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ABSTRACT

Predicting how a drug-like molecule binds to a specific protein target is a core
problem in drug discovery. An extremely fast computational binding method
would enable key applications such as fast virtual screening or drug engineering.
Existing methods are computationally expensive as they rely on heavy candidate
sampling coupled with scoring, ranking, and fine-tuning steps. We challenge this
paradigm with EQUIBIND, an SE(3)-equivariant geometric deep learning model
performing direct-shot prediction of both i) the receptor binding location (blind
docking) and ii) the ligand’s bound pose and orientation. EquiBind achieves sig-
nificant speed-ups and better quality compared to traditional and recent baselines.
Further, we show extra improvements when coupling it with existing fine-tuning
techniques at the cost of increased running time. Finally, we propose a novel
and fast fine-tuning model that adjusts torsion angles of a ligand’s rotatable bonds
based on closed-form global minima of the von Mises angular distance to a given
input atomic point cloud, avoiding previous expensive differential evolution strate-
gies for energy minimization.

1 INTRODUCTION

Drug discovery is an expensive process, e.g., a single drug costs around 1 billion dollars and takes
10 years of development and testing before potentially being FDA approved. Moreover, this process
can fail at any point, e.g., due to unforeseen side effects or experimental disproof of the promised
therapeutic efficacy. Worse, there are 1060 possible drug-like molecules (Reymond & Awale, 2012),
going far beyond current experimental capabilities.

Accurate computational methods, e.g., deep learning (DL) based, can drastically reduce the molec-
ular search space, but need to be extremely fast to scan the vast biological and chemical spaces for
both desired and unexpected effects. For instance, a novel drug that inactivates an important cancer
protein might negatively inhibit other essential proteins in the human body, potentially resulting in
life-threatening side effects. Given that the human proteome contains up to 100 000 protein types,
the current hope is to scan for these interactions in a computational manner before bringing a few
promising candidates to in vitro and in vivo testing.

A core problem in drug discovery is understanding how drug-like molecules (ligands) interact and
form complexes with target proteins (receptors) – drug binding – which is a prerequisite for virtual
screening. This is a difficult problem with different facets and constraints: binding kinetics, con-
formational changes, and chemical and geometrical atomic interaction types are part of the domain
knowledge describing ligand-protein binding mechanisms (Du et al., 2016). For instance, classical
models for molecular complex formation are ”lock-and-key”, ”induced fit”, and ”conformational se-
lection”, while hydrophobic, hydrogen-bonding, and π-stacking are the most frequent atomic bind-
ing interactions, but other types often occur during binding (de Freitas & Schapira, 2017).

Current in silico approaches for (3D) structural drug binding achieve high quality at a significant
computational cost: in our experiments the GNINA method (McNutt et al., 2021) takes on average
146 seconds for a single ligand-receptor pair, while the popular commercial software Glide (Halgren
et al., 2004) is up to 9 times slower. This is caused by the common strategy employed by all previous
binding methods: first, a large set of candidate complexes (e.g., millions) is generated via thorough
sampling of possible binding locations and poses (Hassan et al., 2017); then, scoring and ranking
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Figure 1: High-level overview of the structural drug binding problem tackled by EQUIBIND.

steps are used to retrieve the most promising instances; finally, an energy-based fine-tuning method
is employed to best fit the ligand in the respective pocket locations.

Here, we introduce EQUIBIND, a novel geometric & graph deep learning model for structural drug
binding – fig. 1. Inspired by Ganea et al. (2021a), we exploit graph matching networks (GMN) (Li
et al., 2019) and E(3)-equivariant graph neural networks (E(3)-GNN) (Satorras et al., 2021) to per-
form a direct prediction of the ligand-receptor complex structure without relying on heavy sampling
as prior work, thus achieving significant inference time speed-ups. Moreover, since 3D structural
data suffers from scarcity (e.g., only around 19K experimental complexes are publicly available in
the PDBbind database), it is crucial to inject the right physical, chemical, or biological inductive
biases into DL models to avoid learning these priors from insufficient amounts of data and to create
trustable models. Towards this goal, EQUIBIND:

• guarantees independence to the initial 3D placements and orientations of the two molecules,
i.e., the exact same complex is always predicted for the same input unbound structures,

• incorporates an efficient mechanism for biologically plausible ligand flexibility by only
altering torsion angles of rotatable bonds while keeping local structures (bond angles and
lengths) fixed,

We focus on the blind docking scenario, i.e., zero knowledge of the protein’s binding site or pocket.
However, our method can easily be adapted to situations where the approximate binding location
is known. Similar to (Zhang et al., 2020), we argue that errors in the ground truth binding pocket
conformation heavily affect traditional docking methods that are conditioned on the receptor active
site (Lang et al., 2009; Trott & Olson, 2010). In practice, the ground truth 3D locations of the binding
atoms might be low-resolution, might not be known at all (e.g., for novel antigens), or we might be
interested in discovering new druggable locations on a protein’s surface that were previously thought
to be undruggable (e.g. exploring allosteric binding locations rather than orthosteric sites).

Empirically, we investigate two settings: re-docking (i.e., taking the bound ligand structure out of
a complex and asking the model to dock it) and flexible self-docking (i.e., ligands have no bound
structure knowledge prior to docking). We assume a rigid receptor, but we model ligand flexibility
by first predicting an atomic point cloud of the deformed molecule and then employing a fast algo-
rithm to extract internal changes of rotatable bonds’ torsion angles that would match the point cloud
as well as possible. Instead of minimizing the root-mean-square deviation (RMSD) using expen-
sive optimization strategies (e.g., differential evolution approaches (Méndez-Lucio et al., 2021)), we
maximize the log-likelihood of a von Mises distribution that fits the torsion angles, proving closed-
form expressions of the global optimum. Experimentally, we show improved quality in various
metrics over popular and recent state-of-the-art baselines at a fraction of the running time. Finally,
we show the power of combining EquiBind with existing energy-based methods to realize a hy-
brid DL approach. Indeed, we believe the future of computational drug discovery will follow the
paradigm demonstrated here.

2 RELATED WORK

Protein and molecular structure prediction. Obtaining experimental 3D structural data of
molecules and proteins is a highly expensive process. However, very recent DL models have pro-
duced a breakthrough in computational protein folding (Jumper et al., 2021b; Baek et al., 2021) and
fast generation of small molecule low-energy conformation ensembles (Ganea et al., 2021b; Luo
et al., 2021; Xu et al., 2020; Shi et al., 2021). These methods aim to accelerate the discovery of new
structures and complement experimental data in various applications such as drug discovery.
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Protein representations (for DL-based molecular interactions). To be useful for predicting
molecular interactions, proteins must be modeled in specific ways to account for different views:
backbone & side-chains, protein surface, atomic point cloud, or amino-acid sequence. Somnath
et al. (2021) create a hierarchical representation of proteins and prove its utility in binding and
function prediction. Gainza et al. (2020); Sverrisson et al. (2021) leverage geometric deep learning
and mesh convolutional neural networks (CNN) to embed protein surface patches into fingerprints
and allow for fast scanning and binding site identification, removing the need for handcrafted or
expensive pre-computed features. However, these methods do not perform the full structural blind
docking task that involves prediction of the binding site, of the orientations and placements of the
two molecular structures, and of the internal conformational deformations during binding. Various
other protein representations have been proposed for (graph) DL methods for individual structure
prediction (Jing et al., 2020), protein-protein interactions (Dai & Bailey-Kellogg, 2021; Eismann
et al., 2020; Townshend et al., 2019), or protein function prediction (Gligorijević et al., 2021).

Druggable binding site identification. Traditional computational methods for scanning proteins
for their most ”druggable” areas have leveraged various views such as utilizing the protein’s 3D
structure or/and residue sequence, extracting geometric features, building large template libraries,
or relying on energy-based models (Macari et al., 2019). Recently, DL changed this paradigm, e.g.,
using 3D CNNs (Aggarwal et al., 2021; Jiménez et al., 2017; Torng & Altman, 2019b) or sequence
models (Sankararaman et al., 2010).

Popular and more recent drug binding models. Representative docking software for drug-like
molecules are AutoDock Vina (Trott & Olson, 2010) and its various extensions for improving
speed (Trott & Olson, 2010), scoring (Koes et al., 2013) or for blind docking (Hassan et al., 2017).
As mentioned in section 1, these methods employ a multi-stage strategy based on heavy candidate
sampling, scoring, ranking, and fine-tuning. Various subsequent methods aimed to improve some
parts of this pipeline (Zhang et al., 2020; Mohammad et al., 2021; McNutt et al., 2021; Francoeur
et al., 2020), with a special emphasis on the scoring function – see below.

GNNs and CNNs for binding scoring functions and binding affinity prediction. Deep learning
on 3D voxel images (via 3D CNNs) or interaction graphs (via GNNs) have improved the traditional
hand-designed scoring function used in AutoDock Vina, enabling better fine-tuning of predicted
docked poses, as well as direct binding affinity prediction from the 3D complex (McNutt et al., 2021;
Francoeur et al., 2020; Ragoza et al., 2017; Wallach et al., 2015; Lim et al., 2019; Morrone et al.,
2020; Jiang et al., 2021; Shen et al., 2021; Jastrzebski et al., 2020; Bao et al., 2021; Torng & Altman,
2019a; Li et al., 2021). However, some methods (Karimi et al., 2019; Gao et al., 2018) have found
that using the protein sequence and the drug SMILES string already provide competitive predictions
for binding affinity without the need for 3D structural data. Closer to our approach, Méndez-Lucio
et al. (2021) has shown that optimizing the ligand’s global 3D position and orientation and the
torsion angles of rotatable bonds to minimize a GNN based scoring function improves fine-tuning
of the ligand into the active site and its predicted bound pose.

Applications of drug binding and protein-protein docking methods. Computational docking
methods are employed for various facets of drug discovery, e.g., fast virtual screening (Gniewek
et al., 2021; Jastrzebski et al., 2020) or de novo binder generation (Masuda et al., 2020; Imrie et al.,
2021; Drotár et al., 2021). A related problem is protein-protein docking in which recent meth-
ods have performed direct prediction of the complex structure from the two concatenated input
sequences using evolutionary information (Evans et al., 2021), or have leveraged geometric deep
learning to model rigid body docking (Ganea et al., 2021a) or side-chains structures (Jindal et al.,
2021).

Incorporating Euclidean symmetries into GNNs. Injecting Euclidean 3D transformations into
geometric DL models has become possible using equivariant message passing layers (Cohen &
Welling, 2016; Thomas et al., 2018; Fuchs et al., 2020; Satorras et al., 2021; Brandstetter et al.,
2021; Batzner et al., 2021). Our method follows Ganea et al. (2021a) to incorporate SE(3) pairwise
equivariance into message passing neural networks for the drug binding problem. However, different
from this method, we go beyond rigid docking and model ligand conformational flexibility.
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Figure 2: EQUIBIND model architecture.

3 EQUIBIND MODEL

We describe our EQUIBIND model, highlighted in fig. 1 and detailed in fig. 2. It takes as input
a ligand molecular graph with a random associated unbound 3D conformer (e.g., generated using
RDKit/ETKDG Riniker & Landrum (2015)), as well as a receptor-bound structure. As previously
noted, we only model ligand flexibility in this work, assuming a rigid protein conformation.

K-NN graph representations. We represent both input molecules as spatial k-nearest neighbor (k-
NN) graphs. The ligand graph G = (V, E) uses atoms as nodes with their respective 3D coordinates
from the unbound conformer denoted as X ∈ R3×n, and initial features F ∈ Rd×n (e.g., atom type).
Edges include all atom pairs within a distance cutoff of 4 Å. The receptor graph G′ = (V ′, E ′) has
residues as nodes and their 3D coordinates X′ ∈ R3×m are given by the α-carbon locations. Each
node is connected in the graph to the closest 10 other nodes at less than 30 Å distance. The receptor
node features F′ ∈ Rd×m and the ligand features are detailed in appendix C.

Independent E(3)-equivariant transformations. Similar to (Ganea et al., 2021a), an important
geometric inductive bias is to predict the same binding complex no matter how the initial molecules
are positioned and oriented in space. This is especially needed for data-scarce problems such as
structural drug binding. Towards this goal, we use Independent E(3)-Equivariant Graph Match-
ing Network (IEGMN) (Ganea et al., 2021a) which combines Graph Matching Networks (Li et al.,
2019) and E(3)-Equivariant Graph Neural Networks (Satorras et al., 2021). This architecture jointly
transforms both features and 3D coordinates to perform intra and inter neural graph message pass-
ing. Formally, IEGMN(X,F,X′,F′) = Z ∈ R3×n,H ∈ Rd×n,Z′ ∈ R3×m,H′ ∈ Rd×m,
where Z,Z′ are coordinate transformations, while H,H′ are feature embeddings. The core prop-
erty of IEGMNs is that stacking any number of such layers guarantees that any independent ro-
tation and translation of the original input structures will be exactly reflected in the outputs, i.e.,
IEGMN(UX+ b,F,U′X′ + b′,F′) = UZ+ b,H,U′Z′ + b′,H′ for any orthogonal matrices
U,U′ ∈ SO(3) and translation vectors b,b′ ∈ R3. In practice, the Z,H,Z′,H′ outputs shown in
fig. 2 are obtained by stacking several IEGMN layers. The exact update equations are detailed in
Appendix C.

The role of Z. The output of the coordinate E(3)-equivariant transformations denoted as Z and Z′

will be used in different roles: to identify the rigid body transformation and the binding site, as well
as to model ligand flexibility by training Z to represent the deformed atomic point cloud. We detail
both steps below.

3.1 RIGID TRANSFORMATION THROUGH BINDING KEYPOINTS

To identify the rigid SE(3) transformation to dock the ligand in the right position and orientation, we
follow (Ganea et al., 2021a) and compute ligand and receptor keypoints of size K using an SE(3)-
equivariant multi-head attention mechanism defined as yk :=

∑n
i=1 α

k
i zi, y′

k :=
∑m

j=1 β
k
j z

′
j

where αk
i = softmaxi(

1√
d
h⊤
1iUµ(φ(H2))) and similarly defined βk

j are attention coefficients,
with U a parametric learnable matrix. These keypoints are trained to match the ground truth binding
pocket points using an optimal transport loss that recovers their alignment (detailed in (Ganea et al.,
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2021a)). In our case, ground truth binding pocket points are defined as midpoints of segments
connecting ligand atoms to receptor atoms (e.g., from side-chains) that are closer than 4 Å . For
models incorporating ligand flexibility, these pocket points are defined as all ligand atoms that are
closer than 4 Å to any receptor atom. When the ligand and receptor are separated, we seek to
identify the corresponding binding sites, and their exact matching using the two predicted keypoint
sets Y,Y′ ∈ R3xK . If predicted perfectly, the SE(3) transformation to superimpose Y and Y′

would precisely correspond to the binding SE(3) transformation to perform ligand docking.

3.2 MODELING CHEMICALLY PLAUSIBLE LIGAND FLEXIBILITY

It has previously been assumed that the most flexible parts of drug-like molecules are rotatable
bonds, while local atomic structures (LAS) (bond lengths and adjacent bond angles) or small rings
are mostly rigid (Trott & Olson, 2010; Zsoldos et al., 2007; Huang, 2018; Méndez-Lucio et al.,
2021). We here follow this hypothesis in two different ways as below.

We model ligand flexibility through Z, which will represent a good approximation of the deformed
atomic point cloud of the original conformer (i.e., into its bound structure). We train our model with
two extra loss function terms: ligand-RMSD (Root-mean-square deviation) and Kabsch-RMSD 1.

Distance Geometric Constraints. Our first goal is to enforce LAS distance constraints in the
IEGMN layers after each coordinate transformation, i.e., through a tailored differentiable function Ψ
, which we call ”LAS distance geometry (DG) projection.” While a hard constraint might be difficult
to impose exactly, we find the following soft strategy to work well. Formally, the transformed
coordinates Z satisfy the LAS DG constraints iff the following function is minimized w.r.t. Z for a
fixed given (random low-energy unbound) conformer X:

S(Z,X) =
∑

{(i,j)∈E}

(d2X(i, j)− d2Z(i, j))
2 +

∑
{i,j:2-hops away in G}

(d2X(i, j)− d2Z(i, j))
2

+
∑

{i,j:i in aromatic ring with j}

(d2X(i, j)− d2Z(i, j))
2

Thus, our definition of Ψ is hard-coding a fixed number (T) of gradient descent layers that aim to
minimize S:

Ψ(Z) = ΨT ◦ . . . ◦Ψ1(Z), Ψt(Z) = Z− η∇ZS(Z,X),∀t
which is easy since gradients of S have a simple closed-form expression. A similar approach can be
employed for modeling various other rigid substructures such as aromatic rings. T and the correction
step size η are model hyperparameters chosen as described in Appendix C.

Fast Point Cloud Ligand Fitting. However, while helpful for model training, the previous gradient
descent-based projection is not guaranteed to enforce hard LAS DG constraints and, thus, might
produce implausible conformers in practice as we show in fig. 12.

To address this issue, we only change the torsion angles of the initial (RDKit) unbound conformer
X to match Z as well as possible while keeping LAS fixed and, thus, hard-guaranteeing chemically
plausible output bound conformers. The output will be a new conformer C ∈ R3xn with S(C,X) =
0. First, C is initialized as X, and only its rotatable bonds’ torsion angles are changed.

A choice is to optimize C for minimizing Kabsch-RMSD(Z,C). However, such an approach re-
quires an iterative optimization strategy of all torsion angles of rotatable bonds, which can be done
using a differential evolution algorithm as in Méndez-Lucio et al. (2021), or other local random
search strategies. This is computationally expensive (e.g., 51 minutes for a single 44 rotatable bond
molecule). A gradient-based method that could better capture the various molecular interactions,
but computing the gradients of a point cloud w.r.t. its bonds’ torsion angles is non-trivial given the
geometric dependencies between dihedral angles, i.e., eq. (2).

We present a much cheaper alternative for which a closed form solution exists (does not require opti-
mization): we compute the dihedral angles of rotatable bonds of C as maximum likelihood estimates
of von Mises distributions on dihedral angles of Z. This reduces to the following maximization:

max
{∠(kij,ijl)}

∑
(k,i),(i,j),(j,l)∈E

cos(∠Z(kij, ijl)− ∠(kij, ijl)) (1)

1RMSD after superimposition, or RMSD of atomic positions.
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where ∠Z(kij, ijl) are the clockwise dihedral angles of Z, and ∠(kij, ijl) are the dihedrals of C
that we seek to optimize.

However, we have to explicitly take into account that all the dihedral angles for the same rotatable
bond (i,j) are coupled by the following constraint (Ganea et al., 2021b):

∠(kij, ijl) =2π ∠(k′ij, ijl′) + ∠(kij, k′ij) + ∠(ijl′, ijl),

∀(i, j) ∈ E ,∀k, k′ ∈ Ni,∀l, l′ ∈ Nj

(2)

where ∠(kij, k′ij) and ∠(ijl′, ijl) depend only on the local structures of nodes i and j, respectively,
thus will not change if the torsion angle of bond (i,j) changes.

To minimize eq. (1), we can simply do it independently per each rotatable bond (i, j) ∈ E . Let
us fix one such bond (i, j) and use the notations: ∆kl = ∠(kij, ijl) and βkk′l′l = ∠(kij, k′ij) +

∠(ijl′, ijl). Additionally, for any angle α, we define: Aα :=

[
cos(α) − sin(α)
sin(α) cos(α)

]
and sα :=[

cos(α)
sin(α)

]
. Thus, we rewrite the constraint in eq. (2) as s∆kl

= Aβkk′l′ls∆k′l′ ,∀k, k
′ ∈ Ni,∀l, l′ ∈

Nj . eq. (1) is then rewritten for bond (i,j), up to a constant:

max
{∆kl}

∑
k∈Ni

∑
l∈Nj

⟨s∆kl
, s∗∆kl

⟩ (3)

Choosing any fixed k0 ∈ Ni, l0 ∈ Nj , the above becomes

max
∆k0l0

∑
k∈Ni

∑
l∈Nj

⟨Aβkk0l0l
s∆k0l0

, s∗∆kl
⟩ = s⊤∆k0l0

v (4)

where v :=
∑

k∈Ni

∑
l∈Nj

A⊤
βkk0l0l

s∗∆kl
. This has the closed form solution s∆k0l0

= v
∥v∥ , which

finally gives all dihedral angles ∆kl in closed form. One can easily verify that the choice of k0 ∈ Ni

and l0 ∈ Nj will not affect the values of the predicted dihedrals ∆kl, ∀k ∈ Ni,∀l ∈ Nj .

4 EXPERIMENTS

Data. We provide a new time-based dataset split and preprocessing pipeline for DL drug bind-
ing methods. We make this data and associated scripts available together with code to reproduce
results or perform fast docking with the provided model weights at https://github.com/
HannesStark/EquiBind. We use protein-ligand complexes from PDBBind Liu et al. (2017),
which is a subset of the Protein Data Bank (PDB) Berman et al. (2003) that provides 3D struc-
tures of individual proteins and complexes. The newest version, PDBBind v2020, contains 19 443
protein-ligand complexes with 3890 unique receptors and 15 193 unique ligands. We describe our
preprocessing to remove pathologies of the data, the motivation for the new time split, and the exact
dataset split in appendix B.

Baselines. Quick Vina-W (QVina-W) is a classical docking program specifically developed for
”wide” or blind docking. SMINA (Koes et al., 2013) builds on AutoDock Vina by designing an im-
proved and empirical scoring function. GNINA (McNutt et al., 2021; Francoeur et al., 2020) further
develops a DL scoring function using CNNs and a grid-based featurization scheme. GLIDE (Hal-
gren et al., 2004) is a popular commercial docking software of which we use the 2021-4 release.
We run GLIDE, GNINA, and SMINA with their default settings and for QVina-W we increase the
exhaustiveness (parameter controlling the search time) to 64 with which it is still faster than the
other baselines.

EquiBind models. Our model can be applied in various scenarios, see caption of table 1. First, the
EQUIBIND-U model generates an uncorrected ligand point cloud Z that does not necessarily have
valid bond angles and lengths. The standard EQUIBIND takes this output and applies our fast point
cloud ligand fitting in section 3.2 to obtain a realistic molecular structure. The model EQUIBIND-R
treats the ligand as a rigid body, being trained with no flexibility loss terms. The fine-tuning model
EQUIBIND + Q builds on top of this output by searching refined conformations using Quick Vina 2
in a 5 Å bounding box around the ligand predicted by EQUIBIND-R. The instantiations EQUIBIND
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+ Q2 does the same with two times as many sampled ligand positions, and EQUIBIND + S as well
as EQUIBIND-R + S instead use SMINA for fine-tuning.

Evaluation Metrics. We use the ligand root mean square deviation (L-RMSD), the centroid dis-
tance, and the Kabsch-RMSD. We calculate all metrics after hydrogens are removed. The centroid
distance measures the ability of the model to find the correct binding pocket (for a given ligand) via
the distance between the averaged coordinates of the predicted and true bound ligand atoms. Kabsch
RMSD is the lowest possible RMSD that can be obtained by SE(3) transformation of the ligand (i.e.,
RMSD after superimposition with the Kabsch algorithm). L-RMSD is the mean squared error be-
tween the atoms of the predicted and bound ligands. All RMSDs are calculated using OpenBabel’s
symmetry corrected and atom order invariant RMSD tool obrms. Next to the mean and cumulative
distributions, we report the percent of predictions below a given error threshold.

Finally, we show the average number of seconds needed to make a prediction for a test complex,
given the receptor and the initial ligand structure. The receptor preparation time is excluded (mainly
an additional 393 sec for GLIDE) since this step is commonly only performed once before docking
many ligands to the same receptor. We ran all runtime measurements on the same machine using 16
logical CPU cores (except for GLIDE, which does not support multithreading – detailed in Appendix
C), once with and once without access to a 6GB GTX 1060 GPU.

Table 1: Flexible blind self-docking. All methods receive a random RDKit conformer of the ligand
molecule as input and are tasked to find its binding site and the right orientation + conformation
in which it binds. EQUIBIND-U refers to the model producing uncorrected atomic point clouds Z
that are not necessarily chemically plausible ligands. EQUIBIND performs our fast conformer fitting
corrections – see section 3.2. EQUIBIND+Q predicts an approximate ligand position and fine-tunes
it using QuickVina 2. EQUIBIND+Q2 samples more candidate positions, and EQUIBINDS uses
SMINA for fine-tuning. *GLIDE runtime details in Appendix C.

LIGAND RMSD ↓ CENTROID DISTANCE ↓ KABSCH
AVG.
SEC.

AVG.
SEC. PERCENTILES ↓ % BELOW

THRESHOLD ↑ PERCENTILES ↓ % BELOW
THRESHOLD ↑ RMSD ↓

METHODS CPU GPU MEAN 25TH 50TH 75TH 5 Å 2 Å MEAN 25TH 50TH 75TH 5 Å 2 Å MEAN MEDIAN

QVINA-W 49 - 13.6 2.5 7.7 23.7 40.2 20.9 11.9 0.9 3.7 22.9 54.6 41.0 2.1 1.9
GNINA 247 146 13.3 2.8 8.7 22.1 37.1 21.2 11.5 1.0 4.5 21.2 52.0 36.0 2.2 1.8
SMINA 146 - 12.1 3.8 8.1 17.9 33.9 13.5 9.8 1.3 3.7 16.2 55.9 38.0 2.2 1.9
GLIDE* 1405 - 16.2 2.6 9.3 28.1 33.6 21.8 14.4 0.8 5.6 26.9 48.7 36.1 2.2 1.9
EQUIBIND+Q 8 8 8.4 2.6 6.6 11.1 38.0 18.7 5.9 1.0 2.5 6.4 68.7 44.6 2.3 1.9
EQUIBIND+Q2 15 15 8.7 2.6 6.8 11.1 40.7 21.6 6.0 1.0 2.4 6.6 70.1 42.7 2.2 1.6
EQUIBIND+S 146 146 8.3 2.1 5.6 10.5 46.4 24.6 6.0 0.9 2.0 6.2 71.0 50.6 2.1 1.8
EQUIBIND 0.16 0.04 8.2 3.8 6.2 10.3 39.1 5.5 5.6 1.3 2.6 7.4 67.5 40.0 2.6 2.3

EQUIBIND-U 0.14 0.02 7.8 3.3 5.7 9.7 42.4 7.2 5.6 1.3 2.6 7.4 67.5 40.0 2.1 1.8

Blind self-docking. This set of experiments reflects the performance that can be expected in the
most typical applications where the true ligand bond angles and distances (which are used in re-
docking) are unknown. An initial approximate conformer has to be obtained from a 2D molecular
graph for which we use a random RDKit conformer.

Figure 3: Flexible blind self-docking. Cumulative density histogram of the L-RMSD (top) and
centroid distance (bottom) of EQUIBIND with and without SMINA for fine-tuning.
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The results in Table 1 show that vanilla EQUIBIND performs well at identifying the approximate
binding location and outperforms the baselines in metrics other than the 25th RMSD percentile and
the fraction of predictions with and RMSD better than 2 Å. The fine-tuning extensions of EQUIBIND
such as EQUIBIND + Q outperform or match the baselines in all metrics, while EQUIBIND + Q and
EQUIBIND + Q2 also retain significant inference speed-ups, making our method suitable for ex-
tremely high-throughput applications such as virtual screening over databases of hundred million
molecules, e.g., ZINC. Thus, practitioners can combine our method with previous fine-tuning base-
lines and trade quality over runtime depending on the downstream task of interest.

Figure 3 shows the same trend for the RMSD. EQUIBIND, which is three orders of magnitude
faster than the fastest baseline, improves over the baselines for the predictions in the > 4 Å regime.
EQUIBIND does better for complexes that are hard to predict (e.g., due to ligand size) and also
outperforms the baselines in the low RMSD regime when using fine-tuning (EQUIBINDS). For the
centroid distances, the exact conformer is less crucial, and the methods mainly have to find the
correct binding pocket location. Here, EQUIBIND is already able to match the baselines in the
low error regime without fine-tuning. Histograms for EQUIBIND + Q and EQUIBIND + Q2 are in
Appendix Figure 5.

The main observations are that EQUIBIND is much faster than the baselines, has fewer predictions
that are far off from the true conformer, and can use fast fine-tuning for very low-RMSD final
predictions. The benefits through fine-tuning can be expected considering the difficulty of predicting
the correct torsions jointly with the binding location and orientation in a single forward pass.

Table 2: Blind re-docking. The input is the bound ligand structure at a random location. The
methods are tasked to find the binding site and the right binding location + orientation. EQUIBIND-
R’s and GLIDE’s Kabsch RMSD is 0 since they treat the ligand as a rigid body while the other
methods can only be run in a flexible mode where torsion angles are changed. *GLIDE runtime
details in Appendix C.

LIGAND RMSD ↓ CENTROID DISTANCE ↓ KABSCH
AVG.
SEC.

AVG.
SEC. PERCENTILES ↓ % BELOW

THRESHOLD ↑ PERCENTILES ↓ % BELOW
THRESHOLD ↑ RMSD ↓

METHODS CPU GPU MEAN 25TH 50TH 75TH 5 Å 2 Å MEAN 25TH 50TH 75TH 5 Å 2 Å MEAN MEDIAN

QVINA-W 49 - 13.4 1.6 7.9 24.1 39.0 27.7 11.8 0.9 3.8 23.2 55.4 40.4 1.8 1.5
GNINA 247 146 12.2 1.3 6.1 22.9 46.8 32.2 10.9 0.7 2.8 22.1 58.4 43.8 1.7 1.4
SMINA 146 - 10.3 1.4 6.2 15.2 46.7 30.1 8.5 0.8 2.6 12.7 63.5 45.3 1.7 1.4
GLIDE* 1405 - 15.7 0.5 8.3 29.5 45.7 43.4 14.8 0.3 4.9 28.5 50.4 45.4 0 0

EQUIBIND-R 0.14 0.02 7.4 2.0 5.1 9.8 49.0 25.1 5.8 1.4 2.6 7.3 66.9 40.8 0 0
EQUIBIND-R+S 146 146 7.0 1.0 3.4 9.6 57.0 41.1 5.3 0.7 1.4 4.7 76.0 59.2 1.5 1.1

Blind re-docking. In these experiments, the bound ligand is extracted from the binding pocket,
placed in a random location, and the methods have to re-dock it into the correct conformation. Thus
the methods have access to the ground truth structure of the ligand, and all predictions will have the
correct bond lengths and angles. EQUIBIND-R treats the ligand as a completely rigid body and only
predicts a translation and rotation. Rigid re-docking results are of practical relevance for docking
strategies where large amounts of conformations are generated for a single molecule and then rigidly
docked to the receptor before using an additional scoring function to rank the predictions.

In table 2 we can observe that EQUIBIND-R can be particularly impactful for this strategy due to
its much faster inference time. This is while outperforming the baselines in the metrics other than
the 25th percentiles and the fraction of predictions with an error below 2 Å. For practical rigid re-
docking applications, this could potentially be remedied by docking 10 times as many conformers
while still retaining a 10 times speed-up over the fastest baseline.

Sensitivity to initial conformer. EQUIBIND’s predictions depend on the initial conformer’s torsion
angles, bond angles, and bond lengths (the baselines only depend on initial bond angles and lengths).
In fig. 4 we investigate the risk of an ”unlucky” initial conformer leading to a high L-RMSD. For
363 complexes, we generate 30 different initial RDKit conformers. EQUIBIND predicts a binding
structure using each of them, and we obtain 30 L-RMSD values of which we calculate the standard
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Figure 4: Left: Histogram of the standard deviations of the L-RMSDs of EQUIBIND’s predic-
tions when using different initial conformers. Right: Two cherry-picked example predictions where
EQUIBIND has better RMSD than GNINA (top) and two where EQUIBIND performs worse than
GNINA (bottom). The ground truth ligand is in cyan, EQUIBIND in pink, and GNINA in yellow.

deviation. We find a low sensitivity to the initial conformer, with the majority of predictions having
a smaller standard deviation than 0.5

Visualizations. EQUIBIND’s predictions are rarely far off from the true ligand, but there are cases
where it struggles to find the exact torsion angles and, therefore, the right atom configurations in
the ligand. Examples of this are in fig. 4 and show two cases where GNINA performs worse and
produces a prediction that is far off while EQUIBIND is able to find the binding location. The other
two cases, where GNINA is better, display how the baseline more exactly finds the true structure,
but EQUIBIND still finds the correct approximate location. Further visualizations of predictions are
in Appendix Figure 11.

5 CONCLUSION

The promising ability of deep neural networks to predict protein structures has sparked a large
amount of research in computational drug discovery. Here, we proposed EQUIBIND, a deep neural
model which relies on SE(3)-equivariant graph neural networks to predict bound protein-ligand
conformations in a single shot. Our model shows strong empirical performance against state-of-the-
art baselines, and we demonstrate its potential in a hybrid workflow by combining it with existing
fine-tuning methods. We expect that EQUIBIND and similar models will progress the adoption of
deep learning in drug discovery.
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Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Beren-
berg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis, et al. Structure-
based protein function prediction using graph convolutional networks. Nature communications,
12(1):1–14, 2021.

Pawel Gniewek, Bradley Worley, Kate Stafford, Henry van den Bedem, and Brandon Anderson.
Learning physics confers pose-sensitivity in structure-based virtual screening. arXiv preprint
arXiv:2110.15459, 2021.

Thomas A Halgren, Robert B Murphy, Richard A Friesner, Hege S Beard, Leah L Frye, W Thomas
Pollard, and Jay L Banks. Glide: a new approach for rapid, accurate docking and scoring. 2. en-
richment factors in database screening. Journal of medicinal chemistry, 47(7):1750–1759, 2004.

Nafisa M Hassan, Amr A Alhossary, Yuguang Mu, and Chee-Keong Kwoh. Protein-ligand blind
docking using quickvina-w with inter-process spatio-temporal integration. Scientific reports, 7
(1):1–13, 2017.

Sheng-You Huang. Comprehensive assessment of flexible-ligand docking algorithms: current effec-
tiveness and challenges. Briefings in bioinformatics, 19(5):982–994, 2018.

Fergus Imrie, Thomas E Hadfield, Anthony R Bradley, and Charlotte M Deane. Deep generative
design with 3d pharmacophoric constraints. bioRxiv, 2021.

Stanisław Jastrzebski, Maciej Szymczak, Agnieszka Pocha, Stefan Mordalski, Jacek Tabor, An-
drzej J Bojarski, and Sabina Podlewska. Emulating docking results using a deep neural network:
a new perspective for virtual screening. Journal of Chemical Information and Modeling, 60(9):
4246–4262, 2020.

Dejun Jiang, Chang-Yu Hsieh, Zhenxing Wu, Yu Kang, Jike Wang, Ercheng Wang, Ben Liao, Chao
Shen, Lei Xu, Jian Wu, et al. Interactiongraphnet: A novel and efficient deep graph representation
learning framework for accurate protein–ligand interaction predictions. Journal of medicinal
chemistry, 2021.
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A ADDITIONAL RESULTS

Figure 5: Flexible blind self-docking. Left: Cumulative histogram of the L-RMSD. Right: Cumu-
lative histogram of the centroid distance.

Figure 6: Sensitivity to initial conformer. Left: Histogram of the standard deviations of the L-
RMSDs of EQUIBIND’s and EQUIBIND-U’s predictions when using 30 different initial conformers.
Right: Scatter-plot with a point for each complex showing the mean L-RMSD and standard deviation
of EQUIBIND’s or EQUIBIND-U’s 30 predictions from 30 different initial input conformers.

Table 3: Flexible blind self-docking. All methods receive a random RDKit conformer of the ligand
as input and are tasked to find the binding site and the correct binding structure. Comparison of
EQUIBIND-SA which additionally uses surface atoms of the receptor and EQUIBIND-A, which
makes a prediction using EQUIBIND-R and refines it using an all-atom subgraph in a 10 Å radius
around the predicted ligand. The methods have to be compared with EQUIBIND-U as corrections
would still need to be applied.

LIGAND RMSD ↓ CENTROID DISTANCE ↓ KABSCH
AVG.
SEC.

AVG.
SEC. PERCENTILES ↓ % BELOW

THRESHOLD ↑ PERCENTILES ↓ % BELOW
THRESHOLD ↑ RMSD ↓

METHODS CPU GPU MEAN 25TH 50TH 75TH 5 Å 2 Å MEAN 25TH 50TH 75TH 5 Å 2 Å MEAN MEDIAN

EQUIBIND-SA 0.14 0.02 8.6 3.6 6.1 11.4 41.3 3.8 6.1 1.4 2.7 7.3 66.6 40.5 2.4 2.0
EQUIBIND-A 5.56 5.44 8.2 3.8 6.0 10.2 43.0 3.3 6.1 1.7 3.3 7.0 63.3 30.3 3.0 2.7
EQUIBIND-U 0.14 0.02 7.8 3.3 5.7 9.7 42.4 7.2 5.6 1.3 2.6 7.4 67.5 40.0 2.1 1.8

In table 3 we compare EQUIBIND which only implicitly uses atom level locations with approaches
that explicitly use atoms as nodes in the processed graph. EQUIBIND-SA uses the surface atoms of
the receptor, which are found using the MSMS tool. This additional step does not impact inference
runtime, which we measure without preprocessing as explained in Section 4. EQUIBIND-A makes a
prediction using EQUIBIND-R and uses an all-atom subgraph in a 10 Å radius around the predicted
ligand to further refine the prediction. This additional step significantly impacts inference runtime.
Both methods require around 2-3 times more GPU RAM than EQUIBIND.
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Figure 7: Performance correlation with molecule size. Left: Scatter-plot showing the L-RMSD
and the number of ligand atoms for each prediction of EQUIBIND and GNINA. Right: The same for
the number of rotatable bonds in the ligand.

Figure 8: Flexible blind self-docking. Zoomed in versions of the histograms in Figure 3 where
only the 0-5 Å range is shown. Left: Cumulative histogram of the L-RMSD. Right: Cumulative
histogram of the centroid distance.

In fig. 8 we can again observe that EQUIBIND struggles to produce many predictions in the low
L-RMSD range. When adding an additional fine-tuning step such as with EQUIBINDS, the model
is able to match or outperform the baselines in all L-RMSD ranges. Thus predictions speed can be
traded off for additional accuracy via fine-tuning EQUIBIND’s predictions with classical physics-
based methods. Above the 3.8 Å cutoff, the vanilla EQUIBIND starts outperforming the baselines
even without fine-tuning.

Figure 9: Flexible blind self-docking new receptors. Results when removing all complexes from
the time split based test set whose receptor was present in a complex that is older than 2019. Cu-
mulative density histogram of the L-RMSD (top) and centroid distance (bottom) of EQUIBIND with
and without SMINA for fine-tuning.

Fast point cloud fitting. In fig. 12 we visualize our novel fast point cloud ligand fitting described
in section 3.2. The point clouds produced by the uncorrected flexible EQUIBIND-U are not realistic
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Table 4: Flexible blind self-docking new receptors. Results when removing all complexes from
the time split based test set whose receptor was present in a complex that is older than 2019. 144
complexes remain. The run times are still averaged over all test complexes. All methods receive a
random RDKit conformer of the ligand molecule as input and are tasked to find its binding site and
the right orientation + conformation in which it binds. EQUIBIND-U refers to the model producing
uncorrected atomic point clouds Z that are not necessarily chemically plausible ligands. EQUIBIND
performs our fast conformer fitting corrections – see section 3.2. EQUIBIND+Q predicts an approx-
imate ligand position and fine-tunes it using QuickVina 2. EQUIBIND+Q2 samples more candidate
positions, and EQUIBINDS uses SMINA for fine-tuning. *GLIDE runtime details in Appendix C.

LIGAND RMSD ↓ CENTROID DISTANCE ↓ KABSCH
AVG.
SEC.

AVG.
SEC. PERCENTILES ↓ % BELOW

THRESHOLD ↑ PERCENTILES ↓ % BELOW
THRESHOLD ↑ RMSD ↓

METHODS CPU GPU MEAN 25TH 50TH 75TH 5 Å 2 Å MEAN 25TH 50TH 75TH 5 Å 2 Å MEAN MEDIAN

QVINA-W 49 - 16.9 3.4 10.3 28.1 31.9 15.3 15.2 1.3 6.5 26.8 47.9 35.4 2.2 1.9
GNINA 247 146 16.7 4.5 13.4 27.8 27.8 13.9 15.1 2.0 10.1 27.0 39.5 25.7 2.3 1.8
SMINA 146 - 15.7 4.8 10.9 26.0 25.7 9.0 13.6 1.6 6.5 25.7 41.7 29.9 2.3 1.9
GLIDE* 1405 - 19.6 3.4 18.0 31.4 28.7 19.6 18.1 1.1 17.6 29.1 40.6 29.4 2.3 1.7
EQUIBIND+Q 8 8 11.5 5.5 8.7 15.7 22.9 9.3 9.1 1.6 5.5 14.0 47.9 30.7 2.3 1.9
EQUIBIND+Q2 15 15 12.0 4.1 8.0 19.7 28.0 13.3 9.8 1.3 4.4 18.5 53.9 30.8 2.3 1.7
EQUIBIND+S 146 146 11.9 3.6 7.9 19.7 33.3 14.6 9.7 1.0 4.0 18.2 57.6 40.3 2.2 1.8
EQUIBIND 0.16 0.02 11.3 5.9 9.1 14.3 18.8 0.7 8.9 2.6 6.3 12.9 43.8 16.7 2.7 2.2

EQUIBIND-U 0.14 0.02 11.0 5.7 8.8 14.1 21.5 1.4 8.9 2.6 6.3 12.9 43.8 16.7 2.2 1.8

Figure 10: LAS distance geometry constraint visualization. Visualization of the interatomic
distances which are included in the LAS distance geometry constraints in Equation 3.2. The pairwise
distances in rings are only included if the ring is aromatic, like in the bottom left ring of the depicted
molecule. The torsion angles in non-aromatic rings, such as the one in the bottom right, remain
flexible.

molecules. The corrections use a conformer with valid bond lengths and angles and change its
torsions to most closely match the point cloud.

Limitations. One drawback of EQUIBIND is that it only implicitly models the atom positions of
side chains. This is done via the local frame encoding features of Jumper et al. (2021a) that we
employ in the α-carbon graph of the receptor. Explicitly representing these atoms might improve
precise docking. We experimented with surface atoms and fine-tuning approaches that use an atom
subgraph of the receptor with results in Appendix A. However, this yielded only small or no im-
provements while adding considerable computational complexity. We leave further exploration of
this strategy for future work. These results are in line with prior protein modeling techniques such
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Figure 11: Three cherry-picked example predictions of EQUIBIND (cyan) on the left with the same
image on the right, including the true bound conformer in pink.

as AlphaFold2, Jumper et al. (2021a) which successfully predicts side chains based on only residue
level information.
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Figure 12: Left: in green are two uncorrected pseudo-molecules predicted by EQUIBIND-U. Right:
the final output of EQUIBIND with corrections using our fast flexible conformer fitting applied to
produce a conformer with realistic bond angles and lengths.
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B DATASET

Motivation for new test set and time split. Docking methods are often evaluated using the PDB-
Bind core set, which contains 285 hand-curated high-resolution complexes. However, this might not
reflect the performance in real-world applications where data might not be of similar high quality.
Due to the differences in resolution and the average ligand size (32 heavy atoms in PDBBind versus
24 in the core set), the complexes of the core set can be considered easier to predict than the average
complex. Moreover, some of the previous methods might have been validated or trained on a subset
of the core set and thus, report optimistic quality numbers. To better reflect the average complex
encountered in applications, we employ a test set that only contains complexes that were discovered
in 2019 or later, while the train and validation sets only use strictly older complexes.

Dataset split. Of the 19 119 preprocessed complexes, 1512 were discovered in 2019 or later. From
these, we randomly sample 125 unique proteins and collect all new complexes containing them (363)
to create the final test set. The low number of test samples is chosen to make it feasible to compare
with time-consuming classical physics-based docking methods. From the remaining complexes that
are older than 2019, we remove those with ligands contained in the test set, giving 17 347 complexes
for training and validation. These are divided into 968 validation complexes, which share no ligands
with the remaining 16 379 train complexes. Results when only testing on new receptors are in
Appendix A.

Preprocessing. The time split is done after preprocessing the 19 443 complexes of PDBBind v2020
as follows. First, we drop all complexes that cannot be processed by the RDKit library (Landrum,
2016), leaving 19 119 complexes. We process each ligand and receptor with OpenBabel Open Babel
development team (2005) and add all missing hydrogens to the ligands using RDKit. Next we correct
all receptor hydrogens and add missing ones using reduce2.

A significant remaining data issue is symmetric receptor structures comprised of the same protein
repeated multiple times. In these cases, the ligand could equally likely bind to the pocket of each
of the proteins, i.e., multiple ligand correct positions are possible. However, the ground truth ligand
is only placed in one of those locations. Examples are in fig. 13. We address the majority of these
cases by only keeping the connected components of the receptor, which have an atom within a 10 Å
radius of any ligand atom.

Figure 13: Examples of symmetric receptor complexes with multiple equally valid binding positions
for the ligand.

C IMPLEMENTATION DETAILS

IEGMN Layer. Our choice for a single l-th layer is:

mj→i = φe(h
(l)
i ,h

(l)
j , ∥x(l)

i − x
(l)
j ∥2, fj→i),∀(i, j) ∈ E ∪ E ′

2https://github.com/rlabduke/reduce
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Figure 14: Histograms that show how often each unique ligand and receptor appears in the PDBBind
dataset.

µj′→i = aj′→iWh
(l)
j′ ,∀i ∈ V, j′ ∈ V ′ or i ∈ V ′, j′ ∈ V

mi =
1

|N (i)|
∑

j∈N (i)

mj→i,∀i ∈ V ∪ V ′

µi =
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j′∈V′

µj′→i,∀i ∈ V, and µ′
i =

∑
j∈V

µj→i′ ,∀i ∈ V ′

x
(l+1)
i = Ψ

x
(l)
i +

∑
j∈N (i)

x
(l)
i − x

(l)
j

∥x(l)
i − x

(l)
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φx(mj→i)


h
(l+1)
i = (1− β) · h(l)

i + β · φh(h
(l)
i ,mi, µi, fi),∀i ∈ V ∪ V ′

where aj→i are SE(3)-invariant attention coefficients derived from H embeddings, N (i) are the
graph neighbors of node i, W is a parameter matrix, and the various φ functions are modeled using
shallow neural networks, with φx outputting a scalar and others a d-dimensional vector.

When modeling ligand flexibility, we found it useful to incorporate additional geometric constraints
on transformed coordinates through Ψ models described in section 3.2.

Implementation Details. We optimize our model using Adam (Kingma & Ba, 2014) and do early
stopping with patience of 150 epochs based on the percentage of predicted validation set complexes
with an RMSD better than 2 Å. All hyperparameters and the employed ligand and node features
are described in Appendix C. Code to reproduce results or perform fast docking with the provided
model weights is available at https://github.com/HannesStark/EquiBind.

Featurization. For the α-carbons in the receptor graph, we use the residue type as a feature. The
edges have two attributes. Firstly, the interatomic distances encoded with Gaussian basis functions
with 15 different variances—secondly, the local frame orientation encodings as they are employed
by Jumper et al. (2021a) and Ganea et al. (2021a).

In the ligand, the edges have features that are encoded in the same fashion as for the receptor.
Meanwhile, the atoms have the following features: atomic number; chirality; degree; formal charge;
implicit valence; the number of connected hydrogens; the number of radical electrons; hybridization
type; whether or not it is in an aromatic ring; in how many rings it is; and finally, 6 features for
whether or not it is in a ring of size 3, 4, 5, 6, 7, or 8.

GLIDE Runtime. While baselines like GNINA, SMINA, and QVina-W can leverage multiple CPU
cores while making the predictions for a single complex, this is not the case for GLIDE, which only
uses a single thread when processing a complex (this and the following information is described
here https://www.schrodinger.com/kb/1165). GLIDE has an application that supports
starting multiple processes with each processing a different complex in parallel and for distributing
these processes across CPU cores. However, each process also requires a separate software license.

Further Hyperparameters. We use a learning rate of 10−4 for EQUIBIND and 3 × 10−4 for
EQUIBIND-R. The learning rate is reduced by a factor of 0.6 after 60 epochs of no improvement in
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our main validation criterion, which is the percentage of predicted validation set complexes with an
RMSD better than 2 Å. The models with the best validation score are then tested on the time-based
test set.

Table 5: Search space for all EQUIBIND models through which we searched to obtain a strong
performance on the validation set. The final parameters for the standard EQUIBIND model are
marked in bold.

PARAMETER SEARCH SPACE

LAS DG STEP SIZE η 1, 0.01, 0.001, 0.0001
LAS DG NUMBER OF STEPS T 1, 5, 10
OPTIMAL TRANSPORT LOSS WEIGHT 0, 0.1, 0.5, 1, 2, 10
INTERSECTION LOSS WEIGHT 0, 0.1, 1, 3, 10, 50, 100
PROPAGATION DEPTH [ 5, 7, 8]
INTERSECTION σ 8 (BASED ON LOSS ON VAL-SET)
INTERSECTION γ 8 (BASED ON LOSS ON VAL-SET)
KABSCH RMSD LOSS WEIGHT 0, 1
HIDDEN DIMENSION 32, 64, 100
NON LINEARITIES LEAKY-RELU, RELU, SELU
LEARNING RATES 0.0009, 0.0003, 0.0001, 0.00007
DROPOUT 0, 0.05, 0.1, 0.2
NUM ATTENTION HEADS 10, 20, 30, 50, 100
NORMALIZATION BATCHNORM, LAYERNORM, GRAPHNORM
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