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Abstract
In value-based reinforcement learning, removing the target network is tempting as the
boostrapped target would be built from up-to-date estimates, and the spared memory
occupied by the target network could be reallocated to expand the capacity of the
online network. However, eliminating the target network introduces instability, lead-
ing to a decline in performance. Removing the target network also means we cannot
leverage the literature developed around target networks. In this work, we propose to
use a copy of the last linear layer of the online network as a target network, while
sharing the remaining parameters with the up-to-date online network, hence stepping
out of the binary choice between target-based and target-free methods. It enables us
to leverage the concept of iterated Q-learning, which consists of learning consecutive
Bellman iterations in parallel, to reduce the performance gap between target-free and
target-based approaches. Our findings demonstrate that this novel method, termed it-
erated Shared Q-Learning (iS-QL), improves the sample efficiency of target-free ap-
proaches across various settings. Importantly, iS-QL requires a smaller memory foot-
print and comparable training time to classical target-based algorithms, highlighting its
potential to scale reinforcement learning research. Our code is publicly available at
https://github.com/theovincent/iS-DQN.

1 Introduction
Originally, Q-learning (Watkins & Dayan, 1992) was introduced as a reinforcement learning (RL)
method that performs asynchronous dynamic programming using a single look-up table. By storing
only one Q-estimate, Q-learning benefits from an up-to-date estimate and reduces memory footprint.
However, replacing look-up tables with non-linear function approximators and allowing off-policy
samples to make the method more tractable introduces training instabilities (Sutton & Barto, 2018).
To address this, Mnih et al. (2015) introduce Deep Q-Network (DQN), an algorithm that constructs
the regression target from an older version of the online network, known as the target network,
which is periodically updated to match the online network (see "Target Based" in Figure 1). This
modification to the temporal-difference objective helps mitigate the negative effects of function ap-
proximation and bootstrapping (Zhang et al., 2021), two elements of the deadly triad (van Hasselt
et al., 2018). Recently, new methods have demonstrated that increasing the size of the Q-network
can enhance the learning speed and final performance of temporal difference methods (Espeholt
et al., 2018; Schwarzer et al., 2023; Nauman et al., 2024; Lee et al., 2025). Numerous ablation
studies highlight the crucial role of the target network in maintaining performance improvements
over smaller networks (Figure 7 in Schwarzer et al. (2023), and Figure 9b in Nauman et al. (2024)).
Interestingly, even methods initially introduced without a target network (Bhatt et al. (2024) and
Kim et al. (2019)) benefit from its reintegration (Figure 5 in Palenicek et al. (2025) and Gan et al.
(2021)).
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Figure 1: We propose a simple alternative to target-based/target-free approaches, where a linear layer
represents the target network, sharing the rest of the parameters with the online network (Shared
Features). We apply the concept of iterated Q-learning, which consists of learning multiple Bellman
updates in parallel, to reduce the performance gap between target-free and target-based approaches
(iterated Shared Features).

While temporal difference methods clearly benefit from target networks, their utilization doubles the
memory footprint dedicated to Q-networks. This ultimately limits the size of the online network due
to the constrained video Random Access Memory (VRAM) of GPUs. This limitation is problem-
atic not only because larger networks can perform better, as previously discussed, but also because
some applications inherently require large network sizes. These applications include handling high-
dimensional state spaces (Boukas et al., 2021; Pérez-Dattari et al., 2019), processing multi-modal
inputs (Schneider et al., 2025), or constructing mixtures of experts (Obando Ceron et al., 2024). This
motivates the development of target-free methods.

In this work, we introduce an alternative to the binary choice between target-free and target-based
approaches. We propose storing only the smallest possible part of the target network, i.e., the param-
eters of the last linear layer, while using the parameters of the online network to substitute the other
layers of the target network (see "Shared Features" in Figure 1). Although this simple modification
alone helps reduce the performance gap between target-free and target-based DQN (see Figure 4,
right), we explain in this work how it opens up the possibility of leveraging the target-based litera-
ture to reduce this gap further, while maintaining a low memory footprint. Notably, this approach
is also orthogonal to regularization techniques that have been shown to be effective for target-free
algorithms (Kim et al., 2019; Bhatt et al., 2024; Gallici et al., 2025). Therefore, we will build upon
these approaches to benefit from their performance gains.

In the following, we leverage the concept of iterated Q-learning (Vincent et al., 2025) to enhance
the learning speed (in terms of number of environment interactions) of target-free algorithms. This
concept, initially introduced as a target-based approach, aims at learning multiple Bellman iterations
in parallel. This leads to a new algorithm, termed iterated Shared Q-Network (iS-QN), pronounced
"ice-QN" to emphasize that it contains a frozen head. iS-QN utilizes a single network with multiple
linear heads, where each head is trained to represent the Bellman target of the previous one (see
"iterated Shared Features" in Figure 1). Our evaluation of iS-QN across various RL settings demon-
strates that it improves the learning speed of target-free methods while maintaining a comparable
memory footprint and training time.

2 Background

Deep Q-Network (Mnih et al., 2015) The optimal policy of a Markov Decision Process with
a discrete action space can be obtained by selecting for each state, the action that maximizes the
optimal action-value function Q∗. This function represents the largest achievable expected sum of
discounted rewards given a state-action pair. This is why Mnih et al. (2015) estimate the optimal
action-value function with a neural network Qθ, represented by a vector of parameters θ. This neural
network is learned to approximate its Bellman iteration ΓQθ, leveraging the contraction property of
the Bellman operator Γ to guide the optimization process toward the operator’s fixed point, i.e.,
the optimal action-value function Q∗. In practice, a sample estimate of the Bellman iteration is
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used, where for a sample (s, a, r, s′), ΓQθ(s, a) = r + γmaxa′ Qθ(s
′, a′). However, this learning

procedure is unstable because the neural network Qθ learns from its own values, which change at
each optimization step. To address this issue, the authors introduce a target network with parameters
θ̄ to stabilize the regression target ΓQθ̄, and periodically update these parameters to the online
parameters θ every T steps. This doubles the memory footprint dedicated to Q-networks.

Iterated Q-Network (Vincent et al., 2025) By using a target network, DQN slows down the
training process as multiple gradient steps are dedicated to each Bellman iteration. To increase the
learning speed, Vincent et al. (2025) proposed to learn consecutive Bellman iterations in parallel.
This approach uses a sequence of online parameters (θi)

K
i=1 and a sequence of target parameters

(θ̄i)
K−1
i=0 . Each online network Qθi+1

is trained to regress ΓQθ̄i . Similarly to DQN, each target
parameter θ̄i is updated to the online parameter θi+1 every T steps. Importantly, the structure of
a chain is enforced by setting each θ̄i to θi every D ≪ T steps so that each Qθi+1 , which is
learned to regress ΓQθ̄i , are forced to approximate ΓQθi . This results in QθK ≈ ΓQθK−1

≈
. . . ≈ ΓKQθ0 , thus learning K consecutive Bellman iterations in parallel. As a drawback, iterated
Q-Network (i-QN) requires storing 2×K networks, significantly increasing the memory footprint.
In the following, we will leverage this concept to reduce the performance gap between target-free
and target-based approaches by merging the 2×K networks into a single network with linear heads.

3 Related Work

Other works have considered removing the target network in different RL scenarios. Vasan et al.
(2024) introduce Action Value Gradient, an algorithm designed to work well in a streaming scenario
where no replay buffer, no batch updates, and no target networks are available. Gallici et al. (2025)
also develop a method for a streaming scenario, in which they rely on parallel environments to
cope with the non-stationarity of the sample distribution. Gradient Temporal Difference learning
is another line of work that is not using target networks (Sutton et al., 2009; Maei et al., 2009;
Yang et al., 2021; Patterson et al., 2022; Elelimy et al., 2025). Instead, they compute the gradient
w.r.t. the regression target as well as the gradient w.r.t. the predictions, which doubles the compute
requirement. Additionally, to address the double sampling problem, another network is trained to
approximate the temporal difference value. This also increases the memory footprint.

Alternatively, some works construct the regression target from the online network instead of the
target network, but still use a target network in some other way. For example, Ohnishi et al. (2019)
compute the TD(0) loss from the online network and add a term in the loss to constrain the predic-
tions of the online network for the next state-action pair (s′, a′) to remain close to the one predicted
by the target network. Piché et al. (2021; 2023) develop a similar approach, enforcing similar values
for the state-action pair (s, a). Lindström et al. (2025) show that the target network can be removed
after a pretraining phase in which they rely on expert demonstrations.

Many regularization techniques have been developed, attempting to combat the performance drop
that occurs when removing the target network. We stress that our approach is orthogonal to these
regularization techniques and we show in Section 5 that our method improves the performance of
target-free methods equipped with these advancements. Li & Pathak (2021) encode the input of
the Q-network with learned Fourier features. While this approach seems promising, the authors
acknowledge that the performance degrades for high-dimensional problems. Shao et al. (2022)
remove the target-network and search for an action that maximizes the Q-network more than the
action proposed by the policy. Searching for a better action requires additional resources and is only
relevant for actor-critic algorithms. Kim et al. (2019) leverage the MellowMax operator to get rid
of the target network. However, the temperature parameter needs to be tuned (Kim, 2020), which
increases the compute budget, and a follow-up work demonstrates that the reintegration of the target
network is beneficial (Gan et al., 2021). Finally, Bhatt et al. (2024) point out the importance of using
batch normalization (Ioffe & Szegedy, 2015) to address the distribution shift of the input given to
the critic. Our investigation reveals that it degrades the performance in a discrete action setting (see
Figure 12, right).
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Figure 2: Comparison of the training path defined by the target networks obtained after each target
update during training between the target-based approach and our approach (iterated Shared Fea-
tures). While both approaches wait T training steps before shifting by one Q-function, our approach
already considers the following Bellman iterations using multiple heads, where each head represents
the Bellman iteration of the previous head (right).

The idea of learning multiple Bellman iterations in parallel has been introduced by Schmitt et al.
(2022). The authors demonstrate convergence guarantees in the case of linear function approxima-
tion. Then, Vincent et al. (2024) used this approach to learn a recurrent hypernetwork generating a
sequence of Q-functions where each Q-function approximates the Bellman iteration of the previous
Q-function. Finally, Vincent et al. (2025) introduced iterated Q-Network as a far-sighted version of
DQN that learns the K following Bellman iterations in parallel instead of only learning the follow-
ing one. In this work, we propose to leverage the potential of i-QN to boost the learning speed of
target-free algorithms.

4 Method

Our goal is to design a new algorithm that improves the learning speed of target-free value-based
RL methods without significantly increasing the number of parameters used by the Q-networks. For
that, we consider a single Q-network parameterized with K+1 heads. We note ωk the parameters of
the kth head, ω the shared parameters, and define θ = (ω, ω0, .., ωK) and θk = (ω, ωk). Following
Vincent et al. (2025), for a sample d = (s, a, r, s′), the training loss is

LiS-QN
d (θ) =

K∑
k=1

LQN
d (θk, θk−1), (1)

where LQN
d can be chosen from any temporal-difference learning algorithm. For instance, DQN uses

LQN
d (θk, θk−1) = (⌈r + γmaxa′ Qθk−1

(s′, a′)⌉ − Qθk(s, a))
2, where ⌈·⌉ indicates a stop gradient

operation. We stress that ω0 is not learned. However, every T steps, each ωk is updated to ωk+1,
similarly to the target update step in DQN. That way, iS-QN allows to learn K Bellman iterations
in parallel while only requiring a small amount of additional parameters on top of a target-free
approach. Indeed, in the general case the size of each head ωk is negligible compared to the size of
shared parameters ω. Algorithm 1 summarizes the changes brought to the pseudo-code of DQN to
implement our approach.

In Figure 2, we compare the training paths defined by the Q-functions obtained after each target
update of our approach (top) and the target-based approach (bottom). For each given sample, the
target-based approach learns only 1 Bellman iteration at a time and proceeds to the following one
after T training steps. In contrast, our approach (iterated Shared Features) learns several consecutive
Bellman iterations for each given sample. The considered window also moves forward every T
training steps. Similarly to the target-based and target-free approaches, the online parameters are
updated with the gradient computed through the forward pass of the state-action pair (s, a), as
indicated with a blue arrow. In Figure 2, we depict our approach with K = 2. However, the number
of heads can be increased at minimal cost. We note that the first Q-function is considered fixed in this
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Figure 3: Reducing the performance gap in Online RL on 15 Atari games with the CNN architecture
and LayerNorm (LN). While removing the target network leads to a 10% drop in AUC (left), our
approach, iS-DQN K = 9, not only closes the gap but also improves over the target-based approach
by 6%. Importantly, iS-DQN uses a comparable number of parameters to the target-free approach.

representation, even if the head is the only frozen element and the previous layers are shared with
the other learned Q-estimates. Interestingly, the target-free approach can also be depicted in this
figure. Indeed, not using a target network is equivalent to updating the target network to the online
network after each training step. Consequently, the target-free approach can be understood as the
target-based representation with a window shifting at every step. Therefore, the target-free approach
passes through the Bellman iterations faster, creating instabilities as the optimization landscape may
direct the training path toward undesirable Q-functions.

In the following, we apply iterated Shared Features to several target-based approaches on multiple
RL settings, demonstrating that our approach reduces the gap between target-free and target-based
methods. For each algorithm A, we note TB-A as its target-based version, TF-A as its target-
free version, and iS-A as our approach, where "iS" stands for iterated Shared. Importantly, we
incorporate the insights provided by Gallici et al. (2025) to use LayerNorm (Ba et al., 2016) in the
architecture of the Q-networks as we found it beneficial, even for the target-based approach.

5 Experiments

We evaluate our approach in both online and offline RL scenarios to demonstrate that iS-QN can
enhance the learning speed of target-free methods. We focus on the learning speed because, in this
work, we are interested in the sample efficiency of target-free methods. We use the Area Under
the Curve (AUC) to measure the learning speed. The AUC has the benefit of depending less on
the training length compared to the end performance, as it accounts for the performance during the
entire training. It also favors algorithms that constantly improve during training over those that only
emerge at the end of training, thus discounting algorithms that require many samples to perform
well. In each experiment, we report the AUC of each algorithm, normalized by the AUC of the
target-based approach, to facilitate comparison. By normalizing the AUCs, the resulting metric can
also be interpreted as the average performance gap observed during training between the considered
approach and the target-based approach. We use the Inter-Quantile Mean (IQM) and 95% stratified
bootstrapped confidence intervals to allow for more robust statistics as advocated by Agarwal et al.
(2021). The IQMs are computed over 5 seeds per Atari game. 15 games are used for the experi-
ments on the CNN architecture, and 10 games for the experiments on the IMPALA architecture to
reduce the computational budget. Importantly, all hyperparameters are kept untouched with respect
to the standard values (Castro et al., 2018), only the architecture is modified as described in Sec-
tion 4. Extensive details about the selection process of the Atari games, the metrics computation,
the hyperparameters, and the individual learning curves are reported in Appendix.

5.1 Online Discrete Control

First, we evaluate iS-DQN on 15 Atari games (Bellemare et al., 2013) with the vanilla CNN archi-
tecture (Mnih et al., 2015) equipped with LayerNorm. As expected, the target-free approach yields
an AUC 10% smaller than the target-based approach, as shown in Figure 3 (left). This performance
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Figure 4: Left: Reducing the performance gap in Online RL on 10 Atari games with the IM-
PALA architecture and LayerNorm (LN). Similarly to the results with the CNN architecture, iS-
DQN bridges the gap between the target-free and target-based approaches. Right: Reducing the
performance gap in Online RL on 15 Atari games with the CNN architecture. Removing the target
network of the vanilla DQN algorithm results in a 60% performance drop (100%− 40%). By using
iS-DQN with K = 3, the performance drop is divided by 4 (100% − 85% = 15% = 60%/4),
thereby confirming the benefit of sharing features and learning multiple Bellman iterations.

drop is constant across the training, see Figure 3 (middle). Interestingly, iS-DQN K = 1 improves
over TF-DQN by simply storing an old copy of the last linear head. As more Bellman iterations
are learned in parallel, the performance gap between iS-DQN and TB-DQN shrinks. Remarkably,
iS-DQN K = 9 even outperforms the target-based approach by 6% in AUC. Figure 3 (right) testi-
fies that this performance boost is achieved with approximately half of the parameters used by the
target-based approach. We note a slight decline in performance for iS-DQN K = 49. We conjecture
that this is due to the shared feature representation not being rich enough to enable the network to
learn 49 Bellman iterations in parallel.

Our evaluation with the IMPALA architecture (Espeholt et al., 2018) with LayerNorm confirms the
ability of iS-DQN to reduce the performance gap between target-free and target-based approaches.
Indeed, Figure 4 (left) indicates that removing the target network leads to an 8% performance drop
while iS-DQN annuls the performance gap as more Bellman iterations are learned in parallel, i.e., as
K increases. Interestingly, as opposed to the CNN architecture, increasing the number of heads to
learn 49 Bellman iterations in parallel is beneficial. We believe this is due to IMPALA architecture’s
ability to produce a richer representation than the CNN architecture, thereby allowing more Bellman
iterations to be approximated with a linear mapping. The plots of the performance curve and the
number of parameters are similar to the ones shown for the CNN architecture. We report them in
Figure 10.

Finally, we confirm the benefit of our approach by removing the normalization layers for all algo-
rithms with the CNN architecture in Figure 4 (right). We observe a major drop in performance for
TF-DQN, leading to 60% performance gap (100% − 40%). Notably, iS-DQN K = 1 reduces this
performance gap to 18% (100% − 82%). This highlights the potential of simply storing the last
linear layer and using the features of the online network to build a lightweight regression target.
While increasing the number of learned Bellman iterations to 3 brings a benefit, the performances
are slightly decreasing for higher values of K, indicating that LayerNorm is beneficial to provide
useful representations when considering a higher number of linear heads.

5.2 Offline Discrete Control

We consider an offline RL setting in which the agent has access to 10% of the dataset collected by
a vanilla DQN agent trained with a budget of 200 million frames (Agarwal et al., 2020), sampled
uniformly. We adapt the loss for learning each Bellman iteration to the one proposed by Kumar
et al. (2020b). This leads to an iterated version of Conservative Q-Learning (CQL). This time, the
performance is reported as a function of the number of gradient steps as the experiment is performed
offline. In Figure 5, iS-CQL K = 9 reduces the performance gap by 20 percentage points, ending up
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Figure 5: Reducing the performance gap in Offline RL on 10 Atari games with the IMPALA ar-
chitecture and LayerNorm (LN). Our approach, iS-CQL, shrinks the performance gap from 26%
to 6%. Interestingly, applying the idea of sharing parameters to Ensemble DQN (Ensemble Shared
Features, ES-CQL) also reduces the performance gap, demonstrating that this idea is not limited to
iterated Q-learning and can be applied to other target-based approaches.

with a performance gap of 6% compared to 26% for TF-CQL. Additionally, we evaluate another way
of sharing features to show that this idea is not limited to iterated Q-learning. Instead of building
a chain of Q-functions represented by linear heads, we define an ensemble of pairs of linear heads.
Each pair contains a frozen head representing a target network Q̄ that is used to train the learned
head representing the associated online network Q, as depicted in Figure 5 (right). We evaluate this
variant that we call Ensemble Shared Features (ES-CQL), with 5 pairs of heads, i.e. 10 heads, to
match the number of heads used by iS-CQL K = 9, as the number of heads of iS-CQL is always
equal to K + 1. Importantly, ES-CQL also outperforms TF-CQL, reinforcing the idea that sharing
parameters and using linear heads is a fruitful direction.

5.3 Why is iS-QN improving over target-free approaches?
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Figure 6: The effective rank (srank) of the features
in the penultimate layer is higher for iS-QN, re-
sulting in a higher expressivity of the Q-network.

We now provide some insights to understand
why iS-QN reduces the performance gap be-
tween target-free and target-based approaches.
For that, we examine how the state representa-
tion is affected by the different losses. We re-
port the effective rank (srank) of the features in
the penultimate layer as a proxy for the repre-
sentation expressivity (Kumar et al., 2020a) in
Figure 6. Interestingly, the srank obtained by
iS-DQN K = 1 is closer to the srank of TB-
DQN than the srank of TF-DQN, which further
demonstrates the benefit of using the last linear
layer to construct the target. Notably, learning K = 9 Bellman iterations in parallel increases the
representation capacity of the network by a large margin. This behavior is also visible in the offline
setting, where iS-CQL reaches a similar srank as the target-based approach at the end of the training
(see Figure 6, right). This confirms the benefit of iS-QN to foster a richer representation capacity.

6 Conclusion
We introduced a simple yet efficient method for mitigating the performance drop that occurs when
removing the target network in deep value-based reinforcement learning, while maintaining a low
memory footprint. This is made possible by storing a copy of the last linear layer of the online
network and using the features of the online network as input to this frozen linear head to construct
the regression target. From there, more heads can be added to learn multiple Bellman iterations
in parallel. We demonstrated that this new algorithm, iterated Shared Q-Networks, improves over
the target-free approach and yields higher returns when the number of heads increases. We believe
that generalizing iS-QN to environments with continuous action spaces is a promising direction for
future work.
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A Experiment Setup
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Figure 7: The selected Atari games for different
settings cover a variety of normalized returns of
DQN at 200M frames, showcasing their diversity.
To lower the computational budget of the experi-
ments with the IMPALA architecture, we reduced
the set of games to 10 by removing 5 games while
maintaining diversity.

We build our codebase following Machado
et al. (2018) standards and taking inspiration
from Castro et al. (2018) codebase. Namely,
we use the game over signal to terminate an
episode instead of the life signal. The input
given to the neural network is a concatenation
of 4 frames in grayscale of dimension 84 by
84. To get a new frame, we sample 4 frames
from the Gym environment (Brockman et al.,
2016) configured with no frame-skip, and apply
a max pooling operation on the 2 last grayscale
frames. We use sticky actions to make the en-
vironment stochastic (with p = 0.25).

Atari games selection Our evaluations on
the CNN architecture were performed on the 15
games recommended by Graesser et al. (2022).
They were chosen for their diversity of Human-
normalized score that DQN reaches after being
trained on 200 million frames, as shown in Fig-
ure 7. As the IMPALA architecture increases
the training length, we removed 5 games while maintaining diversity in the final scores to reduce the
computational budget. For the offline experiment, we used the datasets provided by Gulcehre et al.
(2020). As the game Tutankham is not available in the released dataset, we replaced it with Qbert,
indicated with an asterisk in Figure 7.

Computing the Area Under the Curve For each experiment, we report the normalized IQM
AUC. For that, we first compute the undiscounted return obtained for each epoch, averaged over
the episodes, as advocated by Machado et al. (2018). Then, we sum the human-normalized returns
over the epochs and compute the IQM and 95% stratified bootstrap confidence intervals over the
seeds and games. Finally, we divide the obtained values by the IQM of the target-based approach
to facilitate the comparisons. The human-normalized scores are computed from human and random
scores that were reported in Schrittwieser et al. (2020). As discussed in Section 5, the normalized
AUCs can also be interpreted as the average performance gap between the considered algorithm
and the target-based approach. Indeed, dividing the two sums of performances across the training is
equivalent to dividing the two averages of performances across the training because the normalizing
factors cancel out.
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Sampling actions Following Vincent et al. (2025), at each environment interaction, we sample
an action from a single head chosen uniformly as shown in Line 3 in Algorithm 1. The authors mo-
tivate this choice by arguing that it allows each Q-function to interact with the environment, thereby
avoiding passive learning, identified by Ostrovski et al. (2021). This choice is further justified by an
ablation study (see Figure 19 in Vincent et al. (2025)) demonstrating a stronger performance against
another sampling strategy consisting of sampling one head for each episode, as proposed in Osband
et al. (2016). Therefore, we keep this design choice.

Aggregating individual losses In Equation 1, we define the loss of iS-QN as the sum of losses
over each Bellman iteration. Other ways of aggregating the losses are possible. Nonetheless, we
decided to stick to the version proposed by Vincent et al. (2025) and leave this investigation for
future work. While it is true that taking the sum of temporal differences increases the magnitude
of the loss, it has a different impact on the updates than simply multiplying the learning rate by the
number of terms in the loss. Indeed, the Adam optimizer (Kingma & Ba, 2015) first normalizes
the gradient with a running statistic before applying the learning rate. Therefore, changing the
aggregation mechanism has a greater impact on the direction of the update than on its magnitude.
This is why we do not compare iS-QN against baselines instantiated with different learning rates.
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B List of Hyperparameters and Algorithm
Our codebase is written in Jax (Bradbury et al., 2018). The details of hyperparameters used for the
Atari experiments are provided in Table 1.

Table 1: Summary of the shared hyperparameters used for the Atari experiments. We note Convd
a,bC

a 2D convolutional layer with C filters of size a × b and of stride d, and FC E a fully connected
layer with E neurons. The CNN architecture is described here. Please refer to Espeholt et al. (2018)
for details on the IMPALA architecture.

Environment
Discount factor γ 0.99
Horizon H 27 000
Full action space No
Reward clipping clip(−1, 1)

All experiments
Batch size 32

Torso architecture
Conv4

8,832

−Conv2
4,464

−Conv1
3,364

Head architecture
FC 512

−FC nA (TB-QN, TF-QN)
−FC (K + 1) · nA (iS-QN)

Activations ReLU

Offline experiments
Number of training

62 500steps per epochs
Target update

2 000period T
Dataset size 5 000 000
Learning rate 5× 10−5

Adam ϵ 3.125× 10−4

Online experiments
Number of training

250 000steps per epochs
Target update

8 000period T
Type of the FIFOreplay buffer D
Initial number

20 000of samples in D
Maximum number

1 000 000of samples in D
Gradient step

4period G
Starting ϵ 1
Ending ϵ 0.01
ϵ linear decay

250 000duration
Batch size 32
Learning rate 6.25× 10−5

Adam ϵ 1.5× 10−4

Algorithm 1 iterated Shared Deep Q-Network (iS-DQN). Modifications to DQN are in purple.

1: Initialize a network Qθ with K+1 heads, where each head is defined by the parameters ωk. We
note θk = (ω, ωk), and ω the shared parameters such that θ = (ω, ω0, .., ωK). D is an empty
replay buffer.

2: Repeat
3: Set u ∼ Uniform({1, ..,K}).
4: Take action a ∼ ϵ-greedy.(Qθu(s, ·)); Observe reward r, next state s′.
5: Update D ← D

⋃
{(s, a, r, s′)}.

6: every G steps
7: Sample a mini-batch B = {(s, a, r, s′)} from D.
8: Store [Q0(s

′, ·), .., QK(s′, ·)]← Qθ(s
′, ·) and [Q0(s, a), .., QK(s, a)]← Qθ(s, a).

9: Compute the loss ▷ ⌈·⌉ indicates a stop gradient operation.
LiS-QN =

∑
(s,a,r,s′)∈B

∑K
k=1(⌈r + γmaxa′ Qk−1(s

′, a′)⌉ −Qk(s, a))
2.

10: Update θ from ∇θLiS-QN.
11: every T steps
12: Update ωk ← ωk+1, for k ∈ {0, . . . ,K − 1}.
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C Individual Learning Curves

C.1 Deep Q-Network with CNN and LayerNorm
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Figure 8: Reducing the performance gap in Online RL on 15 Atari games with the CNN architecture
and LayerNorm (LN). Left: iS-DQN K = 9 not only reduces the performance gap but outperforms
the target-based approach. Middle: iS-DQN annuls the performance gap for the game where the
score is below the human level. Right: iS-DQN exhibits a lower amount of dormant neurons at the
beginning of the training compared to the target-free approach.
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Figure 9: Per game training curves of iS-DQN and the relevant baselines with the CNN architecture
and LayerNorm (LN). Except on Asterix, our approach outperforms or is on par with the target-free
approach (TF-DQN).
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C.2 Deep Q-Network with IMPALA and LayerNorm
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Figure 10: Reducing the performance gap in Online RL on 10 Atari games with the IMPALA
architecture and LayerNorm (LN). Left: iS-DQN K = 9 is outperforms the target-free approach.
Middle: iS-DQN annuls the performance gap for the game where the score is below the human
level. Right: iS-DQN requires significantly fewer parameters than the target-based approach while
reaching similar performances.
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Figure 11: Per game training curves of iS-DQN and the relevant baselines with the IMPALA archi-
tecture and LayerNorm (LN). Our approach outperforms or is on par with the target-free approach
(TF-DQN) on all games.
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C.3 Deep Q-Network with CNN
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Figure 12: Reducing the performance gap in Online RL on 15 Atari games with the CNN archi-
tecture. Left: iS-DQN K = 3 significantly reduces the performance gap between the target-free
and target-based approaches. Middle: iS-DQN annuls the performance gap for the game where
the score is below the human level. Right: Including BatchNorm in the architecture damages the
performance on the 5 considered games. This is why we do not consider including BatchNorm in
our experiments.
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Figure 13: Per game training curves of iS-DQN and the relevant baselines with the CNN architec-
ture. Remarkably, our approach outperforms the target-free approach (TF-DQN) on all games.
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C.4 Conservative Q-Learning with IMPALA and LayerNorm
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Figure 14: Reducing the performance gap in Offline RL on 10 Atari games with the IMPALA
architecture and LayerNorm (LN). Left: iS-CQL K = 9 significantly reduces the performance
gap between the target-free and target-based approaches. Middle: iS-CQL significantly reduces the
performance gap for the game where the score is below the human level. Right: Just like ES-CQL,
iS-CQL exhibits a lower amount of dormant neurons at the end of the training compared to the
target-free approach. However, we note that the confidence intervals are overlapping.
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Figure 15: Per game training curves of iS-CQL and the relevant baselines with the IMPALA archi-
tecture and LayerNorm (LN). Except on VideoPinball, our approach outperforms or is on par with
the target-free approach (TF-DQN).


