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Abstract

Disagreement in human labeling is ubiquitous,
and can be captured in human judgment dis-
tributions (HJDs). Recent research has shown
that explanations provide valuable information
for understanding human label variation (HLV)
and large language models (LLMs) can approx-
imate HJD from a few human-provided label-
explanation pairs. However, collecting explana-
tions for every label is still time-consuming.
This paper examines whether LLMs can be
used to replace humans in generating expla-
nations for approximating HJD. Specifically,
we use LLMs as annotators to generate model
explanations for a few given human labels. We
test ways to obtain and combine these label-
explanations with the goal to approximate hu-
man judgment distribution. We further com-
pare the resulting human with model-generated
explanations, and test automatic and human
explanation selection. Our experiments show
that LLM explanations are promising for NLI:
to estimate HJD, generated explanations yield
comparable results to human’s when provided
with human labels. Importantly, our results gen-
eralize from datasets with human explanations
to i) datasets where they are not available and
ii) challenging out-of-distribution test sets.

1 Introduction

Human judgment distribution (HJD, Pavlick and
Kwiatkowski 2019; Nie et al. 2020b; Chen et al.
2024) refers to the distribution of labels assigned to
a specific instance by a large group of human anno-
tators, capturing human label variation (HLV, Plank
2022). It provides rich information related to uncer-
tainty and plausible multi-choices that should not
be discarded as noise (e.g. Aroyo and Welty, 2015;
Plank et al., 2014; Uma et al., 2021). For example,
concerning the same premise-hypothesis pair in
the Natural Language Inference (NLI, Dagan et al.
2005; Bowman et al. 2015; Williams et al. 2018;
Manning 2006), different coders may perceive the
relationship differently.
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Figure 1: Recent research has shown that LLMs can
approximate human judgment distribution (HJD) in nat-
ural language inference (NLI) with the help of human
explanations, as shown in the upper part. While human
explanations are still relatively expensive and scarce
in most datasets, we ask in the lower part: Can LLMs
provide reasonable generated explanations for different
NLI labels to approximate HID?

Recent research proposed using Large Language
Models (LLMs) as annotators to reduce annota-
tion cost (Tan et al., 2024; He et al., 2024). Some
works directly solicited human judgment distribu-
tion (Lee et al., 2023; Madaan et al., 2024) with
mixed results (Pavlovic and Poesio, 2024b). In
contrast, Chen et al. (2024) used a few labels and
human-provided explanations from Weber-Genzel
et al. 2024) to help Llama (Dubey et al., 2024) and
Mixtral (Jiang et al., 2024) to effectively approxi-
mate HJD in ChaosNLI, the latter crowd-sourced
100 annotations for each NLI instance, establishing
a relatively stable HID (Nie et al., 2020b). They
find that the resulting LLM-based model judgment
distributions (MJDs) closely align with HID. While
this approach avoids the need for large-scale hu-
man annotations, it still requires human-given ex-
planations that are far more costly to obtain than
annotations of NLI labels alone.

Recent studies have found that LLMs can effec-
tively provide explanations for tasks such as rea-
soning, sentiment analysis, and even business pro-
cesses (Li et al., 2022; Huang et al., 2023; Fahland
et al., 2024). We instead study automatic expla-



nation generation for the NLI task. In this paper,
we investigate if LLMs could provide reasonable
explanations for NLI instance labels, and whether
the generated explanations are of sufficient qual-
ity to replace costly human-provided explanations.
Our key idea is shown in Figure 1. Specifically,
we let LLMs generate model explanations support-
ing each NLI label, respectively. We first exam-
ine if LLMs with diverse model explanations but
without multiple human labels are good enough
in approximating HJD. The result is positive but
does still fall short of the performance of LLMs
with human explanations. We then consider using
a few human labels to guide the selection of model
explanations to help generate MJDs. MJDs from
LLM and model explanations result in comparable
scores with MJDs from LLM and human explana-
tions —"“A rose by any other name would smell as
sweet.”! Furthermore, we extend this method to
datasets without explanations, showing our method
generalizes to this more common scenario.
Our findings are:

* Model explanations are comparable to human
explanations in approximating HID on NLI,
and can be scaled up from a few annotations
of datasets without explanations.

* Results on the out-of-domain ANLI dataset
show that modeling HLV information can im-
prove NLI classifiers’ performance.

* A human annotation study and ablation show
that explanation variability may serve as a
potential indicator for evaluating HLV, and
the relevancy of explanations is crucial.

2 Generating Model Explanation

Collecting human explanations for an annotation
decision is labor-intensive and missing in most Nat-
ural Language Inference (NLI) datasets. In this pa-
per, we intend to examine whether Large Language
Models (LLMs) can replace humans in generat-
ing these explanations. But how do we best query
and select resulting model explanations? In this
section, we detail the generation of model explana-
tions, the selection of label-free and label-guided
explanations, as illustrated in Figure 2.

'A quote from Romeo and Juliet used to metaphorically
argue the intrinsic qualities or nature of something remain the
same, regardless of its name or origin.

{ NLI Instance I Model Explanations I Explanation Selection J

Label-Free
E “{E,N,C}"
N | | LM (" Label-Guided )
[E.EENLC]
——
S N I J

Figure 2: Illustration of the process of generating model
explanation using longest explanations. The label-free
scenario uniformly selects one explanation per {E, N,
C} label, whereas the label-guided approach follows
human NLI labels to select three longest E, one longest
N, and one longest C.

Model Explanation Generation We prompt
LLMs to generate explanations for specific premise
and hypothesis pairs and a given NLI label (see Ta-
ble 6 for details). Since NLI is subject to variation
within the label (Bowman et al., 2015; Jiang et al.,
2023; Weber-Genzel et al., 2024) and multiple an-
notators can agree on the same label for different
reasons, we ask LLMs to list all possible explana-
tions for each NLI label for a given instance. We
next introduce two explanation selection strategies:
label-free and label-guided.

Label-Free Explanation Selection We first im-
plement a baseline strategy, Label-Free Explana-
tion Selection, by using one explanation for each
of the three NLI labels: {Entailment, Neutral,
Contradiction}. This approach constructs three
explanations across the three uniformly distributed
NLI labels. This label-free strategy benchmarks
whether LLMs can approximate HJDs through di-
verse explanations without access to any label an-
notation.

Label-Guided Explanation Selection A few
NLI datasets have addressed the issue of human
label variation (HLV) by including a small num-
ber of label annotations on the same instances, 5
for MNLI (Williams et al., 2018) and 4 for Vari-
Err (Weber-Genzel et al., 2024). Although earlier
usages of these datasets are centered around the
final label aggregated by majority voting, we con-
sider using the small number of human labels as
guidance to help build a combination of model
explanations to approximate HJD. Unlike the label-
free approach, we select explanations based on the
annotated NLI labels for each instance. For ex-



ample, three explanations for Entailment, one for
Neutral, and one for Contradiction are selected
in Figure 2.

Selecting First vs. Longest Explanations Since
LLMs are prompted to exhaustively output expla-
nations for given instances and labels, we propose
two modes for selecting a desired number of ex-
planations: one based on the linear order of LLM
outputs (first) and another based on the length of
the output explanations (longest). For example,
if two annotators have annotated an NLI instance
with Entailment, we select the two longest model
explanations that support Entailment under the
longest mode; or the initial two output Entailment
explanations under the first mode. The first mode
represents the primary preferences of LLMs, par-
ticularly in cases when prompting without explicit
requirements to output all possible explanations.
The longest mode can reveal more information re-
garding the reasoning between the premise and the
hypothesis.> Our experiments reveal that first and
longest modes achieve similar results, cf. §6. Thus,
in the main paper we report performances using
longest explanation(s); results with the first mode
are in the appendix.

3 Can Model Explanations Help LLMs
Approximate HJD as Humans Do?

Our first research question (RQ1) concerns
whether LLM-generated explanations can model
human judgment distribution (HJD) as effectively
as the human-written explanations.

Previously, Chen et al. (2024) introduced the
task of approximating HJD from a few human-
written labels and explanations using the LLM-
based Model Judgment Distribution (MJD) Estima-
tor. We adopt their approach for our experiments
and extend it from datasets that require human-
written explanations to a broader range of datasets
that include only human label annotations and ben-
efit from LLM-generated explanations (§2).

To validate the performance of model-
generated explanations in approximating HJD,
we prompt the MJD Estimator on gold NLI labels
from the VariErr NLI dataset (Weber-Genzel
et al., 2024) and LLM-generated explanations
and first compare the results with those in Chen
et al. (2024) when both labels and explanations

Note that the overall overlap rate between first and longest
explanations are about 18.9%. See Table 10 in Appendix for
detailed statistics.

are human-written. We further experiment on the
overlapping subset of a more widely-used dataset
without explanations, MNLI (Williams et al.,
2018) to show that our methodology generalizes
well to more established datasets. We present our
experimental setups in §3.1, and results in §3.2.

3.1 Experimental Setup

MJD Estimator Following Chen et al. (2024),
we estimate LLM’s MJD through common-
used multiple-choice question answering (MCQA)
prompts (Talmor et al., 2019; Lin et al., 2022;
Hendrycks et al., 2021; Srivastava et al., 2023). We
include in the prompts either (i) only the NLI in-
stance, (ii) labels with human-written explanations,
or (iii) labels with model-generated explanations.
We then use the first-token probability method (San-
turkar et al., 2023; Durmus et al., 2023; Liang et al.,
2023) to obtain MJD. To mitigate prompt bias (e.g.
“A preference” (Dominguez-Olmedo et al., 2023;
Zheng et al., 2024; Tjuatja et al., 2024), length bias
and sequence bias), results reported in the main
paper are averaged over ordering permutations of
labels, explanations, and combinations. See Ap-
pendix B.1 for details.

Datasets ChaosNLI (Nie et al., 2020b) includes
100 crowd-sourced annotations per instance and is
considered gold Human Label Distribution (HJD)
in our experiments. VariErr (Weber-Genzel et al.,
2024), which tackles the explainability of NLI by
asking a few experts to record the explanation
behind each NLI label explicitly, includes 4 la-
bel and explanation annotations per instance on
341 items that overlap with ChaosNLI and MNLI
(Williams et al., 2018). The overlapping subset of
MNLI (Williams et al., 2018) includes 5 label an-
notations per instance but without human-written
explanations. Details in Table 8.

LLMs For both explanation generation and
MIJDs estimation, we utilized two open-source
and one close-source instruction-tuned LLMs:
Llama3-Chat-70b (Dubey et al., 2024), Mixtral-
8x7b-Instruct-v0.1 (Jiang et al., 2024), and GPT-
40 (OpenAl, 2023). We adopt the original chat
templates for all models and set the parameter
do_sample=False in decoding (temperature=0
for GPT-40) to facilitate reproducibility.

Metrics Following Chen et al. (2024), we evalu-
ated the MJDs on instance-level metrics, Kullback-
Leibler (KL) Divergence (Kullback and Leibler,



Distributions Dist. Comparison

| BERT Fine-Tuning Comparison (dev/test) | RoBERTa Fine-Tuning Comparison (dev/test) | Global Metric

KL| JSD| TVD| | KL | CELoss|  Weighted F1 1 | KL | CE Loss | Weighted F11 | D.Corr ¢

Baseline from Human Annotations
ChaosNLI HID 0.000 0.000 0.000 | 0.073/0.077 0.967/0.974 0.645/0.609 | 0.062/0.060 0.933/0.922 0.696 /0.653 1.000
VariErr distribution 3.604 0.282 0.296 | 0.177/0.179 1.279/1.279 0.552/0.522 | 0.166/0.173 1.246/1.261 0.616/0.594 0.688
MNLI distribution 1.242 0281 0.295 | 0.104/0.100 1.062/1.042 0.569/0.555 | 0.101/0.093 1.052/1.020  0.625/0.607 0.795
Model Judgment Distributions
Llama3 0.259 0.262 0.284 | 0.099/0.101 1.045/1.044 0.516/0.487 | 0.094/0.096 1.030/1.031 0.545/0.522 ‘ 0.689
+ human explanations 0.238 0.250 0.269 | 0.098/0.099 1.043/1.039 0.575/0.556 | 0.091/0.092 1.021/1.019 0.641/0.616 0.771
+ model explanations

Label-Free 0295 0278 0.310 | 0.106/0.107 1.066/1.063 0.539/0.533 | 0.103/0.105 1.059/1.058 0.581/0.571 ‘ 0.744

VariErr Label-Guided  0.234  0.247  0.266 | 0.097/0.098 1.041/1.037 0.558/0.544 | 0.089/0.091 1.016/1.014  0.633/0.626 0.760

MNLI Label-Guided ~ 0.242 0251  0.275 | 0.096/0.097 1.037/1.034 0.589/0.580 | 0.090/0.092 1.019/1.018 0.657/0.645 ‘ 0.849
GPT-40 0.265 0263  0.289 | 0.103/0.096 1.059/1.029 0.526/0.517 | 0.093/0.092 1.027/1.018 0.525/0.521 ‘ 0.703
+ human explanations 0.187 0.207 0.223 | 0.093/0.098 1.027/1.036 0.570/0.552 | 0.079/0.080 0.986/0.987 0.617/0.617 0.769
+ model explanations

Label-Free 0252 0242 0.275 | 0.101/0.102 1.052/1.047 0.537/0.545 | 0.157/0.167 1.220/1.244 0.587/0.561 ‘ 0.752

VariErr Label-Guided  0.192  0.209  0.226 | 0.092/0.093 1.026/1.022 0.554/0.551 | 0.088/0.080 1.013/1.008 0.618/0.598 0.761

Table 1: Evaluation results for measuring the closeness of MJD to HID. The arrow points in the better direction.
The bold numbers indicate the best results under the corresponding LLM. See Appendix B.2 for detailed results.

1951), Jensen-Shannon Distance (JSD, Endres and
Schindelin 2003) and Total Variation Distance
(TVD, Devroye and Lugosi 2001) as well as a
global-level metric, Distance Correlation (D.Corr,
Székely et al. 2007). We further used the MJDs
as soft labels to fine-tune smaller language models
using Cross-Entopy (CE) loss, namely, BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019)
and evaluated on remaining ChaosNLI dev/test
sets using KL, Cross-Entropy Loss (CE Loss) and
Weighted F1. The calculation formulas for all met-
rics can be found in the Appendix B.1.

3.2 Results

Table 1 presents our main results. The top panel
shows the distribution comparison and fine-tuning
outcomes on gold human label distributions. We
consider ChaosNLI HJD the ceiling, and the re-
sults of directly using VariErr and MNLI’s multiple
labels are baselines. For the MJD results in the
bottom panel, see the three questions below. We
also visualize the distributions of HID and MJDs in
Figures 3 and 4 following Chen et al. (2024). Con-
sistent with previous observations, Mixtral fails to
capture HLV information from explanations. Fur-
ther results and discussion on Mixtral are provided
in the Appendix B.3.

Can LLMs approximate HJD via diverse model
explanations without access to label annotation?
For model explanations, we first want to explore
whether eliminating human labeling and only en-
tering one model explanation for each of the three
possible classes is enough for LLMs to approxi-
mate the HID. The results show that Label-Free
explanations perform poorly in distance compar-

isons when compared to LLMs, most likely due to
the equal distribution of three labels. However, the
Label-Free method still scores significantly higher
in the fine-tuning comparison and on D.Corr, and
the latter two better reflect practical performance
and global correlation. As the Label-Free perfor-
mance is between LLMs and LLMs with human ex-
planations (including VariErr labels), results show
that model explanations do provide useful HLV
information to allow LLMs to generate better
MJDs. Figure 3d plots the label-free (LF) MJD of
Llama3. Its distribution is relatively smooth, uni-
form, and less centered on particular labels than the
original MJD of Llama3 in Figure 3b. We also visu-
alized the MJIDs from GPT-40. Unlike Llama3, the
original MJD of GPT-40 in Figure 4a is relatively
uniform, and Label-Free model explanations help
move some wrong points upward (in NLI, more
disagreements are found between E-N and N-C, and
fewer are born in E-C, the bottom points in the tri-
angle). This may explain why Label-Free can be
better than LLMs on the fine-tuning comparison
and D.Corr.

Are model explanations comparable to human’s
when helping LL.Ms to approximate HJD? We
take a step back and consider using a few gold hu-
man labels that are easy to obtain for most datasets
but pair them with LLM-generated explanations.
The green rows in Table 1 show these compara-
tive settings, where the only difference is whether
the explanations are human-annotated or LLM-
generated. The results show that the VariErr
Label-Guided model explanation achieves com-
parable results to LLMs with human explana-
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Figure 3: Llama3 Visualization in the ternary plot (Gruber et al., 2024). Each point represents the label distribution
for one NLI instance. From left to right listed ChaosNLI HID (red), Llama3 (blue), Llama3 with human explanations
(blue), Llama3 with Label-Free (LF), Variert/MNLI Label-Guided (LG) model explanations (3 x purple).
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Figure 4: Visualization of MJDs from GPT-40, with hu-
man explanations (2 xblue), with Label-Free and Vari-
Err Label-Guided model explanations (2 x purple).

tions, using the same human labels from VariErr
NLI. The visualizations in Figure 3e and Figure 4d
illustrate that the MJDs of VariErr-guided shows
a distribution similar to human explanations (Fig-
ure 3c of Llama3 and Figure 4b of GPT). More
detailed comparative analysis and ablation experi-
ments are provided in Section 5.

Does our approach extend to NLI datasets that
do not have human-provided explanations? To
investigate the generalizability of our approach,’
we used MNLI-guided explanation generation uti-
lizing the 5 NLI labels for each MNLI instance in
the overlapping NLI data subset.* Table 1 shows
that MNLI-guided achieves the best MJD on F1 for
both BERT and RoBERTa FT, as well as on D.Corr.
Figure 3f visualizes the MJD of MNLI-guided, and
its distribution is more similar to Chaos NLI HJD.
Both are smoother at the upper corner of the tri-
angle than human (Figure 3c) or VariErr-guided
explanations (Figure 3e), and are also more skewed
towards the contradiction side than Label-Free (Fig-
ure 3d) and Llama3 itself (Figure 3b). The com-
parable performance of VariErr and MNLI-guided
explanations to human explanations shows the scal-
ability of our model-generated explanation.

3Considering the experimental cost, we only tested this set-
ting on open-sourced LLMs. Mixtral results in Appendix B.3.
*A preliminary experiment on 59 NLI instances with 5
explanation-label pairs from VariErr found that varying num-
ber of explanations between 3 to 5 does not have much impact.

4 Can Model-Generated Explanations
Enhance Performance on OOD Task?

The overlapping instances in ChaosNLI, VariErr,
and MNLI allow us to compare human-written and
model-generated explanations in HJD estimation
and fine-tuning. Our second research question
(RQ2) is whether the generated MJDs can help
downstream language models solve other difficult
NLI tasks out-of-domain (OOD).

4.1 Experiment Setup

Dataset The ANLI dataset (Nie et al., 2020a) is
a challenging NLI dataset collected by an adversar-
ial procedure. Mechanical Turkers are instructed
to continue writing hypotheses for a given context
and target label until a trained BERT/RoBERTa
model (using MNLI, SNLI, etc.) outputs a wrong
label prediction. This iterative process is conducted
on three rounds (R1-R3) of annotations, and each
round contains different context texts, mainly from
Wikipedia, but R3 includes additional news, fic-
tion, speech, and other contexts. We conduct OOD
evaluation on R1-R3 data of the ANLI test set.

Models Since ANLI is OOD and gold HJD is
inaccessible, we leverage all the fine-tuned BERT
and RoBERTa models from §3 as classifiers and
directly evaluate them on the ANLI test set.

4.2 Results

Results are shown in Table 2. The out-of-the-box
BERT and RoBERTa models perform badly on
ANLI. After fine-tuning on the MNLI training set
via majority label classification, the classifiers im-
proved slightly, similar to results reported in Nie
et al. (2020a) trained on both SNLI and MNLI.
We also evaluate classifiers fine-tuned on
ChaosNLI, VariErr, and MNLI human label dis-
tributions and found that all scores improved com-
pared to earlier distribution-less training. This fur-
ther substantiates the significance of human label



BERT FT Test
RIT R2%

| RoBERTa FT Test
R3t | RIT R2t R3¢

Classifiers

Classifiers without distribution training

Out-of-the-box LM 0.170  0.176 0.197 | 0.167 0.167 0.168
MNLI-FT-LM 0.220 0.269 0.293 | 0.292 0.262 0.257
Classifiers trained on label distributions
ChaosNLI HID 0.268 0.289 0.332 ‘ 0.357 0.331 0.338
VariErr distribution 0302 0.259 0.319 0402 0.311 0.321
MNLI distribution 0229 0.260 0.279 0.317 0275 0.281
Classifiers trained on MJDs
Llama3 0.246  0.276 0.306 ‘ 0.304 0.297 0.304
+ human explanations 0.296 0.289 0.349 0.400 0.330 0.344
+ model explanations
Label-Free 0292 0.295 0.328 ‘ 0314 0.262 0.323
VariErr Label-Guided 0.305 0.285 0.349 0.411 0.324 0.319
MNLI Label-Guided ~ 0.284 0.283 0.321 0.339 0.287 0.307
GPT-40 0.258 0.263 0.295 ‘ 0.309 0.282 0.302
+ human explanations ~ 0.351 0.294 0.332 0.393 0.324 0.325
+ model explanations
Label-Free 0.285 0.283 0.315 ‘ 0.350 0.282 0.310
VariErr Label-Guided  0.341 0.293 0330 0.393 0.324 0.323

Table 2: ANLI test results. Scores reported in the table
are Weighted F1 scores. The bold numbers indicate
the best results under the corresponding LLM. Detailed
results for individual runs as well as Mixtral’s perfor-
mance are elaborated in Appendix C.

distribution in enhancing the robustness and gener-
alization of the model. It is worth noting that classi-
fiers trained with VariErr distribution perform bet-
ter than classifiers trained with MNLI distribution
on all test sets, and even outperform the ChaosNLI
HID in the ROBERTa R1 setting. One hypothesis
could be that the ChaosNLI HJD with 100 anno-
tations, though more informative on the 341 in-
stances, is out-of-distribution and thus less suitable
for modeling label distributions in ANLI. Further-
more, we fine-tuned the classifiers with MJDs from
LLMs. For Llama3, all MJDs with the help of ex-
planations, whether from humans or models, have
improved performance compared to MJDs trained
without explanations, consistent with Table 1.

If we look at the label distribution sources, the re-
sults can be divided into two categories: green from
VariErr and yellow from MNLI. With the help of
explanations, the results of MJDs all exceed the cor-
responding label distributions. Moreover, the green
rows consistently perform better than the yellow
rows for both label distribution and MJDs trained
with explanations. We hypothesize that the quality
of the datasets matters since VariErr is collected
from expert linguists whereas MNLI from crowd
workers. Overall, results show that MJDs gener-
ated by our method are robust on OOD datasets
without label distributions or explanations.

S Human versus Model Explanations:
Are They Different and Does It Matter?

In addition to the consistent performance gain of
using model or human explanations for HID esti-
mation, we are interested in delving into the nu-
ances between model and human explanations. We
decompose this goal into two questions (RQ3&4):

* How does the performance of MJDs change
as we gradually replace human explanations
with model explanations?

* Does the content of model explanations matter,
or do the human labels play a decisive role?

Since Llama3 is consistently better compared
to Mixtral and GPT4,> we conduct the following
ablation studies only on Llama3. We start from
MIJDs generated by all human explanations (0%
replacement) and gradually increase the propor-
tion of model explanations by replacing human
explanations with model ones, until all explana-
tions are model-generated (100% replacement).
We then evaluate the performance on different ex-
planation replacement rates. To explore whether
the content of the model explanations matters,
we design a controlled noise replacement exper-
iment where we replace a human-written expla-
nation with an irrelevant model explanation from
another NLI instance but with support for the same
Entailment/Neutral/Contradiction label.

Figure 5 plots the gradual replacement of Vari-
Err’s four human explanations by model or noise
explanations on six metrics (scores in Appendix D).
The key finding is that model and human explana-
tions result in similar performance, while noise
replacement clearly hurts. In more detail, we can
observe that when gradually replacing human ex-
planations with model ones, fluctuations are small
on all metrics compared to full human explana-
tions. Importantly, noise replacements deteriorate
performances significantly, resulting in remarkably
lower F1 scores and higher distribution divergence.
These results provide further evidence that gener-
ated explanations are a viable alternative to more
costly human-written explanations.

Additionally, we see in Figure 6a that the shape
of MJDs remains similar when gradually replaced
by model explanations. In contrast, in Figure 6b
when replaced by noise, the distribution gradually

3Similarly, Chen et al. (2024) found that Llama3 outper-
formed Mixtral on approximating HID.
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Figure 5: Results for ablation study. The green bars represent the performance of MJDs when replaced by model-
generated explanations on the same instance and label, while the blue bars represent that with noise replacements.
The orange/red dashed line shows the performance of Llama3 with/without full human explanations.

Contradiction — Contradiction Contradiction ~

Contradiction —

Contradiction —

(a) Gradually replaced by model explanations.

Contradiction - Contradiction - - - -

(b) Gradually replaced by noise explanations.

Figure 6: Visualization of gradually replacing human
explanations with model or noise explanations.

Distributions Dist. Comparison ‘ Global Metric
KL| JSD| TVD|| DCor?

VariErr distribution 6.628 0357 0.352 0.907
Llama3 MJD 0.029 0.068 0.088 0.691
+ human explanations 0.000  0.000  0.000 1.000
+ replace model explanations

Label-Free 100% 0.024 0.067 0.088 0.647

VariErr Label-Guided 25%  0.001  0.012  0.015 0.977

VariErr Label-Guided 50%  0.003 0.017  0.022 0.959

VariErr Label-Guided 75%  0.003  0.019  0.024 0.950

VariErr Label-Guided 100% 0.004 0.021  0.027 0.939

Table 3: Results from a human-explanation-centric view.
All MIDs are compared to the MJD in the green row.

loses its shape and gathers in the center. The bar
and ternary plots above agree that the relevant
contents of human or model explanations are
crucial in addition to the guidance of human labels.

Switching to a human-explanation-centric view
All comparisons above treat the ChaosNLI HID as
the comparison target to explore RQ3. It would be
useful to temporarily alter our perspective and treat
the MJD with human explanations as the target,
highlighted in green in Table 3. We observe that on
all metrics, Llama3 without explanation and with
Label-Free are far from MJD with human explana-
tions. Gradually replacing by model explanations
keeps the generated MJDs slightly away from the

centric but remains very similar.® It is worth not-
ing that although VariErr’s label distribution is far
considering traditional instance-level distance com-
parison metrics, it is relatively similar in the global
metric D.Corr. This observation is consistent with
that VariErr distribution performs well in FT com-
parison in Table 1, further corroborating the finding
by Chen et al. (2024) on the suitability of D.Corr
in comparing label distributions.

6 Can Human Preference Lead to Better
Explanation Selection?

As illustrated in §2, we adopted two intuitive strate-
gies to select model explanations: first and longest.
Across all experiments there is no significant dif-
ference in the results obtained from the two modes
(first results in Appendix). To manually assess the
quality of these model explanations, we recruited a
human annotator to validate 1,581 Llama-generated
explanations on 100 NLI instances. Two questions
were asked for each model explanation: (1) Does
the model explanation faithfully describe the mean-
ings of the premise and hypothesis (yes/no)? and
(2) Does the explanation bring additional relevant
information to support a reasonable NLI Label
(ves/no)? If yes, what is the label (E/N/C)? The first
question allows the annotator to filter out model
explanations including factual errors or hallucina-
tions. The second question asks for the relevance
and logical reasoning of the model explanation, but
depending on individuals’ world knowledge, it may
reflect the annotator’s preference. When an anno-
tator classifies a model explanation as reasonable,

®We examine the similarities between model/human ex-
planations folloing Giulianelli et al. (2023) (Table 17). Our
observation mirrors theirs in that model explanations differ
moderately from human explanations regarding lexicon, syn-
tax, and semantics. Nevertheless, LLMs still found a way to
obtain comparable information for modeling HJD.



Distributions Dist. Comparison

| BERT Fine-Tuning Comparison(dev/test) | RoBERTa Fine-Tuning Comparison(dev/test) | Global Metric

KL|] JSD|] TVD/] ‘ KL | CELoss |  Weighted F1 1 ‘ KL | CE Loss | Weighted F1 1 ‘ D.Corr 1

Llama3 0.258 0.261  0.286 | 0.092/0.093 1.024/1.020 0.514/0.471 | 0.092/0.095 1.025/1.026  0.531/0.512 0.684
+ human explanations 0240  0.249  0.275 ‘ 0.090/0.090 1.017/1.011  0.594/0.567 ‘ 0.089/0.091 1.014/1.015  0.618/0.597 ‘ 0.750
+ replace preferred model explanations

greedy 75.75% 0.241 0.248 0.274 | 0.089/0.090 1.017/1.011 0.584/0.569 | 0.088/0.090 1.013/1.013  0.619/0.594 0.733
representative 55.25% 0.240 0.248  0.274 | 0.089/0.090 1.016/1.011 0.587/0.567 | 0.088/0.091 1.013/1.014  0.619/0.597 0.739
+ replace unpreferred model explanations

greedy 68.5% 0.239 0.247 0273 | 0.089/0.089 1.016/1.009 0.589/0.571 | 0.087/0.090 1.011/1.012  0.623/0.599 0.752
representative 63.25% 0.237  0.246  0.271 | 0.089/0.089 1.016/1.010 0.584/0.566 | 0.088/0.090 1.011/1.012  0.621/0.607 0.761

Table 4: Contrastive results using annotator-preferred vs

. unpreferred explanations on 100 validated NLI instances.

greedy substitutes human explanations with as many model explanations as possible, while representative substitutes
per NLI label: for each attested E/N/C label, replace by at most one model explanation (if any).

Lexical ‘ Syntactic ‘ Semantic ‘ AVG

Datasets

n=1l n=2| n=3}|n=1) n=2/ n=3| |Cos| Euc| |AVG]
human-ex ~ 0.335  0.098 0.042 | 0767 0341 0.140 | 0528 0.520 | 0.428
replaced preferred model explanations
greedy 0416  0.157 0.082 | 0.874 0.488 0.233 | 0.540 0.532 | 0474
represent. 0392 0.149  0.089 | 0.835 0426 0205 | 0.542 0.541 | 0.466
replaced unpreferred model explanations
greedy 0.387  0.130  0.069 | 0.841 0432  0.196 | 0.527 0.528 | 0.457
represent.  0.378  0.130  0.073 | 0.837 0.426 0.195 | 0.534 0.532 | 0.455

Table 5: Results for linguistic variability check.

we regard it as a preferred explanation and replace
its NLI label with the annotator’s label (if differ-
ent). When a model explanation is classified as
unpreferred, we keep the original NLI label.

Results are in Table 4 (details in Appenidx E).
Surprisingly, model explanations from the unpre-
ferred set achieved the best results on most metrics,
which is different from our original expectation.
This may be due to the unpreferred explanations be-
ing more diverse than the preferred ones (note that
this is limited to the judgment of a single annotator).
To verify this hypothesis, we average similarities
among each pair of explanations (C (721) pairs for
n explanations) on each NLI instance. Table 5
shows that human explanations have the greatest
variability on all of Giulianelli et al. (2023) sim-
ilarity measures (the lower the value, the higher
the variability). Moreover, model explanations that
counter the preferences of one human annotator
(unpreferred) have a higher variability, providing
more diverse perspectives, which aligns with the
observation in Table 4. These experiments show
the potential of variability as a metric for measur-
ing the model explanations when helping LLMs
approximate HJD. We expanded this variability
check to the main experiment. Results in Table 20
show that MNLI-guided explanations from Llama3
have the best variability, which is consistent with
the results in Table 1. However, variability cannot
be directly linked to the main results in all circum-
stances, cf. Appendix E for a discussion.

7 Related Work

LLMs to generate explanations Recently LLM-
generated explanations have been used in various
tasks (e.g., reasoning, sentimental analysis, rec-
ommender systems, education, abusive language
detection. Li et al., 2022; Huang et al., 2023; Lubos
et al., 2024; Abu-Rasheed et al., 2024; Di Bonaven-
tura et al., 2024). Kunz and Kuhlmann (2024) find
that LLM-generated explanations show selectiv-
ity and contain illustrative elements, but less fre-
quently are subjective or misleading. Unlike pre-
vious methods, we guide LLMs to generate more
diverse explanations for NLI to analyze HLV.

LLMs to model label distributions Despite the
increasing promise of LLMs as annotators, many
studies have attempted to use LLMs to approximate
label distributions, with mixed success (Wadhwa
et al., 2023; Pavlovic and Poesio, 2024a; Lee et al.,
2023; Madaan et al., 2024). Chen et al. (2024)
combine human explanations and labels to enhance
LLMs’ performance to approximate HID, but rely
on datasets with human-provided explanations. In
contrast, we are the first to leverage LLM-generated
explanations to model HID, addressing the scarcity
of explanation datasets.

8 Conclusion

This paper demonstrates that large language mod-
els can effectively generate explanations to approx-
imate human judgment distribution in NLI. Our
experiments reveal that model-generated explana-
tions, when combined with a few human labels,
yield results comparable to human-provided expla-
nations in approximating HJD. Notably, our ap-
proach generalizes to explanation-free datasets and
remains effective in challenging OOD test sets. Re-
sults indicate that LLM-generated explanations can
significantly reduce annotation costs, making it a
scalable and efficient proxy for capturing HLV.



Limitations

One limitation of this work is that our current
method only considers explanations generated by
one LLM to help itself achieve better MJD. Explor-
ing a cross-LLM approach that combines explana-
tions from multiple LLMs could be interesting, as
it may provide more diverse perspectives. How-
ever, we leave this investigation for future work, as
the scope of this paper is to demonstrate that LLM-
generated explanations are as effective as human
explanations in helping LLMs approximate HJD.
Another area for improvement lies in the method
used to obtain the LLM’s opinion distribution. Cur-
rently, we rely on the MCQA prompt combined
with the first-token-probability method to derive
MID, applying basic normalization or softmax as
the transformation function to convert logits into
probabilities. This method may not be universally
suitable for all LLMs. Exploring alternative ap-
proaches to better capture distributed opinions from
LLMs is an intriguing direction for future work.
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A Prompt for Generating Model
Explanations

Table 6 illustrates the prompt we used to let LLMs
generate model explanations. For the LLM with
the “system” role in the chat template, we choose
not to set the content of the “system” role to be
consistent with other LLMs.

B Details for the Main Experiment

In this Section, we first illustrate the detailed ex-
perimental settings in §B.1 for §3.1, and then we
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Function \ General Instruction Prompt

model "role”: "user", "content”:

explanation You are an expert in Natural Language
generation Inference (NLI). Please list all possible

explanations for why the following
statement is {relationship} given the
context below without introductory phrases.
Context: {promise}

Statement: {hypothesis}

Answer:

Table 6: Instruction prompt for LLMs to generate
model explanations. relationship is one of {true
(entailment), undetermined (neutral), false
(contradiction)}.

report detailed scores in §B.2 for §3.2. We also
include Mixtral’s results in §B.3.

B.1 Experimental Settings Details

MJD Estimator We adopt the MJD Estimator
following Chen et al. (2024) to generate model
judgment distributions from LLMs. Model/human
explanations are combined with labels together
with NLI instance to fill in the MCQA prompt as
shown in Table 7. To capture the original opin-
ion from the LLM, LLM original directly in-
puts the content of the NLI instance and asks the
LLM for its choice; to capture the LLM’s perspec-
tive influenced by human annotations, LLM with
explanations incorporates human explanations
of label choices as “comments”, which are placed
after the NLI instance but before the MCQA part.
With the input prompt above, we next map
LLMs’ output from [A,B,C] to probabilities as
model judgment distributions. We leverage the log-
its of the first output token before the decoding
process, and extract the three scores corresponding
to [A,B,C]. Via normalization or softmax function,
we can transform these scores into probabilities,
which is considered as model judgment distribu-
tion that represents the label distributions among
[Entailment, Neutral, Contradiction].
For Llama3 we adopt the normalization method
as all output logits are positive, thus we can avoid
the influence of parameters as much as possible,
because the normalization transformation does not
introduce additional parameters. However, as nega-
tive logits exist from GPT-4o0 and Mixtral, we have
to leverage softmax transformation to get the label
distributions. Some recent work has discussed the
impact of temperature 7 in the softmax function
on HLV observation (Pavlovic and Poesio, 2024b),
but we try not to discuss this variable too much
because it is not the focus of this paper. Without
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Function \ General Instruction Prompt

LLM "role"”: "user”, "content"”:

original Please determine whether the following
Statement is true (entailment),
undetermined (neutral), or false
(contradiction) given the Context below and
select ONE of the listed options and start
your answer with a single letter.
Context: {promise}
Statement: {hypothesis}
A. Entailment
B. Neutral
C. Contradiction.
Answer:

LLM with "role"”: "user”, "content”:

explanations Please carefully and fairly base your

selection on the comments below to
determine whether the following Statement
is true (entailment), undetermined
(neutral), or false (contradiction) given
the Context below and select ONE of the
listed options and start your answer with a
single letter.

Context: {promise}

Statement: {hypothesis}

Comment 1: {explanation 1}, so I choose
{label 1}

Comment 2: {explanation 2}, so I choose
{label 2}

A. Entailment

B. Neutral

C. Contradiction.
Answer:

Table 7: Instruction prompt of different types to trans-
form NLI into a multi-choice question format.

loss of generality, we perform a 7 = 10 softmax
transformation on all GPT-4o logits and a 7 = 20
softmax transformation on all Mixtral logits.

Bias consideration Three kinds of biases may
affect the MJDs: option bias, explanation sequence
bias and prompt length bias.

e Option bias, such as the LLM may prefer
the first option A (e.g., Dominguez-Olmedo
et al., 2023; Zheng et al., 2024; Tjuatja et al.,
2024), could be addressed by shuffling the
mapping relationship between [A,B,C] and
[Entailment, Neutral, Contradiction],
resulting in A(g) = 6 permutations.

Explanation sequence bias, representing the
LLM may be affected by the sequence of m
input explanations, could be addressed by us-
ing the average output of full permutations
A(T") as the model’s final answer.

Prompt length bias arises when the LLM may
perform differently facing input prompts with
different lengths. For in total m explanations,
we consider gradually increasing the number
of explanations n simultaneously put in one
promo (denote as “n in one”), that contains
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C (;’L) combinations. Then we average all the
scores from Y, C(") combinations to get
a length-independent result.

Datasets We experiment on four NLI datasets
(see Table 8 for details):

e Chaos NLI (Nie et al., 2020b) is annotated
by 100 crowd workers for capturing human
judgment distributions. In this paper, we con-
sider label distributions from Chaos NLI as
the “gold label” that the LLM approximates.

VariErr NLI (Weber-Genzel et al., 2024) is
annotated by 4 experts, who also wrote down
their explanations for why they chose. We use
those explanations as “human explanations”
in our paper.

MNLI (Williams et al., 2018) is annotated by
5 annotators. Its dev set contains all NLI in-
stances of Chaos NLI and VariErr NLI. We
use the valid overlap of these three datasets
(341 NLI instanced with human judgment dis-
tribution and 4 human explanations for each)
as the target datasets in this paper. For the
other part of the MNLI subset of Chaos NLI,
we divide them into dev and test sets for eval-
uation.

* ANLI (Nie et al., 2020a) is annotated by ad-
versarial human-and-model-in-the-loop proce-
dure, which is not overlap with above datasets.
We utilize the test set of ANLI for the out-of-
domain evaluation.

Evaluation Protocals Following Chen et al.
(2024), we evaluated the obtained MJDs on Distri-
bution Comparison, Fine-tuning comparison and
Global-Metric Comparison.

For Distribution Comparison, we investigate
these distribution differences between humans and
LLMs at the instance level following prior work
(Nie et al., 2020b; Chiang and Lee, 2023; Lee
et al., 2023; Baan et al., 2022; Chen et al., 2024):
Kullback-Leibler Divergence (KL, Kullback and
Leibler 1951), Jensen-Shannon Distance (JSD, En-
dres and Schindelin 2003) and Total Variation Dis-
tance (TVD, Devroye and Lugosi 2001). The cal-
culations for all metrics are listed below:

For discrete probability distributions P and Q):
P(z)

Q@

DxL(P|Q) =) P(x)log

zeX



Dataset Name ‘ Number of Instances

MNLI (Williams et al., 2018)
ChaosNLI (Nie et al., 2020a)
VariErr NLI (Weber-Genzel et al., 2024)
ANLI test (Nie et al., 2020a)

433K total, 40K multi-label

500

IK (RD), 1K (R2), 1.2K (R3)

1.5K from each of aNLI, SNLI, MNLI

Annotations per Instance | Explanations | Valid Overlap
lor5 No 341
100 No 341
4 1 per label 341

1 Yes (Rationale) 0

Table 8: NLI Datasets with multiple labels and/or explanation annotations in this paper.

Hyperparameter Our Model
Learning Rate Decay Linear
Weight Decay 0.0
Optimizer AdamW
Adam € le-8
Adam (1 0.9
Adam [ 0.999
Warmup Ratio 0%
Learning Rate 2e-5
Batch size 4
Num Epoch 5

Table 9: Hyperparameter used for fine-tuning BERT
and RoBERTa models with soft labels.

(DxL(P|M) + DxL(Q|M))
? ()

Dysp(P|Q) = \/

D1vp(P,Q) =

3 2 1P@)

:CGX

@), @G

For Fine-tuning Comparison, we investigate how
well the resulting MJDs approximate human la-
bels for model training. To do so, we leverage the
HID and human-multi-labels from existing datasets
and generated MJDs as labels of the overlapped in-
stances in MNLI, VariErr and ChaosNLI, for fine-
tuning smaller language models, namely, BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) base. These models were first fine-tuned
on the large single-labelled MNLI dataset to learn
the generic NLI task. We then few-shot-tune them
on the HJD, label distributions or MJDs above. To
evaluate the resulting classifiers, we split the re-
maining 1,258 MNLI instances from ChaosNLI
that do not overlap with VariErr NLI into the devel-
opment and test sets. We use KL, Cross-Entropy
Loss and Weighted F1 scores as evaluation met-
rics between the outputs of the fine-tuned models
and the models trained by ChaosNLI training set
HID. Detailed hyperparameter choices are listed in
Table 9. The formula for the weighted F1 score is:
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LLM LF VariErr LG MNLI LG
Llama3 11.05% 29.84% 19.77%
GPT-40 9.78% 32.77% 24.93%
Mixtral  6.26% 19.57% 16.07%

Table 10: Overlap rate of model explanations between
first and longest under different selection settings.

k
. 1

Weighted F1 = N Zl w; X F1;. 4)

1=

where
F1 Score — 2 x Prec%s%on X Recall? )
Precision + Recall
TP
Precision = ——— 6
recision TP FP (6)
Recall = TP (7)
T TPIFN

Moreover, for Global-Metric Comparison we
further evaluate MJDs against HJD using a
global-level measure, distance correlation (D.Corr,
Székely et al. 2007), to capture the differences be-
tween general distributions. The D.Corr between
the source dataset X and the target dataset Y is
calculated as:

dCov?(X,Y)
\/dVar X)dVar?(Y)

B.2 Detailed Main Results

In this section, we report the detailed results to-
gether with first and longest modes in Table 11
for the main experiment in §3. Also, we report
the statistic information regarding the overlapped
model explanations between first and longest mode
in Table 10.

In order to mitigate the prompt bias, as illus-
trated in Appendix B.1, we first average the output
MIJDs in A(g) = 6 permutations of label-option

dCor

®)
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Figure 7: Llama3 with human explanations.
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Figure 8: Llama3 with Lable-Free first model explanations.

mappings to avoid “option bias”, and then divided
the MJDs and average them in A(Z) permutations
(to avoid “sequence bias”) into “n in one” settings
where n explanations are fed into LLMs together.
We report the scores for “n in one” in Table 11 and
average them to get the final evaluation results in
Table 1 to avoid “length bias”.

For the ternary visualization, following Chen
et al. (2024) we zoom in on the original ternary
plot of Llama3 for a clear observation (scale=3),
since “shape” of the ternary distribution is more
important as demonstrated by previous work. For
Mixtral and GPT-40 we use the original shape of
MIDs as they are clear enough. The zooming-in
process for Llama3 with human explanations is
shown in Figure 7. All other zooming-in processes
for MIDs (including first and longest modes) in
Table 1 are listed in Figure 8, 9, 10, 11, 12, and 13.

B.3 Detailed Main Results on Mixtral

Here we report all the results of Mixtral in Table 12
under the main experiment settings corresponding
to §3. Also we visualize the MJDs from Mixtral in
Figure 14.

We observe the same findings with previous
work (Chen et al., 2024) that Mixtral still fails
to capture HLV. From Table 12, overall perfor-
mance is poor, though explanations still provide
some benefit. However, unlike other LLMs, Mix-
tral performs exceptionally poorly in the Label-
Free setting. This highlights that Mixtral struggles
to effectively capture HLV (human label variation)
information from explanations. We can empirically
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hypothesize that if the Label-Free setting improves
performance relative to the original setting, it indi-
cates that explanation information is being effec-
tively utilized. If not, the LLM fails to leverage
HLYV information from explanations. The overall
conclusion is the same that LLM-generated expla-
nations continue to perform similarly to human
explanations across all metrics.

For the Mixtral visualization in Figure 14, incor-
rect predictions are concentrated on the left side,
whereas HID (human judgment distribution) is pri-
marily on the right side. The second figure (hu-
man explanations) and the fourth figure (VariErr
Label-Guided explanations) perform similarly. The
Labal-Free setting further worsens performance,
with more predictions concentrated on the left side,
resulting in poor evaluation scores that align with
Table 12. This demonstrates that Mixtral struggles
to effectively utilize explanation information. On
MNLI-Label-Guided, explanations slightly help
shift some points toward the correct right-side di-
rection, showing marginal improvement. Overall,
Mixtral’s performance remains weak, consistent
with findings from the Chen et al. (2024).

C Detailed ANLI Test Results

In this section we report the detailed results in Ta-
ble 13 for evaluation of the ANLI test set. Also
we listed the scores of Mixtral on the ANLI test
in Table 14. All the performances of MJDs in the
ANLI test set are aligned with those in the main
experiments in Table 1, which demonstrate the gen-



Contradicion

Contradiction -

Contradiction -
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Figure 10: Llama3 with VariErr Label-Guided first model explanations.

eralization capability of our method on OOD tasks.

D Detailed Ablation Results

In this section, we report the detailed scores (for
both first and longest modes) of the Figure 5 in
Table 13. We also plot the bar figure for the ab-
lation study on the first mode, as shown in Fig-
ure 15. For the visualizations, the original MJDs
and zooming-in MJDs of replaced model/noise ex-
planations under both first and longest modes are
plotted in Figure 18, 19, 20, 21, 16, and 17. Re-
sults from a human-explanation-centric view in
first mode are also listed in Table 16. All the find-
ings remain basically the same for first and longest
modes.

Linguistic Similarities Even though our experi-
ments so far show that model explanations are com-
parable to human explanations in helping LLMs
approximate HJD, we next wonder to what de-
gree they are similar linguistically. Following Giu-
lianelli et al. (2023), we adopt their method to mea-
sure similarity across multiple references (in our
case, explanations) along three axes (lexical, syn-
tactic, semantic). The similarities between model
explanations and corresponding human explana-
tions are listed in Table 17. Our observation mir-
rors theirs in that model explanations generated by
LLMs are moderately different from human expla-
nations regarding lexicon, syntax, and semantics.
Nevertheless, despite these linguistic differences,
LLMs still found a way to obtain comparable infor-
mation for modeling HJD. label distribution. We
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leave this matter for future investigation.

E Detailed Results for Explanation
Selection

We report the complete comparison in Ta-
ble 18 for explanation selection strategy based on
LLM/human preference, including first, longest
modes based on LLM preference, as well as pre-
ferred and unpreferred modes based on our anno-
tator’s preference. All the detailed scores are in
Table 19. The unpreferred explanation set achieves
the best performance.

Table 20 reports the variability check among
explanations used in the main experiments. MNLI-
guided explanations from Llama3 have the best
variability, which is consistent with the results in
Table 1. However, variability cannot be directly
linked to the main results in all circumstances.
For example, Label-Free explanations are naturally
guided by diverse labels, which leads to better vari-
ability. Under the same human label guidance,
variability can correctly reflect explanations’ HLV
evaluation level. Further exploration of variability
as a reliable indicator for evaluating model expla-
nation is an interesting possible future direction.
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Figure 12: Llama3 with MNLI Label-Guided first model explanations.

Contradiction = Contradiction =

Contradiction = Contradiction =

Figure 13: Llama3 with MNLI Label-Guided longest model explanations.
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Figure 14: Mixtral Visualization.
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Figure 15: Results for ablation study (Llama3) on gradually replacing first model/noise explanations.
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Dist. Comparison ‘ BERT Fine-Tuning Comparison(dev/test) ‘ RoBERTa Fine-Tuning Comparison(dev/test) ‘ Global Metric

Distributions
KL] JSD| TVD| KL | CELoss |  Weighted F11 | KL | CELoss|  Weighted F11 | D.Corrt
Baseline from Human Annotations
ChaosNLIHJD 0.000 0.000 0.000 | 0.073/0.077 0.967/0.974 0.645/0.609 | 0.062/0.060 0.933/0.922  0.696/0.653 1.000
VariErr dist. 3.604 0282 0.296 | 0.177/0.179 1.279/1.279 0.552/0.522 | 0.166/0.173 1.246/1.261 0.616/0.594 0.688
MNLI dist. 1.242  0.281 0.295 | 0.104/0.100 1.062/1.042 0.569/0.555 | 0.101/0.093 1.052/1.020  0.625/0.607 0.795
Model Judgment Distributions
Llama3 0.259 0262 0.284 | 0.099/0.101 1.045/1.044 0.516/0.487 | 0.094/0.096 1.030/1.031  0.545/0.522 0.689
+ human explanations
4 in one 0.235 0247 0.266 | 0.097/0.098 1.040/1.036 0.571/0.553 | 0.089/0.090 1.016/1.013  0.631/0.610 0.733
3 in one 0.235 0248 0.266 | 0.098/0.099 1.041/1.038 0.580/0.560 | 0.090/0.091 1.018/1.016  0.640/0.623 0.757
2 in one 0.238 0250 0.269 | 0.098/0.099 1.043/1.040 0.578/0.561 | 0.091/0.093 1.023/1.021  0.640/0.611 0.784
1 in one 0.243 0253 0.273 | 0.099/0.100 1.046/1.044 0.572/0.549 | 0.093/0.094 1.027/1.025  0.651/0.619 0.809
avg 0.238 0250 0.269 | 0.098/0.099 1.043/1.039 0.575/0.556 | 0.091/0.092 1.021/1.019  0.641/0.616 0.771
+ first model explanations
Label-Free
3 in one 0.281 0271 0.300 | 0.102/0.103 1.054/1.051 0.581/0.570 | 0.098/0.100 1.043/1.042  0.662/0.613 0.713
2 in one 0.292 0.276 0308 | 0.105/0.106 1.063/1.060 0.544/0.538 | 0.102/0.104 1.056/1.055 0.599/0.593 0.748
1 in one 0.305 0282 0.316 | 0.108/0.109 1.073/1.069 0.519/0.520 | 0.107/0.108 1.068/1.067  0.578/0.543 0.762
avg 0.293 0276 0.308 | 0.105/0.106 1.063/1.060 0.548/0.543 | 0.102/0.104 1.056/1.054  0.613/0.583 0.741
VariErr Label-Guided
4 in one 0.234 0.246 0.264 | 0.097/0.098 1.038/1.035 0.538/0.541 | 0.088/0.089 1.012/1.010 0.619/0.622 0.722
3 in one 0.233 0246 0.264 | 0.097/0.098 1.040/1.036 0.550/0.544 | 0.089/0.090 1.015/1.012  0.621/0.635 0.747
2 in one 0.235 0248 0.267 | 0.098/0.099 1.042/1.038 0.564/0.546 | 0.089/0.091 1.017/1.015  0.636/0.632 0.768
1 in one 0.241 0251 0.272 | 0.099/0.099 1.045/1.040 0.554/0.541 | 0.091/0.093 1.023/1.020  0.631/0.623 0.784
avg 0.236  0.248 0.267 | 0.098/0.098 1.041/1.037 0.551/0.543 | 0.089/0.091 1.017/1.014 0.627/0.628 0.755
MNLI Label-Guided
5 in one 0.237 0248 0.270 | 0.096/0.096 1.035/1.030 0.594/0.576 | 0.088/0.089 1.012/1.010  0.656/0.657 0.811
4 in one 0.239 0250 0.272 | 0.096/0.097 1.036/1.032 0.586/0.579 | 0.089/0.090 1.015/1.013  0.659/0.655 0.827
3 in one 0.242  0.251 0.275 | 0.096/0.097 1.037/1.033 0.593/0.583 | 0.090/0.091 1.018/1.016 0.663/0.654 0.842
2 in one 0.247 0254 0.279 | 0.097/0.098 1.039/1.036 0.598/0.585 | 0.091/0.093 1.022/1.021  0.672/0.650 0.856
1 in one 0.255 0257 0.285 | 0.098/0.099 1.043/1.038 0.586/0.565 | 0.093/0.095 1.028/1.027  0.667/0.636 0.863
avg 0.244 0252 0.276 | 0.097/0.097 1.038/1.034 0.591/0.577 | 0.090/0.092 1.019/1.017  0.663/0.650 0.840
+ longest model explanations
Label-Free
3 in one 0.285 0274 0.303 | 0.103/0.105 1.058/1.056 0.550/0.558 | 0.100/0.102 1.049/1.048  0.615/0.595 0.714
2 in one 0296 0278 0.311 | 0.106/0.107 1.066/1.064 0.533/0.525 | 0.104/0.106 1.060/1.059  0.551/0.561 0.750
1 in one 0.305 0282 0.317 | 0.108/0.109 1.073/1.070 0.535/0.516 | 0.107/0.108 1.068/1.067  0.578/0.556 0.769
avg 0.295 0278 0.310 | 0.106/0.107 1.066/1.063 0.539/0.533 | 0.103/0.105 1.059/1.058  0.581/0.571 0.744
VariErr Label-Guided
4 in one 0.231 0245 0.263 | 0.096/0.098 1.038/1.035 0.551/0.541 | 0.087/0.089 1.011/1.009  0.630/0.623 0.736
3 in one 0.231 0245 0.263 | 0.097/0.098 1.039/1.036 0.562/0.542 | 0.088/0.090 1.013/1.012  0.632/0.622 0.754
2 in one 0.234 0247 0.266 | 0.097/0.099 1.041/1.038 0.558/0.544 | 0.089/0.091 1.017/1.014  0.633/0.631 0.771
1 in one 0.240 0250 0.271 | 0.099/0.099 1.045/1.040 0.562/0.546 | 0.091/0.092 1.022/1.019  0.635/0.627 0.781
avg 0.234 0247 0.266 | 0.097/0.098 1.041/1.037 0.558/0.544 | 0.089/0.091 1.016/1.014  0.633/0.626 0.760
MNLI Label-Guided
5 in one 0.234 0247 0.268 | 0.095/0.096 1.034/1.031 0.582/0.579 | 0.088/0.090 1.012/1.011  0.654/0.644 0.833
4 in one 0.237 0249 0.271 | 0.096/0.097 1.035/1.032 0.591/0.580 | 0.089/0.091 1.015/1.014  0.651/0.646 0.843
3 in one 0.240 0250 0.273 | 0.096/0.097 1.037/1.034 0.588/0.590 | 0.090/0.092 1.017/1.017  0.652/0.646 0.852
2 in one 0.245 0253 0.278 | 0.097/0.098 1.039/1.036 0.593/0.582 | 0.091/0.093 1.022/1.021  0.660/0.648 0.859
1 in one 0.255 0257 0.285 | 0.098/0.099 1.043/1.039 0.592/0.568 | 0.093/0.095 1.028/1.027  0.668/0.639 0.859
avg 0.242 0251 0.275 | 0.096/0.097 1.037/1.034 0.589/0.580 | 0.090/0.092 1.019/1.018  0.657/0.645 0.849
Table 11: Main evaluation results for individual runs corresponding to Table 1.
Distributions Dist. Comparison ‘ BERT Fine-Tuning Comparison (dev/test) ‘ RoBERTa Fine-Tuning Comparison (dev/test) ‘ Global Metric
KL| JSD| TVD| | KL | CELoss |  Weighted F1 1 | KL | CE Loss | Weighted F11 | D.Corr
Baseline from Human Annotations
ChaosNLI HID 0.000 0.000 0.000 | 0.073/0.077 0.967/0.974 0.645/0.609 | 0.062/0.060 0.933/0.922 0.696/0.653 1.000
VariErr distribution 3.604 0282 0296 | 0.177/0.179 1.279/1.279 0.552/0.522 | 0.166/0.173 1.246/1.261 0.616/0.594 0.688
MNLI distribution 1.242 0281 0.295 | 0.104/0.100 1.062/1.042 0.569/0.555 | 0.101/0.093 1.052/1.020 0.625/0.607 0.795
Model Judgment Distributions
Mixtral 0437 0293 0324 ‘ 0.131/0.129 1.140/1.130  0.427/0.432 ‘ 0.121/0.125 1.112/1.118 0.497/0.472 ‘ 0.593
+ human explanations 0.239 0.225 0.257 | 0.121/0.109 1.112/1.075 0.525/0.519 | 0.086/0.085 1.007 / 0.998 0.575/0.557 0.656
+ model explanations
Label-Free 0.361 0.299 0.343 | 0.233/0.222 1.447/1.407 0.298/0.296 | 0.241/0.237 1.472/1.452 0.274/0.302 ‘ 0.483
VariErr Label-Guided  0.238  0.224  0.255 | 0.108/0.097 1.073/1.032 0.519/0.513 | 0.091/0.089 1.021/1.010 0.569/0.557 0.642
MNLI Label-Guided ~ 0.237 0.223  0.253 | 0.097/0.095 1.041/1.028 0.530/0.533 | 0.086/0.085 1.006/0.997 0.575/0.559 ‘ 0.726

Table 12: Evaluation results for Mixtral.
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BERT FT Test ‘ RoBERTa FT Test

BERT FT Test | RoBERTa FT Test Classifiers
RIT R2t R3t |RItT R21 R31%

RIT R21 R31 | RIT R21T R31

Classifiers

Classifiers without distribution training

Out-of-the-box LM 0.170 0.176 0.197 | 0.167 0.167 0.168
Out-of-the-box LM 0.170 0.176 0.197 | 0.167 0.167 0.168 MNLI-FT-LM 0220 0269 0293 | 0292 0262 0.257
MNLI-FT-LM 0220 0.269 0.293 | 0292 0.262 0.257

Classifiers without distribution training

Classifiers trained on label distributions

Classifier trained on label distributions

ChaosNLI HID 0.268 0.289 0.332 | 0.357 0.331 0.338
ChaosNLI HID 0.268 0.289 0.332 | 0.357 0.331 0.338 VariErr distribution 0.302 0.259 0.319 | 0.402 0.311 0.321
VariErr dist. 0.302 0.259 0319 | 0402 0311 0.321 MNLI distribution 0.229 0.260 0.279 | 0.317 0.275 0.281
MNLI dist. 0229 0.260 0.279 | 0.317 0.275 0.281 Classifiers trained on MJDs
Classifier trained on MJDs Mixtral 0.242 0252 0.246 | 0230 0.240 0.243
Llama origin 0246 0276 0306 | 0304 0297 0.304 + human explanations 0.344 0.280 0.320 | 0.361 0.292 0.300
+ human explanations + model explanations
4 in one 0294 0287 0349 | 0403 0335 0.349 Lab'elfFree ) 0.252  0.255 0.255 | 0.242 0.248 0.243
3in one 0304 0288 0349 | 0406 0325 0344 VariErr Label—Gl}lded 0.340 0.287 0.317 | 0.362 0.289 0.296
. MNLI Label-Guided  0.275 0.273 0.303 | 0.329 0.280 0.292
2 in one 0.301 0.291 0.351 | 0.407 0.335 0.344
1 in one 0298 0.291 0.348 | 0.397 0.325 0.338
avg 0296 0289 0349 | 0400 0330 0.344 Table 14: ANLI test results for Mixtral.
+ first model explanations
Label-Free
3 in one 0.300 0.299 0.353 | 0.356 0.283 0.340
2 in one 0293 0293 0.327 | 0296 0.244 0.321
1 in one 0.276 0.276 0.297 | 0.257 0.224 0.284
avg 0.288 0.288 0.325 | 0.307 0.254 0.312 ] Y ] ) g
VariErr Label-Guided Contradiction Contradiction » Contradiction Contradiction Contradiction -+
4 in one 0.294 0.269 0.345 | 0412 0.335 0.312
3 in one 0296 0271 0353 | 0407 0341 0321 Figure 17: Visualization gradually replacing first noise
2 in one 0.303 0.280 0.358 | 0.403 0.336 0.312 exp]anations (Llama3 Scaled by 3).
1 in one 0318 0.293 0.346 | 0.391 0.310 0.313
avg 0.306 0.281 0.345 | 0.402 0322 0.312
MNLI Label-Guided
5 in one 0294 0.281 0.323 | 0.354 0.300 0.311
4 in one 0286 0.290 0.324 | 0.351 0.290 0.314
3 in one 0.280 0.284 0.323 | 0.346 0.286 0.321
2 in one 0272 0285 0.316 | 0.342 0.280 0.314 ; ; 7, \ I
1 i[l one 0427 1 04285 04304 0.3 1 8 0.269 0.286 Contradiction - Contradiction - Contradiction » Contradiction » Contradiction »
avg 0282 0.283 0.314 | 0.336 0.284 0.298

Figure 18: Visualization for gradually replacing first

+ longest model explanations model explanations (Llama3).

Label-Free

3 in one 0.308 0.302 0.352 | 0.340 0.288 0.352

2 in one 0.281 0.279 0.312 | 0.286 0.250 0.321

1 in one 0.277 0288 0304 | 0288 0235 0.295

avg 0.292 0295 0.328 | 0.314 0.262 0.323

VariErr Label-Guided

4 in one 0.298 0.284 0.351 | 0.417 0.335 0.325 ) ) ’ L

3 in one 0.293 0.283 0.350 | 0.416 0.337 0.314 Contradiction > Contradiction > Contradiction > Contradiction - Contradiction >

2 in one 0.295 0281 0350 | 0419 0338 0.316

1 in one 0312 0287 0.348 | 0405 0313 0313 Figure 19: Visualization gradually replacing first noise

avg 0.305 0.285 0.349 | 0.411 0.324 0.319 explanations (Llama3)

MNLI Label-Guided

5 in one 0.288 0.281 0.330 | 0.354 0.301 0.327

4 in one 0.283 0277 0332 | 0351 0.297 0.336

3 in one 0.282 0.283 0.328 | 0.349 0.289 0.334

2 in one 0.278 0.285 0323 | 0.343 0282 0.319

1 in one 0.279 0.286 0.312 | 0.325 0.272 0.287

avg 0284 0283 0321|0339 0287 0307 . : , . ¢ ¢
Table 13: ANLI test results for individual runs. Figure 20: Visualization for gradually replacing longest

model explanations (Llama3).

Contradiction Contradiction ~

Contradiction Contradiction Contradiction Contradiction Contradiction

Figure 16: Visualization for gradually replacing first

) Figure 21: Visualization for gradually replacing longest
model explanations (Llama3 Scaled by 3).

noise explanations (Llama3).
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ist. Comparison ine-Tuning Comparison(dev/test 0! a Fine-Tuning Comparison(dev/test obal Metric
Dist. Compari BERT Fine-Tuning Comparison(dev/test) | RoBERTa Fine-Tuning Comparison(dev/test) | Global Metri

Distributions
KL| JSD| TVD| | KL | CELoss |  Weighted F1 1 | KL | CELoss|  Weighted F11 |  D.Corrt
Baseline from Human Annotations
ChaosNLI HID 0.000 0.000 0.000 | 0.073/0.077 0.967/0.974 0.645/0.609 | 0.062/0.060 0.933/0.922  0.696/0.653 1.000
VariErr distribution 3.604 0.282 0296 | 0.177/0.179 1.279/1.279 0.552/0.522 | 0.166/0.173 1.246/1.261  0.616/0.594 0.688
MNLI distribution 1.242 0.281 0295 | 0.104/0.100 1.062/1.042 0.569/0.555 | 0.101/0.093 1.052/1.020  0.625/0.607 0.795

Model Judgment Distributions

Llama3 0.259 0.262 0.284 | 0.099/0.101 1.045/1.044 0.516/0.487 | 0.094/0.096 1.030/1.031  0.545/0.522 0.689
+ human explanations 0.238  0.250  0.269 | 0.098/0.099 1.043/1.039 0.575/0.556 | 0.091/0.092 1.021/1.019  0.641/0.616 0.771
+ replace first model explanations
Label-Free 100% 0.293  0.276  0.308 | 0.105/0.106 1.063/1.060 0.548/0.543 | 0.102/0.104 1.056/1.054  0.613/0.583 0.741
noise 0292 0276 0.308 | 0.105/0.106 1.063/1.060 0.510/0.504 | 0.102/0.104 1.056/1.055  0.549/0.543 0.702
VariErr Label-Guided 25%  0.236  0.249  0.267 | 0.098/0.099 1.042/1.038 0.572/0.547 | 0.090/0.091 1.019/1.016  0.639/0.622 0.769
noise 0.249 0.255 0.276 | 0.100/0.101 1.048/1.045 0.551/0.539 | 0.094/0.095 1.030/1.029  0.628/0.613 0.744
VariErr Label-Guided 50%  0.237 0.248  0.268 | 0.098/0.098 1.041/1.038 0.559/0.546 | 0.089/0.091 1.017/1.015  0.639/0.628 0.757
noise 0.255 0.259  0.281 | 0.099/0.101 1.047/1.044 0.546/0.523 | 0.094/0.096 1.032/1.031  0.625/0.610 0.733
VariErr Label-Guided 75%  0.236  0.248  0.267 | 0.098/0.098 1.041/1.037 0.557/0.544 | 0.090/0.091 1.018/1.015  0.634/0.628 0.759
noise 0.265 0.264 0.288 | 0.101/0.102 1.050/1.048 0.533/0.521 | 0.096/0.098 1.037/1.036  0.622/0.601 0.720
VariErr Label-Guided 100% 0.236  0.248  0.267 | 0.098/0.098 1.041/1.037 0.551/0.543 | 0.089/0.091 1.017/1.014  0.627/0.628 0.755
noise 0279 0.271  0.299 | 0.102/0.103 1.055/1.052 0.525/0.513 | 0.099/0.101 1.046/1.045  0.612/0.592 0.705
+ replace longest model explanations
Label-Free 100% 0.295 0.278 0.310 | 0.106/0.107 1.066/1.063  0.539/0.533 | 0.103/0.105 1.059/1.058  0.581/0.571 0.744
noise 0.288 0.275 0.306 | 0.104/0.105 1.061/1.058 0.516/0.515 | 0.101/0.103 1.052/1.053  0.558/0.552 0.709
VariErr Label-Guided 25%  0.236  0.249  0.267 | 0.098/0.099 1.042/1.038 0.574/0.551 | 0.090/0.091 1.019/1.016  0.641/0.627 0.772
noise 0.248 0.255 0.275 | 0.100/0.101 1.048/1.044 0.561/0.540 | 0.094/0.095 1.029/1.028  0.631/0.618 0.745
VariErr Label-Guided 50%  0.236  0.248  0.267 | 0.097/0.099 1.041/1.038 0.571/0.543 | 0.090/0.091 1.017/1.016  0.639/0.627 0.757
noise 0.253 0.258 0.280 | 0.099/0.101 1.046/1.044 0.546/0.531 | 0.094/0.096 1.031/1.030  0.620/0.616 0.735
VariErr Label-Guided 75%  0.235 0.248  0.267 | 0.097/0.099 1.041/1.038 0.564/0.545 | 0.090/0.091 1.018/1.016  0.643/0.622 0.760
noise 0.261 0262 0.286 | 0.100/0.101 1.049/1.046 0.535/0.521 | 0.095/0.097 1.034/1.034  0.620/0.609 0.723
VariErr Label-Guided 100%  0.234  0.247  0.266 | 0.097/0.098 1.041/1.037 0.558/0.544 | 0.089/0.091 1.016/1.014  0.633/0.626 0.760
noise 0274 0269 0.296 | 0.101/0.103 1.053/1.050 0.526/0.511 | 0.098/0.100 1.042/1.042  0.608 /0.599 0.709

Table 15: Detailed scores for the ablation study.

Dist. Comparison ‘ Global Metric

Distributions
KL| JSD| TVD|| DCorr?

VariErr distributions 6.628 0357 0.352 0.907
Llama3 MJD 0.029 0.068 0.088 0.691
+ human explanations 0.000 0.000 0.000 1.000
+ replace first model explanations

Label-Free 100% 0.023  0.066 0.087 0.645

VariErr Label-Guided 25%  0.002  0.013  0.017 0.970

VariErr Label-Guided 50%  0.003 0.018  0.023 0.955

VariErr Label-Guided 75%  0.003  0.020  0.026 0.945

VariErr Label-Guided 100% 0.005 0.023  0.029 0.930
+ replace longest model explanations

Label-Free 100% 0.024 0.067 0.088 0.647

VariErr Label-Guided 25%  0.001  0.012  0.015 0.977

VariErr Label-Guided 50%  0.003  0.017  0.022 0.959

VariErr Label-Guided 75%  0.003  0.019  0.024 0.950

VariErr Label-Guided 100% 0.004 0.021  0.027 0.939

Table 16: All results from a human-explanation-centric
view. All MJDs are compared to the MJD in the green
TOW.
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Lexical ‘ Syntactic ‘ Semantic ‘ AVG
n=17 n=2% n=31|n=11 n=21 n=31]Cos.? Euc.? |AVG?
human explanations  1.000  1.000  1.000 | 1.000  1.000  1.000 | 1.000 1.000 | 1.000

Datasets

replace first model explanations

25% 0773 0673 0.647 | 0929 0.769 0.686 | 0.841 0.828 | 0.801
50% 0.603 0432 0389 | 0873 0598 0457 | 0.712 0.698 | 0.651
75% 0459 0239 0.184 | 0.832 0468 0.277 | 0.608 0.593 | 0.526
100% 0.358  0.103  0.041 0.805 0377 0.149 | 0529 0.519 | 0.439
replace longest model explanations
25% 0.758 0.658 0.635 | 0926 0.761 0.674 | 0.824 0.819 | 0.789
50% 0581 0416 0378 | 0.873 0592 0447 | 0.691 0.690 | 0.635
75% 0438 0222 0173 | 0.832 0462 0.267 | 0581 0.584 | 0.511
100% 0.335 0.087 0.033 | 0.807 0369 0.141 | 0501 0.510 | 0.422

Table 17: Linguistic similarity results for the ablation study. All sets of explanations are parallelly calculated the
similarity with human explanations on Lexical, Syntactic and Semantic levels folloing Giulianelli et al. (2023).

Dist. Comparison ‘ BERT Fine-Tuning Comparison(dev/test) ‘ RoBERTa Fine-Tuning Comparison(dev/test) ‘ Global Metric

Distributions
KL| JSD| TVD| | KL | CELoss |  Weighted F11 | KL | CELoss |  Weighted F1 1 |  D.Corrt
Baseline from Human Annotations
ChaosNLI HID 0.000 0.000 0.000 | 0.081/0.083 0.993/0.992 0.643/0.597 | 0.065/0.065 0.944/0.936  0.691/0.652 1.000
VariErr distribution 4254 0313  0.320 | 0.193/0.197 1.329/1.333 0.563/0.535 | 0.214/0.222 1.391/1.407  0.585/0.555 0.661
MNLI distribution 1.215 0281 0290 | 0.105/0.103 1.064/1.051 0.553/0.540 | 0.092/0.086 1.024/0.999  0.615/0.604 0.743

Model Judgment Distributions
Llama3 0.258 0.261  0.286 ‘0.092/0‘093 1.024/1.020 0.514/0.471 ‘0.092/0‘095 1.025/1.026  0.531/0.512 ‘ 0.684

+ human explanations ~ 0.240 0.249  0.275 | 0.090/0.090 1.017/1.011  0.594/0.567 | 0.089/0.091 1.014/1.015  0.618/0.597 0.750
+ replace first model explanations

50% 0238 0.247 0273 | 0.089/0.089 1.017/1.010 0.585/0.568 | 0.089/0.091 1.014/1.015  0.620/0.597 0.758
75% 0.237 0.246  0.272 | 0.090/0.090 1.018/1.011 0.577/0.565 | 0.088/0.091 1.013/1.014  0.620/0.586 0.759
100% 0.237 0.246 0271 | 0.089/0.090 1.017/1.011 0.581/0.566 | 0.088/0.090 1.013/1.014  0.617/0.586 0.755
+ replace longest model explanations

50% 0.238 0.247 0.273 | 0.089/0.089 1.016/1.009 0.586/0.566 | 0.088/0.091 1.013/1.014  0.618/0.600 0.749
75% 0239 0.247 0.273 | 0.090/0.090 1.017/1.011 0.581/0.565 | 0.088/0.091 1.013/1.014  0.618/0.594 0.744
100% 0238 0246 0272 | 0.089/0.089 1.017/1.011 0.581/0.565 | 0.088/0.091 1.013/1.014  0.616/0.587 0.745

+ replace preferred model explanations
greedy 75.75% 0.241 0248 0.274 ‘0,089/0090 1.017/1.011  0.584/0.569 ‘0,088/0090 1.013/1.013  0.619/0.594 ‘ 0.733

representative 55.25% 0.240  0.248  0.274 | 0.089/0.090 1.016/1.011 0.587/0.567 | 0.088/0.091 1.013/1.014  0.619/0.597 0.739
+ replace unpreferred model explanations

greedy 68.5% 0239 0.247 0273 | 0.089/0.089 1.016/1.009 0.589/0.571 | 0.087/0.090 1.011/1.012  0.623/0.599 0.752
representative 63.25% 0.237 0.246  0.271 | 0.089/0.089 1.016/1.010 0.584/0.566 | 0.088/0.090 1.011/1.012  0.621/0.607 0.761

Table 18: All the results on 100 validated NLI instances for explanation selection strategy including LLM/human
preference.
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Dist. Comparison ‘ BERT Fine-Tuning Comparison(dev/test) ‘ RoBERTa Fine-Tuning Comparison(dev/test) ‘ Global Metric

Distributions

KL| JSD| TVD| | KL | CELoss|  Weighted F11| KL | CELoss|  Weighted F1 1 |  D.Corr?
Baseline from Human Annotations
ChaosNLIHIJD  0.000 0.000  0.000 | 0.081/0.083 0.993/0.992 0.643/0.597 | 0.065/0.065 0.944/0.936  0.691/0.652 1.000
VariErr dist. 4254 0313 0320 | 0.1937/0.197 1.329/1.333 0.563/0.535 | 0.214/0.222 1.391/1.407  0.585/0.555 0.661
MNLI dist. 1.215 0281 0290 | 0.105/0.103 1.064/1.051 0.553/0.540 | 0.092/0.086 1.024/0.999  0.615/0.604 0.743

Model Judgment Distributions

Llama3 0.258 0.261 0.286 | 0.092/0.093 1.024/1.020 0.514/0.471 | 0.092/0.095 1.025/1.026  0.531/0.512 0.684

+ human explanations
4 in one 0.240 0.247 0.273 | 0.088/0.088 1.013/1.006 0.589/0.566 | 0.087/0.090 1.011/1.011 0.607/0.591 0.703
3 in one 0.239 0.247 0.273 | 0.089/0.089 1.015/1.009 0.599/0.566 | 0.088/0.090 1.012/1.013  0.613/0.598 0.732
2 in one 0.239 0.248 0.274 | 0.090/0.090 1.018/1.012 0.596/0.569 | 0.089/0.091 1.015/1.016  0.629/0.604 0.769
1in one 0244 0.252  0.279 | 0.092/0.092 1.024/1.018 0.593/0.567 | 0.091/0.093 1.020/1.021  0.622/0.596 0.795
avg 0.240 0.249  0.275 | 0.090/0.090 1.017/1.011 0.594/0.567 | 0.089/0.091 1.014/1.015 0.618/0.597 0.750

+ replace first model explanations

50%
4 in one 0.236  0.245 0.271 | 0.088/0.088 1.013/1.006 0.587/0.571 | 0.087/0.089 1.010/1.010  0.616/0.598 0.720
3 in one 0234 0.245 0.270 | 0.088/0.088 1.013/1.007 0.590/0.567 | 0.087/0.090 1.011/1.012  0.619/0.595 0.751
2 in one 0.237 0.247 0.272 | 0.089/0.090 1.017/1.011 0.586/0.570 | 0.089/0.091 1.015/1.016  0.621/0.605 0.772
1 in one 0.244 0.251 0.279 | 0.092/0.092 1.024/1.017 0.578/0.566 | 0.091/0.093 1.022/1.022  0.624/0.592 0.791
avg 0.238 0.247 0.273 | 0.089/0.089 1.017/1.010 0.585/0.568 | 0.089/0.091 1.014/1.015  0.620/0.597 0.758
75%
4 in one 0236 0244 0.269 | 0.088/0.089 1.014/1.008 0.574/0.567 | 0.086/0.089 1.007/1.008  0.615/0.580 0.721
3 in one 0234 0.244 0.269 | 0.089/0.089 1.015/1.009 0.580/0.565 | 0.087/0.089 1.009/1.010  0.615/0.586 0.752
2 in one 0236 0.246  0.272 | 0.090/0.090 1.018/1.012 0.580/0.569 | 0.088/0.091 1.014/1.014  0.625/0.595 0.773
1 in one 0243 0.250 0.278 | 0.092/0.092 1.024/1.017 0.573/0.561 | 0.091/0.093 1.022/1.022  0.627/0.581 0.788
avg 0.237 0.246  0.272 | 0.090/0.090 1.018/1.011 0.577/0.565 | 0.088/0.091 1.013/1.014  0.620/0.586 0.759
100%
4 in one 0237 0.243  0.268 | 0.088/0.088 1.013/1.007 0.582/0.565 | 0.087/0.089 1.009/1.009  0.608/0.580 0.718
3 in one 0234 0.244 0.268 | 0.088/0.089 1.014/1.008 0.585/0.567 | 0.087/0.089 1.009/1.010  0.614/0.590 0.750
2 in one 0235 0.246 0.271 | 0.089/0.090 1.017/1.011 0.586/0.569 | 0.088/0.091 1.013/1.014  0.623/0.589 0.772
1 in one 0.243 0.250 0.278 | 0.092/0.092 1.023/1.017 0.571/0.563 | 0.091/0.093 1.021/1.021  0.623/0.583 0.781
avg 0.237 0.246  0.271 | 0.089/0.090 1.017/1.011 0.581/0.566 | 0.088/0.090 1.013/1.014  0.617/0.586 0.755

+ replace longest model explanations

50%
4 in one 0.237 0.245 0.270 | 0.087/0.087 1.011/1.004 0.590/0.570 | 0.086/0.089 1.007/1.008  0.620/0.597 0.707
3in one 0.236  0.245 0.270 | 0.088/0.088 1.013/1.007 0.590/0.564 | 0.087/0.089 1.009/1.010  0.610/0.605 0.737
2 in one 0.237 0.247 0.272 | 0.089/0.089 1.016/1.010 0.589/0.569 | 0.088/0.091 1.013/1.014  0.621/0.605 0.765
1 in one 0.244 0251 0278 | 0.092/0.092 1.023/1.017 0.573/0.563 | 0.091/0.093 1.021/1.022  0.622/0.592 0.786
avg 0.238 0.247 0.273 | 0.089/0.089 1.016/1.009 0.586/0.566 | 0.088/0.091 1.013/1.014  0.618/0.600 0.749
75%
4 in one 0.238 0.245 0.270 | 0.088/0.088 1.013/1.007 0.586/0.563 | 0.086/0.089 1.007/1.008  0.620/0.595 0.703
3 in one 0236 0.245 0.270 | 0.089/0.089 1.015/1.008 0.587/0.569 | 0.087/0.089 1.009/1.010  0.617/0.599 0.732
2 in one 0.238 0.247 0.273 | 0.090/0.090 1.018/1.012 0.582/0.569 | 0.088/0.091 1.014/1.014  0.614/0.597 0.761
1 in one 0.244 0.251  0.279 | 0.092/0.092 1.024/1.017 0.568/0.558 | 0.091/0.093 1.022/1.022  0.622/0.586 0.781
avg 0.239 0.247 0.273 | 0.090/0.090 1.017/1.011 0.581/0.565 | 0.088/0.091 1.013/1.014  0.618/0.594 0.744
100%
4 in one 0.237 0.244 0.269 | 0.088/0.088 1.013/1.007 0.586/0.568 | 0.086/0.089 1.008/1.009  0.613/0.589 0.709
3 in one 0235 0.244 0.269 | 0.088/0.089 1.014/1.008 0.587/0.566 | 0.087/0.089 1.009/1.010  0.615/0.589 0.737
2 in one 0.237 0.246 0.272 | 0.089/0.090 1.017/1.011 0.587/0.566 | 0.088/0.091 1.013/1.014  0.614/0.590 0.762
1 in one 0.244 0.250 0.278 | 0.092/0.091 1.023/1.017 0.566/0.559 | 0.091/0.093 1.021/1.021  0.622/0.579 0.774
avg 0238 0.246 0.272 | 0.089/0.089 1.017/1.011 0.581/0.565 | 0.088/0.091 1.013/1.014  0.616/0.587 0.745

+ replace aligned model explanations
greedy 75.75%

4 in one 0.240 0.246  0.272 | 0.088/0.088 1.012/1.006 0.590/0.566 | 0.087/0.089 1.009/1.009  0.615/0.593 0.692
3 in one 0239 0.246 0.272 | 0.088/0.089 1.013/1.008 0.591/0.575 | 0.087/0.090 1.011/1.011  0.611/0.590 0.719
2 in one 0.239 0.247 0274 | 0.089/0.090 1.017/1.012 0.586/0.573 | 0.088/0.091 1.014/1.014 0.620/0.598 0.747
1 in one 0.244 0250 0.278 | 0.092/0.092 1.024/1.018 0.568/0.564 | 0.090/0.092 1.020/1.020  0.633/0.595 0.774
avg 0.241 0.248 0.274 | 0.089/0.090 1.017/1.011 0.584/0.569 | 0.088/0.090 1.013/1.013  0.619/0.594 0.733
representative 55.25%
4 in one 0239 0.246 0.272 | 0.088/0.088 1.012/1.006 0.599/0.570 | 0.087/0.089 1.009/1.010  0.616/0.591 0.698
3in one 0.237 0.246  0.272 | 0.088/0.089 1.013/1.008 0.595/0.568 | 0.087/0.090 1.010/1.011  0.609/0.603 0.730
2 in one 0239 0.248 0.274 | 0.089/0.090 1.017/1.011 0.587/0.567 | 0.088/0.091 1.013/1.014  0.617/0.605 0.752
1 in one 0.244 0251 0278 | 0.091/0.092 1.023/1.017 0.567/0.561 | 0.090/0.093 1.020/1.020  0.635/0.589 0.778
avg 0.240 0.248 0.274 | 0.089/0.090 1.016/1.011 0.587/0.567 | 0.088/0.091 1.013/1.014  0.619/0.597 0.739
+ replace aligned model explanations
greedy 68.5%
4 in one 0.237 0.244 0.270 | 0.088/0.088 1.012/1.005 0.595/0.565 | 0.086/0.088 1.006/1.007  0.622/0.600 0.712
3 in one 0235 0.245 0.270 | 0.088/0.088 1.013/1.007 0.588/0.571 | 0.086/0.089 1.007/1.009  0.624/0.609 0.742
2 in one 0.238 0.247 0.273 | 0.089/0.089 1.016/1.010 0.591/0.574 | 0.088/0.090 1.011/1.013  0.624/0.606 0.768
1 in one 0.246  0.251 0.280 | 0.091/0.091 1.022/1.015 0.583/0.573 | 0.091/0.093 1.021/1.021 0.622/0.580 0.787
avg 0239 0.247 0.273 | 0.089/0.089 1.016/1.009 0.589/0.571 | 0.087/0.090 1.011/1.012  0.623/0.599 0.752
representative 63.25%
4 in one 0235 0.244 0.268 | 0.088/0.088 1.012/1.006 0.587/0.560 | 0.086/0.088 1.006/1.006  0.622/0.605 0.721
3 in one 0233 0.244 0.268 | 0.088/0.088 1.013/1.007 0.586/0.567 | 0.086/0.089 1.008/1.009  0.625/0.613 0.753
2 in one 0.236  0.247 0.272 | 0.089/0.089 1.016/1.010 0.588/0.573 | 0.088/0.090 1.012/1.013  0.624/0.615 0.776
1 in one 0244 0251 0.279 | 0.091/0.091 1.023/1.016 0.574/0.563 | 0.090/0.093 1.020/1.021 0.612/0.593 0.792
avg 0.237 0.246  0.271 | 0.089/0.089 1.016/1.010 0.584/0.566 | 0.088/0.090 1.011/1.012  0.621/0.607 0.761

Table 19: Results on 100 validated NLI instances of explanation selection strategy in individual runs.
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Lexical ‘ Syntactic ‘ Semantic ‘ AVG
n=1] n=2| n=3||n=1) n=2] n=3]|Cos.| Euc.||AVG]|

Datasets

human explanations 0339 0103 0.045 | 0753 0340 0.140 | 0512 0.516 | 0343

first model explanations
Label-Free 0465 0.188 0.105 | 0.878 0482 0.229 | 0.599 0.543 | 0.436
VariErr Label-Guided  0.456  0.170  0.083 | 0.897 0.510 0.241 | 0.584 0.538 | 0.435
MNLI Label-Guided ~ 0.431  0.147  0.066 | 0.890 0.487 0.215 | 0.567 0.531 | 0.417

longest model explanations
Label-Free 0439  0.139  0.065 | 0920 0.520 0.227 | 0.559 0.527 | 0.425
VariErr Label-Guided  0.457  0.162  0.079 | 0920 0.535 0.252 | 0.569 0.532 | 0.438
MNLI Label-Guided ~ 0.437  0.141  0.064 | 0917 0.523 0.235 | 0.549 0.525 | 0.424

Table 20: Linguistic variability check for the main results in Table 1.
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