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ABSTRACT

This paper introduces a novel problem, distributional information embedding, mo-
tivated by the practical demands of multi-bit watermarking for large language
models (LLMs). Unlike traditional information embedding, which embeds in-
formation into a pre-existing host signal, LLM watermarking actively controls the
text generation process—adjusting the token distribution—to embed a detectable
signal. We develop an information-theoretic framework to analyze this distribu-
tional information embedding problem, characterizing the fundamental trade-offs
among three critical performance metrics: text quality, detectability, and informa-
tion rate. In the asymptotic regime, we demonstrate that the maximum achievable
rate with vanishing error corresponds to the entropy of the LLM’s output distri-
bution and increases with higher allowable distortion. We also characterize the
optimal watermarking scheme to achieve this rate. Extending the analysis to the
finite-token case, we identify schemes that maximize detection probability while
adhering to constraints on false alarm and distortion.

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs) (Touvron et al., 2023; Jiang et al., 2023)
is revolutionizing numerous fields but also raises concerns about misuse, such as spreading disinfor-
mation, creating fake news, and enabling academic dishonesty. The growing prevalence and quality
of AI-generated text make it challenging to distinguish it from human-written content.

A promising solution is to actively embed detectable signals into LLM-generated text, i.e., water-
marks, which enable provable detection of AI-generated content. Despite recent advances in water-
marking algorithms for LLM (Aaronson, 2023; Kirchenbauer et al., 2023; Kuditipudi et al., 2023;
Zhao et al., 2023; Liu & Bu, 2024), they suffer from significant limitations, for example, many algo-
rithms are heuristically designed where watermark detectability is ensured by introducing noticeable
alterations to the generated content that degrade the output quality.

Additionally, most watermarking schemes are “zero-bit” schemes, designed solely to distinguish AI-
generated text from human-written content without embedding any additional information. As in-
corporating meta-information—such as the model’s name, version, and generation time—is increas-
ingly important for forensic analysis of LLM misuse, some multi-bit watermarking algorithms (Yoo
et al., 2023; 2024; Qu et al., 2024) have been developed recently. However, these approaches re-
main heuristic and have a low information embedding rate, with current methods unable to support
messages longer than a few bits (Zhao et al., 2024).

Therefore, a principled theoretical framework is needed to analyze the fundamental trade-offs
among key performance metrics in multi-bit LLM watermarking. These metrics include: (1) Text
quality: ensuring that the watermarked text generated by LLMs maintains a quality comparable to
unwatermarked text; (2) Detectability: the probability of missed detection and decoding errors; and
(3) Information rate: the rate at which information can be embedded and reliably recovered.

Information theory has a long-standing history of guiding the design of digital watermarking, dating
back to the early 00s (Moulin & O’Sullivan, 2000; Merhav, 2000; Moulin, 2001; Steinberg & Mer-
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Figure 1: Illustration of multi-bit watermarking as distributional information embedding with side
information.

hav, 2001; Cohen & Lapidoth, 2002), within the broader framework of the information embedding
problem (Chen & Wornell, 2001; Barron et al., 2003; Moulin & O’Sullivan, 2003; Eggers et al.,
2003). As we will demonstrate, watermarking in LLMs introduces a novel form of such a problem,
which we term distributional information embedding. Unlike traditional information embedding,
which focuses on reliably embedding information into a pre-existing host signal while minimizing
distortion, LLM watermarking actively controls the generation process—the token distribution—to
embed a detectable signal while preserving the original distribution. In other words, traditional in-
formation embedding is like writing on dirty paper (Costa, 1983), where the challenge is to convey
the message clearly despite the interference from pre-existing marks. In contrast, LLM watermark-
ing resembles generating dirty paper in real time, embedding the message into the very process that
creates the marks. This fundamental difference reshapes the problem and introduces novel chal-
lenges.

In this paper, we present an information-theoretic analysis of a distributional information embedding
problem motivated by multi-bit LLM watermarking. Our goal is to design the watermarking scheme
by jointly optimizing the encoder and decoder. The system must distinguish human-written text
from AI-generated text while ensuring reliable recovery of the embedded information. All of this
must be achieved within a specified distortion constraint to preserve text quality. Our contribution
includes:

• Asymptotic analysis in the i.i.d. case: We demonstrate that the maximum information rate with
vanishing error probability corresponds to the entropy of the LLM’s output distribution and in-
creases with higher allowable distortion. Furthermore, we characterize the asymptotically optimal
watermarking scheme that achieves this rate.

• Finite token length analysis: We extend the asymptotic analysis to a more practical scenario with
finite token length, aiming to maximize the detection accuracy while satisfying both a worst-case
false alarm probability constraint and a distortion constraint. We derive performance upper and
lower bounds inspired by the asymptotic analysis and zero-bit watermarking.

2 PROBLEM FORMULATION

Distributional Information Embedding with Side Information Consider a length-T data se-
quence XT

1 generated from a joint distribution QXT
1

∈ P(X T ), where P(X T ) denotes the proba-
bility simplex in X T . For simplicity, we ignore the potential auto-regressive structure of QXT

1
in

the current analysis. In the generation process, a message M drawn from [m] := {1, . . . ,m} needs
to be embedded in the data sequence by constructing a dependence structure between XT

1 and an
auxiliary random sequence ζT1 with alphabet ZT , which serves as side information available to the
decoder.

For example, the joint distribution QXT
1

can be viewed as the output distribution of an LLM for a
length-T token sequence XT

1 . Most LLM watermarking schemes adopt this distributional informa-
tion embedding with side information framework. An example of a zero-bit watermarking scheme,
where the message M simply indicates whether the content is watermarked, is provided below.

Example 1 (Existing watermarking schemes as special cases). In the Green-Red List watermarking
scheme (Kirchenbauer et al., 2023), at each position t, the token vocabulary X is randomly split
into a green list G and a red list R, with |G| = ρ|X |. This split is represented by a |X |-dimensional

2



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

binary auxiliary variable ζt, indexed by x ∈ X , where ζt(x) = 1 means x ∈ G; otherwise, x ∈ R.
The watermarking scheme is as follows:

– Compute a hash of the previous token Xt−1 using a hash function hash : X × R → R and a
shared secret key: hash(Xt−1, key).

– Use hash(Xt−1, key) as a seed to uniformly sample the auxiliary variable ζt from the set {ζ ∈
{0, 1}|X | : ∥ζ∥1 = ρ|X |} to construct the green list G.

– Sample Xt from the modified token-generating distribution which increases the logit of tokens in
G by δ > 0:

PXt|xt−1
1 ,ζt

(x) =
QXt|xt−1

1
(x) exp(δ · 1{ζt(x) = 1})∑

x∈V QXt|xt−1
1

(x) exp(δ · 1{ζt(x) = 1})
.

More examples of several other watermarking schemes, for example, Gumbel-Max (Aaronson,
2023), EXP-Edit (Kuditipudi et al., 2023) and text-adaptive watermark (Liu & Bu, 2024), are pro-
vided in He et al. (2024, Appendix A).

In this paper, we focus on studying one usage scenario within this framework: multi-bit water-
marking. Below, we formulate the multi-bit watermarking problem during data generation as a
distributional information embedding problem with side information, as illustrated in Figure 1.
Definition 1 (Multi-bit Watermarking). A watermarking system is an encoder/decoder pair (f, γ).
The encoder f : [m] × P(X T ) → P(X T × ZT |[m]) inputs a watermark message M drawn
from the index set [m] and the data generation distribution QXT

1
, outputting a joint distribution

PXT
1 ,ζT

1 |M that creates dependence between the generated data and auxiliary random sequence ζT1 .
The decoder receives (XT

1 , ζ
T
1 ) sampled from PXT

1 ,ζT
1 |M , and guesses the message M with decoder

γ : X T × ZT → [0 : m], i.e., M̂ = γ(XT
1 , ζ

T
1 ). If M̂ = 0, the sequence XT

1 is decoded as
unwatermarked; if M̂ ∈ [m], XT

1 is decoded as watermarked with message M̂ . This system defines
an (m,T ) watermarking scheme with an information rate R := logm/T .

Note that the watermarked sequence is generated from PXT
1

(induced by the encoder f ) instead of
the original QXT

1
. To measure the distortion level of a watermarking scheme, we use the divergence

between these two distributions.
Definition 2 (d-Distorted Watermarking). A watermarking encoder f is d-distorted with respect to
the distortion D, if for any M ∈ [m] and QXT

1
∈ P(X T ), the marginal distribution of the output

PXT
1 ,ζT

1 |M satisfies D(PXT
1 |M , QXT

1
) ≤ d.

Here, D can be any divergence. Common examples of such divergences include total variation, KL
divergence, and Wasserstein distance. For d = 0, the watermarking scheme is called distortion-free.

Moreover, to ensure the secrecy of the embedded message, we assume that the watermarked se-
quence XT

1 should be indistinguishable for any embedded message M , provided the auxiliary se-
quence is unknown. A distortion-free watermarking scheme satisfies this condition, as it ensures
PXT

1 |M=j = QXT
1

, for all j ∈ [m]. Additionally, the auxiliary sequence itself should not reveal
any information about the message. Otherwise, the message M can be transmitted directly via the
dependence between ζ and M , bypassing the need for the generated text.
Assumption 1. The encoder f must ensure that both XT

1 and ζT1 are statistically independent of
the embedded message M .

Under this assumption, the embedded message M cannot be decoded with only XT
1 or ζT1 and

I(M ;XT
1 , ζ

T
1 ) = I(M ;XT

1 |ζT1 ) = I(M ; ζT1 |XT
1 ). To detect if XT

1 is watermarked, the decoder
must exploit the auxiliary sequence ζT1 . This corresponds to decoding with side information.

Watermark Detection and Decoding Under our framework, if the token sequence XT
1 is unwa-

termarked, it is independent of the sequence ζT1 ; otherwise, (XT
1 , ζ

T
1 ) is jointly distributed according

to one of the m distributions {PXT
1 ,ζT

1 |M=j}mj=1. Thus, detecting and decoding the watermark mes-
sage M boils down to the (m+ 1)-ary hypothesis testing:

• H0: XT
1 is generated by a human, i.e., (XT

1 , ζ
T
1 ) ∼ P0 := PXT

1 ,ζT
1 |M=0 = QXT

1
⊗ PζT

1
;
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• Hj ,∀j ∈ [m]: XT
1 is generated by a watermarked LLM and embedded with message j,

(XT
1 , ζ

T
1 ) ∼ Pj := PXT

1 ,ζT
1 |M=j .

Detection performance is measured by the j-th error probability: for any j ∈ [0 : m],

βj(γ, PXT
1 ,ζT

1 |M=j) := Pj(γ(X
T
1 , ζ

T
1 ) ̸= j).

Note that for j ̸= 0, βj(γ, PXT
1 ,ζT

1 |M=j) = Pj(γ(X
T
1 , ζ

T
1 ) = 0) + Pj(γ(X

T
1 , ζ

T
1 ) ∈ [m]\j) is the

sum of miss detection error and miss decoding error. For j = 0, β0(γ,QXT
1
⊗ PζT

1
) is the false

alarm error. Since human-generated texts can vary widely, we aim to control the worst-case false
alarm error supQ

XT
1

β0(γ,QXT
1
⊗ PζT

1
) at a given α ∈ (0, 1).

Our design objective is then three-fold: 1) maximizing the information rate R, 2) ensuring the
distortion remains bounded by d, and 3) minimizing βj(γ, PXT

1 ,ζT
1 |M=j) for all j ∈ [m] while the

worst-case false alarm error supQ
XT

1

β0(γ,QXT
1
⊗ PζT

1
) is controlled.

3 ASYMPTOTIC RESULTS WITH IID TOKENS

In this section, we begin with an asymptotic analysis by letting the length of tokens T → ∞ for the
i.i.d. case to build intuition for the optimal design of the watermarking scheme.

Suppose X1, . . . , XT are i.i.d. with an identical distribution PX , and ζ1, . . . , ζT are i.i.d. with Pζ .
Under each Hj , (X1, ζ1), . . . , (XT , ζT ) are conditionally i.i.d. with distribution PX,ζ|M=j . Specifi-
cally, PX,ζ|M=0 = QX ⊗ Pζ . Additionally, we assume a uniform prior distribution of message M
on [m].

3.1 CONVERSE RESULT

We first analyze the maximum rate a watermarking scheme can achieve with vanishing decoding
error Pr(M̂ ̸= M) = 1

m

∑m
j=1 βj(γ, PXT

1 ,ζT
1 |M=j).

Lemma 1 (Best Achievable Information Rate). Given any QX , PX satisfying D(PT
X , QT

X) ≤ d,
and {PX,ζ|M=i}mi=0, if the decoding error Pr(M̂ ̸= M) → 0 as T → ∞, the information rate of
this d-distorted (m,T ) watermarking scheme is upper bounded by

R ≤ H(PX) ≤ sup
PX :D(PT

X ,QT
X)≤d

H(PX),

where the last bound holds for all watermarking schemes for the LLM QXT
1

.

The proof is provided in Appendix A.1. Lemma 1 shows that it is impossible for a distortion-free
watermarking to embed more than approximately 2TH(QX) messages in a length-T i.i.d. token se-
quence while achieving vanishing j-th error for all j ∈ [m], regardless of the false alarm probability.
As the distortion d increases, a d-distorted watermarking can trade off text quality to achieve a higher
information rate.

3.2 ACHIEVABILITY RESULT

Next, we aim to identify the asymptotically optimal watermarking scheme that can achieve vanishing
j-th errors and the maximum watermarking rate, while ensuring the false alarm error below α.

To develop intuition for the optimal design, we first present an upper bound for the j-th error expo-
nent under i.i.d. assumptions. Specifically, we extend Cover & Thomas (2006, Lemma 11.8.1) to
our (m+ 1)-ary hypothesis testing setting.

Lemma 2 (Upper Bound for the j-th Error Exponent). Fix any j ∈ [m], ϵ ∈ (0, 1/2) and any set of
distributions {Pi}i∈[0:m]\j . Let {BT,i}i∈[0:m]\j ⊂ X T ×ZT be any collection of m disjoint sets of
sequences ((xi, ζi))

T
i=1 such that Pi(BT,i) ≥ 1− ϵ. Let BT,j = (∪i∈[0:m]\jBT,i)

c. For any Pj such
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Figure 2: Illustration of the asymptotically optimal watermarking scheme when m = 3.

that max
i∈[0:m]\j

DKL(PX,ζ|M=i∥PX,ζ|M=j) < ∞,

−
logPj(Bc

T,j)

T
≤ E∗

j + ϵ− log(m(1− 2ϵ))

T
,

where E∗
j:= max

PX :D(PT
X ,QT

X)≤d
min

i∈[0:m]\j
DKL(PX,ζ|M=i∥PX,ζ|M=j).

Specifically, DKL(PX,ζ|M=0∥PX,ζ|M=j) = DKL(Pζ∥Pζ|X,M=j |QX) + DKL(QX∥PX).

The proof is provided in Appendix A.2. Lemma 2 shows that given any watermarking scheme
(P0, . . . ,Pm), the minimum achievable j-th error probability for all decoders decays exponentially
with the rate E∗

j , while other errors are controlled below ϵ. Furthermore, the error exponent depends
on the distortion level d (cf. Definition 2), which increases as d increases. If the distortion metric is
set as DKL(Q

T
X∥PT

X), the rate is further upper bounded by DKL(Pζ∥Pζ|X,M=j |QX) + d.

Inspired by Lemma 2, we can design the joint distributions (PX,ζ|M=i)
m
i=0 by maximizing the error

exponent E∗
j . In this way, the j-th error probability decays exponentially to 0 at the fastest rate.

One solution is to make the masses of PX,ζ|M=i and PX,ζ|M=j concentrated at different locations
for i ̸= j, which leads to DKL(PX,ζ|M=i∥PX,ζ|M=j) → ∞. This hints that the optimal joint
distribution produced by the encoder f should almost deterministically map (XT

1 , ζ
T
1 ) to a message

M . Based on this intuition, we construct the asymptotically jointly optimal encoder/decoder pair in
the watermarking scheme.

Under any hypothesis Hj and any PX,ζ|M=j , we define the typical sets of sequences {(xT
1 , ζ

T
1 )}.

Definition 3 (Typical Sets). For arbitrarily small η > 0, define the typical sets A(T )
η,X and A(T )

η,ζ as

A(T )
η,X :=

{
xT
1∈ X T :

∣∣∣∣ 1T 1

logPT
X(xT

1 )
− H(PX)

∣∣∣∣≤ η

}
,

A(T )
η,ζ :=

{
ζT1 ∈ ZT :

∣∣∣∣ 1T log
1

PT
ζ (ζT1 )

− H(Pζ)

∣∣∣∣ ≤ η

}
.

The typical sequences in A(T )
η,X and A(T )

η,ζ are nearly uniformly distributed and can be mapped with
almost deterministic precision. Leveraging the asymptotic equipartition property (AEP), we first
present the optimal design when distortion d = 0 as follows. Here, we use .

= to denote equality to
the first order in the exponent.

Theorem 3 (Asymptotically Optimal Distortion-Free Watermarking Scheme). Let P ∗
X = QX , Z ⊂

Z and design P ∗
ζ ∈ P(Z) such that H(P ∗

ζ ) = H(P ∗
X). Let η = T− 1

4 . The class of optimal decoders
is given by

Γ∗
η :=

γ

∣∣∣∣∣γ(xT
1 ,ζ

T
1 )=


g(xT

1 , ζ
T
1 ), ∀xT

1 ∈ A(T )
η,X ,

∀ζT1 ∈ A(T )
η,ζ ,

0, otherwise,

for some bijective function g : A(T )
η,X ×A(T )

η,ζ → [m]

satisfying u ̸= v ⇒ g(xT
1 , u) ̸= g(xT

1 , v),∀xT
1 ∈ A(T )

η,X .


If 1

T (logm − logα) ≤ H(P ∗
X), the corresponding asymptotically optimal encoder f∗ outputs

P ∗
X,ζ|M as follows: for any i ∈ [m],

5



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

• for all xT
1 ∈ A(T )

η,X , P ∗T
X,ζ|M (xT

1 , ζ
T
1 |i)

.
= e−TH(P∗

ζ ) if γ(xT
1 , ζ

T
1 ) = i, ζT1 ∈ A(T )

η,ζ ;

• for all xT
1 /∈ A(T )

η,X , let P ∗T
X,ζ|X,M (xT

1 , ζ
T
1 |i) take any non-negative value as long as∑

xT
1 ,ζT

1
P ∗T
X,ζ|X,M (xT

1 , ζ
T
1 |i) = 1.

Thus, for any γ∗ ∈ Γ∗
η and its corresponding P ∗

X,ζ|M , as T → ∞, we have for all j ∈ [m],

βj(γ
∗, P ∗

X,ζ|M=j) ≤ exp(−Ω(T
1
2 )) → 0,

and sup
QX

β0(γ
∗, QT

X ⊗ P ∗T
ζ ) ≤ α+ exp(−Ω(T

1
2 )) → α.

The proof of Theorem 3 is provided in Appendix A.3. The asymptotically optimal decoder deter-
ministically maps a typical sequence xT

1 to a typical sequence ζT1 uniquely under different messages
M . The corresponding optimal joint distribution output by the encoder f∗ assigns probability 1 to
such pair of sequences (xT

1 , ζ
T
1 ), making sure that the detection accuracy is high. Figure 2 illustrates

the design using a toy example when m = 3.

Remark 1 (Existence of g function and implementations). For any m .
= exp(TH(P ∗

X)), there exists
at least one valid g function. Denote the typical sequences with indices as {(xT

1 )i}mi=1, {(ζT1 )i}mi=1.
One can define g((xT

1 )i, (ζ
T
1 )(i+M−2) mod m+1) = M , for any i,M ∈ [m], which takes cyclic

permutation of A(T )
η,ζ as input.

In general, the optimal design can be implemented by lossless coding schemes where the presence
of side information ζT1 ensures that a codeword XT

1 can be uniquely decoded to one message, e.g.,
a conditional version of arithmetic coding.

The information rate of this distortion-free (m,T ) watermarking scheme is at most

R ≤ H(QX) +
logα

T

T→∞−−−−→ H(QX),

which achieves the maximum rate in Lemma 1 when distortion d = 0.

When we allow some distortion d > 0 in the watermarking scheme, in Theorem 3, we can change
P ∗
X to any PX satisfying D(PT

X , QT
X) ≤ d. Therefore, the P ∗

X that maximizes the information rate
is

P ∗
X = argmax

PX :D(PT
X ,QT

X)≤d

H(PX).

When the distortion metric is set as DKL, the solution of P ∗
X is the tilting distribution of QX as

presented in Huang et al. (2024, Theorem 1).

Notably, the asymptotic results derived for the i.i.d. case using the classical typical set analysis can
be extended to the case where XT

1 , ζ
T
1 are stationary ergodic processes. In this generalization, the

entropy H(P ∗
X) is replaced by the entropy rate of the stationary ergodic process.

4 FINITE-LENGTH ANALYSIS

Inspired by the asymptotically optimal design, we are now ready to proceed with our analysis in the
finite-length setting.

We consider the following optimization problem. For any j ∈ [m], we aim to minimize the j-th error
probability by jointly optimizing the watermarking encoder and decoder, subject to the following
constraints: 1) all other errors are under control, and 2) the distortion remains bounded:

inf
γ,P

XT
1 ,ζT1 |M=j

βj(γ, PXT
1 ,ζT

1 |M=j) (Opt-O)

s.t. sup
P

XT
1 ,ζT1 |M=i

βi(γ, PXT
1 ,ζT

1 |M=i) ≤ α,∀i ̸= j

D(PXT
1
, QXT

1
) ≤ d.
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The worst-case constraints on the error probabilities guarantee that the solutions to the m optimiza-
tion problems collectively form an optimal watermarking scheme that achieves the minimum j-th
error for all j ∈ [m], with the worst-case false alarm under α and distortion under d.

Converse We present the following theorem, which characterizes a lower bound for the minimum
error of this optimization problem.
Theorem 4 (Lower Bound for Minimum j-th Error). For any j ∈ [m], the lower bound for the
minimum j-th error attained from (Opt-O) is

β∗
j ≥ mβ∗(α, T ), where

β∗(α, T ) := min
P

XT
1
:D(P

XT
1
,Q

XT
1
)≤d

∑
xT
1

(PXT
1
(xT

1 )− α)+,

for m,α satisfying mβ∗(α, T ) ≤ 1.

The proof is provided in Appendix A.4. First, we observe that β∗(α, T ) represents the universally
minimum Type-II error for any zero-bit watermarking scheme (He et al., 2024). In the context of
a multi-bit watermarking scheme embedding m messages, the lower bound of the minimum j-th
error increases by a factor of m. Second, Theorem 4 shows that no d-distorted (m,T ) watermarking
scheme can achieve a j-th error smaller than 1 for α too small or m too large. For any given α
and T , the maximum number of messages we can embed is m ≤ 1/β∗(α, T ). This aligns with the
i.i.d. scenario where the information rate logm

T should be bounded by supPX :D(PT
X ,QT

X)≤d H(PX)

to ensure vanishing decoding error. Third, as the distortion d increases, the lower bound for β∗
j

decreases. This means that a watermarking scheme can trade off text quality for lower detection
errors.

Achievability Since Theorem 4 also holds for the case where the auxiliary sequence ζT1 is not
independent of the embedded message M , we present a watermarking scheme with a message-
dependent auxiliary sequence design that achieves Theorem 4.
Theorem 5 (Watermarking Scheme with Message-Dependent ζT1 ). Choose ZT ⊂ ZT such that
|Z|T = m|X |T + 1. Randomly pick a sequence ζ̃T1 ∈ ZT and partition ZT \{ζ̃T1 } into m disjoint
subsets {Sj}mj=1 of equal size. Define a class of decoders as

Γ
ζ̃T
1

:=

γ

∣∣∣∣∣∣∣γ(xT
1 , ζ

T
1 )=


j, if ζT1 ̸= ζ̃T1

and xT
1 = hj(ζ

T
1 )

0, otherwise,
,

for some group of bijective functions
{hj : Sj → X T }mj=1.


For any γ ∈ Γ

ζ̃T
1

, let the corresponding encoder f outputs (Pj)
m
j=0 as follows:

P ∗
XT

1
= argmin

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤d

∑
xT
1

(PXT
1
(xT

1 )− α)+,

and for any j ∈ [m],

Pj(x
T
1 , ζ

T
1 ) =


P ∗
XT

1
−m(P ∗

XT
1
(xT

1 )− α)+, if γ(xT
1 , ζ

T
1 ) = j;

(P ∗
XT

1
(xT

1 )− α)+, if γ(xT
1 , ζ

T
1 ) = i,∀i ∈ [m]\j, or if ζT1 = ζ̃T1 ;

0, otherwise.
Specifically, P0 = QXT

1
⊗ PζT

1
, where PζT

1
= 1

m

∑m
j=1 PζT

1 |M=j . The j-th error and false alarm
error probabilities are given by: βj(γ, PXT

1 ,ζT
1 |M=j) = mβ∗(α, T ) and supQ

XT
1

β0(γ,QXT
1
⊗

PζT
1
) = α.

The proof of Theorem 5 is provided in Appendix A.5. This watermarking scheme is optimal in
scenarios where dependence between the message and auxiliary sequence is allowed. The con-
struction of the encoder’s output distribution PXT

1 ,ζT
1 |M can be regarded as an extension of He et al.

(2024, Theorem 2). It is equivalent to transporting the probability mass from VT to ZT , maximizing
P ∗
XT

1 ,ζT
1 |M (xT

1 , ζ
T
1 ) for γ(xT

1 , ζ
T
1 ) = M , while keeping the worst-case false alarm error below α.

Moreover, the introduction of ζ̃T1 helps to control the worst-case false alarm. If P ∗
XT

1
(xT

1 ) > α (i.e.,

7
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low-entropy text), xT
1 may be mapped to ζ̃T1 during watermarking, which makes it harder to detect

as watermarked. In conclusion, the proposed scheme provides a guideline for the future design of
watermarking schemes that satisfy the independence assumption in Assumption 1 and approach the
lower bound in Theorem 4.

5 DISCUSSION AND FUTURE WORKS

While our theoretical analysis of the distributional information embedding problem does not fully
account for all aspects of LLMs (e.g., auto-regressive nature), we believe it provides valuable in-
sights for designing multi-bit watermarking schemes. We rigorously demonstrate that the best
achievable rate in the asymptotic regime is determined by the entropy of the distribution H(PX),
establishing a fundamental limit that serves as a benchmark for evaluating existing multi-bit water-
marking schemes.

Moreover, this result implies an inherent connection between the problem of distributional infor-
mation embedding and lossless compression, where the fundamental limit is also the entropy of
the source distribution. Interestingly, Huang et al. (2024) proposes a steganography algorithm that
exploits this connection by using the decoder of an arithmetic coding scheme1 as the encoder to
sample from the LLM while employing the arithmetic coding encoder as the decoder in our context.
This duality between the two problems suggests that new watermarking schemes could be inspired
by existing source coding techniques, presenting an intriguing direction for future exploration.
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A APPENDIX

A.1 PROOF OF LEMMA 1

Proof. Let Pe = Pr(M̂ ̸= M). From the Fano’s inequality, we have

H(M |M̂, ζT1 ) ≤ H(M |M̂) ≤ 1 + Pe logm.
The entropy of M is upper bounded by

logm = H(M) = H(M |ζT1 ) = I(M ; M̂ |ζT1 ) + H(M |M̂, ζT1 )

≤ I(M ;XT
1 |ζT1 ) + 1 + Pe logm

≤ H(XT
1 |ζT1 ) + 1 + Pe logm,

which leads to
logm

T
≤ H(XT

1 |ζT1 )
T

+
1

T
+ Pe

logm

T
.

If Pe → 0 as T → ∞, we have

logm

T
≤ H(XT

1 |ζT1 )
T

≤ H(PX) ≤ sup
PX :D(PT

X ,QT
X)≤d

H(PX).

A.2 PROOF OF LEMMA 2

Proof. For any i ̸= j, define the relative entropy typical set

A(T )
ϵ,i,j(Pi∥Pj) :=

{
(xT

1 , ζ
T
1 ) :

∣∣∣∣ 1T log
Pi(x

T
1 , ζ

T
1 )

Pj(xT
1 , ζ

T
1 )

− DKL(PX,ζ|M=i∥PX,ζ|M=j)

∣∣∣∣ ≤ ϵ

}
.

We have Pj(Bc
T,j) = 1− Pj(BT,j) and

Pj(BT,j) = 1−
∑
i:i ̸=j

Pj(BT,i) ≤ 1−
∑
i:i̸=j

Pj(BT,i ∩ A(T )
ϵ,i,j)

≤ 1−
∑
i:i ̸=j

∑
(xT

1 ,ζT
1 )∈BT,i∩A(T )

ϵ,i,j

Pi(x
T
1 , ζ

T
1 ) exp(−T (DKL(PX,ζ|M=i∥PX,ζ|M=j) + ϵ))

= 1−
∑
i:i ̸=j

exp(−T (DKL(PX,ζ|M=i∥PX,ζ|M=j) + ϵ))Pi(BT,i ∩ A(T )
ϵ,i,j)

(a)
≤ 1−

∑
i:i ̸=j

exp(−T (DKL(PX,ζ|M=i∥PX,ζ|M=j) + ϵ))(1− 2ϵ)

≤ 1−m(1− 2ϵ) exp(−T (min
i:i ̸=j

DKL(PX,ζ|M=i∥PX,ζ|M=j) + ϵ))

≤ 1−m(1− 2ϵ) exp(−T ( max
PX :D(PT

X ,QT
X)≤d

min
i:i̸=j

DKL(PX,ζ|M=i∥PX,ζ|M=j) + ϵ))

where (a) follows since Pi(BT,i∩A(T )
ϵ,i,j) = 1−Pi(Bc

T,i∪(A
(T )
ϵ,i,j)

c) ≥ 1−Pi(Bc
T,i)−Pi((A(T )

ϵ,i,j)
c) ≥

1− 2ϵ for sufficiently large T . The proof is thus complete.

A.3 PROOF OF THEOREM 3

Let η = T− 1
4 and define the set A(T )

η,j of jointly typical sequences {(xT
1 , ζ

T
1 )} w.r.t. the distribution

PX,ζ|M=j as

A(T )
η,j :=

{
(xT

1 , ζ
T
1 ) ∈ X T ×ZT :

∣∣∣∣− 1

T
logPT

X(xT
1 )− H(PX)

∣∣∣∣ ≤ η,

∣∣∣∣− 1

T
logPT

ζ (ζT1 )− H(Pζ)

∣∣∣∣ ≤ η,∣∣∣∣− 1

T
logPT

X,ζ|M=j(x
T
1 , ζ

T
1 )− H(PX,ζ|M=j)

∣∣∣∣ ≤ η

}
.

10
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First, we bound the probability of the atypical sets (A(T )
η,X)c, (A(T )

η,η )c, (A(T )
η,j )

c. From the union
bound, we have

Pj((X
T
1 , ζ

T
1 ) /∈ A(T )

η,j ) ≤ Pj

(∣∣∣∣− 1

T
logPT

X(xT
1 )− H(PX)

∣∣∣∣ ≥ η

)
+ Pj

(∣∣∣∣− 1

T
logPT

ζ (ζT1 )− H(Pζ)

∣∣∣∣ ≥ η

)

+ Pj

(∣∣∣∣− 1

T
logPT

X,ζ|M=j(x
T
1 , ζ

T
1 )− H(PX,ζ|M=j)

∣∣∣∣ ≥ η

)
.

Then, by the Chernoff bound, we have

Pj

(∣∣∣∣− 1

T
logPT

X(xT
1 )− H(PX)

∣∣∣∣ ≥ η

)
≤ 2Pj

(
− 1

T
logPT

X(xT
1 )− H(PX) ≥ η

)
≤ 2 exp

(
− T sup

s≥0
(sη − logE[exp(−s logPXT

1
(XT

1 ))])

)
(a)
≈ 2 exp

(
− T sup

s≥0
(sη −

(
− sE[logPXT

1
(XT

1 )] + s2E[(logPXT
1
(XT

1 ))
2]
))

(b)
= 2 exp(−Ω(Tη2)) = exp(−Ω(T

1
2 )),

where (a) follows from the Taylor expansion of exp(·) and log(·) and (b) follows since the maximum
is achieved by s = O(η). The rest of the terms in the union bound can be similarly proved.

Thus, the probability of the atypical set is upper bounded by

Pj((X
T
1 , ζ

T
1 ) /∈ A(T )

η,j ) ≤ 3 exp(−Ω(T
1
2 )) = exp(−Ω(T

1
2 )).

Let P ∗
X = QX , Z ⊂ Z and design P ∗

ζ ∈ P(Z) such that H(P ∗
ζ ) = H(P ∗

X).

For any γ∗ ∈ Γ∗, any j ∈ [m], the j-th error probability is given by

βj(γ
∗, P ∗

XT
1 ,ζT

1 |M=j) =
∑

xT
1 ,ζT

1

P ∗
XT

1 ,ζT
1 |M (xT

1 , ζ
T
1 |j)1{γ∗(xT

1 , ζ
T
1 ) ̸= j}

≤
∑

(xT
1 ,ζT

1 )∈A(T )
η,j

P ∗
XT

1 ,ζT
1 |M (xT

1 , ζ
T
1 |j)1{γ∗(xT

1 , ζ
T
1 ) ̸= j}+ exp(−Ω(T

1
2 ))

= exp(−Ω(T
1
2 )) → 0 as T → ∞.

For j = 0, the worst-case false alarm error probability is upper bounded as follows. For any xT
1 ∈

X T ,∑
ζT
1

P ∗
ζ (ζ

T
1 )1{γ∗(xT

1 , ζ
T
1 ) ̸= 0} ≤

∑
ζT
1 ∈A(T )

n,ζ

P ∗
ζ (ζ

T
1 )1{γ∗(xT

1 , ζ
T
1 ) ̸= 0}+ exp(−Ω(T

1
2 ))

.
=

∑
i∈[m]

∑
ζT
1 ∈A(T )

n,ζ

e−TH(ζ)
1{γ∗(xT

1 , ζ
T
1 ) = i}+ exp(−Ω(T

1
2 ))

= me−TH(ζ) + exp(−Ω(T
1
2 ))

= α+ exp(−Ω(T
1
2 ))

T→∞−−−−→ α.

Since any distribution QT
X can be written as a linear combinations of δxT

1
, we have

sup
QX

β0(γ
∗, QX ⊗ P ∗

ζ ) = sup
QX

∑
xT
1 ,ζT

1

QT
X(xT

1 )P
∗
ζ (ζ

T
1 )1{γ∗(xT

1 , ζ
T
1 ) ̸= 0} ≤ α

11



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

A.4 PROOF OF THEOREM 4

First, we have

βj(γ, PXT
1 ,ζT

1 |M=j) =
∑
i:i ̸=j

Pj(γ(X
T
1 , ζ

T
1 ) = i).

For any i ̸= j, the optimization constraints imply that for any yT1 ∈ X T ,

α ≥ sup
P

XT
1 ,ζT1 |M=i

βi(γ, PXT
1 ,ζT

1 |M=i) ≥
∑
ζT
1

PζT
1
(ζT1 )1{γ(yT1 , ζT1 ) ̸= i}.

Then we have

Pj(γ(X
T
1 , ζ

T
1 ) ̸= i) =

∑
xT
1 ,ζT

1

PζT
1
(ζT1 )PXT

1 |ζT
1 ,M=j(x

T
1 |ζT1 ,M = j)1{γ(xT

1 , ζ
T
1 ) ̸= i}

(a)

≤
∑
xT
1

(PXT
1
(xT

1 ) ∧ α),

where (a) follows since
∑

ζT
1
PζT

1
(ζT1 )1{γ(xT

1 , ζ
T
1 ) ̸= i} ≤ α and∑

ζT
1
PζT

1
(ζT1 )PXT

1 |ζT
1 ,M=j(x

T
1 |ζT1 ,M = j)1{γ(xT

1 , ζ
T
1 ) ̸= i} ≤∑

ζT
1
PζT

1
(ζT1 )PXT

1 |ζT
1 ,M=j(x

T
1 |ζT1 ,M = j) = PXT

1
(xT

1 ) for all xT
1 .

Consequently,

βj(γ, PXT
1 ,ζT

1 |M=j) =
∑
i:i ̸=j

Pj(γ(X
T
1 , ζ

T
1 ) = i)

≥
∑
i:i ̸=j

(1−
∑
xT
1

(PXT
1
(xT

1 ) ∧ α))

= m
∑
xT
1

(PXT
1
(xT

1 )− α)+

≥ min
P

XT
1
:D(P

XT
1
,Q

XT
1
)≤d

m
∑
xT
1

(PXT
1
(xT

1 )− α)+,

where m,α should satisfy m
∑

xT
1
(PXT

1
(xT

1 ) − α)+ ≤ 1 and the lower bound holds for all γ and
PXT

1 ,ζT
1 |M .

Additionally, the analyses still hold when PζT
1 |M=j are not the same for all j.

A.5 PROOF OF THEOREM 5

Choose Z ⊂ ZT such that |Z|T = m|X |T + 1.Randomly pick a sequence ζ̃T1 ∈ ZT and partition
ZT \{ζ̃T1 } into m disjoint subsets {Sj}mj=1 of equal size. Define a set of decoders as

Γ
ζ̃T
1

:=

γ

∣∣∣∣∣∣∣∣∣
γ(xT

1 , ζ
T
1 ) =


j, if ζT1 ̸= ζ̃T1

and xT
1 = hj(ζ

T
1 ),

0, otherwise,
,

for some group of bijective functions {hj : Sj → X T }mj=1.


For any γ ∈ Γ

ζ̃T
1

, under the watermarking scheme presented in Theorem 5, we have:

– For any j ∈ [m], the j-th error probability is give by

βj(γ, PXT
1 ,ζT

1 |M=j) =
∑

i∈[0:m]\j

Pj(γ(X
T
1 , ζ

T
1 ) = i)

= m min
P

XT
1
:D(P

XT
1
,Q

XT
1
)≤d

∑
xT
1

(PXT
1
(xT

1 )− α)+.
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– False alarm error: for any xT
1 ∈ X T ,∑

ζT
1

Pζ(ζ
T
1 )1{γ(xT

1 , ζ
T
1 ) ̸= 0} =

m∑
i=1

∑
ζT
1

Pζ(ζ
T
1 )1{γ∗(xT

1 , ζ
T
1 ) = i}

= (P ∗
XT

1
(xT

1 )−m(P ∗
XT

1
(xT

1 )− α)+) + (m− 1)(P ∗
XT

1
(xT

1 )− α)+

= P ∗
XT

1
(xT

1 )− (P ∗
XT

1
(xT

1 )− α)+

= P ∗
XT

1
(xT

1 ) ∧ α ≤ α.

Since any distribution QXT
1

can be represented by a linear combination of δxT
1

, the worst-case false
alarm error is upper bounded by

sup
Q

XT
1

β0(γ, PXT
1 ,ζT

1 |M=j) ≤ α.
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