises mainly because previous TTA methods set a fixed low threshold to select
low-entropy easy samples for entropy minimization loss. However, due to the common issue of
class imbalance in semantic segmentation, low-entropy samples are predominantly found in the
major categories, which exacerbates the class imbalance problem further. To address this issue, we
propose a category-balance sampler. Unlike previous methods that set a fixed threshold, we calculate
a corresponding entropy threshold for each category based on its sample count. This approach
reduces the differences in the number of easy samples across categories, effectively mitigating the
class imbalance problem. Then, we propose to use easy samples for entropy minimization loss and
pseudo-label prediction loss.

To solve the second challenge, we hope to find an “intermediate domain” between the source domain
and target domain to guide the adapting process of the model thereby promoting training stability.
Inspired by (Ran et al., 2022; Sun et al., 2024), explicit geometric representations can capture the
underlying manifolds of the data, thereby offering insights into the rough distribution of the target
domain to improve the model’s generalization to unseen data. Therefore we use the non-parametric
geometric feature as the ”intermediate domain” between the source domain to the target domain
which is shown in Figure 1. Specifically, we additionally utilize a non-parametric geometric model
to obtain the geometric features of the point cloud. First, for the easy samples, we recognize that
the source domain model has a feature-shifting problem on the unseen data, which may lead to
incorrect pseudo-labels and subsequently cause the accumulation of errors. Therefore, we refine the
pseudo labels not only by considering the soft voting among their nearest neighbors in the model’s
embedding feature space but also in the geometric space. Then, we believe that hard samples can
effectively represent the differences between the source domain and the target domain. Therefore, we
distill the geometric features of the hard samples into the source domain model. This process helps
the source domain model quickly learn the underlying manifold distribution of the target domain,
converging to an ”intermediate domain” that closely resembles the target domain. This approach
enhances the stability and performance of domain adaptation.

Testing time adaptation for indoor 3D scene segmentation tasks remains an unexplored area. To the
best of our knowledge, we are the first to attempt such an approach. Therefore, we propose to follow
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the UDA (Unsupervised Domain Adaptation) method Ding et al. (2022) and conduct experiments
using the challenging sim2real benchmark. Our method can efficiently improve the source model by
over 3% mIOU on 3DFRONT→ScanNet and 7% on 3DFRONT→S3DIS. Our contributions can be
summarized as follows:

• We proposed a category-balance sampler to filter easy samples and hard samples, ensuring
that the difference in the number of positive samples for each category is minimized, thereby
addressing the class imbalance problem.

• We propose to leverage the non-parametric geometric feature as the ”intermediate domain”
to stabilize the adaption process to rapidly converge the model to a distribution that approxi-
mates the target domain.

• We conducted experiments on the challenging sim2real benchmark, and the competitive
experimental results validate the effectiveness of our method.

2 RELATED WORK

Unsupervised Domain Adaptation: UDA (Saito et al., 2017; Peng et al., 2021; Wu et al., 2019;
Long et al., 2017; Yang et al., 2020; Zou et al., 2018; Cui et al., 2020) aims at transferring knowledge
of the labeled source domain to the unlabeled target domain in the training time. Segmentation tasks
are more difficult to perform domain generalization than simple classification tasks, especially on the
3D data. Zou et al. (2018) improved the performance by solving the class imbalance problem in the
segmentation task. Squeezesegv2 (Wu et al., 2019) consider the density and geometric during the
domain adaption. Jaritz et al. (2020) propose to leverage the information of images and point cloud
to complete multi-modality UDA.

Test Time Adaption: Almost all previous TTA Methods have been applied to classification tasks.
Wang et al. (2021) firstly proposes fullly test time adaption which does not need to access the training
method and training data and uses entroy minimization loss to optimize the model. Then, many
subsequent works (Zhao et al., 2023; Niu et al., 2023; Zhang et al., 2022a; Wang et al., 2022; Niu
et al., 2022) modify the entropy loss to further improve the performance. Chen et al. (2022) leverages
self-supervised contrastive learning and a soft voting strategy for refining the pseudo-label to facilitate
target feature learning. Iwasawa & Matsuo (2021) tries to update the category prototypes on the
target domain to provide a more accurate decision boundary. Howevere, there have been few test
time adaption methods focusing on the segmentation task, especially on the more difficult 3D data.
Song et al. (2023) firstly explore TTA method for segmentation in the dynamic world. Shin et al.
(2022) propose a multi-modal test time adaption framework for 3D segmentation. However, the need
for multi-modal limits its general applications. Therefore, it is necessary to develop a general and
effective TTA method for 3D segmentation.

3D Point Cloud Segmentation: Due to the disorder and irregularity of the point cloud data, Qi
et al. (2017) firstly propose PointNet++ to use ball query or kNN to construct local neighborhood
and aggregate it by symmetry pooling. Many subsequent works (Qian et al., 2022; Lin et al.,
2023; Thomas et al., 2019; Zhao et al., 2021) design more complex modules to extract the local
feature based on the PointNet++. PointTransformer (Zhao et al., 2021) leverage the local attention
mechanism to extract local feature. KPConv (Thomas et al., 2019) defined the anchor points and used
them to compute the aggregate weight. In addition, Ran et al. (2022); Sun et al. (2024) propose to
leverage the explicit geometric to introduce strong prior which can reduce the learning difficulty and
improve the performance. Furthermore, PointNN (Zhang et al., 2023) uses trigonometric functions to
capture the non-parametric geometric feature for point cloud recognition which has proved the strong
generalization ability to unseen 3D data. Inspired by the above methods, we decided to leverage the
non-parametric geometric feature to prompt the learning of test time adaption.

3 PROPOSED METHOD

We address the closed-set fully test time adaption in 3D segmentation task that we can only access
the source model during the adaption process. As shown in Figure 1, the source model is trained
on the labeled source domain {xs

i , y
s
i }

Ns
i=1, where xs

i is the input i-th scene in source dataset, ysi
is the corresponding label, and Ns is the total number of scenes in source dataset. The goal of
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Figure 2: llustration of the proposed framework. We use a Category-Balance Sampler to balance
the selection of simple and hard samples for each category. Simple samples are used for entropy
minimization loss and pseudo-label prediction loss, with pseudo-labels optimized through soft voting
using features from the non-parameterized geometric model and the source domain model. hard
samples are used to distill their geometric features into the source domain model.

test time adaption is to adapt the source model on the target domain {xt
i}

Nt
i=1 without accessing its

labels {yti}
Nt
i=1 during the adaption process, where Nt is the total number of scenes in the target

dataset. It’s worth noting that our setting is closed-set which means that both source domain and
target domain share the same semantic classes. Therefore, there will be ysi = 0, 1, ..., Nc − 1 and
ysi = 0, 1, ..., Nc−1, where Nc is the total number of classes. Since test time adaption only considers
training on the target domain, we use xi and yi to replace the xt

i and yti for convenience and the
following symbols are all defined on the target domain.

The framework of NGTTA is shown in Figure 2. Firstly, We designed a category-balance sampler to
balance the selection of easy samples and difficult samples and use easy samples to perform entropy
minimization loss and pseudo-label prediction loss, which will be introduced in 3.1. Then, in 3.2 we
additionally propose to use a non-parametric geometric model to extract the geometric information of
point clouds. For easy samples, we refine the pseudo-labels by modified soft voting, which averages
the neighborhood predictions from both the model feature space and the geometric feature space. For
difficult samples, we distill their geometric features into the source domain model, helping the source
domain model quickly converge to an ”intermediate domain” that is similar to the target domain.

3.1 CATEGORY-BALANCE SAMPLER

Our method is generally applicable to point-based models. Therefore, for any model Ms that is
trained on the source domain, the output for the input scene xi ∈ RM×3 in the target domain will
be the point-wide embedding feature fi ∈ RM×C , where M represents the number of points in i-th
scene and C represents the number of feature channel.

fi = Ms(xi) (1)

Then, fi is sent to the classification head to produce the class probability pi ∈ RM×Nc .

pi = Head(fi) (2)

We calculate the entropy Ei of the samples based on the class probability pi, which can represent the
confidence level of the model’s predictions.

Ei = −
Nc−1∑
c=0

pi[c] log pi[c] (3)

Next, we need to determine whether each sample is an easy sample or a hard sample based on its
entropy and the corresponding threshold. Previous methods shared the same threshold for samples
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across all categories to select easy low-entropy samples. However, indoor scene segmentation
generally suffers from class imbalance issues, where the majority of confidently predicted low-
entropy samples are found in the major categories. As a result, samples from tail categories are often
difficult to select, which further exacerbates the class imbalance problem.

Therefore, we propose a category-balance sampler. Specifically, we first calculate the number of
samples Zc for the c-th category and define the category with the highest sample count as the major
category, with the count being Zm. Then, we define the threshold for c-th category as follows:

σc = σ + (1− Zc

Zm
)γ (4)

where σ is the initial threshold, and γ adaptively adjusts the threshold based on the number of samples
in each category. We can see that as the sample count decreases, the threshold will gradually increase.
This means that tail categories with fewer samples will have a larger entropy threshold, allowing for
the selection of more samples to reduce the disparity between the number of samples across different
categories.

Then, we define the set of easy samples Ge
i as follows:

Ge
i = {j | Eij < σy′

ij
} (5)

where j means the j-th sample in the i-th scene. y′ij represents the class prediction of the j-th sample,
where y′ij = Argmax(pij).

In contrast, the set of hard samples Gh
i is defined as follows:

Gh
i = {j | Eij ≥ σy′

ij
} (6)

Inspired by previous TTA methods Wang et al. (2021), we apply entropy minimization loss to
low-entropy samples to avoid increasing the confidence level of incorrect predictions, which can be
written as follows:

Lent = Min
j∈Ge

i

(Eij) (7)

However, entropy minimization loss is category-agnostic and can only enhance the model’s confidence
level. To improve the model’s performance on semantic segmentation metrics, we introduce pseudo-
label prediction loss. Simply put, we copy the source domain model as a momentum model to predict
pseudo-labels. Unlike the source domain model, we fix the parameters of the momentum model
during training, and every n epochs, we copy the parameters from the source domain model to the
momentum model to ensure the stability of the pseudo-labels. We then use the class predictions from
the source domain model together with the pseudo-labels to compute the classification loss. The
process can be written as follows:

Lcls = CrossEntropy
j∈Ge

i

(pij , y
m
ij ) (8)

where ymij means the pseudo-label from the momentum model.

3.2 NON-PARAMETRIC GEOMETRY-DRIVEN ADAPTION

As discussed above, due to the significant domain gap between source and target in 3D segmentation
task, the adaption process from source to target is difficult. Some domain adaption methods (Li et al.,
2021; Wang et al., 2023) propose to define an ”intermediate domain” that guides the source model to
progressively adapt to the target domain. However, those methods need to access the source data,
which is not suitable for our setting. Inspired by (Ran et al., 2022; Sun et al., 2024), non-parametric
geometric feature can capture the underlying manifolds of point cloud data which can represent the
rough approximation of the target distribution, so we leverage non-parametric geometric feature as
the ”intermediate domain” to boost the test time adaption for 3D segmentation.

We leverage PointNN (Zhang et al., 2023) as the non-parametric model which has a strong general-
ization ability from seen to unseen 3D data. For PointNN, it uses farthest point sampling and kNN to
downsample and construct the neighborhood like PointNet++ (Qi et al., 2017). However, PointNet++
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uses learnable MLP to extract neighborhood point features, while PointNN uses non-parametric
trigonometric functions. Since it does not require training, PointNN can be directly applied to
unlabeled test time adaption process.

Specifically, for the input scene xi, non-parametric model Mg output the geometric feature fg
i , which

can be written as follows:
fg
i = Mg(xi) (9)

Easy Feature Soft Voting. Although easy samples have a higher confidence level, there are still
incorrect predictions that lead to the provision of erroneous pseudo-labels. To address this issue,
we propose constructing K-nearest neighbors using the features of easy samples and correcting the
pseudo-labels through soft voting based on the neighbor class predictions.

However, due to the feature shift phenomenon of the source domain model in the target domain,
the K-nearest neighbors may not be accurate, which affects the correction of the pseudo-labels. To
address this issue, we simultaneously consider K-nearest neighbors constructed using geometric
features during the soft voting process. Specifically, for the j-th easy sample feature of source model
and the non-parametric model fij and fg

ij , where j ∈ Ge
i .We construct the neighborhood Qij and

Qg
ij by kNN. Then we use the ymi from momentum model to generate the new pseudo-label, which

can be written as follows:

Y ps
ij = βt

1

K

∑
k∈Qij

ymik + (1− βt)
1

K

∑
k∈Qg

ij

ymik (10)

where Y ps
ij is the refined pseudo-label of the j-th sample in i-th scene. And the βt is the weight

factor that gradually changes as training progresses. In simple terms, we believe that as the source
domain model gradually converges to the target domain, the feature shift phenomenon decreases,
and thus the importance of geometric features will diminish. Therefore, we assign higher weight to
geometric features in the early stages of training, while in the later stages, we assign higher weight to
the model’s embedding features.

βt =
t

T
β (11)

where t is the current training step and T is the total number of training steps.

Finally, we modify Eq. 8 as follows to achieve better classification loss.
Lcls = CrossEntropy

j∈Ge
i

(pij , Y
ps
ij ) (12)

Hard Feature Distillation. Previous methods typically consider hard samples as noisy samples, thus
only handling easy samples while discarding hard ones. However, we believe that many hard samples
arise from the significant differences between the target domain and the source domain in the context
of scene segmentation sim2real benchmarks, and therefore they can represent the information about
the distributional differences. To this end, we decide to utilize this difference information to facilitate
the adaptation of the source domain model to the target domain. Rather than using the erroneous
predictions of hard samples for the aforementioned two losses, we believe that distilling their features
to transfer distributional information is a more effective approach.

Therefore, we propose a feature distillation loss aimed at distilling geometric features into the source
domain model, enabling it to quickly converge to an ”intermediate domain” that is closer to the target
domain, thereby stabilizing the adaptation process, which can be written as:

Ldis =
∑
j∈Gh

i

MSE(MLP (fij), f
g
ij) (13)

where MLP is a multil-ayer perceptron used to align the dimensions of source model feature with
the geometric feature.

4 EXPERIMENTS

4.1 DATASETS

We conducted experiments on three datasets consists of a synthetic dataset 3DFRONT and the
real-world datasets ScanNet and S3DIS for 3D segmentation task.
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Table 1: Test Time Adaption Results of Sim-to-Real (3DFRONT→ScanNet and 3DFRONT→S3DIS)
Benchmark . We report the mIOU (%). mACC (%) and OA(%) of different UDA and TTA methods.
Bold represents the best performance in UDA and TTA methods

Type Method 3DFRONT→ScanNet 3DFRONT→S3DIS
mIOU mACC OA mIOU mACC OA

Source Only 34.80 49.24 71.66 29.38 39.72 68.47

UDA
SqueezeSegV2 (Wu et al., 2019) 34.98 49.72 71.89 29.80 40.12 69.81
AdaptSegNet (Tsai et al., 2018) 40.23 52.16 75.10 37.12 49.82 76.23

APO-DA (Yang et al., 2020) 37.82 50.92 73.27 35.21 47.69 74.91

TTA

TENT (Wang et al., 2021) 15.63 28.62 55.41 31.98 42.38 71.23
DOT (Zhao et al., 2023) 18.30 29.71 56.58 32.61 43.41 72.30

AdaContrast (Chen et al., 2022) 30.57 49.61 73.05 33.28 45.20 73.01
MEMO (Zhang et al., 2022a) 14.21 27.93 54.96 27.10 37.98 67.10

T3A (Iwasawa & Matsuo, 2021) 17.20 29.17 56.02 32.11 43.11 71.80

TTA Ours 38.42 51.30 74.03 36.36 49.07 75.74

ScanNet is proposed in (Dai et al., 2017), which is a popular real-world 3D scene dataset with 1,201
scans for training, 3,12 scans for validation and 100 scans for testing. It has rich dense segmentation
annotations for 20 categories.

S3DIS is proposed in (Armeni et al., 2016), which is a real-world 3D scene dataset with 271 scenes
and rich dense segmentation annotations for 13 categories. Following the previous work (Qi et al.,
2017), we used Area5 as validation set and others as training set.

3DFRONT is proposed in (Fu et al., 2021a), which consists of 13,151 CAD 3D objects in 18,968
rooms from the synthetic datasets (Fu et al., 2021b). We follow the setting in (Ding et al., 2022)
which selects 4995 rooms as training samples after filtering out noisy rooms. Since it is the synthetic
dataset, the scene in 3DFRONT is usually complete and easy, while the real world usually has the
problems of missing data and noise.

Closed-Set Setting. Test Time Adaption is the closed-set setting that the source and the target
domain share the same categories. Therefore, we follow the setting in (Ding et al., 2022) to select 11
categories for 3DFRONT→ ScanNet and 3DFRONT→ S3DIS. To better demonstrate the generality
of our approach, we also select 8 categories for the domain adaption between ScanNet and S3DIS.
The selected categories are all the categories that are shared between the two datasets..

4.2 IMPLEMENTATION

BackBone. To prove the effectiveness of our method, we used the state-of-the-art model Point-
Meta (Lin et al., 2023) as the source model by default in the following experiments. We also reported
the performance of other models to demonstrate the applicability of our method.

Optimizable Parameters. How to determine the optimal parameters is important in test time
adaption. Previous research denotes that the knowledge of data domain is saved in “BatchNorm”.
Therefore, TENT propose to only update the BatchNorm Parameters. However, due to the complexity
of 3D data, scenarios may not be independently and identically distributed among themselves, which
greatly affects the performance of optimizing BatchNorm. AdaContrast (Chen et al., 2022) use
contrast learning to optimize the entire model. However, in 3D segmentation task, the model is also
more complex than the classification model, which is often the ”Encoder-Decoder” architecture that
the optimization is very difficult. Therefore, in our implementation, we only optimized the embedding
layer at the beginning of the model and the classification head at the end.

4.3 RESULTS

Sim-to-Real Benchmark We tested different UDA and TTA methods on this benchmark which is
shown in Table 1. We see that due to the significant domain gap between the synthetic and real-world
datasets, the performance of the source model is only about 30% mIOU. We first report the current

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Test Time Adaption Results of Cross-site Benchmark . We report the mIOU (%) of different
UDA and TTA methods.

Type Method S3DIS→ScanNet ScanNet→S3DIS
mIOU mACC OA mIOU mACC OA

Source Only 48.20 65.01 78.18 50.99 61.65 77.66

UDA
SqueezeSegV2 (Wu et al., 2019) 46.31 63.17 76.27 51.20 62.12 77.93
AdaptSegNet (Tsai et al., 2018) 50.34 66.12 79.20 50.12 60.89 76.23

APO-DA (Yang et al., 2020) 53.35 68.87 81.92 52.65 63.01 78.62

TTA

TENT (Wang et al., 2021) 51.49 67.01 80.22 50.21 61.01 77.23
DOT (Zhao et al., 2023) 51.92 67.51 80.67 51.00 61.72 77.92

AdaContrast (Chen et al., 2022) 52.12 67.98 81.21 52.35 62.71 78.01
MEMO (Zhang et al., 2022a) 47.23 64.65 77.12 49.97 60.92 76.92

T3A (Iwasawa & Matsuo, 2021) 51.01 66.99 79.83 50.61 61.21 77.68

TTA Ours 52.71 68.23 81.62 53.78 64.25 79.34

UDA methods, because the target domain data is accessed during training, the UDA method can
effectively improve the performance, especially AdaptSegNet (Tsai et al., 2018) improving the
mIOU about 5.43% and 7.74% of 3DFRONT→ScanNet and 3DFRONT→S3DIS. On the contrary,
due to the complexity of 3D scenes, as well as the sim-to-real difficulty, the TTA method does
not perform optimally. For example, the miou of the most classical TENT method decreases on
the 3DFRONT→ScanNet respectively about 19.17%. Afterward, through the experimental results,
we find that DOT (Zhao et al., 2023) and AdaContrast (Chen et al., 2022) generally have better
performance, because the former considers the class imbalance problem, and the latter introduces
contrastive learning and pseudo-label adjustment strategies. Furthermore, we find that the TTA
method generally performs better on the simpler 3DFRONT→S3DIS. That is because the scene of
S3DIS is more complete and easy than ScanNet and the domain gap with 3DFRONT is smaller.
According to the results of previous methods, we believe that reducing the domain gap and solving the
class imbalance is an effective way to improve the performance of TTA. Therefore, by introducing non-
parametric geometric feature as ”intermediate domain” and the class-balance entropy minimization
loss, our method can improve the mIOU about 3.62% and 6.98% of 3DFRONT→ScanNet and
3DFRONT→S3DIS, which is much better than the previous TTA method and is competitive with the
UDA method.

Cross-Site Benchmark We also tested our method on the cross-site benchmark which consists of
S3DIS→ScanNet and ScanNet→S3DIS. The results are shown in Table 2. We see that due to the
smaller domain gap of cross-site than the sim-to-real benchmark, TTA methods perform optimally,
which proves the above conclusion. Similarly, DOT and AdaContrast perform well on this benchmark
because their focus is more suitable for segmentation tasks. Our method can improve mIOU about
4.51% and 2.77%. These experiments demonstrate the effectiveness of our method on multiple
benchmarks and demonstrate the applicability of our method.

Table 3: Test Time Adaption Results of Dif-
ferent Backbones. We use our method on
different models of the 3DFRONT→S3DIS.

Models mIOU GFLOPs TP

PointMetaBase-L (Lin et al., 2023) 29.38 2.0 192
+ours 36.36 2.9 178

PointNet++ (Qi et al., 2017) 22.74 7.2 181
+ours 28.10 7.9 171

PointTransformer (Zhao et al., 2021) 25.32 2.80 170
+ours 32.11 3.72 156

PointNeXt-L (Thomas et al., 2019) 27.15 15.2 126
+ours 33.26 16.1 118

Table 4: Comparison with pre-trained mod-
els.NP means non-parametric model and PT
means pretrained model.

type Pretrain Dataset Models mIOU
NP - PointNN 36.36

PT

ScanNet
PointM2AE 34.92

CSC 35.31
MSC 35.52

Structure3D
PointM2AE 36.13

CSC 36.02
MSC 36.28

More BackBones and Efficiency. To prove the generality of our method, we conducted the exper-
iments of different backbones on the 3DFRONT→S3DIS which is shown in Table 3. We tested
four backbones which consist of PointMeta, PointNet++, PointTransformer and PointNeXt. The
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results show that our method is applicable to most point-based models and can effectively enhance
their performance, demonstrating the versatility of our approach. In addition, we also report the
efficiency of NGTTA, including the computational cost in GFLOPs and the inference speed measured
in Throughput (ins./sec). From the results, it can be observed that the additional computational
overhead we introduced is acceptable compared to the original model’s expenses. This is mainly
attributed to two design features: 1) We modified the original PointNN to reduce the calculation
cost by reducing the number of neighborhood points, feature dimensions and layers, which will be
introduced in supplementary material. 2) In the computationally intensive soft voting component, we
only selected a small proportion of clean samples to perform the operation, significantly reducing the
computational overhead.

4.4 ABLATION STUDY

Comparison with pre-trained models In this section, we compare the performance of using
parameterized pre-trained models (PointM2AE Zhang et al. (2022b), CSC Hou et al. (2021), MSC Wu
et al. (2023)) and non-parametric models to drive domain adaptation, which can be seen in Table 4.
The results indicate that the performance of the non-parametric model is superior. We believe this
is primarily due to two reasons: 1) The high-dimensional feature representation of parameterized
models is more abstract, which makes it difficult to facilitate the rapid convergence of the source
domain model. 2) Pre-trained models still learn information specific to the dataset, which can affect
the domain adaptation process. As the scale of the pre-training data increases, this influence gradually
diminishes. For example, models pre-trained on Structure3D perform better than those pre-trained on
ScanNet. Therefore, compared to pre-trained models, non-parametric models can more explicitly
represent the features of the current data. Additionally, they do not contain any specific dataset
information and require no training steps. Thus, at the current stage, non-parametric models still
outperform parameterized pre-trained models.

Different Parts in Our Method. We tested the different parts in our method on the
3DFRONT→S3DIS benchmark, which is shown in Table 5. There are three main parts in our
method, which consists of Distill (distillation from the non-parametric model), Soft Voting and
Category-Balance Sampler. From the results we see that all three modules contribute to the perfor-
mance improvement, of which Distill has the most significant improvement due to the significant
reduction of the domain gap by utilizing ”intermediate domains”. Soft Voting and Category-Balance
Sampler can effectively improve the performance by more than 1% mIOU because they provide more
accurate pseudo-labels and solve the class imbalance problem.

Table 5: Ablation study result of different
parts in our method. We use PointMetaBase-
L as the source model and test it on the
3DFRONT→S3DIS.

Distill Soft Voting Category-Balance Sampler mIOU

29.38
✓ 32.28
✓ ✓ 34.92

✓ 31.76
✓ 30.62

✓ ✓ ✓ 36.36

Table 6: Ablation Study of Soft Voting on the
3DFRONT→S3DIS benchmark.

Distance Neighbor Numbers mIOU

Feat
2 35.12

10 35.83
20 35.01

Feat+Geo
2 35.43

10 36.36
20 36.21

Soft Voting. We conducted the ablation study of soft voting in the Table 6. First, we tested soft
voting for building neighborhoods with only the features of the model (Feat) which is proposed
in AdaContrast (Chen et al., 2022). We see that when the number of neighborhoods is 10, the
performance is the best, which also proves the importance of the soft voting strategy. However,
when the number of neighborhoods continues to increase, the offset model features may introduce
neighborhood samples that are not similar, resulting in wrong pseudo-labels. On the contrary, when
non-parametric geometric feature is added to construct the neighborhood, the performance is usually
higher, and due to the stable geometric features on unseen data, the performance is still good even if
the number of neighborhoods is increased, which indicates the stability of our soft voting strategy.

Entropy Threshold. In this part, we explore the impact of σ and γ on performance which is
shown in Table 7 and Table 8. We use PointMetaBase-L as the source model and test it on the

9
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(a) Source-Only (b) AdaContrast (c) Non-Parametric Geo (d) Ours

Figure 3: Visualization of Feature Distribution on the 3DFRONT→S3DIS benchmark. Front is the
distribution of the source model with different methods. Back is the distribution of the model trained
by labels on target domain.

Figure 4: Visualization of Segmentation Results on the 3DFRONT→S3DIS benchmark.

3DFRONT→S3DIS. In Table 7, we fixed γ=0.3 and observed that a smaller threshold effectively
filters out difficult samples that are prone to generating erroneous predictions, thereby improving
the model’s performance. Similarly, in Table 8, we fixed σ = 0.2. And when set γ = 0, it indicates
that all categories share the same threshold. We observed a significant drop in performance, which
demonstrates the severe impact of class imbalance on performance.

Table 7: Ablation Study of the σ

0.1 0.2 0.3 0.5 0.6

σ 36.18 36.36 36.01 35.91 35.52

Table 8: Ablation Study of γ

0 0.1 0.2 0.3 0.4

γ 34.92 35.63 35.85 36.36 36.12

4.5 VISUALIZATION

Feature Distribution. We visualized the distribution of features in Figure 3. In Figure 3(a), we
visualize the distribution of source domains and target domains and see that they have a very large
domain gap. In Figure 3(c), we visualize the non-parametric geometric feature distribution and
the target domain distribution. We can see that they capture the information of the target domain
distribution to a certain extent, such as the height between samples in their domain are relatively close.
In Figure 3(d), the distribution of the source domain adjusted by our method is basically similar to
that of the target domain, which effectively proves the effectiveness of our method.

Segmentation Results. We visualized the segmentation results in Figure 4 on the 3DFRONT→S3DIS
benchmark.

5 CONCLUSION

We argue that non-parameter geometric features can capture the underlying manifold of unseen data,
which has strong generalization. Therefore, we leverage non-parametric geometry as an intermediate
domain to prompt test time adaption. By introducing distillation from non-parametric model, pseudo-
label refined by soft voting and category-balance sampler, our method can effectively improve the
performance of the source domain model in the target domain.

10
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A APPENDIX

A.1 LIGHTWEIGHT POINTNN

To reduce computational overhead, we modified the settings of PointNN by decreasing the number
of layers (L), the number of neighboring points (K), downsample ratio (R), and the init feature
dimensions C to enhance the efficiency of NGTTA. Although the modifications made to PointNN
may result in a slight decrease in accuracy, the resulting improvements in efficiency are significant.
This enhances the applicability of NGTTA in real-world scenarios.

• PointNN: L=5,K=90,R=2,C=144

• Ours: L=4,K=24,R=4,C=36
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A.2 ABLATION STUDY OF THE LOSS WEIGHT α

The overall loss definition of NGTTA is as follows:

Ltta = α1Ldis + α2Lcls + α3Lent (1)

where α1, α2 and α3 mean the loss weight of Ldis, Lcls and Lent.

In the following three tables, we use PointMetaBase-L as the source model and test the impact of the
loss weight on the 3DFRONT→ S3DIS. From the results, we can see that when the weight is set to 0,
there is a decline in performance, which demonstrates the necessity of each loss component. At the
same time, we found that the performance does not fluctuate significantly around the optimal weight
value, indicating that our method is not particularly sensitive to the loss weights, thereby proving the
stability of the approach.

Table 1: Ablation Study of α1

0 1 10 100

alpha1 33.81 34.96 36.36 36.01

Table 2: Ablation Study of α2

0 0.1 0.5 1

α2 34.10 35.89 36.36 36.21

Table 3: Ablation Study of α3

0 0.1 0.5 1

α3 34.60 35.91 36.30 36.36

A.3 ABLATION STUDY OF OPTIMIZABLE PARAMETERS

In our implementation, we only optimized the initial layers of the encoder and the classification layer.
In this section, we explore the impact of different optimization parameters on performance. We set up
various combinations of optimizable parameters: 1) Optimize only batch normalization parameters
(BN) 2) Optimize the entire model (AM) 3) Optimize only the classifier (CH) 4) Optimize only the
encoder (EC) 5) Optimize only the decoder (DC) 6) Our implementation (Ours) 7) Optimize the
encoder and the decoder (BC). We use PointMetaBase-L as the source model and conduct experiment
on 3DFRONT→ S3DIS. From the results, we can see that due to the high complexity of the semantic
segmentation model, updating too many parameters can actually lead to a decline in performance,
as observed in the cases of AM and BC. In contrast, updating only a small number of important
parameters, such as in our method or BN, can achieve better results.

Table 4: Ablation Study of the optimizable parameters

BN AM CH EC DC Ours BC

mIOU 35.72 34.29 35.62 35.52 34.71 36.36 34.78

A.4 CATEGORY-WISE RESULTS

A.4.1 CATEGORY-WISE ENTROPY.

The class imbalance issue is very serious in point cloud scene segmentation, leading to significant
differences in average entropy across different classes. To address this, we propose the Category-
Balance Sampler. Here, we report the average entropy for each class for 3DFRONT→S3DIS and
3DFRONT→ScanNet, with the results shown in Table 5. It can be observed that minority classes
typically have higher average entropy, which necessitates a higher entropy threshold to select more
samples. This supports the validity of our Category-Balance Sampler.

A.4.2 CATEGORY-WISE IOU.

To further explore how our method improves the source domain model, we report the IoU for
3DFRONT→ ScanNet, with the results shown in Table 6. It can be observed that a significant
improvement of NGTTA lies in its ability to enhance the performance of minority and difficult classes
effectively. In contrast, TENT’s inability to address the class imbalance issue results in a decline in
the performance of minority classes, leading to training collapse.
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Table 5: Category-Wise Entropy Result on ScanNet and S3DIS.

(a) ScanNet

wall floor cabinet bed chair sofa table door window bookshelf desk

Quantity Ratio 20% 20% 3% 2% 6% 2% 3% 3% 2% 2% 1%

Entropy 0.40 0.50 0.70 0.66 0.57 0.56 0.58 0.53 0.93 0.88 0.98

(b) S3DIS

wall floor chair sofa table door window bookshelf ceiling beam column

Quantity Ratio 27% 15% 2% 1% 3% 3% 3% 11% 19% 1% 1%

Entropy 0.14 0.19 0.71 0.41 0.89 0.59 0.50 0.22 0.15 0.60 0.58

Table 6: Category-Wise IoU Result on 3DFRONT→ScanNet.

Method wall floor cabinet bed chair sofa table door window bookshelf desk mIoU

Baseline 60.80 83.22 13.15 47.93 56.35 47.38 39.61 1.85 3.28 18.95 21.07 34.80

TENT 47.12 60.55 0.03 12.79 4.35 2.29 30.22 0 0 0 0 15.63

NGTTA 60.12 86.35 9.29 42.75 57.97 44.87 44.85 3.20 7.13 31.26 27.04 38.42

A.5 ADDITIONAL EXPERIMENTS

A.5.1 SEMANTICKITTI.

Here, we introduce a more challenging experiment by transferring from indoor data
(3DFRONT→SemanticKITTI) to outdoor data to demonstrate the generalization capability of
NGTTA. However, a significant challenge arises because indoor and outdoor datasets do not share
the same classes, which prevents the use of common technical components such as pseudo-labeling,
entropy minimization, and subsequent evaluation phases. Therefore, we only utilize a non-parametric
geometric model for feature distillation, extracting point-level features from both the source model
and the adaptive model, and we use SVM to evaluate accuracy. The results are shown in Table 7,
where we can see that the accuracy significantly improves after using NGTTA. This demonstrates
that NGTTA is also applicable to outdoor data and can enhance feature distinguishability.

Table 7: SVM Accuracy of NGTTA on 3DFRONT→SemanticKITTI.

PointMetaBase-L +NGTTA
Accuracy 30.5 35.1

A.5.2 COMPARE TO FPFH.

Here, we compare the performance of the geometric feature FPFH and PointNN on
3DFRONT→ScanNet and 3DFRONT→S3DIS to demonstrate that, in our method, PointNN is
a superior non-parametric geometric feature extractor. The results are shown in Table 8. It can be
observed that PointNN outperforms FPFH. We believe this is primarily because FPFH calculates
geometric features based solely on the local neighborhood of each point, resulting in a very limited
receptive field. In contrast, PointNN expands the receptive field by aggregating geometric features
through multiple layers of down-sampling and up-sampling, which is crucial for scene segmentation.

Table 8: Results of FPFH.

3DFRONT→S3DIS 3DFRONT→ScanNet

PointMetaBase-L 29.38 34.80

+FPFH 34.98 36.76
+PointNN 36.36 38.42
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A.5.3 RESULTS ON ADDITIONAL MODELS.

in this part, we have added experiments with additional models MinkowskiNet (ResNet-UNet) and
RandLA-Net on 3DFRONT→S3DIS and 3DFRONT→ScanNet, and the results are shown in Table
9. As can be seen, NGTTA can be applied to various point cloud architectures, demonstrating the
generalizability of our method.

Table 9: Results of MinkowskiNet and RandLA-Net.

3DFRONT→S3DIS 3DFRONT→ScanNet

MinkowskiNet 24.35 31.72
+NGTTA 32.57 35.76

RandLA-Net 25.81 32.16
+NGTTA 33.71 35.91

A.6 VISUALIZATION

A.6.1 SEGMENTATION RESULTS

In this part, we compare the visualization results of the Source Model and the results after applying
NGTTA adaptation, as shown in Figure 5. It can be seen that NGTTA effectively corrects the
erroneous class predictions of the Source Model, resulting in improved segmentation results.

A.6.2 ADAPTION PROCESS

Here, we visualize the domain adaptation process using NGTTA, with the results shown in Figure 6.
(a) represents the feature distribution obtained by directly applying the source model on the target
data, while (d) represents the feature distribution of the model trained on labeled data in the target
domain, which can be considered as the target domain distribution. (b) and (c) show the results
after training with NGTTA for 1 and 2 epochs, respectively. We can see that the black and red
circles highlight the areas where the source domain distribution and the target domain distribution
differ significantly. As the NGTTA training progresses, the model’s feature distribution gradually
approaches the target domain distribution.

A.7 INTRODUCTION OF POINTNN

PointNN is a non-parametric geometric model that utilizes common components from point cloud
models, such as Farthest Point Sampling (FPS), kNN, and max pooling, to extract local features
from point clouds. Specifically, for the i-th point pi = (xi, yi, zi) ∈ R1×3 in the point cloud, it first
employs trigonometric functions to extract positional features.

fx
i = [sine(Axi/B

6·0
C ), Cosine(Axi/B

6·0
C ), ..., sine(Axi/B

6·m
C ), Cosine(Axi/B

6·m
C )] (2)

where fx
i is the positional encoding for the x-axis. A and B means the magnitude and wavelengths.

The encoding for the y-axis and z-axis is the same. Therefore, the position embedding of pi can be
written as:

fi = PoE(pi) = [fx
i , f

y
i , f

z
i ] (3)

Then, PointNN use kNN to construct the neighborhood (pj ,fj)j∈Ni
of the i-th center point. Then, for

each neighborhood vector, PointNN expands it to:

fij = [fi, fj ] (4)

To capture the relevant geometric information between the center point and the neighboring points,
PointNN incorporates relative positional encoding:
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Figure 5: Visualization comparison of NGTTA and Source Model. The first column is the label,
the second column is the segmentation result from the Source Model, and the last column is the
segmentation result after applying NGTTA adaptation. Then, the first two rows are the results for
3DFRONT→ScanNet, and the last two rows are the results for 3DFRONT→S3DIS.

f̂ij = (fij + PoE((pi − pj)))⊙ PoE((pi − pj)) (5)

Finally, PointNN uses max pooling and avg pooling to aggregate the local features.

f̂i = MaxPool( ˆ{fij}j∈Ni)
) +AvgPool( ˆ{fij}j∈Ni)

) (6)

PointNN extracts rich geometric information from local regions by employing multi-layer down-
sampling and aggregating local features and then obtains point-wise features through multi-layer
upsampling.
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Figure 6: TSNE of NGTTA Results on 3DFRONT→S3DIS. The black and red circles represent the
parts where the source model distribution and the target domain distribution differ significantly. It can
be observed that as NGTTA continues to train, the model’s feature distribution gradually approaches
the target domain distribution.
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