
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Exploring Hypergraph Condensation via Variational Hyperedge
Generation and Multi-Aspectual Amelioration

Anonymous Author(s)

Abstract
Hypergraph neural networks (HyperGNNs) show promise in mod-
eling online networks with high-order correlations. Despite notable
progress, training these models on large-scale raw hypergraphs
entails substantial computational and storage costs, thereby increas-
ing the need of hypergraph size reduction. However, existing size
reduction methods primarily capture pairwise association pattern
within conventional graphs, making them challenging to adapt
to hypergraphs with high-order correlations. To fill this gap, we
introduce a novel hypergraph condensation framework, HG-Cond,
designed to distill large-scale hypergraphs into compact, synthetic
versions while maintaining comparable HyperGNN performance.
Within this framework, we develop a Neural Hyperedge Linker to
capture the high-order connectivity pattern through variational
inference, achieving linear complexity with respect to the number
of nodes. Moreover, We propose a multi-aspectual amelioration
strategy including a Gradient-Parameter Synergistic Matching ob-
jective to holistically refine synthetic hypergraphs by coordinating
improvements in node attributes, high-order connectivity, and la-
bel distributions. Extensive experiments demonstrate the efficacy
of HG-Cond in hypergraph condensation, notably outperforming
the original test accuracy on the 20News dataset while concur-
rently reducing the hypergraph size to a mere 5% of its initial scale.
Furthermore, the condensed hypergraphs demonstrate robust cross-
architectural generalizability and potential for expediting neural
architecture search. This research represents a significant advance-
ment in hypergraph processing, providing a scalable approach for
hypergraph-based learning in resource-limited environments.

CCS Concepts
•Mathematics of computing→ Graph algorithms; • Comput-
ing methodologies→ Neural networks.

Keywords
Hypergraph Condensation, High-order Correlations

1 Introduction
The ubiquity of online networks has led to the accumulation of
vast high-order correlation data, which frequently extends beyond
simple pairwise associations and permeates the World Wide Web,
citation networks, and social media platforms. For example, a tweet
connects all users who engage with it, a research paper is typically
co-authored by a group of scholars, and an email is often addressed
to multiple recipients. In light of these high-order correlations, hy-
pergraphs have emerged as a flexible and effective mathematical
tool for faithfully capturing multi-way relationships and facilitating
more nuanced analysis of network, offering particular advantages in
domains such as online community detection [28] and e-commerce
recommendation [44]. Recent advancements in hypergraph neural
networks (HyperGNNs) have demonstrated remarkable progress in

HyperGNN

HyperGNN

Loss

Loss

Figure 1: Our framework condenses hypergraph data to a
much smaller yet informative one, such that HyperGNNs
trained on condensed hypergraph S and target hypergraph
T exhibit comparable performance. The synthesis of S ne-
cessitates matching objectives on two HyperGNNs.

representation learning on hypergraphs, showcasing the effective-
ness of capturing and leveraging high-order relationships [13, 15].
Despite these notable advancements, the necessity to train these
models on large-scale raw hypergraphs incurs substantial compu-
tational and storage costs, while simultaneously raising concerns
regarding data privacy protection [38].

In recent years, graph size reduction has emerged as a promis-
ing research direction to compress or simplify large-scale pair-
wise graphs while preserving their essential information content,
thereby enhancing the efficiency and scalability of graph neural
networks (GNNs) training. Embodying this reduction principle,
graph sparsification [7, 36] centers on preserving specific structural
properties, e.g., principle eigenvalues, through the retention of
critical nodes and a subset of pair-wise edges, while graph coarsen-
ing [5, 22] maintains all nodes but aggregates them into super nodes,
with original inter-group edges consolidated into super edges. How-
ever, these methods, constrained by their reliance on sampling from
existing data, inherently limit the information content of the sam-
pled data to that of the original dataset, consequently leading to
diminished performance when GNNs are trained on these reduced
graphs. In contrast, graph condensation [20, 21], as a generative
method, distills the original graph into a newly-constructed, smaller
graph with synthesized nodes and structures. While existing graph
size reduction techniques have shown efficacy in preserving or sim-
plifying pairwise structures in conventional graphs, they encounter
substantial limitations when applied to hypergraphs. To our knowl-
edge, there still lacks a solution on hypergraph size reduction.

Indeed, the task of hypergraph size reduction presents unique
challenges attributable to the intrinsic characteristics of hypergraph.
(i) Modeling complex high-order correlations: The high-order
correlations arise from the semantic relationships among multiple
nodes. Inadequate modeling of these complex interactions during
the reduction process may result in significant information loss,

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

leading to degraded performance trained on the reduced hyper-
graphs. As expression capacity of high-order correlation transcends
pair-wise edges in conventional graphs, the complexity of model-
ing high-order connectivity patterns manifests in various forms,
such as higher-dimensional dependencies and semantic topological
features. (ii) Managing exponential complexity: Let |V| repre-
sents the number of nodes. While conventional graphs are limited
to a maximum of |V|2 pairwise edges, the flexible node inclusion
characteristic of hypergraphs permits up to 2 |V | hyperedges (the
number of node sets). Extant graph methods [5, 20, 21] primarily
rely on pairwise edge reconstruction. However, they are not directly
applicable to hypergraphs due to challenges in computational ef-
ficiency and algorithmic scalability arising from the exponential
growth in potential hyperedges relative to the number of nodes.

To tackle the above challenges, we propose a novel HyperGraph
Condensation framework, called HG-Cond, to condense large-real
hypergraphs into small-synthetic hypergraphs, such that Hyper-
GNNs trained on condensed hypergraph and original hypergraph
exhibit comparable performance. Within this framework, we de-
velop a Neural Hyperedge Linker to model the complex high-order
correlations in hypergraphs. The Neural Hyperedge Linker employs
variational inference with a Dirichlet prior and transitions the fo-
cus of prediction from the set level (hyperedge) to the node level
for efficient hyperedge synthesis, thereby reducing the prediction
space from intractable O(2 |V |) to manageable O(|V|). Moreover,
we develop a coreset initialization method to select representative
node exemplars from the raw hypergraphs and synthesize struc-
ture through stochastic composition, serving as the initialization of
reduced hypergraphs. Furthermore, we propose a multi-aspectual
amelioration strategy including a Gradient-Parameter Synergistic
Matching objective to holistically refine synthetic hypergraphs by
coordinating improvements in node attributes, high-order connec-
tivity, and label distributions. Extensive experiments conducted
across multiple real-world hypergraphs demonstrate that HG-Cond
can effectively condense various hypergraphs and achieve compa-
rable performance to their larger counterparts. Notably, HG-Cond
even outperforms the original test accuracy on the Pubmed and
20News dataset while reducing the hypergraph size to a mere 7%
and 5% of its initial scale, respectively. To the best of our knowl-
edge, we are among the first to propose a hypergraph condensation
framework to reduce the hypergraph size.1

In summary, the key contributions of our work are as follows:
• We propose a novel hypergraph condensation framework

to distill large-real hypergraphs into small-synthetic hyper-
graphs, such that HyperGNNs trained on the original and
condensed hypergraphs have comparable performance.

• We design a neural hyperedge linker, a hypergraph coreset
initialization, and a multi-aspectual amelioration strategy
to collaboratively optimize node features, structures and
labels of condensed hypergraphs.

• We conduct extensive experiments to validate the efficacy
of HG-Cond in condensing diverse large-real hypergraphs.
Our results reveal that condensed hypergraphs achieve
performance on par with original counterparts.

1The anonymous code can be found at https://anonymous.4open.science/r/HG-Cond.

• We demonstrate the generalizability of the condensed hy-
pergraphs across different test HyperGNNs. Furthermore,
we uncover a strong correlation between the performance
of models trained on condensed hypergraphs and whole
hypergraphs in architecture search experiments.

2 Related Work
The related work of this paper falls into three categories: Hyper-
graph Neural Network, Graph Size Reduction and Dataset Conden-
sation (Distillation).

2.1 Hypergraph Neural Networks
Hypergraph Neural Networks (HyperGNNs) are designed to cap-
ture structural information and derive representations of nodes and
edges in hypergraphs, analogous to graph neural networks [24]
applied in traditional pairwise graphs. Unlike graphs, where edges
connect pairs of nodes, hypergraphs allow for hyperedges that can
link multiple nodes simultaneously. Early HyperGNNs are built
upon the spectral domain, such as HGNN [13] and HpLapGCN [14],
which conduct the hypergraph Laplacian matrix for feature smooth-
ing. HyperGCN [42] employs a specific strategy to transform the
hypergraph into standard graphs, enabling the application of tradi-
tional graph neural networks [24] for node representation learn-
ing. Additionally, a series of spatial-based HyperGNNs are pro-
posed, including two-stage message passing techniques utilized in
HNHN [10], AllDeepSets [9] and AllSetTransformer [9].

2.2 Graph Size Reduction
Graph size reduction encompasses several approaches: graph sam-
pling, graph coreset, graph sparsification, graph coarsening, and
the recent graph condensation techniques. These methods aim to
reduce the number of nodes and edges to facilitate more efficient
GNN training. Graph sampling [8, 45] and graph coreset meth-
ods [32, 41] involve selecting a subset of nodes and edges from
the original graph. However, the expressiveness of the resulting
subgraph is inherently limited by the structure of the full-scale
graph. Graph sparsification methods [16, 36], on the other hand,
focus on preserving specific graph properties, such as the spec-
trum or principal eigenvalues, while simplifying redundant edges
in the original graph. Similarly, graph coarsening methods [5, 22]
aim to maintain certain graph characteristics by grouping node
representations from the raw graph. A limitation of both graph spar-
sification and coarsening approaches is that the preserved graph
properties may not always align optimally with the requirements
of downstream GNN tasks. In contrast, recent graph condensation
techniques [20, 21, 48] offer a novel approach to graph size reduc-
tion. These methods aim to create condensed graph representations
that capture essential structural and feature information, potentially
overcoming some limitations of earlier approaches.

2.3 Dataset Condensation
Dataset condensation aims to create a small, representative dataset
that captures the essential knowledge from a larger target dataset.
The goal is to train models on this condensed dataset that perform
comparably to those trained on the full dataset. This approach has
various applications [27, 34], such as rapid architecture search [29]

2

https://anonymous.4open.science/r/HG-Cond

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Exploring Hypergraph Condensation via Variational Hyperedge Generation and Multi-Aspectual Amelioration Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

and efficient data replay in continual learning [4], where minimiz-
ing resource consumption is crucial. Early methods like DD [39]
and DC-KRR [30] use meta-learning frameworks to calculate meta-
gradients and solve bi-level distillation objectives. Later approaches,
including DC [47], DM [46], and MTT [6], avoid unrolled optimiza-
tion by designing surrogate functions to match gradients, feature
distributions, and training trajectories, respectively. These meth-
ods essentially aim to create a condensed dataset that effectively
mimics the larger target dataset from different perspectives. While
the aforementioned works primarily focused on image data, re-
cent research has extended these concepts to structured graph data.
GCOND [21] was the first to adapt gradient matching for graph
data, incorporating a graph structure learning module to synthe-
size pairwise edges. DosCond [20] introduced single-step gradient
matching for node synthesis and a probabilistic graph model for
structure condensation. SFGC [48] employed a graph neural tangent
kernel to bypass iterative GNN training, proposing a structure-free
graph condensation method that eliminates the need to synthesize
graph structures.

3 Preliminaries
This section commences with an overview of the hypergraph struc-
ture and subsequently introduces HyperGNNs as the backbone
for condensing hypergraph datasets. Following this, we provide a
precise definition of the hypergraph size reduction problem.

Definition 3.1 (Hypergraph). Let G = {X,H,Y} represent a hyper-
graph, whereX ∈ R𝑁×𝑑 denotes the𝑑-dimensional features of node
setV including 𝑁 number of nodes, and Y ∈ {0, ...,𝐶−1}𝑁 denotes
the node labels with 𝐶-classes. The topology of G, i.e., the hyper-
edge set E, is represented by the incidence matrix H ∈ {0, 1}𝑁×𝑀 .
In this incidence matrix, the rows correspond to the 𝑁 nodes and
the columns correspond to the𝑀 hyperedges, where 𝑁 = |V| and
𝑀 = |E |. An entry H𝑣𝑒 = 1 in the incidence matrix indicates that
node 𝑣 is a member of hyperedge 𝑒 .

Definition 3.2 (Hypergraph Neural Networks.). Given a hyper-
graph G = {X,H,Y}, a HyperGNN learns to aggregate information
from the hyperedges and their incident nodes, typically through a
message-passingmechanism [9]. This process facilitates themodel’s
ability to capture and leverage high-order structural information
inherent in hypergraph data. Typically, a HyperGNN comprises 𝐾
layers, each of which incorporates two components: (i) Hyperedge
convolution: A generalization of graph convolution that operates
on hyperedges to aggregate information from connected nodes. (ii)
Node feature update: A mechanism to update node features based
on the aggregated information from incident hyperedges.

Definition 3.3 (Hypergraph Size Reduction). Given a large-scale
hypergraph T = {X,H,Y} comprising 𝑁 nodes with 𝑑-dimensional
features and 𝑀 hyperedges, the objective of hypergraph size re-
duction is to generate a small-scale hypergraph denoted as S =

{X′,H′,Y′}. In this condensed dataset, X′ ∈ R𝑁 ′×𝑑 represents the
features of node setV ′, Y′ ∈ {0, ...,𝐶 − 1}𝑁 ′ denotes the node la-
bels, and H′ ∈ {0, 1}𝑁 ′×𝑀′ represents the incidence matrix, where
𝑁 ′ ≪ 𝑁 and𝑀 ′ ≪ 𝑀 . The reduction rate 𝑟 is set as 𝑟 = 𝑀′

𝑀
= 𝑁 ′

𝑁
.

The goal is to ensure that a hypergraph neural network trained on
S can achieve comparable performance to one trained on the much

larger hypergraph T :

min
S
LT

(
HyperGNN𝜽S (X,H),Y

)
(1)

𝑠 .𝑡 . 𝜽S = argmin
𝜽
LS

(
HyperGNN𝜽

(
X′,H′

)
,Y′

)
. (2)

In this formulation, HyperGNN𝜽 denotes a HyperGNN parameter-
ized by 𝜽 , 𝜽S represents the parameters of the HyperGNN trained
on the compact synthetic dataset S, and LT and LS are the loss
functions (typically cross-entropy loss) that measures the differ-
ence between model predictions and ground-truth labels on target
hypergraph T and condensed hypergraph S, respectively.

4 Hypergraph Condensation
This section presents an overview of our hypergraph condensa-
tion framework, HG-Cond, followed by detailed descriptions of
its components. For comprehensive training procedures and time
complexity analyses, please refer to Appendix B.

4.1 Framework Overview
Given a large-scale hypergraph T , our framework aims to synthe-
size a compact yet informative hypergraph S, with the objective of
minimizing the performance disparity between HyperGNNs trained
on T and S. In contrast to conventional size reduction methods
such as sparsification and sampling, which typically derive a subset
of the original node set, our approach generates a novel synthe-
sized node set V ′ for S. Notably, V ′ is not constrained to be a
subset of V , allowing for greater flexibility in the reduction pro-
cess. To effectively capture high-order connectivity patterns and
address the exponential complexity of potential hyperedges (as
discussed in Section 1), we introduce an innovative Neural Hy-
peredge Linker that employs variational inference with Dirichlet
prior. This method, detailed in Section 4.2, efficiently synthesizes
hyperedges with the highest log-likelihood in the original hyper-
graph T . Then we propose aHypergraph Coreset Initialization
approach for the synthetic hypergraph, as described in Section 4.3.
In Section 4.4, we develop aMulti-Aspectual Amelioration strat-
egy, which includes a Gradient-Parameter Synergistic Matching
objective, to jointly optimize the node attributes, structures and
labels within hypergraphs. The schematic representation of our
hypergraph condensation procedure is illustrated in Figure 2, and
the holistic algorithm pipeline is presented in Algorithm 1.

4.2 Neural Hyperedge Linker
In the condensation process of original hypergraphs, a significant
challenge lies in simultaneously establishing high-order structures
and modifying node features. Previous hyperedge prediction meth-
ods [19, 31, 43] primarily rely on negative sampling or adversarial
training. These approaches evaluate their efficacy by comparing
the potential scores of preserved existing hyperedges against pre-
sampled negative candidates. However, such methods cannot be di-
rectly applied to generate the most probable hyperedges. To address
this limitation, our neural hyperedge linker generates hyperedges
for the new condensed hypergraph by modeling the log-likelihood
of the original hypergraph. Our neural hyperedge linker supports
two distinct generation schemas. (i) Additive expansion: This

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

ℒTr, ℒG𝑟

𝜃𝑡
𝒯

𝜃𝑡+1
𝒯

𝜃𝑇
𝒯

𝜃0
…

…

𝜃𝑡
𝒯

𝜃𝑡+1
𝒯

𝜃𝑇
𝒯

…

…

𝜃𝑇
𝒯

7

1 2

5 6
4

3

𝜃𝑡
𝒯

𝜃𝑡+1
𝒯

𝜃𝑇
𝒯

…

…

𝜃0
𝒯𝜃0

𝒯

𝒮

𝜃0
𝒮 = 𝜃0

𝒯

𝜃𝑡
𝒮

𝜃𝑡+1
𝒮

𝜃𝑇
𝒮

…

…

𝒮

1

4

2

6

5

10

9

7

3

𝒯

𝒯

1 2 5

Encoder

8

1 2 5
4 9

Posterior

Distribution

①

②

④

⑤

⑥

1
2
3

1
2
3

Expert

HyperGNN

⑦

1
2
3

Figure 2: Our hypergraph condensation framework consists of three main phases. (i) Training the neural hyperedge linker
through variational inference (①). (ii) Coreset initialization phase (③⑥) selects node exemplars from T and synthesizes initial
structures. (iii) Condensation phase (②④⑤⑥⑦) optimizes node features X′, structures H′ and label distributions Y′.

approach augments existing hyperedge structures through the in-
cremental addition or deletion of nodes to incomplete hyperedges.
(ii) Stochastic composition: This method synthesizes new hyper-
edges via a stochastic process guided by the learned log-likelihood
of the original hypergraph. To the best of our knowledge, this repre-
sents the first hypergraph generative model capable of handling both
of these patterns in the generation of hypergraph structures.

Inspired by the well-studied generative models with variational
inference [25, 26, 40], our neural hyperedge linker consists of the
encoder and decoder neural networks.

4.2.1 Variational Encoder. The encoder maps nodes and hyper-
edges into latent representations to capture the interdependencies.
First, we embed the hypergraph into two sets of representations:
one for nodes ZV = {z𝑣 |𝑣 ∈ V} and another for hyperedges
ZE = {z𝑒 |𝑒 ∈ E}, using a UNIGAT model [18]. Within the frame-
work of variational inference, selecting an appropriate prior dis-
tribution is crucial for modeling the intricate relationships within
the hypergraph. Observations from various datasets indicate that
hyperedges often encapsulate a collection of entities sharing com-
mon attributes [9, 42]. For example, a research paper is typically
co-authored by a group of researchers with aligned research in-
terests. Analogously, the relationship between a hyperedge and
its constituent nodes can be likened to the relationship between
a document and its constituent words, where the composition of
words defines the document’s subject matter.

Drawing inspiration from the effectiveness of topic models [3]
for text classification and extraction, we posit that both the prior
distribution 𝑝 (𝜷 (𝑒)) and the posterior distribution 𝑞𝜙 (𝜷 (𝑒) |z𝑒) of
hyperedge attributes adhere to Dirichlet distributions, each with 𝐾
dimensions. Specifically, the posterior distribution 𝑞𝜙 (𝜷 (𝑒) |z𝑒) is

derived from 𝑞(𝜷 (𝑒) |𝜶 (𝑒)) = Dirichlet(𝛼 (𝑒)1 , 𝛼
(𝑒)
2 , . . . , 𝛼

(𝑒)
𝐾
), where

𝜶 (𝑒) ∈ R𝐾+ is computed via a deterministic multi-layer perceptron
(MLP) parameterized by 𝜙 acting on z𝑒 , utilizing a non-negative
activation:

𝜶 (𝑒) = log(1 + exp(MLP𝜙 (z𝑒))) . (3)

To mitigate the variance and address the non-differentiable issue
inherent in stochastic estimations, we employ the reparameteriza-
tion trick [33] to sample the posterior hyperedge traits from the
Dirichlet distribution Dirichlet(𝛼 (𝑒)). Specifically, we sample each
component 𝑦 (𝑒)

𝑖
of the hyperedge trait vector from a Gamma distri-

bution Gamma
(
𝛼
(𝑒)
𝑖
, 1
)
, where 𝛼 (𝑒)

𝑖
and 1 are the shape parameter

and scale parameter of the Gamma distribution, respectively:

𝑦
(𝑒)
𝑖
∼ Gamma

(
𝛼
(𝑒)
𝑖
, 1
)
for 𝑖 = 1, 2, . . . , 𝐾 . (4)

Following the sampling, we normalize the sampled values𝑦 (𝑒)1 , ..., 𝑦
(𝑒)
𝐾

such that their sum equals one, thereby obtaining the latent traits
𝛽 (𝑒) of hyperedge 𝑒:

𝜷 (𝑒)
𝑖

= 𝑦
(𝑒)
𝑖
/
∑︁𝐾

𝑗=1
𝑦
(𝑒)
𝑗

for 𝑖 = 1, 2, . . . , 𝐾 . (5)

4.2.2 Structure Decoder. With the learned node embeddings ZV
and the hypergraph variational traits BE = {𝜷 (𝑒) |𝑒 ∈ E}, the
decoder aims to reconstruct the high-order correlations present
in the hypergraph. However, directly modeling the space of high-
order interactions faces a combinatorial challenge, as there are
2 |V | potential hyperedges (as discussed in Section 1). Inspired by
strategies from representation learning, we design the decoder to
predict the presence of missing nodes within hyperedges rather
than generating hyperedges from scratch. This approach reduces

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Exploring Hypergraph Condensation via Variational Hyperedge Generation and Multi-Aspectual Amelioration Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

the prediction space from a computationally prohibitive O(2 |V |)
to affordable O(|V|). We formulate the decoding process as:

𝑝 (H|ZV , ẐE) =
𝑀∏
𝑒=1

𝑁∏
𝑣=1

𝑝 (H𝑣𝑒 | z𝑣, ẑ𝑒) =
𝑀∏
𝑒=1

𝑁∏
𝑣=1

Sigmoid
(
z𝑇𝑣 ẑ𝑒

)
, (6)

where ẑ𝑒 = MLP𝜑 (𝜷 (𝑒)) is obtained by another deterministic MLP
parameterized by𝜑 with 𝜷 (𝑒) as the input. This formulation enables
the decoder to estimate the probability of each node 𝑣 being part
of hyperedge 𝑒 based on the learned node embeddings z𝑣 and the
transformed hyperedge traits ẑ𝑒 , thus facilitating the reconstruction
of the high-order correlations within the hypergraph efficiently.

4.2.3 Multi-Objective Optimization. Using variational inference [23,
25], we optimize the neural hyperedge linker by maximizing the
evidence lower bound (ELBO):

ELBO = E𝑞𝜙 (𝜷 |ZE)
𝑒∈E,𝑣∈V

log𝑝𝜃,𝜑 (H𝑣𝑒 | z𝑣, ẑ𝑒) − KL(𝑞𝜙 (𝜷 (𝑒) | z𝑒) | 𝑝 (𝜷 (𝑒))),

(7)
where the prior distribution of hyperedge traits follows a Dirichlet
distribution parameterized by ones, i.e., 𝑝 (𝜷 (𝑒)) ∼ Dirichlet(1). De-
tailed derivation is provided in Appendix A. As 𝜶 (𝑒) is obtained via
a deterministic function, the KL divergence term KL(𝑞𝜙 (𝜷 (𝑒) |z𝑒) |
𝑝 (𝜷 (𝑒))) simplifies to KL(𝑞(𝜷 (𝑒) |𝜶 (𝑒)) | 𝑝 (𝜷 (𝑒))):

KL
(
𝑞

(
𝜷 (𝑒) |𝜶 (𝑒)

)
| 𝑝

(
𝜷 (𝑒)

))
= log

Γ
(∑𝐾
𝑖=1 𝜶

(𝑒)
𝑖

)
∏𝐾
𝑖=1 Γ

(
𝜶 (𝑒)
𝑖

)
− log Γ (𝐾) +

∑︁𝐾

𝑖=1

(
𝜶 (𝑒)
𝑖
− 1

) (
𝜓

(
𝜶 (𝑒)
𝑖

)
−𝜓

(∑︁𝐾

𝑗=1
𝜶 (𝑒)
𝑗

))
.

(8)

Here, Γ denotes the Gamma function Γ(𝑥) =
∫ ∞
0 𝑡𝑥−1𝑒−𝑡 𝑑𝑡 , and

𝜓 represents the digamma function 𝜓 (𝑥) = 𝑑
𝑑𝑥

ln(Γ(𝑥)) = Γ′ (𝑥)
Γ (𝑥) .

Moreover, the parameters 𝜃 of HyperGNN for inferring ZV and ZE
are additionally optimized by the node labels Ywhich navigates dis-
tinguishing node representations across different node categories.
The overall loss of neural hyperedge linker is defined as:

LNHL = −𝜆ELBO +
∑︁

𝑣∈V 𝑦𝑣 log𝑦𝑣 + (1 − 𝑦𝑣) log(1 − 𝑦𝑣), (9)

where 𝑦𝑣 = Softmax(W𝑣z𝑣 + b𝑣) is the prediction probability of
node 𝑣 over each category obtained through a linear layer with
softmax activation, and 𝜆 is a hyperparameter to control the weight.

4.2.4 Generation. Once the neural hyperedge linker is optimized
using the original hypergraph T , it can be employed to synthesize
structures in the condensed hypergraph S. The neural hyperedge
linker supports two generation schemas. (i) Additive Expansion:
In this schema, we infer the latent traits of the expected hyperedges
and predict the nodes with the highest similarity scores as new in-
corporations into the hyperedges. This method relies on the learned
embeddings to identify nodes that are most likely to be part of the
new hyperedges. (ii) Stochastic Composition: Alternatively, we
can sample a posterior Dirichlet distribution either randomly or
from existing distributions in T and select the nodes of the hyper-
edge based on this sampled posterior. This approach introduces
stochasticity in the generation process, allowing for diverse and
potentially more varied hyperedge compositions.

In both schemas, we determine that a node 𝑣 is connected to
a hyperedge 𝑒 when Sigmoid

(
z𝑇𝑣 ẑ𝑒

)
> 𝜎 . The threshold 𝜎 is a

hyperparameter that controls the sparsity of the hyperedges. These
two generation schemas enable the neural hyperedge linker to
create new structures in the condensed hypergraph S, leveraging
the learned representations and probabilistic sampling to ensure
coherent and meaningful expansions. This formulation provides
a clear and structured approach to generating new hyperedges,
balancing deterministic node selection with stochastic sampling
for flexibility and diversity in the generated hypergraphs.

4.3 Hypergraph Coreset Initialization
The initialization of the condensed hypergraph S plays a pivotal
role in the process of hypergraph condensation. A judiciously se-
lected initialization can substantially enhance the efficiency and
efficacy of subsequent condensation steps, thereby ensuring that
the resultant structure preserves the essential relationships inher-
ent in the original hypergraph T . To accomplish this objective,
we propose a hypergraph coreset initialization method leveraging
node embeddings ZV from the optimized neural hyperedge linker.

4.3.1 Node Exemplars Selection. We employ an iterative selection
process for each node category 𝑐 ∈ {0, ...,𝐶 − 1}. This process
involves choosing exemplars that optimize the approximation of
themean embedding of the category’s training nodes by the average
embedding vector of all exemplars [32]. This selection continues
until the target number,𝑚𝑐 , is attained. The target number for each
node category is determined based on the distribution of training
nodes across categories in the original hypergraph T .
4.3.2 Initial Structure Synthesis. However, a critical challenge rises
in this initialization process. Due to the selection of a limited set
of representative nodes from each category, the majority of hyper-
edges present in T are either absent or only partially represented
in the initialized structure. Consequently, the original hypergraph
structure diverges significantly from the initialized one, potentially
impeding subsequent condensation steps. To address this issue, we
employ the stochastic composition method delineated in Section
4.2.4 to synthesize hyperedges of S.

For a comprehensive overview of our hypergraph coreset initial-
ization algorithm, please refer to Algorithm 2.

4.4 Synthetic Hypergraph Amelioration
Despite the fact that the coreset initialization method retains the
most salient nodes and facilitates the synthesis of plausible hyper-
edges, the resultant synthesized hypergraph S possesses informa-
tion that is inherently constrained by the boundaries set by the
original hypergraph T . To mitigate the information discrepancy
between S and T , we propose a comprehensive amelioration target
for S, encompassing multiple aspects including node attributes,
higher-order structures, and node labels.
4.4.1 Gradient-Parameter Synergistic Matching. To achieve compa-
rable performance between HyperGNNs trained on the synthetic
hypergraph S and those trained on the target hypergraph T , it
is essential that the models trained on S exhibit similar optimiza-
tion trajectories and converge to comparable final parameters as
those trained on T . This alignment in optimization dynamics and
parameter space serves as a guiding principle for optimizing the
structure of the synthetic hypergraph S. Based on this premise,
we propose a Gradient-Parameter synergistic matching objective

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

that concurrently evaluates both the optimization pathway and the
parameter landscape. This unified approach facilitates a compre-
hensive preservation of information from T .

Our approach involves preparing a training trajectory of an ex-
pert HyperGNN trained on T , saving both the model parameters
and gradients for𝑇 iterations, denoted as {𝜽 T𝑡 }𝑇𝑡=0 and {∇𝜽T𝑡 LT }

𝑇
𝑡=0,

respectively. Concurrently, we train a student HyperGNN onS with
identical parameter initialization 𝜽 0 : 𝜽S0 = 𝜽 T0 , obtaining the stu-
dent parameters {𝜽S𝑡 }𝑇𝑡=0 and gradients {∇𝜽S𝑡 LS}

𝑇
𝑡=0. Given the

training trajectories of both expert and student HyperGNNs, we
design appropriate objectives to measure the variance between
these two trajectories, which serve as signals to optimize the node
features X′ of condensed hypergraph S. A crucial aspect of this
optimization is the direction of parameter optimization (i.e., gradi-
ents). We quantify the variance between the gradients of the student
parameters and expert parameters at step 𝑡 via cosine similarity:

Gradient Matching: L (𝑡)Gr = 1 −
∇𝜽S𝑡 LS · ∇𝜽T𝑡 LT
∥∇𝜽S𝑡 LS ∥∥∇𝜽T𝑡 LT ∥

, (10)

where L (𝑡)Gr is computed as the layer-wise sum of cosine similarity
in gradients for each HyperGNN layer. Furthermore, to promote
convergence of the student HyperGNN’s performance towards that
of the expert, we calculate the normalized difference between the
student and expert parameters across current training trajectories:

Parameter Matching: L (𝑡)Tr =
| |𝜽S𝑡 − 𝜽 T𝑡 | |22
| |𝜽 0 − 𝜽 T𝑡 | |22

. (11)

The optimization target incorporates these two components. We
posit that gradient matching is more crucial in the early stages of
training trajectories, as gradients determine the optimization direc-
tion. Conversely, as training progresses, the alignment of student
and expert parameters becomes increasingly significant, ultimately
determining the final performance of the student model. Based on
this premise, we formulate a balanced loss objective that dynami-
cally weights these two aspects for hypergraph synthesis:

LSyn = E𝜽 0∼P𝜽T

𝑇∑︁
𝑡=0

[
cos(𝜋𝑡

2𝑇
)L (𝑡)Gr + sin(

𝜋𝑡

2𝑇
)L (𝑡)Tr

]
, (12)

where cos(𝜋𝑡2𝑇) decreases from 1 to 0 and sin(𝜋𝑡2𝑇) increases from
0 to 1 as step 𝑡 increases. This balanced approach eliminates the
need for additional hyperparameters and prevents any single aspect
from unduly dominating the optimization process. The objective
LSyn is estimated given different parameter initializations 𝜽 0 from
the random initialization distribution P𝜽T .

4.4.2 Adaptive High-order Structure Synthesis. Given the discrete
nature of high-order structures in hypergraphs, we focus on updat-
ing the node features X′ of S based on the gradients 𝜕LSyn/𝜕X′.
As the node features evolve, the likelihood of hyperedge formations
also changes. To mitigate potential instability arising from substan-
tial alterations, we employ the additive expansion (as illustrated
in §4.2.4) of the neural hyperedge linker to update existing hyper-
edges, represented by H′. Furthermore, to maintain the stability of
the condensed hypergraph T , we implement a strategy wherein
the high-order structure is updated only once per several feature
update steps 𝜏 .

4.4.3 Label Distillation. Inspired by knowledge distillation tech-
niques [37, 49], which transfer expert knowledge from large-scale
neural networks to smaller ones, we adopt a similar approach for
label prediction transfer. Specifically, we initialize the expert Hy-
perGNN with its final parameters 𝜽 T

𝑇
and predict node class proba-

bilities Y′
𝜽T
𝑇

over the updated condensed hypergraph S, incorporat-
ing the updated node features X′ and high-order structures H′ as
Y′
𝜽T
𝑇

= HyperGNN𝜽T
𝑇
(X′,H′). To facilitate the convergence of the

student model’s performance towards that of the expert, we utilize
the expert HyperGNN’s predictions as signals to update the labels
of the condensed hypergraph 𝑆 . We quantify this difference using
the Kullback-Leibler Divergence:

LY′ = 𝐷KL (Y′ | |Y′𝜽T
𝑇

) =
∑︁

𝑣∈V′ Y
′
𝑣 logY

′
𝑣/Y′𝜽T

𝑇
,𝑣
. (13)

Subsequently, we update the labels Y′ based on gradient 𝜕LY′/𝜕Y′.
A comprehensive schematic algorithm detailing our hypergraph
condensation process is provided in Appendix B.

5 Experiments
In this section, we present a comprehensive empirical evaluation
to demonstrate the efficacy of our proposed hypergraph condensa-
tion framework, HG-Cond, in hypergraph size reduction tasks. Our
investigation aims to address the following five research questions:
RQ1: To what extent does HG-Cond effectively reduce hypergraph
size across diverse real-world hypergraphs? RQ2: How does the
performance of various HyperGNNs, when trained on the reduced
hypergraph and evaluated on the original hypergraph, compare to
baseline size reduction methods? RQ3: What is the efficacy of the
Neural Hyperedge Linker in capturing higher-order correlations
within the hypergraph structure? RQ4: What is the relative con-
tribution of each module to the overall performance of HG-Cond?
RQ5: In what ways does the reduced hypergraph facilitate and
enhance neural architecture search processes?

5.1 Experimental Settings
Datasets. We evaluate the condensation performance of our

framework on five hypergraphs, i.e., Cora-CA (co-authorship) [42],
DBLP-CA (co-authorship) [42], Citeseer (co-citation) [42], Pubmed
(co-citation) [42], 20News [9]. For all five datasets, we use the public
splits and setups following the transductive settings [9]. The dataset
statistics are shown in Table A1, and descriptions of these datasets
can be found in Appendix C.

Baselines. We compare our method to five baselines: (1) Coreset
selection methods: Random, Herding [41], K-center [12, 35]. (2) Hy-
pergraph Coarsening methods: HyperEF [1], HyperSF [2]1. Please
note that as the state-of-the-art graph condensation methods, such
as SFGC [48] and GCOND [21] require either pair-wise edge recon-
struction or graph neural tangent kernel [11] to condensing graph
and hence cannot applied to hypergraph datasets. The detailed
baseline descriptions can be found in Appendix C.

Implementation. For each dataset, we initially employ these size
reduction methods to synthesize condensed hypergraph, subse-
quently assessing the performance of different HyperGNN architec-
tures by training these HyperGNNs on the condensed hypergraph
1Hypergraph coarsening baselines only focused on hypergraph structure, unable to
handle node features. We add adaptive improvements.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Exploring Hypergraph Condensation via Variational Hyperedge Generation and Multi-Aspectual Amelioration Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Node classification accuracy performance (ACC%±std) comparison between size reduction baselines and HG-Cond as
well its variants on various types of real-world hypergraphs with different condensation ratios. indicates the performance
outperforms the original test accuracy on the whole dataset training.

Dataset Ratio (𝑟)
Size Reduction Baselines Hypergraph Condensation Whole

Dataset
Random Herding K-Center HyperEF HyperSF HG-Cond-X HG-Cond-NHL HG-Cond

Cora-CA
7.00% 56.56±4.7 66.03±2.4 68.27±2.8 51.72±3.2 52.63±2.9 69.64±1.6 71.42±2.4 75.82±1.8

78.80±2.15.00% 53.90±3.9 61.43±2.6 63.68±2.2 47.63±3.8 49.15±3.3 66.39±1.4 67.27±0.9 69.41±1.2
3.00% 44.83±5.6 55.11±3.1 56.43±2.5 44.83±2.2 44.30±2.8 57.47±1.9 58.30±0.8 62.51±1.3

DBLP-CA
1.00% 59.58±3.0 82.73±0.7 80.74±0.7 65.82±3.2 63.18±2.6 85.32±1.3 87.05±0.9 89.72±1.4

91.37±0.30.50% 51.44±2.6 78.51±1.4 74.81±1.2 60.24±1.8 62.70±1.8 79.08±1.8 81.28±0.5 83.34±1.6
0.10% 36.36±3.0 58.87±2.2 54.77±3.7 51.84±1.9 50.72±1.5 62.73±2.8 63.83±2.4 68.50±1.8

Citeseer
7.00% 43.76±5.9 57.98±2.6 59.61±2.2 46.32±2.7 48.91±1.9 62.58±1.3 62.84±1.6 65.97±0.8

71.21±3.95.00% 41.43±6.3 55.48±2.0 57.43±1.8 42.21±3.7 45.82±2.5 58.62±1.0 59.39±0.7 62.75±1.3
3.00% 34.50±6.4 51.79±2.2 53.12±2.2 38.28±0.8 35.85±2.4 54.61±1.4 56.80±1.1 58.13±1.3

Pubmed
7.00% 74.74±2.0 83.51±0.4 83.53±0.5 69.14±0.5 71.83±1.3 84.79±0.8 85.20±0.7 88.76±0.3

88.55±0.35.00% 70.97±2.7 82.15±0.5 82.37±0.3 69.20±1.7 70.25±0.7 82.85±0.4 82.72±0.8 86.38±1.3
3.00% 63.58±3.0 80.61±0.6 81.23±0.6 68.72±0.5 68.94±0.7 81.74±0.4 82.56±0.5 83.07±1.4

20News
5.00% 72.61±1.3 77.70±0.8 77.37±0.9 68.33±1.5 67.21±1.2 79.46±0.7 79.84±0.5 81.26±0.7

80.68±0.63.00% 67.89±2.7 77.00±1.0 76.68±0.8 67.53±0.8 67.48±0.6 78.52±0.3 79.08±0.6 79.95±0.5
1.00% 64.29±3.2 74.93±1.4 74.67±1.2 65.04±2.8 64.92±1.9 76.83±0.7 77.84±1.3 78.64±0.8

and evaluating them on the original hypergraph. In the condensation
phase, teacher HyperGNNs and student HyperGNNs all employ
AllDeepSets [9]. In the evaluation phase, we train a HyperGNN
on the condensed hypergraph and evaluate its performance on
the test part of original hypergraph. All HyperGNNs used in our
experiments are all 2-layer models. We report the average value of
ten independent runs for each dataset. Additional implementation
details are illustrated in Appendix C.

5.2 Size Reduction Performance (RQ1)
We conduct a comprehensive comparison of our proposed HG-Cond
against baselines across various reduction ratios for node classifi-
cation tasks, as presented in Table 1. Our approach demonstrates
superior performance, achieving state-of-the-art results across all
experimental scenarios and delivering improvements ranging from
2.46% to 9.63%within equivalent reduction ratios. Notably, we attain
lossless condensation outcomes in Pubmed and 20News datasets,
surpassing the performance achieved when training on the original,
uncondensed hypergraph at a 7% and 5% reduction ratios, respec-
tively. For the remaining datasets, our HG-Cond method effectively
condenses hypergraphs, enabling HyperGNNs to achieve compara-
ble performance relative to training on the complete hypergraphs.
These findings substantiate that our proposed HG-Cond provides
informative supervision signals derived from training trajectories
and efficiently captures high-order connectivity through our novel
neural hyperedge linker. Consequently, this allows us to obtain an
optimal substitute for the original large-scale hypergraph.

5.3 Cross-Architecture Generalization (RQ2)
We conducted a comprehensive evaluation of the condensed hyper-
graphs generated by our HG-Cond method and baseline approaches
across various HyperGNN architectures. These models are trained
on the condensed hypergraphs and subsequently tested on them.
The results, presented in Table 2, demonstrate that our condensed
hypergraphs do not exhibit overfitting to the specific HyperGNN

Table 2: Generalization of reduced hypergraphs acrossHyper-
GNN architectures. Performance evaluated via node classifi-
cation accuracy (%). ‘Whole training’ indicates use of entire
training set. AllDeepSets indicates that the synthetic hy-
pergraph is condensed via AllDeepSets.

Dataset Method
Architecture

HyperGCN HGNN HNHN AllDeepSets

Cora-CA
(𝑟 = 7.00%)

Herding 65.03 66.87 64.29 66.03
K-center 66.27 69.11 66.79 68.27
HyperSF 50.80 52.91 51.84 52.63
HG-Cond 73.64 77.15 71.97 75.82

Whole Training 77.54 79.69 75.21 78.80

DBLP-CA
(𝑟 = 1.00%)

Herding 81.39 82.59 78.84 82.73
K-center 79.44 88.65 77.10 80.74
HyperSF 61.74 63.29 59.36 63.18
HG-Cond 88.52 89.83 84.68 89.72

Whole Training 89.17 90.99 86.95 91.37

Citeseer
(𝑟 = 7.00%)

Herding 57.62 57.90 57.47 57.98
K-center 59.35 59.42 60.29 59.61
HyperSF 50.31 49.07 48.27 48.91
HG-Cond 66.17 66.73 65.80 65.97

Whole Training 70.73 71.84 71.53 71.21

Pubmed
(𝑟 = 7.00%)

Herding 81.92 81.63 82.80 83.51
K-center 81.76 81.58 82.31 83.53
HyperSF 69.86 70.22 70.08 71.83
HG-Cond 83.47 87.90 86.32 88.76

Whole Training 82.92 86.72 85.83 88.55

20News
(𝑟 = 5.00%)

Herding 75.53 75.71 74.83 77.70
K-center 74.92 75.48 75.63 77.37
HyperSF 65.42 66.97 66.50 67.21
HG-Cond 79.82 80.04 79.85 81.26

Whole Training 79.23 78.94 80.15 80.68

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Structure Preservation Efficacy (b) Ablation of Matching Objective

Figure 3: (a) Evaluation of structure preservation efficacy
on the Pubmed dataset in comparison with alternative hy-
peredge link prediction baselines. (b) Ablation analysis of
the gradient-parameter synergistic matching objective con-
ducted on the Pubmed dataset (𝑟 = 7%).

architecture employed during the condensation phase. Instead, they
exhibit robust generalization capabilities across diverse HyperGNN
architectures. HyperGNNs trained on our condensed hypergraphs
consistently and significantly outperform those trained on hyper-
graphs reduced by other baseline methods. Notably, our condensed
hypergraphs achieve lossless performance in 8 out of 20 experimen-
tal cases, a finding that underscores the potential for widespread
real-world application of hypergraph condensation techniques.

5.4 Structure Preservation Efficacy (RQ3)
To assess the efficacy of our proposed neural hyperedge linker (NHL)
in capturing the intrinsic high-order connectivity patterns within
hypergraphs, we conduct a comparative analysis against several
baseline methods: (i) We evaluate a variant of our approach that
employs a Gaussian distribution as the prior, in contrast to our
primary method which utilizes a Dirichlet distribution (denoted
as ‘w/o Dirichlet’). (ii) We benchmark our method against estab-
lished techniques without node labels, i.e., NHP [43] and AHP [19],
which rely on raw Graph Convolutional Network (GCN) layers
and adversarial training, respectively. Following [19], we imple-
ment size-based sampling for negative hyperedges. Figure 3(a) il-
lustrates the validation loss trajectories of our neural hyperedge
linker and its variant without the Dirichlet prior, alongside the final
AUROC performance metrics for link prediction across all methods
on the Pubmed dataset. The results provide compelling evidence
that our method significantly outperforms previous link predic-
tion approaches by a substantial margin. Moreover, our approach
demonstrates superior training efficiency compared to the variant
using a Gaussian prior, which is susceptible to posterior collapse.

5.5 Ablation Study (RQ4)
Evaluating high-order correlation acquisition. To assess the signif-

icance of higher-order correlations in condensing small-informative
hypergraphs, we conduct a comparative analysis of HG-Cond against
two variant models: (i) HG-Cond-X, which optimizes solely node
features, with the backbone HyperGNN trained exclusively on node
features utilizing self-loops as structural elements. (ii) HG-Cond-
NHL, which selects coreset nodes and their associated hyperedges,
maintaining them unaltered during the optimization of node fea-
tures and labels. The results presented in Table 1 yield two key in-
sights: (1) Higher-order correlations play a crucial role in enabling
HyperGNNs to effectively learn node representations. (2) The op-
timization of higher-order correlations during the condensation
process yields substantial performance enhancements.

Table 3: Architecture Search Performance. Methods evalu-
ated using Pearson correlation between validation and test
accuracies of searched architectures. ‘Whole’ denotes archi-
tecture search using the entire dataset.

Dataset
Pearson Correlation

Herding K-center HyperSF HG-Cond Whole

Cora-CA 0.42 0.39 0.23 0.69 0.74
Citeseer 0.40 0.43 0.21 0.58 0.68
Pubmed 0.51 0.48 0.31 0.84 0.82

Evaluating gradient-parameter synergistic matching objective. To
investigate the effects of the gradient-parameter synergistic match-
ing objective in the optimization phase of synthetic hypergraphs,
we formulate three variants: (1) elimination of gradient match-
ing (w/o grad), (2) elimination of parameter matching (w/o para),
and (3) simple summation of these two objectives (grad + para).
As depicted in Figure 3(b), our proposed joint matching objective
demonstrates enhanced performance in condensed hypergraphs,
attributable to the efficacious guidance provided by the gradient
and parameter matching objectives during various optimization
stages of the student HyperGNNs.

5.6 Architecture Search (RQ5)
Our focus is on architecture search for AllSetTransformer, given its
more complex hyperparameter settings compared to AllDeepSets.
The search space encompasses: (i) Hidden dimensions: {32, 64, 128,
256, 512}, (ii) Number of heads: {1, 2, 4, 8}, (iii) Activation functions
{Sigmoid, ReLU, Linear, Softplus, LeakyReLU}. This yields 100 archi-
tectural variants. Table 3 presents the Pearson correlation between
validation accuracies on reduced hypergraphs and test accuracies
on raw hypergraph test sets for all variants. The search process was
conducted on Cora-CA, Citeseer, and Pubmed datasets, utilizing
7.00% reduced rate hypergraphs generated by each method. Re-
sults indicate that reduced hypergraphs synthesized by HG-Cond
exhibit significantly higher Pearson correlations compared to base-
lines, even surpassing the model trained on the entire dataset in the
Pubmed case. These findings underscore the efficacy of HG-Cond in
producing reduced hypergraphs that retain the essential structural
and predictive characteristics of their large-scale counterparts.

6 Conclusion
This study investigated a crucial and innovative challenge: the con-
densation of large-scale, real-world hypergraphs into smaller, more
informative structures. The aim is to enable HyperGNNs trained on
these condensed hypergraphs to achieve performance comparable
to those trained on the original, larger hypergraphs. To tackle this
issue, we proposed a novel hypergraph condensation framework
called HG-Cond. Within this framework, we integrated a coreset
approach to initialize the condensed hypergraph. Additionally, we
developed a multi-aspectual amelioration objective, which utilized
the gradient and training trajectories of a HyperGNN to optimize
both synthetic node attributes, structures, and labels. Furthermore,
we introduced a neural hyperedge linker to synthesize hyperedges
as a function of node attributes, thereby reducing the number of
spaces and enhancing inference efficiency. Our comprehensive ex-
perimental results demonstrated the effectiveness of our proposed
framework in hypergraph condensation tasks.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Exploring Hypergraph Condensation via Variational Hyperedge Generation and Multi-Aspectual Amelioration Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Ali Aghdaei and Zhuo Feng. 2022. HyperEF: Spectral hypergraph coarsening by

effective-resistance clustering. In Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design. 1–9.

[2] Ali Aghdaei, Zhiqiang Zhao, and Zhuo Feng. 2021. Hypersf: Spectral hyper-
graph coarsening via flow-based local clustering. In 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 1–9.

[3] DavidMBlei, AndrewYNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993–1022.

[4] Zalán Borsos, Mojmir Mutny, and Andreas Krause. 2020. Coresets via bilevel op-
timization for continual learning and streaming. Advances in neural information
processing systems 33 (2020), 14879–14890.

[5] Chen Cai, DingkangWang, and YusuWang. 2021. Graph Coarsening with Neural
Networks. In International Conference on Learning Representations.

[6] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and
Jun-Yan Zhu. 2022. Dataset distillation by matching training trajectories. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4750–4759.

[7] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang.
2021. A unified lottery ticket hypothesis for graph neural networks. In Interna-
tional conference on machine learning. PMLR, 1695–1706.

[8] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 257–266.

[9] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. 2022. You are AllSet: A
Multiset Function Framework for Hypergraph Neural Networks. In International
Conference on Learning Representations.

[10] Yihe Dong, Will Sawin, and Yoshua Bengio. 2020. Hnhn: Hypergraph networks
with hyperedge neurons. arXiv preprint arXiv:2006.12278 (2020).

[11] Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong
Wang, and Keyulu Xu. 2019. Graph neural tangent kernel: Fusing graph neural
networks with graph kernels. Advances in neural information processing systems
32 (2019).

[12] Reza Zanjirani Farahani and Masoud Hekmatfar. 2009. Facility location: concepts,
models, algorithms and case studies. Springer Science & Business Media.

[13] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-
pergraph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 33. 3558–3565.

[14] Sichao Fu, Weifeng Liu, Yicong Zhou, and Liqiang Nie. 2019. HpLapGCN: Hyper-
graph p-Laplacian graph convolutional networks. Neurocomputing 362 (2019),
166–174.

[15] Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. 2022. HGNN+: General hy-
pergraph neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence 45, 3 (2022), 3181–3199.

[16] Zheng Gong, Guifeng Wang, Ying Sun, Qi Liu, Yuting Ning, Hui Xiong, and
Jingyu Peng. 2023. Beyond homophily: robust graph anomaly detection via neural
sparsification. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence. 2104–2113.

[17] Chaoyang He, Tian Xie, Yu Rong, Wenbing Huang, Junzhou Huang, Xiang Ren,
and Cyrus Shahabi. 2019. Cascade-bgnn: Toward efficient self-supervised repre-
sentation learning on large-scale bipartite graphs. arXiv preprint arXiv:1906.11994
(2019).

[18] Jing Huang and Jie Yang. 2021. UniGNN: a Unified Framework for Graph and
Hypergraph Neural Networks. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence. International Joint Conferences on Artificial
Intelligence Organization.

[19] Hyunjin Hwang, Seungwoo Lee, Chanyoung Park, and Kijung Shin. 2022. Ahp:
Learning to negative sample for hyperedge prediction. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 2237–2242.

[20] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang,
and Bing Yin. 2022. Condensing graphs via one-step gradient matching. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 720–730.

[21] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil
Shah. 2021. Graph Condensation for Graph Neural Networks. In International
Conference on Learning Representations.

[22] Yu Jin, Andreas Loukas, and Joseph JaJa. 2020. Graph coarsening with pre-
served spectral properties. In International Conference on Artificial Intelligence
and Statistics. PMLR, 4452–4462.

[23] Diederik P Kingma. 2013. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013).

[24] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[25] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[26] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. 2017. Grammar
variational autoencoder. In International conference on machine learning. PMLR,
1945–1954.

[27] Shiye Lei and Dacheng Tao. 2023. A comprehensive survey of dataset distillation.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).

[28] Yu-Ru Lin, Jimeng Sun, Paul Castro, Ravi Konuru, Hari Sundaram, and Aisling
Kelliher. 2009. Metafac: community discovery via relational hypergraph fac-
torization. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. 527–536.

[29] Brian Moser, Federico Raue, Jörn Hees, and Andreas Dengel. 2022. Less is more:
Proxy datasets in nas approaches. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 1953–1961.

[30] TimothyNguyen, Zhourong Chen, and Jaehoon Lee. 2021. DatasetMeta-Learning
from Kernel Ridge-Regression. In International Conference on Learning Represen-
tations.

[31] Prasanna Patil, Govind Sharma, and M Narasimha Murty. 2020. Negative sam-
pling for hyperlink prediction in networks. In Advances in Knowledge Discovery
and Data Mining: 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May
11–14, 2020, Proceedings, Part II 24. Springer, 607–619.

[32] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H
Lampert. 2017. icarl: Incremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
2001–2010.

[33] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochas-
tic backpropagation and approximate inference in deep generative models. In
International conference on machine learning. PMLR, 1278–1286.

[34] Noveen Sachdeva and Julian McAuley. 2023. Data Distillation: A Survey. Trans-
actions on Machine Learning Research (2023).

[35] Ozan Sener and Silvio Savarese. 2018. Active Learning for Convolutional Neu-
ral Networks: A Core-Set Approach. In International Conference on Learning
Representations.

[36] Daniel A Spielman and Shang-Hua Teng. 2011. Spectral sparsification of graphs.
SIAM J. Comput. 40, 4 (2011), 981–1025.

[37] Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, and Nitesh V Chawla.
2023. Knowledge distillation on graphs: A survey. arXiv preprint arXiv:2302.00219
(2023).

[38] Pengfei Wang, Dian Jiao, Leyou Yang, Bin Wang, and Ruiyun Yu. 2024.
Hypergraph-based Truth Discovery for Sparse Data in Mobile Crowdsensing.
ACM Transactions on Sensor Networks 20, 3 (2024), 1–23.

[39] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. 2018.
Dataset Distillation. arXiv preprint arXiv:1811.10959 (2018).

[40] Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, and Zhangyang
Wang. 2022. Augmentations in hypergraph contrastive learning: Fabricated
and generative. Advances in neural information processing systems 35 (2022),
1909–1922.

[41] Max Welling. 2009. Herding dynamical weights to learn. In Proceedings of the
26th annual international conference on machine learning. 1121–1128.

[42] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand
Louis, and Partha Talukdar. 2019. Hypergcn: A new method for training graph
convolutional networks on hypergraphs. Advances in neural information pro-
cessing systems 32 (2019).

[43] Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand
Louis, and Partha Talukdar. 2020. Nhp: Neural hypergraph link prediction. In
Proceedings of the 29th ACM international conference on information & knowledge
management. 1705–1714.

[44] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung,
and Xiangliang Zhang. 2021. Self-supervised multi-channel hypergraph convo-
lutional network for social recommendation. In Proceedings of the web conference
2021. 413–424.

[45] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive LearningMethod.
In International Conference on Learning Representations.

[46] Bo Zhao andHakan Bilen. 2023. Dataset condensationwith distributionmatching.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. 6514–6523.

[47] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. Dataset Condensation
with Gradient Matching. In International Conference on Learning Representations.

[48] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan
Zhu, and Shirui Pan. 2023. Structure-free graph condensation: From large-scale
graphs to condensed graph-free data. Advances in Neural Information Processing
Systems 36 (2023).

[49] Yuanxin Zhuang, Lingjuan Lyu, Chuan Shi, Carl Yang, and Lichao Sun. 2022.
Data-Free Adversarial Knowledge Distillation for Graph Neural Networks. In Pro-
ceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI-22. 2441–2447.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Theoretical Background
In Section 4.2, we present the evidence lower bound of our Neural
Hyperedge Linker, as formalized in Equation 7. In the following, we
elaborate on the derivation of this objective. The goal of our Neural
Hyperedge Linker is to capture complex high-order connectivity
patterns. Given the node and hyperedge representations derived
from the HyperGNN, we seek to maximize the log-likelihood func-
tion log𝑝 (H|ZV ,ZE). By integrating over the latent variable 𝜷 ,
which represents the underlying characteristics governing the high-
order interactions between nodes and hyperedges, the objective
can be derived as:

log𝑝 (H|ZV ,ZE) = log
∫

𝑝𝜃,𝜑 (H | ZV ,ZE , 𝜷)𝑝 (𝜷)d𝜷

= log
∫

𝑞𝜙 (𝜷 | ZV ,ZE)
𝑞𝜙 (𝜷 | ZV ,ZE)

𝑝𝜃,𝜑 (H | ZV ,ZE , 𝜷)𝑝 (𝜷)d𝜷 .
(14)

Since the stochastic variable 𝜷 is obtained by the deterministic
encoder given the hyperedge representations ZE , the above expres-
sion can be derived as following:

log𝑝 (H|ZV ,ZE)

= log
∫

𝑞𝜙 (𝜷 | ZE)
𝑞𝜙 (𝜷 | ZE)

𝑝𝜃,𝜑 (H | ZV , 𝜷)𝑝 (𝜷)d𝜷

(𝑖)
≥

∫
𝑞𝜙 (𝜷 | ZE) log

𝑝𝜃,𝜑 (H | ZV , 𝜷)𝑝 (𝜷)
𝑞𝜙 (𝜷 | ZE)

d𝜷

=

∫
𝑞𝜙 (𝜷 | ZE) log 𝑝𝜃,𝜑 (H | ZV , 𝜷) +

∫
𝑞𝜙 (𝜷) log

𝑝 (𝜷)
𝑞𝜙 (𝜷 | ZE)

d𝜷

= E𝑞𝜙 (𝜷 |ZE) log 𝑝𝜃,𝜑 (H | ZV , 𝜷) − KL(𝑞𝜙 (𝜷 | ZE) | 𝑝 (𝜷))

= E𝑞𝜙 (𝜷 |ZE)
𝑒∈E,𝑣∈V

log 𝑝𝜃,𝜑 (H𝑣𝑒 | z𝑣, 𝜷 (𝑒)) − KL(𝑞𝜙 (𝜷 (𝑒) | z𝑒) | 𝑝 (𝜷 (𝑒)))

(𝑖𝑖)
= E𝑞𝜙 (𝜷 |ZE)

𝑒∈E,𝑣∈V
log 𝑝𝜃,𝜑 (H𝑣𝑒 | z𝑣, ẑ𝑒) − KL(𝑞𝜙 (𝜷 (𝑒) | z𝑒) | 𝑝 (𝜷 (𝑒))),

(15)

where Step (𝑖) follows from the application of Jensen’s inequal-
ity, while step (𝑖𝑖) results from the deterministic decoding of the
latent traits of hyperedges into the representation ẑ𝑒 . The final
expression is referred to as the Evidence Lower Bound (ELBO). We
maximize the loglikelihood of high-order structures within original
hypergraphs by maximizing the ELBO.

B Algorithm and Time Complexity Analysis
Figure 2 provides a succinct overview of the comprehensive con-
densation procedure employed in HG-Cond. To enhance clarity and
facilitate comprehension, we delineate the systematic protocol for
the overall synthesis of hypergraph S in Algorithm 1. This section
presents a time complexity analysis of the hypergraph conden-
sation procedure. Primarily, the time complexity associated with
training a HyperGNN is typically O(𝑀 |𝑒 | + 𝑁) for most architec-
tures, such as UNIGAT and AllDeepSets, where 𝑀 and 𝑁 denote
the number of hyperedges and nodes in the hypergraph, respec-
tively, and |𝑒 | represents the average number of nodes within a
hyperedge. The time complexity for training our neural hyperedge
linker is equivalent to that of training HyperGNNs, as it transi-
tions the prediction from the set of nodes (i.e., hyperedge) to the

Algorithm 1: Overall synthesis procedure of condensed
hypergraph S
Input: Original hypergraph T = {X,H,Y} with 𝑁 nodes, A

neural hyperedge linker and node embeddings
{z𝑣 |𝑣 ∈ V} both trained by LNHL, condensed
hypergraph node size 𝑁 ′, hyperedge size𝑀 ′,
structure update interval 𝜏

Output: Condensed hypergraph S = {X′,H′,Y′}
⊲ Train a neural hyperedge linker (§4.2) with the
optimization target (Eqn. (7))
⊲ Initialize condensed hypergraph S through algorithm 2
while not converged do

⊲ Initialize the parameters of expert HyperGNN 𝜽 T0 and
student HyperGNN 𝜽S0 randomly 𝜽S0 = 𝜽 T0
⊲ Train expert HyperGNN on T and obtain trajectory
with parameters {𝜽 T𝑡 }𝑇𝑡=0 and gradients {∇𝜽T𝑡 LT }

𝑇
𝑡=0

⊲ Train student HyperGNN on S and obtain trajectory
with parameters {𝜽S𝑡 }𝑇𝑡=0 and gradients {∇𝜽S𝑡 LS}

𝑇
𝑡=0

⊲ Measure the variance of the two trajectories LSyn
(Eqn. (12))
⊲ Update node attributes X′ through the gradient
𝜕LSyn/𝜕X′

if Update Times % 𝜏 == 0 then
⊲ Update structure H′ of S by the additive
expansion of neural hyperedge linker

⊲ Infer the expert prediction
Y′
𝜽T
𝑇

= HyperGNN𝜽T
𝑇
(X′,H′)

⊲ Update node labels Y′ through the gradient 𝜕LY′/𝜕Y′
(Eqn. (13))

node level. Subsequently, the coreset initialization method, as eluci-
dated in Algorithm 2, initializes the condensed hypergraph S. This
process entails distance calculations between nodes and category
centers, resulting in a time complexity of O(𝑁𝑁 ′), where 𝑁 ′ rep-
resents the number of nodes in the condensed hypergraph. During
the optimization of node features, high-order structures, and label
distributions, the time complexity for each optimization iteration
is O(𝑀 ′ |𝑒 | + 𝑁 ′ + |𝜽 | + 𝑀′𝑁 ′

𝜏). Here, O(𝑀
′ |𝑒 | + 𝑁 ′) denotes the

inference time of the student HyperGNN, O(|𝜽 |) represents the
time complexity of calculating the gradient-parameter synergistic
objective, and O(𝑀′𝑁 ′𝜏) signifies the time complexity of updating
hypergraph structures. Considering 𝑇 iterations and 𝑅 different
parameter initializations of student and teacher HyperGNNs, we
multiplyO(𝑀 ′ |𝑒 |+𝑁 ′+|𝜽 |+𝑀′𝑁 ′𝜏) by𝑇𝑅. In conclusion, we observe
that the time complexity of hypergraph condensation increases lin-
early with the number of nodes in the original hypergraph.

C Additional Experiment Details
C.1 Dataset Description
We conduct extensive experiments to evaluate HG-Cond on five
real-world hypergraphs. The statistics of these datasets are shown
in Table A1. Detailed descriptions of datasets are provided below:

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Exploring Hypergraph Condensation via Variational Hyperedge Generation and Multi-Aspectual Amelioration Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Algorithm 2: Coreset initialization of condensed hyper-
graph S
Input: Original hypergraph T = {X,H,Y} with 𝑁 nodes, A

neural hyperedge linker and node embeddings
{z𝑣 |𝑣 ∈ V} both trained by LNHL, condensed
hypergraph node size 𝑁 ′, hyperedge size𝑀 ′

Output: Initialization of condensed hypergraph S
for category 𝑐 = 1 to 𝐶 do

⊲ select the embeddingsZ𝑐 = {z𝑣 |𝑣 ∈ V, 𝑦𝑣 = 𝑐} of
nodes belong to class 𝑐
𝜇𝑐 =

1
|Z𝑐 |

∑
z𝑣 ∈Z𝑐 z𝑣 // Current class mean

𝑛𝑐 =
𝑁 ′
𝑁
× |Z𝑐 | // condensed node size of class 𝑐

for 𝑖 = 1 to 𝑛𝑐 do
𝑝𝑐,𝑖 ← argmin

z𝑣 ∈Z𝑐

𝜇𝑐 − 1
𝑖

[
z𝑣 +

∑𝑖−1
𝑗=1 𝑝𝑐,𝑖

]
𝑃𝑐 ← (𝑝𝑐,1, ..., 𝑝𝑐,𝑛𝑐)

X′ = [𝑃1, ..., 𝑃𝐶] // condensed node embedding of S
Y′ = [1, ..., 1︸︷︷︸

𝑛1

, ...,𝐶, ...,𝐶︸ ︷︷ ︸
𝑛𝐶

] // condensed node labels of S

⊲ Synthesize high-order relationships
for 𝑖 = 1 to𝑀 ′ do

⊲ Sample hyperedge latent traits 𝛼 (𝑒) through K-center
methods [12]
⊲ Select nodes that satisfy Sigmoid

(
z𝑇𝑣 ẑ𝑒

)
> 𝜎 as the

constituent nodes for this hyperedge

• Cora-CA [42]: This dataset represents a citation network
where nodes correspond to academic articles and hyper-
edges represent authors. Nodes within a hyperedge signify
the articles in which the respective author has contributed.

• DBLP-CA [42]: Similar in structure to Cora-CA, this dataset
also represents a citation network where nodes correspond
to academic articles and hyperedges represent authors.

• Citeseer [42]: Another citation network, where nodes rep-
resent academic articles and hyperedges correspond to
source articles. Nodes encompassed by a hyperedge denote
the articles cited by the respective source article.

• Pubmed [42]: Similar in structure to Citeseer, this dataset
also represents a citation network. Nodes represent articles,
and hyperedges denote source articles. The nodes within
a hyperedge indicate the articles cited by the respective
source article.

Table A1: Details of dataset statistics. |𝑒 | denotes the average
node number in a hyperedge.

Dataset # Node # Hyperedge # Feature Avg. |𝑒 | # Node Class

Cora-CA 2,708 1,072 1,433 4.28 7
DBLP-CA 41,302 22,363 1,425 4.45 6
Citeseer 3,327 1,079 3,703 3.20 6
Pubmed 19,717 7,963 500 4.35 3
20News 16,242 100 100 654.51 4

• 20News [9]: The 20News is a representation of the popular
20Newsgroups dataset using hypergraph structure. In the
hypergraph, documents are typically represented as nodes,
while the newsgroup categories and important terms or
topics serve as hyperedges connecting related documents.

C.2 Baseline Description
In this subsection, we present an extensive introduction to the base-
lines in hypergraph size reduction. The evaluated methods can be
categorized into two distinct classes: coreset methods and coarsen-
ing methods, each distinguished by their operational mechanisms.

Coreset methods. For coreset approaches, we initially employ an
AllDeepSets model trained on the original hypergraphs to obtain
the final embeddings of each node prior to the final linear classifier.
Subsequently, we select nodes from the original hypergraph and
induce a sub-hypergraph from these selected nodes, which serves
as the reduced hypergraph. The following methods are considered:
(i) Random method employs a stochastic approach to node se-
lection. (ii) Herding method is frequently utilized in continual
learning [41], this technique selects samples that exhibit the closest
proximity to the cluster center, based on the Euclidean distance of
their embeddings. (iii)K-centermethod [12] selects center samples
with the objective of minimizing the maximum distance between a
sample and its nearest center.

Coarsening methods. Two prominent coarsening methods are
evaluated: (i) HyperSF [2] is a spectral hypergraph coarsening
method, which aims to preserve the original spectral properties of
hypergraphs. HyperSF employs a strongly-local max-flow-based
clustering algorithm to identify sets of nodes that minimize the ratio
cut. (ii) HyperEF [1] decomposes large hypergraphs into multiple
node clusters with minimal inter-cluster hyperedges. HyperEF ap-
proximates hyperedge effective resistances by searching within the
Krylov subspace. It is noteworthy that both HyperSF and HyperEF
were originally designed for hypergraphs without node features.
To adapt these methods to our hypergraph size reduction tasks,
we modify the distance calculation by incorporating the Euclidean
distance of embeddings where applicable.

C.3 Hyperparameter Settings
Neural Hyperedge Linker. For the neural hyperedge linker, we

employ a two-layer UNIGAT [18] as the backbone to derive repre-
sentations of hyperedges and nodes. The dropout rate is set to 0.1,
with 256 hidden units. We optimize the dimension 𝐾 of prior and
posterior Dirichlet distributions across {16, 32, 64} for each dataset.
In optimizing the Neural Hyperedge Linker loss, we implement
size-based negative sampling [19] to sample negative hyperedges
for optimizing the log-likelihood of the incidence matrix H in the
raw hypergraph.

Condensation Phase. For each dataset, we utilize a two-layer
AllDeepSets [9] as the backbone to condense the hypergraph, main-
taining 256 hidden units. The condensed hypergraphs are optimized
over 500 iterations. We fine-tune the learning rate for node features
within {0.01, 0.001, 0.0005, 0.0001} and for node labels within {0,
0.001, 0.0001}, where a label learning rate of 0 indicates fixed node la-
bels from the original hypergraphs. For each iteration, we optimize

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

(a) Cora (𝒓=7%) (b) Pubmed (𝒓=7%)

Figure 4: Test accuracy under different hyperedge sparsity
hyperparameter 𝜎 .

the length 𝑇 of training trajectories within 200, 500, based on the
convergence of the HyperGNN trained on the original hypergraphs.
Besides, we update condensed hypergraphs’ high-order structure at
intervals 𝜏 , tuned in {5, 10, 20} and the hyperedge sparsity parameter
𝜎 is tuned in the range of {0.2, 0.4, 0.6}.

Evaluation Phase. During evaluation, we train HyperGNNs with
diverse architectures on the condensed hypergraphs, validating and
testing them on the original hypergraphs. We set the dropout rate
to 0 and weight decay to 0.0005 when training various HyperGNNs.
The training process extends to 500 epochs, with early stopping
implemented after 20 epochs.

C.4 More Experiment Results
Effects of Sparsity Hyperparameter 𝜎 . Figure 4 illustrates the im-

pact of varying the hyperedge sparsity hyperparameter 𝜎 on test

accuracy for two datasets: Cora and Pubmed, both with a reduction
rate 𝑟 = 7%. For the Cora dataset, we observe there is a notable
decline in test accuracy when 𝜎 = 1.0, i.e., each node has only
self-loop structures. This circumstance is consistent in Pubmed
when 𝜎 > 0.6. These results indicate that excessive sparsity may
negatively impact the model’s predictive capabilities.

Running Time. We present an analysis of HG-Cond’s compu-
tational time across varying condensation rates for the Cora-CA
and 20News datasets, as illustrated in Table A2. For Cora-CA, we
examine condensation rates of 7.00%, 5.00%, and 3.00%, while for
20News, we investigate rates of 5.00%, 3.00%, and 1.00%. The runtime
measurements are based on 100 iterations, conducted on a single
NVIDIA A6000 GPU, complemented by two 2.87GHz AMD EPYC
7543 32-core processors. Across all reduction rates and datasets,
the complete condensation process (encompassing 500 iterations)
required to generate a 1.00% condensed hypergraph of DBLP-CA
consumes most time costs, approximately 3.5 hours. The computa-
tional expenditure is justified by the significant advantages offered
by the generated condensed hypergraphs.

Table A2: Running time of HG-Cond for 100 iterations across
different condensation rates in Cora-CA and 20News.

𝑟 7.00% 5.00% 3.00% 𝑟 5.00% 3.00% 1.00%

Cora-CA 128.6s 87.8s 69.3s 20News 861.3s 625.9s 513.7s

12

	Abstract
	1 Introduction
	2 Related Work
	2.1 Hypergraph Neural Networks
	2.2 Graph Size Reduction
	2.3 Dataset Condensation

	3 Preliminaries
	4 Hypergraph Condensation
	4.1 Framework Overview
	4.2 Neural Hyperedge Linker
	4.3 Hypergraph Coreset Initialization
	4.4 Synthetic Hypergraph Amelioration

	5 Experiments
	5.1 Experimental Settings
	5.2 Size Reduction Performance (RQ1)
	5.3 Cross-Architecture Generalization (RQ2)
	5.4 Structure Preservation Efficacy (RQ3)
	5.5 Ablation Study (RQ4)
	5.6 Architecture Search (RQ5)

	6 Conclusion
	References
	A Theoretical Background
	B Algorithm and Time Complexity Analysis
	C Additional Experiment Details
	C.1 Dataset Description
	C.2 Baseline Description
	C.3 Hyperparameter Settings
	C.4 More Experiment Results

