
Do As I Can, Not As I Say:
Grounding Language in Robotic Affordances

1 Michael Ahn∗, Anthony Brohan∗, Noah Brown∗, Yevgen Chebotar∗, Omar Cortes∗, Byron David∗,
Chelsea Finn∗, Chuyuan Fu†, Keerthana Gopalakrishnan∗, Karol Hausman∗, Alex Herzog†,
Daniel Ho†, Jasmine Hsu∗, Julian Ibarz∗, Brian Ichter∗, Alex Irpan∗, Eric Jang∗,
Rosario Jauregui Ruano∗, Kyle Jeffrey∗, Sally Jesmonth∗, Nikhil J Joshi∗, Ryan Julian∗,
Dmitry Kalashnikov∗, Yuheng Kuang∗, Kuang-Huei Lee∗, Sergey Levine∗, Yao Lu∗, Linda Luu∗,
Carolina Parada∗, Peter Pastor†, Jornell Quiambao∗, Kanishka Rao∗, Jarek Rettinghouse∗,
Diego Reyes∗, Pierre Sermanet∗, Nicolas Sievers∗, Clayton Tan∗, Alexander Toshev∗,
Vincent Vanhoucke∗, Fei Xia∗, Ted Xiao∗, Peng Xu∗, Sichun Xu∗, Mengyuan Yan†, Andy Zeng∗

∗Robotics at Google, †Everyday Robots

Abstract: Large language models can encode a wealth of semantic knowledge
about the world. Such knowledge could be extremely useful to robots aiming to act
upon high-level, temporally extended instructions expressed in natural language.
However, a significant weakness of language models is that they lack real-world
experience, which makes it difficult to leverage them for decision making within
a given embodiment. For example, asking a language model to describe how to
clean a spill might result in a reasonable narrative, but it may not be applicable to
a particular agent, such as a robot, that needs to perform this task in a particular
environment. We propose to provide real-world grounding by means of pretrained
skills, which are used to constrain the model to propose natural language actions
that are both feasible and contextually appropriate. The robot can act as the lan-
guage model’s “hands and eyes,” while the language model supplies high-level
semantic knowledge about the task. We show how low-level skills can be com-
bined with large language models so that the language model provides high-level
knowledge about the procedures for performing complex and temporally extended
instructions, while value functions associated with these skills provide the ground-
ing necessary to connect this knowledge to a particular physical environment. We
evaluate our method on a number of real-world robotic tasks, where we show
the need for real-world grounding and that this approach is capable of completing
long-horizon, abstract, natural language instructions on a mobile manipulator. The
project’s website, video, and open source can be found at say-can.github.io.

Figure 1: LLMs have not interacted with their environment and observed the outcome of their responses, and
thus are not grounded in the world. SayCan grounds LLMs via value functions of pretrained skills, allowing
them to execute real-world, abstract, long-horizon commands on robots.

1 Introduction
Recent progress in training large language models (LLMs) has led to systems that can generate
complex text based on prompts, answer questions, or even engage in dialogue on a wide range of
topics. These models absorb vast quantities of knowledge from text corpora mined from the web,
and we might wonder whether knowledge of everyday tasks that is encoded in such models can be

1Authors listed in alphabetical order. Contributions in Appendix A.
Corresponding emails: {ichter,xiafei,karolhausman}@google.com.
6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

http://g.co/robotics
https://everydayrobots.com/
say-can.github.io

used by robots to perform complex tasks in the real world. But how can embodied agents extract
and harness the knowledge of LLMs for physically grounded tasks?

This question poses a major challenge. LLMs are not grounded in the physical world and they
do not observe the consequences of their generations on any physical process [1]. This can lead
LLMs to not only make mistakes that seem unreasonable or humorous to people, but also to interpret
instructions in ways that are nonsensical or unsafe for a particular physical situation. Figure 1 shows
an example – a kitchen robot capable of executing skills such as “pick up the sponge” or ”go to the
table” may be asked for help cleaning up a spill (“I spilled my drink, can you help?”). A language
model may respond with a reasonable narrative that is not feasible or useful for the robot. “You
could try using a vacuum cleaner” is impossible if there is no vacuum in the scene or if the robot is
incapable of using one. With prompt engineering, a LLM may be capable of splitting the high-level
instruction into sub-tasks, but it cannot do so without the context of what the robot is capable of
given its abilities and the current state of the robot and the environment.

Motivated by this example, we study the problem of how to extract the knowledge in LLMs for
enabling an embodied agent, such as a robot, to follow high-level textual instructions. The robot
is equipped with a repertoire of learned skills for “atomic” behaviors that are capable of low-level
visuomotor control. We make use of the fact that, in addition to asking the LLM to simply interpret
an instruction, we can use it to score the likelihood that an individual skill makes progress towards
completing the high-level instruction. Then, if each skill has an affordance function that quantifies
how likely it is to succeed from the current state (such as a learned value function), its value can be
used to weight the skill’s likelihood. In this way, the LLM describes the probability that each skill
contributes to completing the instruction, and the affordance function describes the probability that
each skill will succeed – combining the two provides the probability that each skill will perform the
instruction successfully. The affordance functions make the LLM aware of the current scene, and
constraining the completions to the skill descriptions makes the LLM aware of the robot’s capabil-
ities. Furthermore, this combination results in a fully explainable sequence of steps that the robot
will execute to accomplish an instruction – an interpretable plan that is expressed through language.

Our method, SayCan, extracts and leverages the knowledge within LLMs in physically-grounded
tasks. The LLM (Say) provides a task-grounding to determine useful actions for a high-level goal
and the learned affordance functions (Can) provide a world-grounding to determine what is pos-
sible to execute upon the plan. We use reinforcement learning (RL) as a way to learn language-
conditioned value functions that provide affordances of what is possible in the world. We evaluate
the proposed approach on 101 real-world robotic tasks that involve a mobile robot accomplishing
a large set of language instructions in a real kitchen in a zero-shot fashion. Our experiments vali-
date that SayCan can execute temporally-extended, abstract instructions. Grounding the LLM in the
real-world via affordances nearly doubles the performance over the non-grounded baselines.

2 SayCan: Do As I Can, Not As I Say
Problem Statement. Our system receives a user-provided natural language instruction i that de-
scribes a task that the robot should execute. The instruction can be long, abstract, or ambiguous.
We also assume that we are given a set of skills Π, where each skill is a short task, such as pick-
ing up a particular object, and comes with a short language description `π (e.g., “find a sponge”)
and an affordance function p(cπ|s, `π), which indicates the probability of c-ompleting the skill with
description `π successfully from state s; where state can correspond to the robot, environment, or
any information required to compute affordances. Intuitively, p(cπ|s, `π) means “if I ask the robot
to do `π , will it do it?”. In RL terminology, p(cπ|s, `π) is the value function for the skill in an
undiscounted setting if we take the reward to be 1 for successful completion and 0 otherwise.

As mentioned above, `π denotes the textual label of skill π and p(cπ|s, `π) denotes the probabil-
ity that skill π with textual label `π successfully completes if executed from state s, where cπ is
a Bernoulli random variable. The LLM provides us with p(`π|i), the probability that a skill’s tex-
tual label is a valid next step for the user’s instruction. However, what we are interested in is the
probability that a given skill successfully makes progress toward actually completing the instruc-
tion, which we denote as p(ci|i, s, `π). Assuming that a skill that succeeds makes progress on i with
probability p(`π|i) (i.e., its probability of being the right skill), and a skill that fails makes progress
with probability zero, we can factorize this as p(ci|i, s, `π) ∝ p(cπ|s, `π)p(`π|i). This corresponds
to multiplying the probability of the language description of the skill given the instruction p(`π|i),

2

which we refer to as task-grounding, and the probability of the skill being possible in the current
state of the world p(cπ|s, `π), which we refer to as world-grounding.

Connecting Large Language Models to Robots. While large language models can draw on a
wealth of knowledge learned from copious amounts of text, they will not necessarily break down
high-level commands into low-level instructions that are suitable for robotic execution. If a language
model were asked “how would a robot bring me an apple”, it may respond “a robot could go to a
nearby store and purchase an apple for you”. Though this response is a reasonable completion for
the prompt, it is not necessarily actionable to an embodied agent, which may have a narrow and fixed
set of abilities. Therefore, to adapt language models to our problem statement, we must somehow
inform them that we specifically want the high-level instruction to be broken down into sequences
of available low-level skills. One approach is careful prompt engineering [2, 3], a technique to coax
a language model to a specific response structure. Prompt engineering provides examples in the
context text (“prompt”) for the model that specify the task and the response structure which the
model will emulate; the prompt used in this work is shown in Appendix D.4 along with experiments
ablating it. However, this is not enough to fully constrain the output to admissible primitive skills
for an embodied agent, and indeed at times it can produce inadmissible actions or language that is
not formatted in a way that is easy to parse into individual steps.

Scoring language models open an avenue to constrained responses by outputting the probabilities
assigned by a language model to fixed outputs. A language model represents a distribution over
potential completions p(wk|w<k), where wk is a word that appears at a kth position in a text. While
typical generation applications (e.g., conversational agents) sample from this distribution or decode
the maximum likelihood completion, we can also use the model to score a candidate completion
selected from a set of options. Formally in SayCan, given a set of low-level skills Π, their language
descriptions `Π and an instruction i, we compute the probability of a language description of a
skill `π ∈ `Π making progress towards executing the instruction i: p(`π|i), which corresponds to
querying the model over potential completions. The optimal skill according to the language model
is computed via `π = arg max`π∈`Π p(`π|i). Once selected, the process proceeds by iteratively
selecting a skill and appending it to the instruction. Practically, in this work we structure the planning
as a dialog between a user and a robot, in which a user provides the high level-instruction (e.g.,
“Bring me a coke can.”) and the language model responds with an explicit sequence (“1. `π”, e.g.,
“1. find a coke can, 2. pick up the coke can, 3. bring it to you”).

This has the added benefit of interpretability, as the model not only outputs generative responses, but
also gives a notion of likelihood across many possible responses. Figure 2 (and Appendix Figure 9 in
more detail) shows this process of forcing the LLM into a language pattern, where the set of tasks are
the skills the low-level policy is capable of and prompt engineering shows plan examples and dialog
between the user and the robot. With this approach, we are able to effectively extract knowledge
from the language model, but it leaves a major issue: while the decoding of the instruction obtained
in this way always consists of skills that are available to the robot, these skills may not necessarily
be appropriate for executing the desired high-level task in the specific situation that the robot is
currently in. For example, if I ask a robot to “bring me an apple”, the optimal set of skills changes
if there is no apple in view or if it already has one in its hand.

SayCan. The key idea of SayCan is to ground large language models through value functions – af-
fordance functions that capture the log likelihood that a particular skill will be able to succeed in the
current state. Given a skill π ∈ Π, its language description `π and its corresponding value function,
which provides p(cπ|s, `π), the probability of c-ompletion for the skill described by `π in state s, we
form an affordance space {p(cπ|s, `π)}π∈Π. This value function space captures affordances across
all skills [4]. For each skill, the affordance function and the LLM probability are then multiplied
together and ultimately the most probable skill is selected, i.e. π = arg maxπ∈Π p(cπ|s, `π)p(`π|i).
Once the skill is selected, the corresponding policy is executed by the agent and the LLM query
is amended to include `π and the process is run again until a termination token (e.g., “done”) is
chosen. This process is shown in Figure 2 and described in Appendix Algorithm 1. These two mir-
rored processes together lead to a probabilistic interpretation of SayCan, where the LLM provides
probabilities of a skill being useful for the high-level instruction and the affordances provide proba-
bilities of successfully executing each skill. Combining these two probabilities together provides a
probability that this skill furthers the execution of the high-level instruction commanded by the user.

3

Figure 2: Given a high-level
instruction, SayCan combines
probabilities from a LLM (the
probability that a skill is use-
ful for the instruction) with the
probabilities from a value func-
tion (the probability of success-
fully executing said skill) to se-
lect the skill to perform. This
emits a skill that is both possi-
ble and useful. The process is
repeated by appending the skill
to the response and querying the
models again, until the output
step is to terminate. Appendix
Figures 9 and 10 focus on the
LLM and VFS components.

3 Implementing SayCan in a Robotic System
Language-Conditioned Robotic Control Policies. To instantiate SayCan, we must provide it with
a set of skills, each of which has a policy, a value function, and a short language description (e.g.,
“pick up the can”). These skills, value functions, and descriptions can be obtained in a variety of
different ways. In our implementation, we train the individual skills either with image-based behav-
ioral cloning, following the BC-Z method [5], or reinforcement learning, following MT-Opt [6] and
using features from PI-QT-Opt [7]. Regardless of how the skill’s policy is obtained, we utilize value
functions trained via TD backups as the affordance model for that skill. While we find that the BC
policies achieve higher success rates at the current stage of our data collection process, the value
functions provided by the RL policies are crucial as an abstraction to translate control capabilities
to a semantic understanding of the scene. To amortize the cost of training many skills, we utilize
multi-task BC and multi-task RL, where instead of training a separate policy and value function per
skill, we train multi-task policies and models that are conditioned on the language description. Note,
however, that this description only corresponds to low level skills – it is still the role of the LLM in
SayCan to interpret the high-level instruction and break it up into individual low level skills.

To condition the policies on language, we utilize a pre-trained large sentence encoder language
model [8]. We freeze the language model parameters during training and use the embeddings gen-
erated by passing in text descriptions of each skill. These text embeddings are used as the input to
the policy and value function that specify which skill should be performed (see the details of the
architectures used in the Appendix C.1). Since the language model used to generate the text embed-
dings is not necessarily the same as the language model used for planning, SayCan is able to utilize
different language models well suited for different abstraction levels – understanding planning with
respect to many skills as opposed to expressing specific skills more granularly.

Training the Low-Level Skills. We utilize both BC and RL policy training procedures to obtain the
language-conditioned policies and value functions, respectively. To complete the description of the
underlying MDP that we consider, we provide the reward function as well as the skill specification
that is used by the policies and value functions. As mentioned previously, for skill specification we
use a set of short, natural language descriptions that are represented as language model embeddings.
We utilize sparse reward functions with reward values of 1.0 at the end of an episode if the language
command was executed successfully, and 0.0 otherwise. An episode is marked successful if two out
three human raters agree (given the instruction and video).

To learn language-conditioned BC policies at scale in the real world, we build on top of BC-Z [5]
and use a similar policy-network architecture (shown in Fig. 7). To learn a language-conditioned
RL policy, we use MT-Opt [6] with PI-QT-Opt features [7] in the Everyday Robots simulator using
RetinaGAN sim-to-real transfer [9], implemented in TF-Agents [10]. We bootstrap the performance
of simulation policies by utilizing simulation demonstrations to provide initial successes, and then
continuously improve the RL performance with online data collection. We use a network architec-
ture similar to MT-Opt (shown in Fig. 6). The action space of our policies includes the six degrees
of freedom of the end-effector pose as well as gripper open and close commands, x-y position and
yaw orientation delta of the mobile base of the robot, and the terminate action. Additional details
on data collection and training are in Appendix Section C.2.

4

Robotic System and Skills. For the control policies, we study a diverse set of manipulation and
navigation skills using a mobile manipulator robot. Inspired by common skills one might pose
to a robot in a kitchen environment, we propose 551 skills that span seven skill families and 17
objects. The skill families are picking, placing, and rearranging objects, placing objects in specific
configurations, opening and closing drawers, and navigating to various locations. A skill may then
be “pick up the apple” or “go to the trash can”. In this study we utilize the skills that are most
amenable to more complex behaviors via composition and planning as well as those that have high
performance at the current stage of data collection; for more details, see Appendix D.

4 Experimental Evaluation

Figure 3: The experiments were performed in an office kitchen and a mock kitchen mirroring this setup, with 5
locations and 15 objects. The robot is a mobile manipulator with policies trained from an RGB observation.

Experimental Setup. We evaluate SayCan with a mobile manipulator and a set of object manipula-
tion and navigation skills in two office kitchen environments. Figure 3 shows the environment setup
and the robot. We use 15 objects commonly found in an office kitchen and 5 known locations with
semantic meaning (two counters, a table, a trash can, and the user location). We test our method in
two environments: a real office kitchen and a mock environment mirroring the kitchen, which is also
the environment in which the robot’s skills were trained. The mobile manipulator is from Everyday
Robots and has a 7 DoF arm and a two-fingered gripper. The LLM used is 540B PaLM [11].

Instructions. To evaluate SayCan, we test across 101 instructions from 7 instruction families, sum-
marized in Table 1 and enumerated in Appendix E.1, with the prompt shown in Listing 1. These
were developed to test various aspects of SayCan and were inspired by crowd sourcing via Amazon
Mechanical Turk and in-person kitchen users, as well as benchmarks such as ALFRED [12] and BE-
HAVIOR [13]. The instructions, detailed in Table 1, span multiple axes of variation: time-horizon
(from single primitives to 10+ in a row), language complexity (from structured language to fully
crowd-sourced requests), and embodiment (variations over the robot and environment state).

Instruction Family Num Explanation Example Instruction

NL Single Primitive 15 NL queries for a single primitive Let go of the coke can
NL Nouns 15 NL queries focused on abstract nouns Bring me a fruit
NL Verbs 15 NL queries focused on abstract verbs Restock the rice chips on the far counter
Structured Language 15 Structured language queries, mirror NL Verbs Move the rice chips to the far counter.
Embodiment 11 Queries to test SayCan’s understanding of the

current state of the environment and robot
Put the coke on the counter. (starting
from different completion stages)

Crowd-Sourced 15 Queries in unstructured formats My favorite drink is redbull, bring one
Long-Horizon 15 Long-horizon queries that require many steps

of reasoning
I spilled my coke on the table, throw it
away and bring me something to clean

Table 1: List of instruction family definitions: We evaluate the algorithm on 101 instructions. We group the
instructions into different families, with each family focusing on testing one aspect of the proposed method.

Metrics. To understand the performance of SayCan we measure two main metrics. The first is plan
success rate, which measures whether the skills selected by the model are correct for the instruction,
regardless of whether or not they actually successfully executed. Note that for many instructions
there may be multiple valid solutions. For example if the instruction is to “bring a sponge and throw
away the soda can”, the plan can choose to bring sponge first or throw away the soda can first. The
second metric is execution success rate, which measures whether the full SayCan system actually
performs the desired instruction successfully. For both, we ask three human raters to rate success.

4.1 Results

Table 2 shows the performance of SayCan across 101 tasks. In the mock kitchen, SayCan achieved
a planning success rate of 84% and an execution rate of 74%. We also investigate SayCan out of the

5

https://everydayrobots.com/
https://everydayrobots.com/

lab setting and in the real kitchen to verify the performance of the policies and value functions in
this setting. We find a reduction of planning performance by 3% and execution by 14%, indicating
SayCan and the underlying policies generalize reasonably well to the full kitchen. The full task list
and results can be found in the Appendix Table 5, LLM size ablations can be found in Appendix D.3,
and videos of experiment rollouts and the decision making process can be found in the supplemental
and on the project website: say-can.github.io.

Figure 4 shows two long-horizon queries and the resulting rollouts. These tasks require SayCan to
plan many steps without error and for the robot to navigate and interact with a significant portion of
the kitchen. Each query requires SayCan to understand context implicit within the instruction. In
Figure 4a, the algorithm must understand the operator has asked for something to “recover from a
workout”, i.e. something healthy, and thus it brings water and an apple rather than, e.g., a soda and
chips. Furthermore, the algorithm must understand ordering and history, that it has already brought
a drink and now must bring a snack before terminating. In Figure 4b, SayCan must track which
objects are the “them” that need to be disposed of and where the sponge should be brought.

(a) “I just worked out, can you bring me a drink and a snack to
recover?”

(b) “I left out a coke, apple, and water, can you throw them away and then
bring me a sponge to wipe the table?”

Figure 4: Timelapse of rollouts to two long-horizon queries. The robot interacts with a large portion of the
kitchen environment and successfully performs sequences of manipulation and navigation skills.

Figure 5 highlights SayCan’s decision making, along with its interpretability. The decision making
process can be understood as it solves instructions by visualizing what the two sides of the algo-
rithm output. This allows a user to understand what options SayCan is considering as language
completions and what it believes is possible. We find that sequence order is understood (approach-
ing objects before picking them up and picking them up before bringing them). Figure 5 shows that
though the query mentions a coke, SayCan understands that the important object is something to
clean and brings a sponge. Appendix E.5 shows additional rollouts with complex decisions, embod-
iment grounding, and long-horizon tasks in Figures 12, 13, 15 as well as failures in Figure 14. We
believe such real-time and clear interpretability opens avenues to more interactive operation.

+XPDQ��,�VSLOOHG�
P\�FRNH��FDQ�\RX�
EULQJ�PH�
VRPHWKLQJ�WR�FOHDQ�
LW�XS"

5RERW��,�ZRXOG�
���)LQG�D�VSRQJH�
���3LFN�XS�WKH�
VSRQJH
���%ULQJ�LW�WR�\RX�
���'RQH

Figure 5: Visualization of SayCan’s decision making, where the top combined score chooses the correct skill.

When comparing the performance of different instruction families in Table 2 (see Table 1 for an
explanation of families), we see that the natural language nouns performed worse than natural lan-

6

say-can.github.io

guage verbs, due to the number of nouns possible (15 objects and 5 locations) versus number of
verbs (6). The structured language tasks (created to ablate the performance loss of spelling out the
solution versus understanding the query) were planned correctly 93% of the time, while their nat-
ural language verb counterparts were planned correctly 100%. This indicates the language model
effectively parses the queries. The embodiment tasks were planned correctly 64% of the time, gener-
ally with failures as a result of affordance function misclassification. SayCan planned and executed
crowd-sourced natural queries with performance on par with other instruction families. SayCan
performed worst on the most challenging long-horizon tasks, where most failures were a result of
early termination by the LLM (e.g., bringing one object but not the second). We also find that Say-
Can struggles with negation (e.g., “bring me a snack that isn’t an apple”) and ambiguous references
(e.g. asking for drinks with caffeine), which is a known issue inherited from underlying language
models [14]. Overall, 65% of the errors were LLM failures and 35% were affordance failures.

Ablating Language. To study the importance of the LLM, we conduct two ablation experiments
using the language-conditioned policy (see Sections 3-3). In BC NL we feed the full instruction i
into the policy – this approach is representative of standard RL or BC-based instruction following
methods [5, 15, 16, 17]. In BC USE we project the high-level instruction into the set of known
language commands via the Universal Sentence Encoder (USE) embeddings [8] by embedding the
instruction, all the tasks, and the combinatorial set of sequences tasks (i.e., we consider “pick coke
can” as well as “1. find coke can, 2. pick coke can” and so on), and selecting the highest cosine
similarity instruction. The results in Table 2 illustrate the necessity of the language grounding where
BC NL achieves 0% in all tasks and BC USE achieves 60% for single primitives, but 0% otherwise.

Ablating Value Functions. Table 2 illustrates the necessity of the affordance grounding. We com-
pare SayCan to (1) No VF, which removes the value function grounding (i.e., choosing the maximum
language score skill) and to (2) Generative, which uses the generative output of the LLM and then
projects each planned skill to its maximal cosine similarity skill via USE embeddings. The latter in
effect compares to [18], which loses the explicit option probabilities, and thus is less interpretable
and cannot be combined with affordance probabilities. For Generative we also tried BERT embed-
dings [19], but found poor performance. The No VF and Generative approaches performed similarly,
achieving 67% and 74% planning success rate respectively, and worse than SayCan’s 84%.

Mock Kitchen Kitchen No Affordance No LLM

SayCan SayCan SayCan SayCan No VF Gen. BC NL BC USE

Family Num Plan Execute Plan Execute Plan Plan Execute Execute

NL Single 15 100% 100% 93% 87% 73% 87% 0% 60%
NL Nouns 15 67% 47% 60% 40% 53% 53% 0% 0%
NL Verbs 15 100% 93% 93% 73% 87% 93% 0% 0%
Structured 15 93% 87% 93% 47% 93% 100% 0% 0%
Embodiment 11 64% 55% 64% 55% 18% 36% 0% 0%
Crowd Sourced 15 87% 87% 73% 60% 67% 80% 0% 0%
Long-Horizon 15 73% 47% 73% 47% 67% 60% 0% 0%

Total 101 84% 74% 81% 60% 67% 74% 0% 9%

Table 2: Success rates of instructions by family. SayCan achieves a planning success rate of 84% and execution
success rate of 74% in the training environment and 81% planning and 60% execution in a real kitchen. No
VF uses the maximum score skill from the LLM, Generative (Gen.) uses a generative LLM and then projects
to the nearest skill via USE embeddings, BC NL uses the policy with the natural language instruction, and BC
USE uses the policy with the natural language instruction projected to the nearest skill via USE embeddings.

4.2 Case Study of New Capabilities

Adding Skills: Drawer Manipulation (Appendix E.2). SayCan is capable of more varied and
complex sequences as well as integrating new skills by simply adding the new skills as options
for the LLM and provide accompanying value functions and add an example in the prompt with
that skill. For example, with the skills open, close, and go to the drawer, SayCan is capable of
solving tasks such as “restock the coke and pepsi into the drawer”, or the query shown in Appendix
Figure 15. Over 21 queries we found a planning rate of 100% and an execution rate of 33% (due to
failures of the chained manipulation policy), with no loss in performance for other instructions.

Chain of Thought Reasoning (Appendix E.3). SayCan can be integrated with recent work im-
proving LLM reasoning, such as Chain of Thought [20].

Multilingual Queries (Appendix E.4). The LLM was trained on a multilingual corpus and thus
SayCan can handle multilingual queries with comparable success rate as English.

7

5 Related Work
Grounding Language Models. A significant body of work has focused on grounding language [21,
22]. Recent works have studied how to ground modern language models, by training them to accept
additional environment inputs [23, 24, 25, 26, 27, 28, 29] or to directly output actions [30, 31,
32]. Others grounded language in an environment through prompt engineering [20]. Concurrently
with SayCan, Huang et al. [18] use prompt engineering to extract temporally extended plans, but
without any additional mechanism to ensure grounding, roughly corresponding to the “Generative”
baseline in our experiments. The above methods are all trained without interaction with a physical
environment, thus limiting their ability to reason over embodied interactions. One approach to
grounding language models in interaction is by learning downstream networks with pre-trained LLM
representations [33, 17, 16, 34, 35, 36, 37, 38]. Another approach finetunes language models with
interactive data, such as rewards or ranking feedback of the interaction [3, 39, 40]. In our work,
SayCan grounds language models in the environment through previously-trained value functions,
enabling general, long-horizon behaviors in a zero-shot manner, i.e., without additional training.

Learning Language-Conditioned Behavior. There is a long history of research studying how
to connect language and behavior [41, 42, 43, 44, 45, 46]. A large number of prior works have
learned language-conditioned behavior via imitation learning [47, 17, 15, 5, 48, 32] or reinforcement
learning [49, 50, 44, 51, 52, 53, 16, 36]. Most focus on following low-level instructions [15, 17, 53,
16, 5, 48], though some methods address long-horizon, compound tasks in simulated domains [54,
55, 51]. Like these latter works, we focus on completing temporally extended tasks. However,
a central aspect of our work is to solve such tasks by extracting and leveraging the knowledge in
large language models. This enables a more flexible framework and more general abstract, tasks than
semantic parsing [43, 46, 56]. While prior works have studied how pre-trained language embeddings
can improve generalization to new instructions [33, 17, 16] and to new low-level tasks [5], we extract
much more substantial knowledge from LLMs by grounding them within the robot’s affordances.

Task Planning and Motion Planning. Task and motion planning [57, 58] is a problem of sequenc-
ing tasks to solve a high-level problem, while ensuring the feasibility given an embodiment (task
planning [59, 60, 61]; motion planning [62]). Classically, this problem has been solved through
symbolic planning [59, 61] or optimization [63, 64], but these require explicit primitives and con-
straints. Machine learning has recently been applied to enable abstract task specification, allow
general primitives, or relax constraints [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. Others learn
to hierarchically solve such long-horizon problems [77, 78, 4, 79, 51]. SayCan leverages an LLM’s
semantic knowledge about the world for interpreting instructions and understanding how to execute
them. The use of LLMs and generality of learned low-level policies enables long-horizon, abstract
tasks that scale effectively to the real world, as demonstrated in our robot experiments.

6 Conclusions and Limitations
We presented SayCan, a method that enables leveraging and grounding the rich knowledge in large
language models to complete embodied tasks. For real-world grounding, we use RL-based value
functions for the individual skills that provide affordances of what is possible in the world, and
use textual labels for these skills as potential responses that are scored by a language model. We
evaluated this approach on a number of real-world robotic tasks that involve a mobile manipulator
robot accomplishing a large set of long-horizon natural language instructions in a real kitchen.

While SayCan presents a viable way to ground language models in agents’ affordances, it has a
number of limitations. First, we expect this method to inherit the limitations and biases of LLMs [80,
81], including the dependence on the training data. In addition, we observe that even though SayCan
allows the users to interact with the agents using natural language commands, the primary bottleneck
of the system is in the range and capabilities of the underlying skills. Beyond these skills, SayCan
relies on reliable affordances to gauge the ability of the robot to perform a task given the state.
Though with RL trained policies, the value function provides a reasonable approximation of the
affordance, it is an open question how to best train affordances for general skills. Finally, a limitation
of the proposed framework is that the LLM only receives feedback from the environment through
the selected skills, which can be limited, e.g., if a skill fails. It would be useful to investigate to what
degree sources of environment feedback can be incorporated, such as through success detectors,
scene descriptions, direct visual feedback, or visual-language models. To illustrate limitations, we
present failure cases in Appendix E and open sourced code in a tabletop robot setting in Appendix F.

8

Acknowledgments
The authors would like to thank Yunfei Bai, Matt Bennice, Maarten Bosma, Justin Boyd, Bill Byrne,
Kendra Byrne, Noah Constant, Pete Florence, Laura Graesser, Rico Jonschkowski, Daniel Kappler,
Hugo Larochelle, Benjamin Lee, Adrian Li, Suraj Nair, Krista Reymann, Jeff Seto, Dhruv Shah,
Ian Storz, Razvan Surdulescu, Tom Small, and Vincent Zhao for their help and support in various
aspects of the project.

References
[1] E. M. Bender and A. Koller. Climbing towards nlu: On meaning, form, and understanding in

the age of data. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, 2020.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

[3] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
Preprint, 2022.

[4] D. Shah, P. Xu, Y. Lu, T. Xiao, A. Toshev, S. Levine, and B. Ichter. Value function
spaces: Skill-centric state abstractions for long-horizon reasoning. ICLR, 2022. URL
https://arxiv.org/pdf/2111.03189.pdf.

[5] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-
ing, pages 991–1002. PMLR, 2021.

[6] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv,
2021.

[7] K.-H. Lee, T. Xiao, A. Li, P. Wohlhart, I. Fischer, and Y. Lu. Pi-qt-opt: Predictive information
improves multi-task robotic reinforcement learning at scale. In 6th Annual Conference on
Robot Learning.

[8] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M. Guajardo-
Cespedes, S. Yuan, C. Tar, et al. Universal sentence encoder. arXiv preprint arXiv:1803.11175,
2018.

[9] D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai. Retinagan: An object-aware ap-
proach to sim-to-real transfer. 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 10920–10926, 2021.

[10] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro, E. Holly, S. Fishman, K. Wang,
E. Gonina, N. Wu, E. Kokiopoulou, L. Sbaiz, J. Smith, G. Bartók, J. Berent, C. Harris,
V. Vanhoucke, and E. Brevdo. TF-Agents: A library for reinforcement learning in tensor-
flow. https://github.com/tensorflow/agents, 2018. URL https://github.com/
tensorflow/agents. [Online; accessed 25-June-2019].

[11] A. Chowdhery, S. Narang, J. Devlin, et al. Palm: Scaling language modeling with path-
ways. 2022. URL https://storage.googleapis.com/pathways-language-model/
PaLM-paper.pdf.

[12] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
10740–10749, 2020.

[13] S. Srivastava, C. Li, M. Lingelbach, R. Martı́n-Martı́n, F. Xia, K. E. Vainio, Z. Lian, C. Gok-
men, S. Buch, K. Liu, et al. Behavior: Benchmark for everyday household activities in virtual,
interactive, and ecological environments. In Conference on Robot Learning, pages 477–490.
PMLR, 2022.

9

https://arxiv.org/pdf/2111.03189.pdf
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://storage.googleapis.com/pathways-language-model/PaLM-paper.pdf
https://storage.googleapis.com/pathways-language-model/PaLM-paper.pdf

[14] A. Hosseini, S. Reddy, D. Bahdanau, R. D. Hjelm, A. Sordoni, and A. Courville. Un-
derstanding by understanding not: Modeling negation in language models. arXiv preprint
arXiv:2105.03519, 2021.

[15] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. B. Amor. Language-
conditioned imitation learning for robot manipulation tasks. ArXiv, abs/2010.12083, 2020.

[16] S. Nair, E. Mitchell, K. Chen, B. Ichter, S. Savarese, and C. Finn. Learning language-
conditioned robot behavior from offline data and crowd-sourced annotation. In Conference
on Robot Learning, pages 1303–1315. PMLR, 2021.

[17] C. Lynch and P. Sermanet. Grounding language in play. 2020.

[18] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Ex-
tracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207, 2022.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[20] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought
prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

[21] J. M. Siskind. Grounding language in perception. Artificial Intelligence Review, 1994.

[22] T. Winograd. Understanding natural language. Cognitive psychology, 1972.

[23] C. Sun, A. Myers, C. Vondrick, K. Murphy, and C. Schmid. Videobert: A joint model for
video and language representation learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019.

[24] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang. Visualbert: A simple and perfor-
mant baseline for vision and language. arXiv preprint arXiv:1908.03557, 2019.

[25] J. Thomason, J. Sinapov, R. Mooney, and P. Stone. Guiding exploratory behaviors for multi-
modal grounding of linguistic descriptions. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 32, 2018.

[26] J. Thomason, M. Shridhar, Y. Bisk, C. Paxton, and L. Zettlemoyer. Language grounding with
3d objects. In Conference on Robot Learning, pages 1691–1701. PMLR, 2022.

[27] J. Lu, D. Batra, D. Parikh, and S. Lee. Vilbert: Pretraining task-agnostic visiolinguistic repre-
sentations for vision-and-language tasks. Advances in neural information processing systems,
2019.

[28] R. Zellers, X. Lu, J. Hessel, Y. Yu, J. S. Park, J. Cao, A. Farhadi, and Y. Choi. Merlot: Multi-
modal neural script knowledge models. Advances in Neural Information Processing Systems,
2021.

[29] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International Conference on Machine Learning, 2021.

[30] A. Suglia, Q. Gao, J. Thomason, G. Thattai, and G. Sukhatme. Embodied bert: A
transformer model for embodied, language-guided visual task completion. arXiv preprint
arXiv:2108.04927, 2021.

[31] A. Pashevich, C. Schmid, and C. Sun. Episodic transformer for vision-and-language naviga-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.

[32] P. Sharma, A. Torralba, and J. Andreas. Skill induction and planning with latent language.
arXiv preprint arXiv:2110.01517, 2021.

[33] F. Hill, S. Mokra, N. Wong, and T. Harley. Human instruction-following with deep reinforce-
ment learning via transfer-learning from text. arXiv preprint arXiv:2005.09382, 2020.

10

[34] V. Blukis, C. Paxton, D. Fox, A. Garg, and Y. Artzi. A persistent spatial semantic representation
for high-level natural language instruction execution. In Conference on Robot Learning, 2022.

[35] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[36] A. Akakzia, C. Colas, P.-Y. Oudeyer, M. Chetouani, and O. Sigaud. Grounding language to
autonomously-acquired skills via goal generation. arXiv preprint arXiv:2006.07185, 2020.

[37] R. Zellers, A. Holtzman, M. Peters, R. Mottaghi, A. Kembhavi, A. Farhadi, and Y. Choi.
Piglet: Language grounding through neuro-symbolic interaction in a 3d world. arXiv preprint
arXiv:2106.00188, 2021.

[38] P. C. Humphreys, D. Raposo, T. Pohlen, G. Thornton, R. Chhaparia, A. Muldal, J. Abramson,
P. Georgiev, A. Goldin, A. Santoro, et al. A data-driven approach for learning to control
computers. arXiv preprint arXiv:2202.08137, 2022.

[39] M. Reid, Y. Yamada, and S. S. Gu. Can wikipedia help offline reinforcement learning. arXiv
preprint arXiv:2201.12122, 2022.

[40] S. Li, X. Puig, Y. Du, C. Wang, E. Akyurek, A. Torralba, J. Andreas, and I. Mordatch. Pre-
trained language models for interactive decision-making. arXiv preprint arXiv:2202.01771,
2022.

[41] M. MacMahon, B. Stankiewicz, and B. Kuipers. Walk the talk: Connecting language, knowl-
edge, and action in route instructions. 01 2006.

[42] T. Kollar, S. Tellex, D. Roy, and N. Roy. Toward understanding natural language directions. In
HRI 2010, 2010.

[43] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy. Understanding
natural language commands for robotic navigation and mobile manipulation. volume 2, 01
2011.

[44] J. Luketina, N. Nardelli, G. Farquhar, J. N. Foerster, J. Andreas, E. Grefenstette, S. Whiteson,
and T. Rocktäschel. A survey of reinforcement learning informed by natural language. In
IJCAI, 2019.

[45] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek. Robots that use language. Annual
Review of Control, Robotics, and Autonomous Systems, 2020.

[46] J. Thomason, A. Padmakumar, J. Sinapov, N. Walker, Y. Jiang, H. Yedidsion, J. Hart, P. Stone,
and R. Mooney. Jointly improving parsing and perception for natural language commands
through human-robot dialog. Journal of Artificial Intelligence Research, 67:327–374, 2020.

[47] H. Mei, M. Bansal, and M. R. Walter. Listen, attend, and walk: Neural mapping of navigational
instructions to action sequences. In AAAI, 2016.

[48] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipu-
lation. In Conference on Robot Learning, 2022.

[49] D. K. Misra, J. Langford, and Y. Artzi. Mapping instructions and visual observations to actions
with reinforcement learning. In EMNLP, 2017.

[50] K. Hermann, F. Hill, S. Green, F. Wang, R. Faulkner, H. Soyer, D. Szepesvari, W. Czarnecki,
M. Jaderberg, D. Teplyashin, M. Wainwright, C. Apps, D. Hassabis, and P. Blunsom. Grounded
language learning in a simulated 3d world. ArXiv, abs/1706.06551, 2017.

[51] Y. Jiang, S. Gu, K. Murphy, and C. Finn. Language as an abstraction for hierarchical deep
reinforcement learning. In NeurIPS, 2019.

[52] G. Cideron, M. Seurin, F. Strub, and O. Pietquin. Self-educated language agent with hindsight
experience replay for instruction following. ArXiv, abs/1910.09451, 2019.

11

[53] P. Goyal, S. Niekum, and R. Mooney. Pixl2r: Guiding reinforcement learning using natural
language by mapping pixels to rewards. ArXiv, abs/2007.15543, 2020.

[54] J. Oh, S. Singh, H. Lee, and P. Kohli. Zero-shot task generalization with multi-task deep
reinforcement learning. ArXiv, abs/1706.05064, 2017.

[55] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy
sketches. ArXiv, abs/1611.01796, 2017.

[56] B. J. Thomas and O. C. Jenkins. Roboframenet: Verb-centric semantics for actions in robot
middleware. In 2012 IEEE International Conference on Robotics and Automation, pages
4750–4755. IEEE, 2012.

[57] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical planning in the now. In Workshops at the
Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[58] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined task and
motion planning through an extensible planner-independent interface layer. In 2014 IEEE
international conference on robotics and automation (ICRA), 2014.

[59] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. Artificial intelligence, 1971.

[60] E. D. Sacerdoti. A structure for plans and behavior. Technical report, SRI International, Menlo
Park California Artificial Intelligence Center, 1975.

[61] D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. Shop: Simple hierarchical ordered planner.
1999.

[62] S. M. LaValle. Planning algorithms. 2006.

[63] M. Toussaint. Logic-geometric programming: An optimization-based approach to combined
task and motion planning. In Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, 2015.

[64] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and
stable modes for tool-use and manipulation planning. 2018.

[65] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese. Neural task programming:
Learning to generalize across hierarchical tasks. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[66] D. Xu, R. Martı́n-Martı́n, D.-A. Huang, Y. Zhu, S. Savarese, and L. F. Fei-Fei. Regression
planning networks. Advances in Neural Information Processing Systems, 32, 2019.

[67] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and J. C. Niebles. Neural
task graphs: Generalizing to unseen tasks from a single video demonstration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

[68] B. Eysenbach, R. R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in Neural Information Processing Systems,
2019.

[69] N. Savinov, A. Dosovitskiy, and V. Koltun. Semi-parametric topological memory for naviga-
tion. arXiv preprint arXiv:1803.00653, 2018.

[70] B. Ichter, P. Sermanet, and C. Lynch. Broadly-exploring, local-policy trees for long-horizon
task planning. Conference on Robot Learning (CoRL), 2021.

[71] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox. A joint model of language
and perception for grounded attribute learning. arXiv preprint arXiv:1206.6423, 2012.

[72] T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Perez, L. P. Kaelbling, and J. Tenen-
baum. Inventing relational state and action abstractions for effective and efficient bilevel plan-
ning. arXiv preprint arXiv:2203.09634, 2022.

12

[73] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in
belief space for partially observable task and motion problems. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020.

[74] Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta, R. Mottaghi, and A. Farhadi.
Visual semantic planning using deep successor representations. In Proceedings of the IEEE
international conference on computer vision, 2017.

[75] D. K. Misra, J. Sung, K. Lee, and A. Saxena. Tell me dave: Context-sensitive grounding of
natural language to manipulation instructions. The International Journal of Robotics Research,
2016.

[76] B. Wu, S. Nair, L. Fei-Fei, and C. Finn. Example-driven model-based reinforcement learning
for solving long-horizon visuomotor tasks. In 5th Annual Conference on Robot Learning,
2021.

[77] S. Nair and C. Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks via
visual subgoal generation. ArXiv, abs/1909.05829, 2020.

[78] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese. Relmogen: Integrating
motion generation in reinforcement learning for mobile manipulation. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2021.

[79] C. Li, F. Xia, R. Martin-Martin, and S. Savarese. Hrl4in: Hierarchical reinforcement learning
for interactive navigation with mobile manipulators. In Conference on Robot Learning, 2020.

[80] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On the dangers of stochastic
parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, pages 610–623, 2021.

[81] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258, 2021.

[82] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[83] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal
of Machine Learning Research, pages 1–67, 2019.

[84] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Henderson,
R. Ring, S. Young, et al. Scaling language models: Methods, analysis & insights from training
gopher. arXiv preprint arXiv:2112.11446, 2021.

[85] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos,
L. Baker, Y. Du, et al. Lamda: Language models for dialog applications. arXiv preprint
arXiv:2201.08239, 2022.

[86] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le.
Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652, 2021.

[87] J. J. Gibson. The theory of affordances. The Ecological Approach to Visual Perception, 1977.

[88] T. Xiao, E. Jang, D. Kalashnikov, S. Levine, J. Ibarz, K. Hausman, and A. Herzog. Thinking
while moving: Deep reinforcement learning with concurrent control. In International Confer-
ence on Learning Representations, 2019.

[89] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In ICLR, 2016.

[90] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui. Open-vocabulary object detection via vision and lan-
guage knowledge distillation. arXiv preprint arXiv:2104.13921, 2021.

13

A Contributions
A.1 By Type

• Designed and built distributed robot learning infrastructure: Michael Ahn, Anthony
Brohan, Noah Brown, Yevgen Chebotar, Byron David, Keerthana Gopalakrishnan, Karol
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Alex Irpan, Eric Jang,
Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Yao Lu, Peter Pastor,
Kanishka Rao, Nicolas Sievers, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, and Mengyuan
Yan.

• Designed, implemented, or trained the underlying manipulation policies: Yevgen
Chebotar, Keerthana Gopalakrishnan, Karol Hausman, Julian Ibarz, Alex Irpan, Eric Jang,
Nikhil Joshi, Ryan Julian, Kuang-Huei Lee, Yao Lu, Kanishka Rao, and Ted Xiao.

• Designed or implemented the data generation and curation or collected data: Noah
Brown, Omar Cortes, Jasmine Hsu, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle
Jeffrey, Linda Luu, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes,
Pierre Sermanet, Clayton Tan, and Sichun Xu.

• Designed or implemented SayCan: Karol Hausman, Brian Ichter, Sergey Levine, Alexan-
der Toshev, and Fei Xia.

• Managed or advised on the project: Chelsea Finn, Karol Hausman, Eric Jang, Sally
Jesmonth, Sergey Levine, Yao Lu, Carolina Parada, Kanishka Rao, Alexander Toshev, and
Vincent Vanhoucke.

• Ran evaluations or experiments: Noah Brown, Omar Cortes, Brian Ichter, Rosario Jau-
regui Ruano, Kyle Jeffrey, Linda Luu, Jornell Quiambao, Jarek Rettinghouse, Diego Reyes,
Clayton Tan, and Fei Xia.

• Scaled simulation infrastructure: Nikhil J Joshi, Yao Lu, Kanishka Rao, and Ted Xiao.

• Wrote the paper: Chelsea Finn, Karol Hausman, Brian Ichter, Alex Irpan, Sergey Levine,
Fei Xia, and Ted Xiao.

A.2 By Person

Michael Ahn developed the deployment system that enabled the ability to scale up data collection
on real robots.
Anthony Brohan implemented the logging system for the project and designed and implemented
the data labeling pipelines.
Noah Brown led and coordinated the real-robot operations including data collection with teleoper-
ators, evaluations and the real-world setup.
Yevgen Chebotar designed and implemented multiple offline RL methods allowing the manipula-
tion policies to process data coming from different sources.
Omar Cortes collected data on the robots and ran and supervised real-world evaluations.
Byron David developed simulation assets and performed system identification.
Chelsea Finn advised on the project, helped set the research direction and wrote parts of the paper.
Keerthana Gopalakrishnan provided multiple infrastructure contributions that allowed for scal-
able learning of manipulation policies.
Karol Hausman co-led the project as well as developed SayCan, helped set the research direction,
trained the underlying manipulation policies, and wrote the paper.
Alex Herzog developed the teleoperation tools and implemented multiple infrastructure tools that
allowed for continuous robot operation.
Daniel Ho helped develop sim-to-real pipelines for manipulation policies.
Jasmine Hsu provided logging and monitoring infrastructure tools as well as data labeling pipelines.
Julian Ibarz provided multiple contributions that enabled scaling learning algorithms for manipu-
lation policies, and helped set the research direction.
Brian Ichter initiated and led the SayCan algorithm, combined the manipulation and navigation
skills, ran experiments for the paper, and wrote the paper.
Alex Irpan set up and led the autonomous data collection effort as well as verified the data collected
by the robots, and wrote parts of the paper.
Eric Jang helped set the research and team direction, managed the data for learning, developed the
behavioral cloning manipulation policies, and wrote parts of the paper.

14

Rosario Jauregui Ruano collected data on the robots and ran and supervised real-world evaluations.
Kyle Jeffrey collected data on the robots and ran and supervised real-world evaluations.
Sally Jesmonth was the program manager for the project.
Nikhil J Joshi developed a number of simulation and infrastructure tools that allowed to scale up
simulation training.
Ryan Julian developed multi-modal network architectures and trained manipulation policies.
Dmitry Kalashnikov contributed infrastructure pieces that enabled training from logged data.
Yuheng Kuang implemented the logging system for the project and designed and implemented the
data labeling pipelines
Kuang-Huei Lee made improvements to training algorithms for manipulation policies.
Sergey Levine advised on the project, helped set the research direction, developed SayCan, and
wrote parts of the paper.
Yao Lu led and designed the robot learning infrastructure for the project providing most of the tools
and improving manipulation policies.
Linda Luu ran multiple evaluations, collected data and helped establish real-robot operations.
Carolina Parada advised on the project, managed the team, helped write the paper, and helped set
the research direction.
Peter Pastor provided infrastructure tools that allowed for continuous robot operations.
Jornell Quiambao collected data on the robots and ran and supervised real-world evaluations.
Kanishka Rao co-led the project, managed the team, helped set the research direction and con-
tributed to training manipulation policies.
Jarek Rettinghouse collected data on the robots and ran and supervised real-world evaluations.
Diego Reyes collected data on the robots and ran and supervised real-world evaluations.
Pierre Sermanet set up the crowd compute rating pipeline.
Nicolas Sievers provided simulation assets and environments used for simulation training.
Clayton Tan collected data on the robots and ran and supervised real-world evaluations and helped
establish real-robot operations.
Alexander Toshev advised on the project, developed SayCan, helped write the paper, and helped
set research direction.
Vincent Vanhoucke advised on the project, managed the team, and helped write the paper.
Fei Xia developed, implemented, and led on-robot SayCan, ran the experiments for the paper, cre-
ated the demos, and wrote the paper.
Ted Xiao led the scaling of manipulation skills, designed and developed learning from simulation
for manipulation skills, and developed multi-modal network architectures.
Peng Xu was the engineering lead for integrating manipulation and navigation and developed the
underlying infrastructure for SayCan.
Sichun Xu developed remote teleoperation tools that allowed scaling up data collection in simula-
tion.
Mengyuan Yan implemented infrastructure and learning tools that allowed for learning manipula-
tion policies from different data sources.

A.3 Corresponding Emails:

{ichter,xiafei,karolhausman}@google.com

B Background
Large Language Models. Language models seek to model the probability p(W) of a text
W = {w0, w1, w2, ..., wn}, a sequence of strings w. This is generally done through factorizing
the probability via the chain rule to be p(W) = Πn

j=0p(wj |w<j), such that each successive string
is predicted from the previous. Recent breakthroughs initiated by neural network-based Attention
architectures [82] have enabled efficient scaling of so-called Large Language Models (LLMs). Such
models include Transformers [82], BERT [19], T5 [83], GPT-3 [2], Gopher [84], LAMDA [85],
FLAN [86], and PaLM [11], each showing increasingly large capacity (billions of parameters and
terabytes of text) and subsequent ability to generalize across tasks.

In this work, we utilize the vast semantic knowledge contained in LLMs to determine useful tasks
for solving high-level instructions.

Value functions and RL. Our goal is to be able to accurately predict whether a skill (given by a
language command) is feasible at a current state. We use temporal-difference-based (TD) reinforce-

15

ment learning to accomplish this goal. In particular, we define a Markov decision process (MDP)
M = (S,A, P,R, γ), where S and A are state and action spaces, P : S × A × S → R+ is a
state-transition probability function, R : S ×A → R is a reward function and γ is a discount factor.
The goal of TD methods is to learn state or state-action value functions (Q-function)Qπ(s, a), which
represents the discounted sum of rewards when starting from state s and action a, followed by the ac-
tions produced by the policy π, i.e. Qπ(s, a) = Ea∼π(a|s)

∑
tR(st, at). The Q-function, Qπ(s, a)

can be learned via approximate dynamic programming approaches that optimize the following loss:
LTD(θ) = E(s,a,s′)∼D [R(s, a) + γEa∗∼πQπθ (s′, a∗)−Qπθ (s, a)], where D is the dataset of states
and actions and θ are the parameters of the Q-function.

In this work, we utilize TD-based methods to learn said value function that is additionally condi-
tioned on the language command and utilize those to determine whether a given command is feasible
from the given state. It is worth noting that in the sparse reward case, where the agent receives the
reward of 1.0 at the end of the episode if it was successful and 0.0 otherwise, the value function
trained via RL corresponds to an affordance function [87] that specifies whether a skill is possible
in a given state. We leverage that intuition in our setup and express affordances via value functions
of sparse reward tasks.

C RL and BC Policies
C.1 RL and BC Policy Architecture

The RL models use an architecture similar to MT-Opt [6], with slight changes to support natural
language inputs (see Fig. 6 for the network diagram). The camera image is first processed by 7 con-
volutional layers. The language instruction is embedded by the LLM, then concatenated with the
robot action and non-image parts of the state, such as the gripper height. To support asynchronous
control, inference occurs while the robot is still moving from the previous action. The model is given
how much of the previous action is left to execute [88]. The conditioning input goes through FC lay-
ers, then tiled spatially and added to the conv. volume, before going through 11 more convolutional
layers. The output is gated through a sigmoid, so the Q-value is always in [0, 1].

The BC models use an architecture similar to BC-Z [5] (see Fig. 7 for the network diagram). The
language instruction is embedded by a universal sentence encoder [8], then used to FiLM condition
a Resnet-18 based architecture. Unlike the RL model, we do not provide the previous action or
gripper height, since this was not necessary to learn the policy. Multiple FC layers are applied to the
final visual features, to output each action component (arm position, arm orientation, gripper, and
the termination action).

C.2 RL and BC Policy Training

RL training. In addition to using demonstrations in the BC setup, we also learn language-
conditioned value functions with RL. For this purpose, we complement our real robot fleet with a
simulated version of the skills and environment. To reduce the simulation-to-real gap we transform
robot images via RetinaGAN [9] to look more realistic while preserving genera object structure. In
order to learn a language-conditioned RL policy, we utilize MT-Opt [6] in the Everyday Robots sim-
ulator using said simulation-to-real transfer. We bootstrap the performance of simulation policies by
utilizing simulation demonstrations to provide initial successes, and then continuously improve the
RL performance with online data collection in simulation. Standard image augmentations (random
brightness and contrast) as well as random cropping were applied. The 640 x 512 input image was
padded by 100 pixels left-right and 40 pixels top-down, then cropped back down to a 640 x 512
image, so as to allow for random spatial shifts without limiting the field of view. We use a network
architecture similar to MT-Opt (shown in Fig. 6).

The RL model is trained using 16 TPUv3 chips and for about 100 hours, as well as a pool of
3000 CPU workers to collect episodes and another 3000 CPU workers to compute target Q-values.
Computing target Q-values outside the TPU allows the TPU to be used solely for computing gradient
updates. Episode rewards are sparse and always 0 or 1, so the Q-function is updated using a log loss.
Models were trained using prioritized experience replay [89], where episode priority was tuned to
encourage replay buffer training data for each skill to be close to 50% success. Episodes were
sampled proportionally to their priority, defined as 1 + 10 · |p− 0.5|, where p is the average success
rate of episodes in the replay buffer.

16

Figure 6: Network architecture in RL policy

Figure 7: Network architecture in BC policy

BC training. We use 68000 teleoperated demonstrations that were collected over the course of 11
months using a fleet of 10 robots. The operators use VR headset controllers to track the motion of
their hand, which is then mapped onto the robot’s end-effector pose. The operators can also use a
joystick to move the robot’s base. We expand the demonstration dataset with 276000 autonomous
episodes of learned policies which are later success-filtered and included in BC training, resulting
in an additional 12000 successful episodes. To additionally process the data, we also ask the raters
to mark the episodes as unsafe (i.e., if the robot collided with the environment), undesirable (i.e., if
the robot perturbed objects that were not relevant to the skill) or infeasible (i.e., if the skill cannot be
done or is already accomplished). If any of these conditions are met, the episode is excluded from
training.

To learn language-conditioned BC policies at scale in the real world, we build on top of BC-Z [5]
and use a similar policy-network architecture (shown in Fig. 7). It is trained with an MSE loss

17

for the continuous action components, and a cross-entropy loss for the discrete action components.
Each action component was weighted evenly. Standard image augmentations (random brightness
and contrast) as well as random cropping were used. The 640 x 512 input image was padded by
100 pixels left-right and 40 pixels top-down, then cropped back down to a 640 x 512 image, so as
to allow for random spatial shifts without limiting the field of view. For faster iteration speeds with
negligible training performance reduction, image inputs were down sampled to half-size (256 x 320
images). Affordance value functions were trained with full-size images, since half-size images did
not work as well when learning Q(s, a, `π). The BC model is trained using 16 TPUv3 chips and
trained for about 27 hours.

C.3 RL and BC Policy Evaluations

In order to obtain the best possible manipulation capabilities for use in SayCan, we use a separate
evaluation protocol for iterating on the RL and BC policies in the Mock Office Kitchen stations.
Evaluations are divided by skill (pick up, knock over, place upright, open/close drawers, move object
close to another one), and within each skill, 18-48 skills are sampled from a predetermined set of
three objects. Object positions are randomized on each episode, with one or two objects serving as
a distractor.

The episode ends when 50 actions have been taken or the policy samples a terminate action. A hu-
man operator supervises multiple robots performing evaluation and performs scene resets as needed,
and records each episode as a success or failure. Models whose per-skill performance outperforms
prior models are ”graduated” to the same evaluation protocol in the real kitchen, and then integrated
into SayCan. We found that despite the domain shift from Mock Office Kitchen stations to the actual
kitchen counter and drawers, higher success rates on mock stations usually corresponded to higher
success rates in the real kitchen setting.

Figure 8 shows the development of the manipulation skills over time. It reports the per-skill success
rate, the average success rate across all skills, and the number of instructions the policy was trained
on. Over the course of the project, we increased the number of skills evaluated, from 1 instruction
in April 2021 to hundreds of instructions at time of publication over the course of 366 real-world
model evaluations.

Figure 8: Per-skill evaluation performance of the best policies and number of skills over the duration of the
project. The performance as well as the number of skills that the robots are able to handle grow over time due
to the continuous data collection efforts as well as improving the policy training algorithms.

D SayCan Details and Parameters
D.1 SayCan Details

Figure 9 shows scoring approach used and prompt engineering for the LLM side of SayCan. Fig-
ure 10 shows how robotic affordances are computed with value functions and real value function
computations at different states. These two components are combined to form SayCan, as detailed
in Algorithm 1 and in Figure 11.

18

Figure 9: A scoring language model is queried with a prompt-engineered context of examples and the high-
level instruction to execute and outputs the probability of each skill being selected. To iteratively plan the next
steps, the selected skill is added to the natural language query and the language model is queried again.

(a) (b) (c)

Figure 10: A value function module (a) is queried to form a value function space of action primitives based
on the current observation. Visualizing “pick” value functions, in (b) “Pick up the red bull can” and “Pick up
the apple” have high values because both objects are in the scene, while in (c) the robot is navigating an empty
space, and thus none of the pick up actions receive high values.

D.2 Skills, Policies, and Affordance Functions

We also note a few practical considerations for setting up our affordance functions and policies.
The flexibility of our approach allows us to mix and match policies and affordances from different
methods. For the pick manipulation skills we use a single multi-task, language-conditioned policy,
for the place manipulation skills we use a scripted policy with an affordance based on the gripper
state, and for navigation policies we use a planning-based approach which is aware of the locations
where specific objects can be found and a distance measure. In order to avoid a situation where a
skill is chosen but has already been performed or will have no effect, we set a cap for the affordances
indicating that the skill has been completed and the reward received.

SayCan is capable of incorporating many different policies and affordance functions through its
probability interface. Though in principle each type of skill has been trained with the pipeline
described in Appendix C, to the success rates seen in Figure 8, we wish to show the generality of
SayCan to different policies and affordance functions as well as the robustness of other functions
(e.g. distance for navigation). Furthermore, some skills (such as the manipulation skill “move

Algorithm 1 SayCan
Given: A high level instruction i, state s0, and a set of skills Π and their language descriptions `Π

1: n = 0, π = ∅
2: while `πn−1

6= “done” do
3: C = ∅
4: for π ∈ Π and `π ∈ `Π do
5: pLLM

π = p(`π|i, `πn−1
, ..., `π0

) . Evaluate scoring of LLM
6: paffordance

π = p(cπ|sn, `π) . Evaluate affordance function
7: pcombined

π = paffordance
π pLLM

π

8: C = C ∪ pcombined
π

9: end for
10: πn = arg maxπ∈Π C
11: Execute πn(sn) in the environment, updating state sn+1

12: n = n+ 1
13: end while

19

Figure 11: (A copy of Figure 2 here for clarity) Given a high-level instruction, SayCan combines probabilities
from a language model (representing the probability that a skill is useful for the instruction) with the probabili-
ties from a value function (representing the probability of successfully executing said skill) to select the skill to
perform. This emits a skill that is both possible and useful. The process is repeated by appending the selected
skill to the robot response and querying the models again, until the output step is to terminate.

object near object” and “knock object over”) are not naturally part of long-horizon tasks and
thus we do not utilize them. Other skills, such as drawer opening, were not consistent enough for
long-horizon planning and thus unused. However, we note that as skills become performant or as
new skills are learned, it is straightforward to incorporate these skills by adding them as options for
LLM scoring and as examples in the prompt. We use the following for each skill family:

• Pick. For pick we use the learned policies in Appendix C and Section 3 with actions from
BC and value functions from RL trained on the same skill. In natural language these are
specified as “pick up the object”.

• Go to. Since the focus of this work is mainly on planning, we assume the location of
objects are known. Thus any navigation skill maps to the coordinate of the object with a
classical planning-based navigation stack. In natural language these are specified as “go to
location” and “find object”.

• Place. Though our manipulation policies have a “place upright” skill, this skill only applies
to objects that have a canonical upright direction, e.g., a water bottle but not a bag of chips.
One could also train a universal “place” command, but our current policies are trained
in a setup-free environment and thus are not amenable to an initial pick. Thus to have a
consistent place policy across all objects we use a classical motion planning policy. We use
Cartesian space motion planning to plan a path from pre-grasp pose shown in Figure 3 to
a gripper release pose. The robot executes that path until the gripper is in contact with a
supporting surface, and then the gripper opens and releases the object. In natural language
these are specified as “put down the object”.

Each skill is thus an explicit text command performed by a low-level policy for that skill. For
object above, we use the objects shown in Figure 3 placed in random configurations at locations
throughout the scene (e.g., coke can, water bottle, jalapeno chips, apple, sponge, etc.). These objects
can be placed in random configurations at locations throughout the scene. For location above, we
consider several named locations with known positions shown in Figure 3 (e.g., table, trash can,
etc.). This results in skills such as the following:

20

• “Pick up the coke”, “pick up the 7up”, “pick up the apple”, “pick up the sponge”, etc. Note
that each is different for different objects and this distinction is learned through demonstra-
tion data.

• “Go to the trash can”, “go to the table”, etc.
• “Place the coke”, “place the 7up”, etc.

Recall that we wish to find the affordance function p(cπ|s, `π), which indicates the probability of
c-ompleting the skill with description `π successfully from state s. Our learned policies produce a Q-
function, Qπ(s, a). Given Qπ(s, a) with action a and state s, value v(s) = maxaQ

π(s, a) is found
through optimization via the cross entropy method, similar to MT-Opt. For brevity below we refer to
the value functions by their skill-text description `π as v`π and the affordance function as paffordance

`π
.

Furthermore, SayCan enforces logic that if a skill that has already been completed and the reward
received (e.g., navigating to the table the robot is already in front of) then it should not be performed.
Due to artifacts of training and each implementation, the value functions require calibration to be
directly applied as a probability. The parameters used for calibration are determined empirically. In
practice we found this calibration fairly robust and straightforward and that the combination of the
LLM and affordance function complement each other to reduce errors. For picking for instance, we
see when an object is not present or when the robot is navigating, we find a consistent minimum
value, while if the object is present the value rises quickly when the object is able to be picked, and
peak consistently when the object is picked. For navigation, we set this value so that it is calibrated
to the size of the scene.

• Pick. We find the trained value functions generally have a minimum value for when a skill
is not possible and a maximum when the skill is successful and thus we normalize the value
function to get a affordance function with

paffordance
pick = clamp(

vpick − vpick
min

vpick
max − vpick

min

, 0, 1),where vpick
max = 0.5, vpick

min = 0.2.

• Go to. The affordance function of go to skills are based on the distance d (in meters) to the
location. We use

paffordance
goto = clamp(

dgoto
max − dgoto

dgoto
max − dgoto

min

, 0, 1),where dgoto
max = 100, dgoto

min = 0.

• Place. We assume place is always possible, paffordance
place = 1.0, since we find language is

sufficient to understand place is only possible after a pick. In the future work having an
affordance function module for place could further improve the performance of SayCan.

• Terminate. We give terminate a small affordance value, to make sure the planning process
terminates when there is no feasible skills to choose from. paffordance

terminate = 0.1.

D.3 LLM Size

SayCan is able to improve with improved language models. The LLM used herein was PaLM [11],
a 540B parameter model. In this section we ablate over 8B, 62B, and 540B parameter models
as well as the 137B parameter FLAN model [86] which is finetuned on a “instruction answering”
dataset. Table 3 shows each model on the generative problem. Table 4 shows PaLM 540B and
FLAN on robot. We find that generally larger models perform better, though the difference between
the 62B and 540B model is small. Results in other works, such as Chain of Thought Prompting [20],
indicate this difference may be more pronounced on more challenging problems. We also find that
PaLM outperforms FLAN. Though FLAN was finetuned on instruction answering, the broader and
improved dataset for PaLM may make up for this difference in training.

D.4 LLM Prompt

The LLM uses prompt engineering and a strict response structure to score skills. But, as SayCan
as a whole requires affordances from a world embodiment, it is not straightforward to optimize this
structure and tune parameters quickly. Thus we built a language-based simulator which, given a
query and a solution sequence of skills, outputs affordances consistent with the query and solution.
It also generates consistent distractor affordances to ensure robustness. The simulator then verifies
that SayCan recovers the correct solution and tests how confident SayCan is in the correct solutions.

21

Family Num PaLM 540B [11] PaLM 62B PaLM 8B FLAN 137B [86]
NL Single 15 87% 73% 20% 40%
NL Nouns 15 53% 47% 20% 40%
NL Verbs 15 93% 100% 60% 87%
Structured 15 100% 100% 67% 73%

Embodiment 11 36% 27% 27% 0%
Crowd Sourced 15 80% 73% 47% 47%
Long-Horizon 15 60% 73% 20% 0%

Total 101 74% 72% 38% 43%

Table 3: Ablations over the size of the LLM. Compared only with the generative outputs (no value function)
with USE embeddings [8].

PaLM [11] FLAN [86]
Family Num Plan Execute Plan Execute
NL Single 15 100% 100% 67% 67%
NL Nouns 15 67% 47% 60% 53%
NL Verbs 15 100% 93% 80% 67%
Structured 15 93% 87% 100% 87%
Embodiment 11 64% 55% 64% 55%
Crowd Sourced 15 87% 87% 73% 67%
Long-Horizon 15 73% 47% 47% 33%
Total 101 84% 74% 70% 61%

Table 4: Success rates of instructions by family. SayCan achieves a planning success rate of 84% and execution
success rate of 74% with PaLM and FLAN achieves 70% planning and 61% success. SayCan scales and
improves with improved LLMs.

In Table 5 we test the effect of the number of examples in the prompt on the planning success rate
in the language-based simulator (over 50 demonstrative instructions). We show a success rate with
and without requiring the plan to terminate; without examples we found the LLM was unlikely
to issue a “done” phase. With no examples SayCan is able to successfully plan 54% without the
done condition, but only 10% with the done condition. Though it makes mistakes, clearly some
information is already imbued within the language model. It is able to correctly solve “Can I have a
redbull please?” and “Move the chips bag from the table to the counter.”. With only one example the
LLM quickly improves in both planning rates, though still fails to terminate the plan occasionally.
After only four examples the LLM is performant, planning 82% of the queries correctly, though the
remaining errors are largely within a single instruction family: Long-Horizon. Finally, the prompt
used in this work, Listing 1, involved 17 examples and recovered 88% of the solutions correctly.

We note here briefly a few lessons learned in prompt engineering and structuring the final prompt.
Providing explicit numbers between steps (e.g., 1., 2., instead of combining skills with “and then”
or other phrases) improved performance, as did breaking each step into a separate line (e.g. adding
a “\n” between steps). Examples which overly include objects used in the actual planning tend to
bias results to those objects (e.g., if every example is about apples then the apple scoring will be off
in planning). Phrasing of the natural language names of skills and objects is important due to the
auto-regressive nature of the LLM scoring – skills and objects should be naturally named and errors
such as misspellings or mismatches in “a” vs “an” can be problematic. Notably, since user generated
instructions are taken as given such fragility is not issues for the input, allowing a robustness to user
queries. For our language model, PaLM [11], structuring the interaction as dialog was both more
natural and performant. Although dialog is used as prompt, the model generalized to imperative
sentences at deployment time.

22

Num Examples Require Termination No Termination Required
0 10% 52%
1 64% 74%
2 68% 76%
4 82% 84%
8 80% 80%

Full Prompt (17) 88% 88%

Table 5: Number of prompt engineering examples versus planning rate (when requiring the plan to know when
to terminate, e.g., issue a “done” command, or not).

Listing 1: Prompt in SayCan.
Robot: Hi there, I’m a robot operating in an office kitchen.
Robot: You can ask me to do various tasks and I’ll tell you the sequence of actions I would do to

accomplish your task.
Human: How would you hold the snickers?
Robot: 1. pick up the snickers, 2. done.
Human: How would you put the trailmix here?
Robot: 1. put down the trailmix, 2. done.
Human: How would you put a water bottle and an oatmeal next to the microwave?
Robot: 1. find a water bottle, 2. pick up the water bottle, 3. go to microwave, 4. put down the water

bottle, 5. find an oatmeal, 6. pick up the oatmeal, 7. go to the microwave, 8. put down the oatmeal,
9. done.

Human: How would you put a grapefruit from the table into the bowl?
Robot: 1. find a grapefruit, 2. pick up the grapefruit, 3. go to the bowl, 4. put down the grapefruit, 5.

done.
Human: How would you get a sponge from the counter and put it in the sink?
Robot: 1. find a sponge, 2. pick up the sponge, 3. go to the sink, 4. put down the sponge, 5. done.
Human: How would you move the water bottle from the table to the counter?
Robot: 1. find a water bottle, 2. pick up the water bottle, 3. go to the counter, 4. put down the water

bottle, 5. done.
Human: How would you bring me some snacks?
Robot: 1. find a twix, 2. pick up the twix, 3. bring it to you, 4. put down the twix, 5. find an dried

fruit, 6. pick up the dried fruit, 7. bring it to you, 8. put down the dried fruit, 9. done.
Human: How would you bring me an orange?
Robot: 1. find an orange, 2. pick up the orange, 3. bring it to you, 4. put down the orange, 5. done.
Human: How would you deliver a can of coke to me?
Robot: 1. find a coke can, 2. pick up the coke can, 3. bring it to you, 4. put down the coke can, 5. done.
Human: I finished my drink, can you throw it away and bring me a mountain dew?
Robot: 1. find a sprite can, 2. pick up the sprite can, 3. go to the trash can, 4. put down the sprite can

, 5. find a mountain dew can, 6. pick up the mountain dew can, 7. bring it to you, 8. put down the
mountain dew can, 9. done.

Human: How would you let go of the banana?
Robot: 1. put down the banana, 2. done.
Human: How would you put the grapes in the bowl and then move the cheese to the table?
Robot: 1. find the grapes, 2. pick up the grapes, 3. go to the bowl, 4. put down the grapes, 5. pick up

the cheese, 6. go to the table, 7. put down the cheese, 8. tell you I’m done.
Human: How would you pick up the peanuts?
Robot: 1. pick up the peanuts, 2. done.
Human: How would you bring me the peanuts?
Robot: 1. pick up the peanuts, 2. bring it to you, 3. put down the peanuts, 4. done.
Human: How would you throw away a coffee cup?
Robot: 1. find a coffee cup, 2. pick up the coffee cup, 3. go to trash can, 4. put down the coffee cup, 5.

done.
Human: How would you place a knife and a banana to the table?
Robot: 1. find a knife, 2. pick up the knife, 3. go to the table, 4. put down the knife, 5. find a banana,

6. pick up the banana, 7. go to the table, 8. put down the banana, 9. done.

E Experiments
E.1 Tasks

Below we include every instruction run, which environment it was run in, and its planning and
execution success rate. Table 5 shows all instructions as broken down by instruction family, listed
below and initially defined in Section 4 Table 1.

• Natural Language (NL) Single Primitive. Given a natural language command corre-
sponding to performing a single primitive, can SayCan recover that primitive skill and
terminate?

• NL Noun. Given a natural language query that replaces a noun (typically an object or
location) with a synonym, can SayCan execute the appropriate sequence?

23

• NL Verbs. Given a natural language query that replaces a verb (typically an action) with a
synonym, can SayCan execute an appropriate sequence?

• Structured Language. Given a structure language query that mirrors the NL Verbs and
spells out the sequence of commands, how well can SayCan plan compared to NL Verbs?
This acts as an ablation to see the performance loss of understanding a natural language
query over an explicit solution.

• Embodiment. Given a query with different environment and robot states, can SayCan still
execute at a high rate? This tests the performance of SayCan’s affordance model and the
LLM’s ability to reason within it.

• Crowd-Sourced. These queries were crowd sourced from Mechanical Turk by giving
humans a description of what occurred (e.g., an apple was moved in front of you) and
asking them what they would ask the robot to do. They were also crowd sourced by asking
humans in a real office kitchen to command the robot to perform tasks (given knowledge
of the robot’s abilities). This tests SayCan’s performance with natural requests.

• Long-Horizon. These challenging queries require SayCan to reason over temporally ex-
tended instructions to investigate how well it scales to such regimes.

E.2 Adding Skills: Drawer Manipulation

In order to support drawer manipulation we added another category of skills in SayCan.

• Drawer Manipulation. For drawer manipulation we use the learned policies in Ap-
pendix C and Section 3 with actions from BC and value functions from heuristics (If the
robot is next to the drawer, all drawer tasks are possible). In natural language these are
specified as “open the drawer”, “close the drawer” and “put the object in the drawer”.

A few drawer-specific prompts also need to be added to teach the robot how to chain the drawer
skills together. The prompts are shown in Listing 2.

Listing 2: Drawer Prompt in SayCan.
Human: open the drawer
Robot: 1. go to the drawers, 2. open the drawer, 3. done.
Human: restock orange juice into the drawer
Robot: 1. go to the drawers, 2. open the drawer, 3. put orange juice in the drawer, 4. close the drawer,

5. done.
Human: restock two bottles of orange juice into the drawer
Robot: 1. go to the drawers, 2. open the drawer, 3. put orange juice in the drawer, 4. put orange juice in

the drawer, 5. close the drawer, 6. done.

The results of the drawer tasks are shown in Table. 6. SayCan achieved an overall planning success
rate of 100% and execution success rate of 33%. The main failure cases are manipulation failures,

Instruction
How would you pick up the coke can
How would you put the coke can in the your gripper
How would you grasp the coke can
How would you hold onto the coke can
How would you lift and hold the coke can up
How would you put the coke can down
How would you place the coke can on the table
How would you let go of the coke can
How would you release the coke can
How would you place the coke can
How would you move to the table
How would you go to the table
How would you park at the table
How would you come to the table
How would you navigate to the table

(a) NL Single Primitive

24

Instruction
How would you throw away the apple
How would you bring me a sponge?
How would you bring me a coke can
How would you grab me an apple
How would you grab me a 7up from the table
How would you deliver the red bull to the close counter
How would you throw away the jalapeno chips
How would you restock the rice chips on the far counter
How would you recycle the coke can
How would you throw away the water bottle
How would you bring me something hydrating
How would you put the apple back on the far counter
How would you recycle the 7up
How would you throw away jalapeno chips
How would you compost the apple

(b) NL Verb

Instruction
How would you bring me lime drink
How would you bring me something to clean the kitchen with
How would you bring me something to eat
How would you put the grapefruit drink on the close counter
How would you move the sugary drink to the far counter
How would you move something with caffine from the table to the close counter
How would you bring me an energy bar
How would you bring me something to quench my thirst
How would you bring me a fruit
How would you bring me a fruit from the close counter
How would you bring me something that is not a fruit from the close counter
How would you bring me a soda from the table
How would you bring me a soda
How would you bring me a bag of chips from close counter
How would you bring me a snack

(c) NL Nouns

Instruction
How would you pick up the apple and move it to the trash
How would you pick up the sponge and bring it to me
How would you pick up the coke can and bring it to me
How would you pick up the apple and bring it to me
How would you pick up the 7up and bring it to me
How would you pick up the redbull and move it to the close counter
How would you pick up the jalapeno chips and move it to the trash
How would you pick up the rice chips and move it to the far counter
How would you pick up the coke can and move it to the trash
How would you pick up the water bottle and move it to the trash
How would you pick up the grapefruit soda and bring it to me
How would you pick up the apple and move it to the far counter
How would you pick up the 7up and move it to the trash
How would you pick up the jalepeno chips and move it to the trash
How would you pick up the apple and move it to the trash

(d) Structured Language

25

Instruction
How would you put the coke can down on the far counter(with operator)
How would you put the coke can down on the far counter(at table)
How would you put the coke can down on the far counter(at table with coke can in hand)
How would you put the coke can down on the far counter(at far counter with coke can in
hand)
How would you put the sponge on the close counter(with operator)
How would you put the sponge on the close counter(at far counter)
How would you put the sponge on the close counter(at far counter with sponge in hand)
How would you put the sponge on the close counter(at close counter with coke can in
hand)
How would you pick up the drink from the far counter
I left something on the table, can you throw it away?
I left something on the table or the counter, can you bring it to me?

(e) Embodiment

Instruction
I opened a pepsi earlier. How would you bring me an open can?
I spilled my coke, can you bring me a replacement?
I spilled my coke, can you bring me something to clean it up?
I accidentally dropped that jalapeno chip bag after eating it. Would you mind throwing it
away?
I like fruits, can you bring me something I’d like?
There is a close counter, far counter, and table. How would you visit all the locations?
There is a close counter, trash can, and table. How would you visit all the locations?
Redbull is my favorite drink, can I have one please?
Would you bring me a coke can?
Please, move the pepsi to the close counter
Please, move the ppsi(intentional typo) to the close cuonter
Can you move the coke can to the far counter?
Can you move coke can to far counter?
Would you throw away the bag of chips for me?
Would you throw away the bag of chpis(intentional typo) for me?

(f) Crowd-Sourced

Instruction
How would you put an energy bar and water bottle on the table
How would you bring me a lime soda and a bag of chips
Can you throw away the apple and bring me a coke
How would you bring me a 7up can and a tea?
How would throw away all the items on the table?
How would you move an multigrain chips to the table and an apple to the far counter?
How would you move the lime soda, the sponge, and the water bottle to the table?
How would you bring me two sodas?
How would you move three cokes to the trash can?
How would you throw away two cokes?
How would you bring me two different sodas?
How would you bring me an apple, a coke, and water bottle?
I spilled my coke on the table, how would you throw it away and then bring me something
to help clean?
I just worked out, can you bring me a drink and a snack to recover?
How would you bring me a fruit, a soda, and a bag of chips for lunch

(g) Long-Horizon

Table 5: List of all instructions We evaluate the algorithm on 101 instructions on 2 scenes. The metrics and
success definitions can be found in Sec. 4.

26

where the robot fails to open the drawer wide enough to put objects in it, or fails to completely close
the drawer.

Instruction Plan rate Execution
rate

restock the coke and pepsi into the drawer 1.0 0.0
hide the 7up in the drawer 1.0 0.83
restock the coke into the drawer 1.0 0.17

Table 6: Drawer tasks

E.3 Chain of Thought Reasoning

One limitation of vanilla SayCan is that it doesn’t handle tasks that involves negation. This is
inherited from underline language models, and studied in the NLP community [14]. However, we
found by using chain-of-thought prompting [20] we can improve SayCan on this front.

For chain-of-thought prompting-based SayCan, we need to modify the prompt to include a part
called “Explanation”. We also slightly change how we use the language model. Instead of directly
using the scoring interface to rank possible options, we first use the generative decoding of LLM to
create an explanation, and then use the scoring mode, by including the explanation into the prompt.
The full prompt is shown in Listing 3.

Listing 3: Chain-of-thought prompt in SayCan.
Robot: Hi there, I’m a robot operating in an office kitchen.
You can ask me to do various tasks and I’ll tell you the sequence of actions I would do to accomplish your

task.
The following objects are in the scene: 7up, apple, tea, multigrain chips, kettle chips, jalapeno chips,

rice chips, coke, grapefruit soda, pepsi, redbull, energy bar, lime soda, sponge, and water bottle.
The following locations are in the scene: close counter, far counter, table, you, trash, bowl.
Human: Hold the sponge
Explanation: The user has asked for a single skill, I will just pick up the sponge.
Robot: 1. pick up the sponge, 2. done.
Human: Put the kettle chips here
Explanation: The user has asked for a type of chips, I will bring those to them.
Robot: 1. put down the kettle chips, 2. done.
Human: Move the grapefruit drink from the table to the close counter
Explanation: The user has asked me to move the grapefruit drink to the counter.
Robot: 1. find a grapefruit soda, 2. pick up the grapefruit soda, 3. go to the counter, 4. put down the

grapefruit soda, 5. done.
Human: Bring me some snacks
Explanation: The user has asked for snacks, I will bring jalapeno chips and an apple.
Robot: 1. find a jalapeno chips, 2. pick up the jalapeno chips, 3. bring it to you, 4. put down the

jalapeno chips, 5. find an apple, 6. pick up the apple, 7. bring it to you, 8. put down the apple, 9.
done.

Human: Bring me something that isn’t a fruit
Explanation: The user has asked for something food that isn’t an fruit, I will bring an energy bar.
Robot: 1. find an energy bar, 2. pick up the energy bar, 3. bring it to you, 4. put down the energy bar,

5. done.
Human: Put the rice chips in the bowl and then move the tea to the table
Explanation: The user has asked me to do two tasks, I will do one and then the other.
Robot: 1. find the rice chips, 2. pick up the rice chips, 3. go to the bowl, 4. put down the rice chips,

5. pick up the tea, 6. go to the table, 7. put down the tea, 8. done.
Human: Throw away a redbull
Explanation: The user has asked me to throw away the redbull can, I will move it to the trash.
Robot: 1. find a redbull, 2. pick up the redbull, 3. go to trash, 4. put down the redbull, 5. done.

A few successful rollouts of the model at evaluation time is shown in Listing 4. As we can see, with
chain of thought prompting, the model can handle negations and tasks that require reasoning.

27

Listing 4: Chain-of-thought planning rollout with SayCan.
Human: Can you bring a drink without caffeine but has some fruit flavor?
Explanation: The user has asked for a drink without caffeine but has some fruit flavor, I will bring the

lime soda.
Robot: 1. find a lime soda, 2. pick up the lime soda, 3. bring it to you, 4. done

Human: Bring me chips that taste spicy
Explanation: The user has asked for chips that taste spicy, I will bring the Jalapeno chips.
Robot: 1. find the jalapeno chips, 2. pick up the jalapeno chips, 3. bring it to you, 4. put down the

jalapeno chips, 5.done

Human: I do not like pepsi, bring me something similar
Explanation: The user has asked for something similar to coke, I will bring coke
Robot: 1. find a coke, 2. pick up the coke, 3. bring it to you, 4. put down the coke, 5. done

Human: The snack is too small, bring me something more filling
Explanation: The user has asked for a snack that is more filling, I will bring the multigrain chips
Robot: 1. find the multigrain chips, 2. pick up the multigrain chips, 3. bring it to you, 4. put down the

multigrain chips, 5. done

E.4 Multilingual Queries

Since the underlying LM we used [11] has been trained on multilingual corpora, SayCan can handle
multilingual queries out of the box. The results of SayCan on multilingual queries are summarized
in Table. 7, and there is almost no performance drop on planning success rate when chaning the
queries from English to Chinese, French and Spanish.

Instruction Plan rate
bring me a can of coke 1.0
throw away the coke can 1.0
I spilled my coke, can you bring me something to help
clean

1.0

拿一罐可乐给我 1.0
扔掉可乐罐 1.0
我的可乐洒了，你能给我拿点东西来帮忙打扫吗 1.0
apporte moi une canette de coca 1.0
jeter la canette de coca 1.0
J’ai renversé mon coca, peux-tu m’apporter quelque
chose pour m’aider à nettoyer

0.0

tráeme una lata de coca cola 1.0
tirar la lata de coca cola 1.0
Derramé mi coca cola, ¿puedes traerme algo para ayu-
dar a limpiar

1.0

Table 7: Multilingual queries plan success rate. instruction 4-12 are the Chinese, French and Spanish translation
of first 3 queries.

E.5 Additional Results

Additional results are shown in Figure 12 and Figure 13 and some failure cases in Figure 14. For
videos of the rollouts, please visit the anonymous website https://saycan-corl.github.io

F Open Source Environment
We have open sourced an implementation of SayCan in a Google Colab notebook for a tabletop
robot. Code can be found here. The environment is shown in Figure 16 and is a tabletop with a UR5
robot and randomly generated sets of colored blocks and bowls. It is implemented with a ViLD
object detector for affordances [90] and GPT-3 as the large language model [2]. Steps are output in
the form robot.pick and place(object, location), leveraging the ability of LLMs to output
code structures. The policy is implemented with CLIPort [48], which is trained to output a pick and
place location.

28

https://saycan-corl.github.io
https://github.com/google-research/google-research/blob/master/saycan/SayCan-Robot-Pick-Place.ipynb

+XPDQ��,�VSLOOHG�
P\�FRNH��FDQ�\RX�
EULQJ�PH�D�
UHSODFHPHQW"

5RERW��,�ZRXOG�
���)LQG�D�FRNH�FDQ�
���3LFN�XS�WKH�FRNH�
FDQ�
���%ULQJ�LW�WR�\RX�
���'RQH

(a)

+XPDQ��,�VSLOOHG�
P\�FRNH��FDQ�\RX�
EULQJ�PH�
VRPHWKLQJ�WR�FOHDQ�
LW�XS"

5RERW��,�ZRXOG�
���)LQG�D�VSRQJH�
���3LFN�XS�WKH�
VSRQJH
���%ULQJ�LW�WR�\RX�
���'RQH

(b)

+XPDQ��+RZ�
ZRXOG�\RX�EULQJ�
PH�D�IUXLW"

5RERW��,�ZRXOG�
���)LQG�DQ�DSSOH
���3LFN�XS�WKH�
DSSOH
���%ULQJ�LW�WR�\RX�
���'RQH

(c)

+XPDQ��+RZ�ZRXOG�
\RX�SXW�WKH�VSRQJH�
RQ�WKH�FORVH�
FRXQWHU"

5RERW��,�ZRXOG�
���)LQG�D�VSRQJH
���3LFN�XS�WKH�
VSRQJH
���*R�WR�FORVH�
FRXQWHU
���3XW�GRZQ�WKH�
VSRQJH
���'RQH

(d)

Figure 12: Visualization of the decision making process of SayCan shows its interpretability and successful
temporally extended execution, where the top combined score chooses the correct skill.

29

Human: how would you
bring me two different
sodas?

Robot: I would
1. Find a coke can
2. Pick up the coke can
3. Bring it to you
4. Find a pepsi can
5 Pick up the pepsi can
6. Bring it to you
7. Done

(a) In this long-horizon task, the language model gives high score to the two sodas. After the coke is delivered, the language model scores
pepsi higher. The affordance rating overcomes potential early termination after the first can has been delivered.

Human: I spilled my coke on
the table, how would you throw
it away and then bring me
something to help clean?

Robot: I would
1. Find a coke can
2. Pick up the coke can
3. Go to the trash can
4. Put down the coke can
5. Find a sponge
6 Pick up the sponge
7. Go to the table
8. Put down the sponge
9. Done

(b) In this task, the model completes a 9-step plan. It narrowly avoids an early termination at step 5.

Figure 13: Long horizon sequences, see the video on our website say-can.github.io for more.

30

say-can.github.io

+XPDQ��+RZ�ZRXOG�
\RX�EULQJ�PH�D�EDJ�
RI�FKLSV�IURP�FORVH�
FRXQWHU"

5RERW��,�ZRXOG�
���*R�WR�WKH�FORVH�
FRXQWHU
���*R�WR�WKH�IDU�
FRXQWHU
���*R�WR�WKH�FORVH�
FRXQWHU
���*R�WR�WKH�IDU�
FRXQWHU�«

(a) The affordance model fails to identify either bag of chips as pickable, though the language model approaches the counter twice.

+XPDQ��+RZ�ZRXOG�
\RX�EULQJ�PH�
VRPHWKLQJ�WR�FOHDQ�
WKH�NLWFKHQ�ZLWK"

5RERW��,�ZRXOG�
���)LQG�D�VSRQJH
���3XW�GRZQ�WKH�
VSRQJH
���%ULQJ�LW�WR�\RX
���'RQH

(b) The affordance model fails to identify the sponge as pickable.

+XPDQ��+RZ�ZRXOG�
\RX�EULQJ�PH�D�OLPH�
VRGD�DQG�D�EDJ�RI�
FKLSV"

5RERW��,�ZRXOG�
���)LQG�D�OLPH�VRGD
���3LFN�XS�WKH�OLPH�
VRGD
���%ULQJ�LW�WR�\RX
���'RQH

(c) Language model terminates a long-horizon task prematurely.

Figure 14: Failure cases. The planning success rate was 84%. Of the errors, 65% were a result of an LLM error
and 35% were affordance errors.

31

Figure 15: A sequence of the robot taking rice chips from the drawers. Note the robot only has one arm, so it
needs to plan a long sequence to first take rice chips out of drawer and place on the counter, and then pick it up
again after closing the drawer.

Task: move all the blocks into
their matching colored bowls.
Step 1.
robot.pick and place("blue
block", "blue bowl")
Step 2.
robot.pick and place("green
block", "green bowl")
Step 3.
robot.pick and place("yellow
block", "yellow bowl")

Figure 16: We have open sourced a Colab with a tabletop environment, a UR5 robot, and CLIPort-based
policy here: https://github.com/google-research/google-research/blob/master/saycan/
SayCan-Robot-Pick-Place.ipynb.

32

https://github.com/google-research/google-research/blob/master/saycan/SayCan-Robot-Pick-Place.ipynb
https://github.com/google-research/google-research/blob/master/saycan/SayCan-Robot-Pick-Place.ipynb

	Introduction
	SayCan: Do As I Can, Not As I Say
	Implementing SayCan in a Robotic System
	Experimental Evaluation
	Results
	Case Study of New Capabilities

	Related Work
	Conclusions and Limitations
	Contributions
	By Type
	By Person
	Corresponding Emails:

	Background
	RL and BC Policies
	RL and BC Policy Architecture
	RL and BC Policy Training
	RL and BC Policy Evaluations

	SayCan Details and Parameters
	SayCan Details
	Skills, Policies, and Affordance Functions
	LLM Size
	LLM Prompt

	Experiments
	Tasks
	Adding Skills: Drawer Manipulation
	Chain of Thought Reasoning
	Multilingual Queries
	Additional Results

	Open Source Environment

