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ABSTRACT

Predictive applications of machine learning often rely on small (sub 1 Bn parameter)
specialized models tuned to particular domains or modalities. Such models often achieve
excellent performance, but lack flexibility. LLMs and VLMs offer versatility, but typically
underperform specialized predictors, especially on non-traditional modalities and long-tail
domains, and introduce risks of data exposure. We propose MARVIS (Modality Adaptive
Reasoning over VISualizations), a training-free method that enables small vision-language
models to solve predictive tasks on any data modality with high accuracy, and without
exposing private data to the VLM. MARVIS transforms latent embedding spaces into visual
representations and then leverages the spatial and fine-grained reasoning skills of VLMs to
interpret the visualizations and utilize them for predictions successfully. MARVIS achieves
competitive performance across vision, audio, biological, and tabular domains using a single
3B parameter model, yielding results that beat Gemini 2.0 by 16% on average. MARVIS
drastically reduces the gap between LLM/VLMs approaches and specialized domain-
specific methods, without exposing sensitive data or requiring any domain-specific training.
We open source our code and datasets at https://anonymous.4open.science/r/marvis-6F54
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Figure 1: MARVIS transforms VLMs into frontier predictors. Using a standard 3B parameter QwenVL
model zero-shot without reasoning, MARVIS (colored line) achieves competitive performance compared
to specialized baselines (dashed line) across modalities and domains, far exceeding the best existing LLM /
VLM predictors (dotted line).
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1 INTRODUCTION

Much of the progress in the field of machine learning in recent years has been on classification and regression
tasks (which, in this work, we sometimes collectively refer to as predictive tasks). These have historically been
addressed either using classical machine learning methods or, more recently, with deep learning. In the latter
case, the best performance has generally been achieved using specialized models with less than one billion
parameters tuned for a particular task and/or knowledge domain (Prokhorenkova et al., 2018; He et al., 2015;
Hollmann et al., 2025). These models often learn to compress a high-dimensional input space into a simplified
embedded space; these embeddings can then be used for prediction without any fine-tuned classification stage
via classical nonparametric methods like KNN (Oquab et al., 2023) or parametric fine-tuning. What these
models gain in precision, however, they sacrifice in flexibility. Narrow experts are often inapplicable to other
domains without additional fine-tuning (Devlin et al., 2019).

LLM and VLMs introduced an exciting new paradigm: in-context learning (ICL) over text and images,
which allowed these models to adapt to new tasks without weight updates (Brown et al., 2020). Gemini,
GPT-4V and LLaVA (Liu et al., 2023a) seek to optimally align language models with specialist embeddings
for vision, and in some cases, other modalities as well. Unlike specialists, LLMs are extremely flexible; users
can ask almost anything in natural language, and in many cases, receive a reasonable response. However,
recent research has demonstrated that even state-of-the-art VLMs from OpenAI and Google consistently
underperform as predictors when compared to specialist classifiers, especially on non-traditional modalities
and in long-tail domains (Zhang et al., 2024). For some modalities, such as audio, there is no obvious way to
natively utilize a traditional LLM / VLM for predictive tasks.

But perhaps the most significant weakness of LLMs and VLMs, especially those which can only be used via
API endpoints, is the practical and regulatory threat of sensitive data exposure. API providers frequently train
on user data, and the models themselves can be prompted to regurgitate sensitive training data verbatim (Kand-
pal et al., 2024; Nasr et al., 2023). Even when inference providers offer guarantees that user data will not be
included in training corpora, trust or regulatory gaps impede many businesses interested in adopting GenAI.
Existing solutions, such as locally hosting LLMs and automatically detecting P.I.I., may sacrifice model
quality, require extensive infrastructure, or be limited in scope and precision. These challenges motivate our
core research question:

Æ Research Question
How can we combine the reasoning capabilities of LLMs with the representational power of special-
ized models without requiring modality-specific fine-tuning or exposing sensitive data?

In this work, we posit that visual reasoning, coupled with specialized low-dimensional embedding models, is
a skeleton key that unlocks the power of in-context learning and reasoning for arbitrary data modalities and
domains, including data that is sensitive.

Contributions

1. We propose MARVIS, an efficient, modality-agnostic system for transforming a VLM into a
performant predictor. Without access to P.I.I. or direct data leakage, using a QwenVL model with
no specialized reasoning training, MARVIS achieves competitive performance across vision, audio,
and tabular modalities, and across a wide range of scientific domains, on both classification and
regression tasks.
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2. We demonstrate empirically that MARVIS does more than simply copy predictions; it reasons
over the available information sources, implicitly analyzing and balancing them to improve its
own predictive power. It can rationalize its decisions post-hoc and suggest next steps, unlike the
specialist models it adapts.

3. We also introduce numerous valuable secondary contributions to facilitate future research in this
area, including the first large-scale standardized tabular classification and regression datasets with
complete semantic information (see Appendix H), a strong FFT baseline for tabular data (see
Appendix D), comprehensive ablations, and a well-documented Github repository.

DATA
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Figure 2: The four-stage MARVIS pipeline. We start with raw input data, capture key patterns using
specialist embedding generating models, determine an appropriate strategy for plotting the data, and prompt a
VLM with visual context, as well as (optionally) metadata and semantic context, then extract predictions.

2 MARVIS

Core Insight: Vision is a Skeleton Key. Relying solely on text to ingest data is limited and does not align
with how humans operate. For predictive tasks, it is not usually the raw data that we want the model to reason
over; rather, it is a distilled view of that data, for the purposes of answering specific questions or rendering
judgments. Human scholars tend to reason more effectively with data visualizations, simplified views of
complex data (Unwin, 2020; de Bodt et al., 2025). VLMs, which are pretrained on web-scraped data, can
understand and interpret a wide range of scientific imagery and visualizations of specialized embedding
spaces. Thus, we posit that embedding visualizations are skeleton keys, enabling us to reason about any kind of
data with vision-language models without modality-specific training beyond vision. Moreover, visualizations
can be easily generated at inference time with standard packages, such as scikit-learn (Pedregosa et al., 2011).

MARVIS operates through the following pipeline:

1. Embedding Generation: Use specialized embedding models to create vector representations.
2. Dimensionality Reduction: Apply t-SNE to create 2D visualizations optimized for VLM processing.
3. Visual Reasoning: Query the VLM with the visualization and query point for a prediction.
4. Response Processing: Extract the prediction from VLM’s reasoning.

3
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We present a visual overview of MARVIS in Fig. 2, and in Appendix K, we also provide complete visual
examples extracted from our study.

2.1 DESIGN CHALLENGES IN VISUAL PREDICTIVE SYSTEMS

Although the principles of MARVIS are extremely simple, in order to apply them in practice, we had to
overcome significant technical hurdles.

Challenges: architecture. The first is choosing an appropriate VLM architecture; many older architectures
either cannot localize what they ”see” effectively, or cannot ”see” clearly enough to take advantage of
visualizations. After some trial and error, we choose the 3B parameter Qwen 2.5 VL model from Alibaba (Bai
et al., 2025). This model has several key advantages for our purposes; firstly, it uses 14×14 patches with sliding
window attention in some layers, emphasizing local patch interaction. This is important for distance-based
visualizations, where proximity matters. Second, it allows images of arbitrary aspect ratios to be processed
effectively, without distorting distances during ingestion. This allows us to effectively compose and read
multi-visualization layouts with MARVIS. Third, the Qwen 2.5 VL series has been specifically trained to work
with long context and scientific imagery. We validate this choice in section E.2, showing that MARVIS-3B
matches the performance of GPT-4o-mini and outperforms a much larger recent thinking model from Kimi.

Challenges: resolution. Even Qwen 2.5 VL does not ”see” as well as humans; the particular patch dimensions
and the limited range of its local attention mean that Qwen performs best when DPI is optimized and scaling
is utilized to enhance the region of interest. We find that the amount required varies substantially depending
on the benchmark, but can usually be set once for each benchmark; this avoids costly hyperparameter search,
although this value could conceivably be optimized further in the future. Ideally, the scaling factor is such that
the target point and its neighbors are captured within the 14x14 patches from the sliding window, significantly
enhancing spatial understanding.

Challenges: context composition strategy. One key design decision in MARVIS is which context to include,
and how much of it. In Appendix E.1, we name and ablate over 25 different configurations. Ultimately, for
our main experiments in this paper, we exclusively use the ”tsne knn” setting, as we find it offers the best
speed / quality tradeoff. Because KNN operates on the embeddings without dimensionality reduction, it is
sometimes able to discover relationships that visualizations miss; however, we consider this an important area
for future research, as we believe we have only begun to document the possibilities here. We find that fixing
the nearest neighbors hyperparameter at min(30, 10% of the training data) works well for a wide range of
dataset sizes and modalities.

Challenges: classname extraction. In order to avoid the common failure mode in which answers are correct
but not detected by the parser, we introduce consistent color schemes and consistent naming across the
legends for all visualizations, ensuring clear visual separation for VLM interpretation. The parser is made
aware of both the class names and the color names, and is given a mapping between them. Classnames in
legends are limited to the classes which actually appear in that visualization, in order to control the size of the
legend for large datasets.

3 EXPERIMENTS

Overview. Our main experiments assess MARVIS across four distinct modalities using domain-appropriate
embedding models and established benchmarks; we compare against both specialized baselines and alternative
LLM/VLM approaches.

Table 1 presents MARVIS performance across all modalities compared to 5 specialized baselines and 4
alternative LLM/VLM approaches. For each benchmark, we conduct a single MARVIS run. We use a
QwenVL 2.5 3B Instruct backbone. For each benchmark, we tune T-SNe zoom factor and KNN neighbor
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Table 1: Domain-specific embeddings, benchmarks, and detailed results. Results are boldfaced when
statistically tied for best performance within 95% confidence intervals (normal approximation). MARVIS
demonstrates competitive or superior performance on most individual benchmarks, achieving average results
within 2.5% of an ensemble of specialized methods while providing universal applicability. Benchmark
acronyms: C10 = CIFAR-10, C100 = CIFAR-100, ESC = ESC-50, RAV = RAVDESS, US8 = UrbanSound8K,
FSH = FishNet, AWA = AWA2, PLD = PlantDoc, CC18 = OpenML CC18, R25 = Regression 2025. We show
the best results of specialized models and traditional LLM/VLM approaches. For all benchmarks except R25,
the metric is Accuracy. For R25, it is R2 Score (with a minimum score of 0). The number reported is the
mean over all sub-tasks for multi-task benchmarks.

Domain Embeddings Benchmark Size (K) MARVIS Specialized Model LLM/VLM 95% CI

Vision DINOV2 C10 60 98.0 99.0 (DINOV2) 85.7 (Gemini) ±0.1
C100 60 88.0 91.6 (DINOV2) 64.3 (Gemini) ±0.3

Audio CLAP
ESC 2 91.3 90.5 (CLAP) - ±1.2
RAV 1.4 38.4 47.9 (Whisper) - ±2.5
US8 8.7 79.8 77.1 (CLAP) - ±0.8

Biological BioCLIP2
FSH 94 80.2 83.7 (BioCLIP) 59.5 (Gemini) ±0.3
AWA 37 95.7 97.1 (BioCLIP) 96.5 (Gemini) ±0.2
PLD 2.5 67.4 72.0 (BioCLIP) 74.2 (Gemini) ±1.8

Tabular TabPFNv2 CC18 155 84.5 87.8 (TabPFNv2) 50.1 (TabLLM-Gemini) ±0.2
R25 35 66.0 67.0 (TabPFNv2) 05.1 (JOLT-Qwen-2.5-3B) ±0.5

(Score, # Models) - (78.9, 1) (81.4, 5) (62.2, 4) -

count via a grid search. The LLM / VLM baseline results in the paper are reported using the best performing
LLM / VLM in the class (we consider QwenVL 2.5 3B Instruct and Gemini-Flash-2.0 via the Gemini API).
All MARVIS results are zero-shot in the sense that we do not give examples of the task to the VLM at
inference time; they are full-shot in the sense that the embedding-generating models have access to the entire
test set without labels. For the LLM / VLM baselines, image classification is performed zero-shot. Tabular
classification and regression uses the JOLT (Shysheya et al., 2025) and TabLLM (Hegselmann et al., 2023)
strategies with k-shot computed dynamically based on the maximum context length. We report the best result
in the table. Specialist models are full-shot, and we report the best overall result in the table. For extended
results, a detailed description of the method we use to generate our novel tabular benchmarks CC18-Semantic
and Regression2025-Semantic, and a deeper dive into tabular data, including balanced metrics, please refer to
Appendix G.

Specialized model baselines. For vision, the best performing specialist was the large DinoV2 model with a
registry and KNN classification (Oquab et al., 2023). For audio, the CLAP model with contrastive zero-shot
classification from Microsoft and OpenAI’s Whisper-V2-Large model with KNN classification perform the
best (Radford et al., 2022; Elizalde et al., 2023; Ma et al., 2024a). For biological data, BioCLIPv2 with KNN
classification performs the best (Gu et al., 2025). For tabular data, TabPFNv2 with standard forward pass
classification and regression is a strong baseline; we also consider classical baselines such as CatBoost and
linear models in Appendix G (Prokhorenkova et al., 2018; Hollmann et al., 2025).

LLM / VLM baselines. For vision, we use the standard strategy of zero-shot prompting and exact match
extraction described in works such as (Zhang et al., 2024). For audio, we are unable to compare to public API-
based models, as to the best of our knowledge, no generalist exists capable of performing audio classification.

LLM tabular baselines. In the tabular domain, as a secondary contribution, we generate the first large-scale
standardized benchmarks for tabular classification and regression that include semantic class names, feature
names and metadata; CC18-Semantic and Regression 2025 Semantic. We also re-implement two prominent
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LLM-tabular methods, TabLLM and JOLT (Hegselmann et al., 2023; Shysheya et al., 2025), which lack
general-purpose implementations. For more details on this, please refer to Appendix G.

Additional details. For more analysis on the embedding models and baselines, please refer to Appendix B.
For more explanation of the benchmarks we use, please refer to Appendix A.

3.1 FINDINGS

MARVIS is competitive with SOTA specialist predictors. Across a wide range of modalities, we observe
that MARVIS strongly conserves predictive performance – across most tasks we consider, it is able to match
the best specialist model in the cohort. By comparison, the best existing LLM / VLM methods, tailored
for each domain, achieve 77% of specialist performance on average. Remarkably, we find that MARVIS
is a more accurate image classifier than Gemini Flash 2.0, despite never actually having seen the images.
MARVIS also sometimes improves on specialists; it outperforms CLAP, a specialist contrastive predictor,
using its own embeddings.

Contributions

MARVIS-3B achieves competitive performance across four distinct modalities, approaching and
occasionally exceeding the best specialist predictors, and improving on LLM / VLM-only methods by
16.7%.

MARVIS outperforms direct fine-tuning of its base model. In section D, we describe a novel method for
fine-tuning an LLM directly on the embeddings of an upstream model such as TabPFNv2. We test this method
(Qwen-FFT) at inference time and find that it is highly accurate, far outperforming previously published
strategies such as JOLT and TabLLM for general-case tabular inference with LLMs; however, in section E.2,
we show that MARVIS-3B outperforms even this strong baseline on average.

VLMs reason over their input data and condition their behavior based on the context provided. One
core research question, from our perspective, was whether a VLM was simply copying learned patterns or
utilizing simple heuristics to achieve this strong performance. Systematic analysis of VLM reasoning in
Fig. 3 demonstrates clear correlations between reasoning quality and metric gains, on average, across three
tabular classification datasets (two with meaningful semantic features, one without).

Further analysis of disagreement patterns reveals that only 35% of methods agree on all test cases, with 65%
showing partial disagreement. Furthermore, in Table 2, we show that different visualization methods elicit
systematically different reasoning approaches, providing strong evidence that VLMs adapt their analysis
based on visual information content. Still more evidence can be found in Appendix I.1. We observe that
different visualization methods elicit systematically different reasoning approaches, providing strong evidence
that VLMs adapt their analysis based on the available visual information. tsne knn produces quantitative
neighbor analysis with explicit distance calculations (average 48.0 words), tsne semantic axes integrates
semantic class information with spatial reasoning (304.9 character responses) and tsne perturbation axes
generates the longest, most detailed responses (310.6 characters) with sophisticated uncertainty analysis.
These patterns suggest that VLMs engage in more thorough spatial analysis when the visual information
supports accurate classification, indicating genuine reasoning rather than pattern matching.

The systematic variation in reasoning style directly correlates with the information content of each visualiza-
tion method, demonstrating that VLMs genuinely process and respond to different types of visual information.
Detailed analysis of these reasoning patterns and their implications for VLM spatial understanding is provided
in Appendix I.
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Figure 3: The selection of context strongly influences MARVIS performance. We ablate over twenty
different context composition strategies, and find that perturbation-based approaches with uncertainty analysis
achieve the highest performance, followed by semantic axes with meaningful class labels. The majority of the
experiments in the paper are conducted using TSNe + KNN, because it exposes less information about the
underlying data and therefore better reflects real-world use.

The flexibility of MARVIS allows for more complex use cases. In Fig. 4, we demonstrate one such use
case – open-ended chat about a particular predictive result. In this example, the user asks MARVIS to assess
its own performance and recommend strategies to improve results in the future.
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Table 2: Method-Specific Reasoning Patterns. Each visualization method elicits distinct reasoning behaviors:
k-NN methods trigger quantitative distance analysis, perturbation methods generate longer responses, and
basic methods rely heavily on proximity heuristics. Here, Resp. Length refers to the token count of responses,
distance mentions to the rate at which the response mentions distance between points in embedded space, and
closest usage refers to how often MARVIS uses the word ”closest” in its response.

Method Resp. Length Distance Mentions Closest Usage
tsne 3d perturbation 365.3 0.000 0.433
tsne perturbation axes 310.6 0.000 0.650
tsne semantic axes 304.9 0.000 0.683
tsne knn 279.0 0.650 0.883
basic tsne 268.3 0.000 1.000

 User

The model performed well on the test data, achieving an accuracy of 0.8. This indicates
that the model correctly classified 80% of the test samples. The completion rate of 1.0
suggests that all test samples were processed and classified, which aligns with the...

 MARVIS

 User

The t-SNE visualization provided a 2D representation of the data points based on the
learned features from the VLM model. While I cannot directly visualize the data here,
typically, t-SNE would show clusters of data points that belong to the same class. In...

 MARVIS

 User

Improving the classification results could involve several strategies:

1. **Increase Training Data**: If possible, acquiring more data for training can help...

 MARVIS

Generated on 2025-09-04 at 09:50:20

MARVIS Tabular Classification Chat

 3 exchanges  Generated by MARVIS

Figure 4: MARVIS extends traditional predictive capabilities. Because it requires no fine-tuning, and
because it exposes the VLM’s classification process to the VLM itself, MARVIS enables VLMs to reason
over, and converse about, their predictive performance.
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4 RELATED WORK

MARVIS builds on extensive prior work in vision-language models (VLMs) which has followed two primary
evolutionary tracks: maximalist approaches from industry labs focusing on peak performance, and minimalist
open-source approaches prioritizing efficiency and accessibility; in Appendix F, we trace the history of this
evolution in greater detail.

The use of embedding spaces for cross-modal understanding has roots in representation learning (Bengio
et al., 2013) and dimensionality reduction techniques (Van der Maaten & Hinton, 2008). Recent work
has explored the geometric properties of embedding spaces (Ethayarajh, 2019) and their visualization for
interpretability (Liu et al., 2017). t-SNE and UMAP have been widely used for visualizing high-dimensional
data (McInnes et al., 2018), but their application to VLM reasoning represents a novel paradigm. Previous
work on visual reasoning has focused on spatial relationships in natural images (Johnson et al., 2017), but
MARVIS extends this to abstract embedding spaces across arbitrary modalities.

MARVIS distinguishes itself from existing approaches through several key innovations: (1) Training-free
adaptation: Unlike approaches requiring extensive fine-tuning, MARVIS leverages pre-trained components
without modification; (2) Universal modality support: A single architecture handles any data type through
embedding visualization; (3) Privacy preservation: Visualization of embeddings avoids raw data exposure;
(4) Computational efficiency: Achieves competitive performance with a 3B parameter model versus much
larger specialized systems.

5 CONCLUSION

We introduce MARVIS, a training-free method that enables small VLMs to predict across any data modality
through embedding visualization. By transforming embedding spaces into visual representations optimized
for VLM spatial reasoning, MARVIS achieves competitive performance across diverse domains.

MARVIS addresses key limitations in existing approaches: it requires no domain-specific training, preserves
data privacy through visualization rather than serialization, and maintains competitive performance. The
approach demonstrates that visual reasoning can serve as a universal interface for foundation models across
any data modality.

Based on this, we propose several key principles for designing effective VLM interfaces:

• Information density matters: Richer visualizations elicit more sophisticated reasoning
• Method-purpose alignment: Different visualization approaches suit different reasoning tasks
• Adaptive interface design: VLMs can effectively utilize different types of visual information

Future work includes further investigation of the optimal mix of visualizations and embeddings to boost
performance and fine-tuning strategies which may improve the performance of base VLMs for reasoning over
scientific imagery, including reasoning post-training.

REPRODUCIBILITY STATEMENT

We have, to the best of our ability, ensured that all experiments described in this paper are reproducible in
principle. In order to facilitate this, we provide an anonymized source code repository containing the exact
training/evaluation orchestration used in our experiments, including the OpenML CC18 runner, evaluation
harness, baseline integrations, and analysis scripts. All datasets, splits, and preprocessing steps for CC18
are clearly documented (including feature selection choices and filters). Exact hyperparameters, seeds, and
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evaluation metrics are summarized in our Appendix. Finally, we will release archives of raw predictions and
per-dataset metrics for post hoc verification.

ETHICS STATEMENT

MARVIS enhances privacy preservation in machine learning by avoiding raw data serialization, instead using
anonymized embedding visualizations. This approach reduces risks of data exposure while maintaining model
performance. The method’s universal applicability could democratize access to advanced ML capabilities
across diverse scientific domains.

LLM USE STATEMENT

In accordance with ICLR policy, the authors acknowledge the limited use of LLMs for generating code and
LaTeX, rendering visualizations, and polishing writing.
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A APPENDIX: BENCHMARK DATASET DESCRIPTIONS

A.1 VISION BENCHMARKS

CIFAR-10: One of the most widely used datasets for computer vision research: contains 60,000 32×32 color
images in 10 classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, trucks) with 6,000 images
per class. Split into 50,000 training and 10,000 test images Krizhevsky (2009).

CIFAR-100: Similar to CIFAR-10 but with 100 classes containing 600 images each (500 training, 100 test
per class). The 100 classes are grouped into 20 superclasses, making this a more challenging classification
benchmark.

A.2 AUDIO BENCHMARKS

ESC-50 (Environmental Sound Classification): Contains 2,000 environmental audio recordings with 50
classes and 40 clips per class. Each clip is 5 seconds long at 44.1 kHz, single channel, extracted from public
field recordings through Freesound.org Piczak (2015).

RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song): Audio dataset focus-
ing on emotion recognition tasks, commonly used for evaluating emotional speech and song recognition
capabilities Livingstone & Russo (2018).

UrbanSound8K: Contains 8,732 labeled sound excerpts with 10 classes of outdoor/urban sounds, specifically
designed for benchmarking sound classification models in urban environments.

A.3 BIOLOGICAL/SCIENTIFIC VISION BENCHMARKS

FishNet: Large-scale dataset with 94,532 images from 17,357 aquatic species, organized by biological
taxonomy (8 classes, 83 orders, 463 families, 3,826 genera). Includes bounding box annotations and supports
classification, detection, and functional trait prediction tasks Khan et al. (2023). We treat FishNet as a
classification problem over families.

AWA2 (Animals with Attributes 2): Animal classification dataset used for zero-shot learning tasks, focusing
on learning representations with animal attributes. Part of challenging benchmarks alongside CUB and SUN
datasets Xian et al. (2019). We treat AWA2 as a 50-class classification problem with no holdout classes.

PlantDoc: Contains 2,569 images across 13 plant species and 30 classes (diseased and healthy) with 8,851
total labels. Split into 2,328 training and 237 test images, with unbalanced classes ranging from 50-180
images per class Singh et al. (2020).

A.4 TABULAR BENCHMARKS

OpenML CC18: Curated benchmark suite of 72 classification datasets from OpenML 69 of which we utilize),
selected based on strict criteria:

• Size: 500-100,000 observations, ≤ 5,000 features
• Quality: No artificial data, minority/majority class ratio ≥0.05
• Usability: Compatible with multiple algorithms, representing commonly used ML datasets

See Bischl et al. (2021) for more on this benchmark, including the complete specification of tasks.

Regression 2025: Custom benchmark of 43 regression tasks from 2015-2025 sourced from OpenML, evalu-
ated using R² scores on a 0-100 scale for consistent comparison across tasks; introduced onto the OpenML plat-
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form in March 2025 at openml.org/search?type=benchmark&sort=tasks included&study type=task&id=455.
Please follow the link for the complete list and specification of tasks. After discarding tasks on which all
models fail, we compute our scores on a subset of 33.

B IMPLEMENTATION DETAILS

This section contains additional experimental details from the paper.

B.1 EMBEDDING MODELS

Vision: DINO-v2-ViT-L-14-reg provides robust visual representations trained through self-supervised learning
on large-scale image datasets Oquab et al. (2023).

Audio: Microsoft CLAP employs contrastive audio-language pre-training to create joint embeddings for
audio and text modalities Elizalde et al. (2023).

Biological: BioCLIP2 specializes in scientific vision understanding, trained on biological image-text pairs for
enhanced performance on scientific datasets. It is the latest in a series of foundation models for biological
applications, initiated by BioCLIP, which incorporated taxonomic labels in the vision-language contrastive
training, yielding promising species classification accuracy Stevens et al. (2024). Follow-up work scaled
data to 162M images (BioTrove, Yang et al., 2024), specialized the data to camera traps (CATALOG and
WildCLIP, Gabeff et al., 2024; Santamaria et al., 2025), and added additional model modalities (TaxaBind,
Sastry et al., 2025).

Tabular: Tabular machine learning has traditionally relied on specialized approaches including tree-based
methods (Random Forest Breiman (2001), XGBoost Chen & Guestrin (2016), CatBoost Prokhorenkova et al.
(2018)) and specialized neural architectures (TabNet Arik & Pfister (2021), TabTransformer Huang et al.
(2020)). TabPFN Hollmann et al. (2022) employed transformer-based in-context learning, and was later
extended to support larger datasets Feuer et al. (2024); Hollmann et al. (2025); Müller et al. (2025). In this
work, we use TabPFNv2 as our embedding generating model.

B.2 HYPERPARAMETERS

In this section, we document the hyperparameters used for our main experiments section.

t-SNE Configuration:

• Perplexity: 15 (optimized through ablation studies)
• Iterations: 1000 for stable convergence
• Learning rate: 200 (default)
• Random state: Fixed for reproducibility

KNN Configuration

• nn = 30
• metric = ’euclidean’ (general), ’cosine’ (embeddings)
• weights = ’distance’

Tabular Baseline Models Configuration:

CatBoost (Classification & Regression)
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• iterations: 1000
• depth: 6
• learning rate: 0.03
• random seed: 42
• verbose: False
• Categorical features: Auto-detected and preserved

TabPFN v2 (Classification & Regression)

• n estimators: 8
• device: Auto-detected (CUDA if available)
• ignore pretraining limits: True
• Target preprocessing: Quantile binning for regression
• Max quantiles: min(n samples // 2, 1000)
• NaN/INF imputation: Median strategy

Random Forest (Classification & Regression)

• n estimators: 100
• max depth: None (unlimited)
• random state: 42
• n jobs: -1 (all cores)

Gradient Boosting (Classification & Regression)

• n estimators: 100
• learning rate: 0.1
• random state: 42
• Feature selection: Max 500 features (SelectKBest)

Logistic/Linear Regression

• max iter: 1000 (Logistic only)
• C: 1.0 (Logistic regularization)
• random state: 42
• n jobs: -1 (all cores)
• Preprocessing: StandardScaler applied

C COMPUTATIONAL EFFICIENCY

Model Size: MARVIS uses Qwen2.5-VL (3B parameters).

Inference Time: Average processing time per sample ranges from 0.5-2.0 seconds depending on visualization
complexity and VLM reasoning depth.
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Memory Requirements: All experiments are conducted using 1xH100 80GB GPUs on a hosted Lambda
cluster. Peak memory usage remains under 8GB GPU memory for batch processing, enabling deployment on
standard hardware.

GPU Utilization: For development and testing combined, we estimate 1,500 H100-hours were used during
the creation of this paper.

D FULL FINETUNING EXPERIMENTS

As a strong baseline for MARVIS, we introduce a novel approach to LLM fine-tuning, projecting a sequence
of positionally encoded TabPFNv2 embeddings and learned label tokens into the model’s token space. At
inference time, we project the test element embedding from TabPFNv2 into the model’s token space and
conduct standard autoregressive inference to acquire the predicted label.

D.1 BALANCED PREFIX CONSTRUCTION

We construct a balanced, few-shot prefix from training embeddings using
prepare tabpfn embeddings for prefix. Given class labels y and train embeddings E ∈ RN×d

(after robust scaling and optional resizing), we select a total of num few shot examples examples across
classes, distributing as evenly as possible; short classes are repeated to meet demand. The resulting prefix
tensor P ∈ RM×d (with class labels c ∈ {0, . . . ,K − 1}M ) is saved to prefix data.npz.

D.2 SPECIAL TOKENS AND CLASS TOKENS

We extend the tokenizer with two sentinel tokens <PREFIX_START> and <PREFIX_END> and with up
to 10 class tokens <CLASS_i>. The underlying embedding matrix is resized accordingly. These token IDs
delimit the region where external embeddings will be injected and provide stable referents for class-conditional
evidence tokens.

D.3 POSITION-WISE PROJECTION INTO TOKEN SPACE

Implementation. The core mechanism is implemented via QwenWithPrefixEmbedding:

• A learnable projector is defined as Linear(d, H), mapping TabPFNv2 embedding dimension d to the
LLM hidden size H .

• During forward, we build inputs_embeds from input_ids and locate the span between
<PREFIX_START> and <PREFIX_END>. Let the number of available positions be T .

• If embeddings and class labels are provided, we compute P̃ = PW + b ∈ RM×H and interleave
with class token embeddings: even positions receive projected vectors, odd positions the embeddings of
<CLASS_{c_j}>, truncated to T .

• If only embeddings are provided, we fill the T positions with P̃ contiguously.
• The modified inputs_embeds are passed to the base model with input_ids=None.

Rationale and soundness.

1. Representation Alignment. A learned affine map is the minimal adapter aligning TabPFN geometry to
the LLM token manifold, akin to prefix/prompt-tuning adapters.

2. Token-Sequential Semantics. Injecting a bounded token span leverages positional mixing and attention
for fusion with the downstream textual prompt; class-token interleaving ties directions in P̃ to discrete
label anchors.
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TabPFNv2
embeddings
P ∈ RM×d

Linear projector
W : Rd → RH

Projected
P̃ ∈ RM×H

Class token
embeddings Ec

Interleave
[p̃1, Ec1 , p̃2, Ec2 , . . . ]

Insert between
<

PREFIX START >
and <

PREFIX END>

Qwen blocks
(self-attn over

span + prompt)

Figure 5: Projection and interleaving of TabPFNv2 embeddings into the LLM token space.

3. Identifiability. With only the projector and last k layers unfrozen, gradients supervise a compact subspace,
preserving language priors while enabling consistent task adaptation. Another parameter-efficient approach
which we do not consider in this draft, LORA, would likely produce similar outcomes.

D.4 BACKBONE AND HOOKS

The default backbone is Qwen/Qwen2.5-3B-Instruct (configurable via --model id).
MARVIS prepares the model with prefix-embedding tokens and class tokens using
prepare qwen with prefix embedding. Optional Vector Quantization (VQ) is available via
prepare qwen with vq prefix embedding.

D.5 LABEL ENCODING

We encode labels with a LabelEncoder fitted on train+val+test labels per task; IDs index into the class
token set. For float labels near-integral, we cast to integers; otherwise, regression handling is separate.

D.6 FFT TRAINING CONFIGURATION

We train using train llm with tabpfn embeddings. Key elements:

• Backbone freezing: Unfreeze the last k layers (default k=1) and the projector; other layers frozen.
• Loss: Cross-entropy over class-token targets in the output; attention integrates projected evidence with the

prompt.
• Optimization: Defaults: batch size=8, grad accum steps=1, total steps=2000,
save steps=500, lr=1e-4, mixup alpha=0.0, early stopping (patience 30, threshold 0.4).

• Prefix length: Template ensures enough positions between <PREFIX_*>; excess prefix entries are
truncated.

• W&B: Enabled with dated project names for versioning; run names encode task/split.

D.7 FFT EVALUATION PROTOCOL

Evaluation is handled by examples/tabular/evaluate on dataset tabular.py with the uni-
fied --models interface. The orchestrator passes the saved model directory and, unless --no baselines
is set, appends all baselines.

• Test size limit: We commonly use --max test samples 200 to cap test evaluation for rapid iteration.
• Feature selection threshold: --feature selection threshold can be forwarded for high-

dimensional datasets.
• Metrics and artifacts: Saved under each task/split evaluation directory and logged to W&B.
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D.8 FFT LIMITATIONS AND DISCUSSION

While, for the sake of having strong reasonable baselines, we include this approach, we believe that in practice,
it is not a suitable general-purpose substitute for MARVIS.

• Fine-tuning degrades chat performance. By changing the VLM’s vocabulary and last k layers,
we necessarily degrade chat performance somewhat; this weakens one of the major use cases for
MARVIS.

• Fine-tuning degrades interpretability. Because the VLM does not ”know” it was fine-tuned on
the data, nor does it ”know” what it learned during fine-tuning, it cannot reason nearly as effectively
about its own decision-making process, weakening another major use case for MARVIS.

• Fine-tuning must be done again for every new dataset. This is an inconvenience as it requires
the end user to maintain suitable training infrastructure on top of their pure inference infrastructure,
which is generally more flexible.

E EXTENDED RESULTS

E.1 ABLATION STUDY ON CONTEXT CHOICE DETAILS

For a list of the methods we consider, please refer to Table 3.

Extended ablation studies reveal optimal configurations across different visualization strategies. We systemat-
ically evaluated four key approaches to understand how different types of information affect VLM spatial
reasoning performance.

The configuration performance hierarchy demonstrates clear patterns:

• tsne perturbation axes: 51.7% accuracy with uncertainty analysis

• tsne semantic axes: 50.0% accuracy with meaningful class labels

• tsne knn: 48.3% accuracy with explicit neighbor information

• basic tsne: 45.0% accuracy as baseline approach

E.1.1 ANALYSIS OF CONFIGURATION EFFECTS

The ablation results reveal several key insights about VLM spatial reasoning:

Perturbation-based Enhancement: The tsne perturbation axes configuration achieves the highest perfor-
mance by incorporating uncertainty information through small perturbations around the query point. This
provides the VLM with richer spatial context about decision boundaries and confidence regions.

Semantic Information Value: The tsne semantic axes approach shows strong performance by providing
meaningful class labels within the visualization. This allows the VLM to leverage both spatial relationships
and semantic understanding simultaneously.

Neighbor Information Benefits: The tsne knn configuration demonstrates moderate improvements over the
baseline by explicitly highlighting nearest neighbors, helping the VLM focus on locally relevant information.

Baseline Robustness: Even the basic tsne approach achieves reasonable performance (45%), validating the
fundamental effectiveness of the visual reasoning paradigm across modalities.
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Category Method Description

Basic Visualizations

basic tsne Standard t-SNE visualization with default parame-
ters

tsne 3d Three-dimensional t-SNE visualization for en-
hanced spatial understanding

tsne high dpi High-resolution t-SNE with increased image qual-
ity

tsne high perplexity t-SNE with modified perplexity parameter for dif-
ferent clustering

Enhanced Single Methods

tsne knn t-SNE with k-nearest neighbor information overlay
tsne perturbation axes t-SNE with perturbation analysis for uncertainty

quantification
tsne semantic axes t-SNE with semantic class labels and axes descrip-

tions
tsne 3d knn 3D t-SNE visualization with k-NN connections

displayed
tsne 3d perturbation 3D t-SNE with perturbation analysis for spatial

uncertainty

Multi-Visualization Methods

multi comprehensive PCA + t-SNE + Spectral + Isomap comprehensive
view

multi pca tsne Combined PCA and t-SNE dual visualization
multi pca tsne spectral Triple visualization: PCA + t-SNE + Spectral em-

bedding
multi linear nonlinear Linear and nonlinear dimensionality reduction

comparison
multi local global Local and global structure preservation methods
multi with umap Multi-method visualization including UMAP
multi grid layout Grid-based layout for systematic method compari-

son

Specialized Methods
decision regions svm SVM decision boundary visualization with regions
frequent patterns Pattern mining visualization for feature relation-

ships
metadata comprehensive Metadata-enhanced comprehensive visualization

approach

Table 3: MARVIS Method Variants Overview. Comprehensive summary of visualization approaches
evaluated in ablation studies, categorized by methodology type and complexity level.

E.2 ABLATION ON MARVIS BACKEND AND FFT

This ablation (tabular classification on a subset of the entire OpenML CC-18 Semantic benchmark) indicates
that MARVIS’s base performance depends considerably more on the choice of embedding generating model
than on the choice of VLM backend; a small QwenVL 2.5 3B model (MARVIS 3B) outperforms a more
recent thinking model (moonshotai/Kimi-VL-A3B-Thinking-2506 referenced as MARVIS kimi) and matches
GPT-4o-mini (MARVIS gpt4o). MARVIS-3B also outperforms the full fine-tuning solution described in
section D by a substantial margin (Qwen-FFT in the figure); although the FFT solution generally is able
to reduce loss to near-zero on the training data, it sometimes fails to generalize well, particularly when the
training dataset size is small.
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Figure 6: Configuration Performance Heatmap. Detailed breakdown showing performance variations
across different parameter combinations and visualization strategies. Darker regions indicate higher accuracy,
with perturbation-based methods consistently showing superior performance across various settings.

F EXTENDED RELATED WORKS

Early VLM architectures explored complex fusion mechanisms to achieve deep integration between vision
and language. Flamingo (Alayrac et al., 2022) introduced gated cross-attention layers interleaved within
frozen LLMs, enabling few-shot learning across diverse multimodal tasks without task-specific fine-tuning.
BLIP (Li et al., 2022) and its successor BLIP-2 (Li et al., 2023b) pioneered the Multimodal Mixture of
Encoder-Decoder (MED) architecture and introduced the Q-Former as a lightweight bridge between frozen
vision encoders and language models. PaLI (Chen et al., 2022) established the principle of joint scaling,
demonstrating that optimal VLM performance requires balanced scaling of all components: vision models,
language models, and training data.

LLaVA (Liu et al., 2023a) democratized VLM research by establishing an efficient, open-source blueprint. Its
three-component architecture—frozen vision encoder, lightweight MLP projector, and frozen LLM—with
two-stage training (feature alignment followed by instruction tuning) proved that simple architectures could
achieve impressive multimodal capabilities. LLaVA-NeXT (Liu et al., 2024) introduced dynamic high
resolution through intelligent image partitioning, while mPLUG-Owl2 (Ye et al., 2023) developed Modality-
Adaptive Modules to foster positive cross-modal collaboration while mitigating interference. POINTS (Ma
et al., 2024b) exemplified sophisticated data curation through perplexity-based filtering.
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Figure 7: Accuracy matrix for MARVIS backend variants and FFT. Our ablation shows that MARVIS’s
base performance depends considerably more on the choice of embedding generating model than on the
choice of VLM backend; a small QwenVL 2.5 3B model outperforms a more recent thinking model and
matches GPT-4o-mini.

Recent work has pushed beyond conversational capabilities toward precise, spatially-grounded understanding,
key to understanding the gains in MARVIS. Grounding DINO (Liu et al., 2023b) achieved open-set object
detection through text-conditioned spatial understanding, while KOSMOS-2 (Peng et al., 2023) integrated
coordinate tokens directly into the LLM vocabulary for grounded text generation. OtterHD (Li et al.,
2023a) pioneered an encoder-less architecture, processing raw pixel patches directly in the LLM to eliminate
resolution constraints. SleighVL (Liu et al., 2025) refined high-resolution processing through attention-based
sub-image weighting via Global Semantic-guided Weight Allocation. Emu3 (Wang et al., 2024) unifies
vision and language modalities under next-token prediction, tokenizing images, videos, and text into a shared
vocabulary space. Molmo (Deitke et al., 2024) champions fully open ecosystems with human-annotated
data, breaking dependence on proprietary synthetic datasets. Early cross-modal strategies used feature
concatenation, attention mechanisms, or late fusion strategies, requiring extensive retraining for each new
modality (Baltrusaitis et al., 2018). Modern paradigms include contrastive learning (CLIP-style) (Radford
et al., 2021), generative modeling (Ramesh et al., 2022), and instruction tuning (Wei et al., 2022). However,
these approaches typically require substantial computational resources and domain-specific training data for
each new modality.

G DEEP DIVE: TABULAR MODALITY ANALYSIS

This section provides a comprehensive analysis of MARVIS performance on tabular data, evaluating both
classification and regression tasks against established baselines. The analysis includes detailed performance
metrics, correlation studies with TabPFN v2, and critical difference plots for statistical comparison.

G.1 BASELINES: JOLT AND TABLLM

One challenge we faced during the creation of this paper is that prior work which utilized LLMs for tabular
classification and regression lacked both standard benchmarks and consistent, easy to implement methods.
As a secondary contribution, we release comprehensive full-size tabular benchmarks which include semantic
information (see H), and modern, feature-complete implementations of TabLLM and JOLT.
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Dual Implementation Architecture: We developed a sophisticated dual-path architecture that supports both
legacy compatibility and modern framework integration. Our implementation includes:

• Legacy Integration: Direct incorporation of original JOLT codebase with automatic fallback
mechanisms

• Modern Implementation: Complete HuggingFace transformers integration with VLLM backend
support

• Unified Model Loader: Centralized model management supporting multiple backends (Hugging-
Face, VLLM, OpenAI, Gemini)

Memory Optimization and Scalability: Critical for production deployment, our implementation includes:

• Gradient checkpointing with KV cache disabling for memory efficiency

• Dynamic batch sizing with automatic Out-of-Memory (OOM) recovery

• Aggressive memory limits for regression tasks (512MB default)

• Feature dropping with retry mechanisms for large datasets

Enhanced Task Support: Beyond the original classification focus, we extended JOLT to support:

• Full regression pipeline with intelligent binning strategies

• Automatic task type detection and configuration

• Balanced few-shot example selection algorithms

• Context-aware prompt truncation for varying model context lengths

Configuration Management: We developed a comprehensive metadata system:

• Automatic JOLT configuration discovery by OpenML task ID

• Feature count validation ensuring dataset-configuration alignment

• Semantic feature mapping from original to descriptive names

• Graceful degradation when configurations are unavailable

TabLLM Implementation

Real-time Note Generation: Our TabLLM implementation eliminates the need for pre-generated note banks
through:

• On-the-fly natural language description generation

• Dynamic semantic feature expansion matching actual dataset characteristics

• Template-based prompt generation with YAML configuration support

• Automatic feature alignment verification post-preprocessing

Multi-Backend API Support: We created a unified interface supporting:

• OpenAI API integration (GPT-4, GPT-3.5-turbo, GPT-4o)

• Google Gemini API support with automatic model selection
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• Local model deployment via HuggingFace transformers
• Automatic backend detection based on model naming conventions

Quality Assurance Mechanisms: To ensure generation quality, we implemented:

• Inspection system saving sample generated notes for manual review
• N-gram analysis for content validation and diversity assessment
• Context truncation with intelligent few-shot example selection
• Template validation ensuring prompt completeness

HuggingFace Ecosystem Compatibility

Both implementations leverage the complete HuggingFace ecosystem:

• AutoModelForCausalLM and AutoTokenizer for model loading
• Trust remote code support for cutting-edge models
• Automatic device placement and memory optimization
• Support for quantized models (8-bit, 4-bit) through BitsAndBytes

VLLM Integration

For production deployments requiring high throughput:

• Automatic VLLM backend selection for compatible models
• Tensor parallelism configuration for multi-GPU deployment
• Optimized sampling parameters with fallback to transformers
• Unified generation interface across backends

Benchmark Integration

Our implementations integrate seamlessly with standard evaluation frameworks:

• Direct OpenML dataset loading and preprocessing
• Standardized evaluation interface compatible with scikit-learn
• Comprehensive metrics calculation (accuracy, F1, ROC-AUC, R², MAE, MSE)
• Weights & Biases integration for experiment tracking

Usage and Accessibility

Our implementations provide simple, unified interfaces:

# JOLT evaluation with local model
python examples/tabular/evaluate_llm_baselines_tabular.py \

--models jolt \
--dataset_ids 23 \
--jolt_model Qwen/Qwen2.5-7B-Instruct

# TabLLM evaluation with API backend
python examples/tabular/evaluate_llm_baselines_tabular.py \
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--models tabllm \
--dataset_ids 1590 \
--openai_model gpt-4o

This unified interface abstracts away implementation complexity while providing extensive configuration
options for advanced users.

G.2 CLASSIFICATION PERFORMANCE ON OPENML CC18

The OpenML CC18 benchmark represents one of the most comprehensive evaluation suites for tabular
classification, consisting of 72 carefully curated datasets Bischl et al. (2021).

Model Mean Acc. Balanced Acc. F1 Macro Datasets
MARVIS 84.5% 80.2% 79.9% 69
TabPFN v2 87.8% 82.2% 82.3% 66
CatBoost 87.0% 81.5% 81.8% 70
Random Forest 86.5% 80.3% 81.0% 70
Gradient Boosting 85.4% 79.5% 79.9% 70
Logistic Regression 82.5% 74.8% 75.0% 70
TabLLM (Gemini) 50.1% 44.3% 40.2% 69
TabLLM (Qwen) 42.9% 36.5% 30.9% 69
JOLT 41.0% 33.9% 27.3% 67

Table 4: Classification Performance on OpenML CC18. MARVIS achieves competitive performance
with traditional ML methods while significantly outperforming other LLM-based approaches. Performance
metrics include mean accuracy, balanced accuracy for handling class imbalance, and F1 macro for multi-class
evaluation.

Key insights from classification analysis:

• MARVIS achieves 84.5% mean accuracy, placing it competitively among traditional ML methods

• Strong performance on balanced accuracy (80.2%) demonstrates effective handling of class imbal-
ance

• Significantly outperforms other LLM-based approaches (TabLLM, JOLT) by 34-44 percentage
points

• Consistent performance across diverse dataset types with low variance (σ = 15.1%)

G.3 REGRESSION PERFORMANCE ANALYSIS

For regression tasks, MARVIS was evaluated on a custom benchmark of 43 regression datasets spanning
diverse domains and characteristics.

G.4 CORRELATION ANALYSIS WITH TABPFN V2

A detailed correlation analysis between MARVIS and TabPFN v2 reveals interesting patterns in their
complementary strengths and failure modes.

Key correlation insights:
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Figure 8: Critical Difference Plot for Classification Performance. Statistical analysis using balanced
accuracy across OpenML CC18 datasets. Connected algorithms have no statistically significant difference (p
≥ 0.05) using the Nemenyi post-hoc test. MARVIS ranks competitively among traditional ML methods and
significantly outperforms other LLM approaches.

Figure 9: Classification Performance Matrix Heatmap. Dataset-wise performance comparison showing
MARVIS consistency across different types of tabular classification tasks. Each row represents a dataset, and
each column represents an algorithm. Darker colors indicate higher balanced accuracy scores.

• High Classification Alignment: 0.978 Pearson correlation indicates both methods excel on similar
classification tasks
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Algorithm Mean R² Median R² MAE RMSE
Random Forest 0.586 0.644 0.184 0.298
TabPFN v2 0.585 0.623 0.187 0.301
Gradient Boosting 0.564 0.615 0.191 0.304
Linear Regression 0.538 0.588 0.203 0.318
MARVIS 0.532 0.576 0.198 0.312
LightGBM 0.519 0.567 0.201 0.321
XGBoost 0.487 0.534 0.218 0.342

Table 5: Regression Performance Summary. MARVIS achieves competitive R² scores (0.532 mean, 0.576
median) ranking 5th among 7 algorithms. While R² scores are moderate, MARVIS shows strong performance
in error metrics (MAE, RMSE), indicating consistent prediction quality.

Figure 10: Critical Difference Plot for Regression Performance. Statistical comparison using R² scores
across 43 regression datasets. MARVIS demonstrates statistically competitive performance with traditional
methods, ranking in the middle tier without significant differences from top performers.

• Moderate Regression Correlation: 0.884 correlation suggests more divergent strengths in regres-
sion domain

• Complementary Performance: Datasets where one method fails often correspond to failures in the
other, suggesting systematic challenges rather than method-specific weaknesses

• Consistent Rankings: High Spearman correlations (0.945 classification, 0.867 regression) show
similar relative performance orderings

31



1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

Figure 11: Regression Performance Matrix Heatmap. Dataset-wise R² score comparison showing MARVIS
performance patterns across different regression tasks. The visualization reveals strengths in certain problem
types while highlighting areas for potential improvement.

Task Type Pearson r Spearmanρ Kendall τ Datasets
Classification 0.978 0.945 0.823 65
Regression 0.884 0.867 0.698 41

Table 6: MARVIS-TabPFN v2 Correlation Summary. Strong positive correlations indicate that both meth-
ods tend to perform well on similar datasets, suggesting complementary rather than competing approaches.
The high classification correlation (0.978) demonstrates particularly aligned performance patterns.

G.5 ANALYSIS AND DISCUSSION

The comprehensive tabular analysis reveals several important findings about MARVIS performance in
structured data domains:

Competitive Classification Performance: MARVIS achieves strong results on OpenML CC18, demonstrat-
ing that visual reasoning approaches can effectively handle tabular classification tasks. The 84.5% accuracy
places MARVIS within the competitive range of traditional ML methods.

Moderate Regression Capabilities: With 0.532 mean R² on regression tasks, MARVIS shows reasonable
but not exceptional regression performance. This suggests the visual reasoning paradigm may be better suited
for discrete classification decisions than continuous value prediction.

Strong LLM Baseline Performance: MARVIS significantly outperforms other LLM-based tabular methods
(TabLLM, JOLT), validating the effectiveness of the visual reasoning approach compared to direct tabular-to-
text conversion strategies.

Complementary Method Profile: The high correlation with TabPFN v2 suggests MARVIS and traditional
tabular methods have similar strengths and weaknesses, making MARVIS a viable alternative rather than a
replacement for existing approaches.

Scalability Considerations: MARVIS maintains consistent performance across the diverse OpenML CC18
collection, suggesting good generalization properties across different tabular data characteristics and domains.
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Figure 12: MARVIS vs TabPFN v2 Classification Correlation. Scatter plot showing strong positive
correlation (r = 0.978) between MARVIS and TabPFN v2 balanced accuracy scores across OpenML CC18
datasets. Points above the diagonal line indicate datasets where MARVIS outperforms TabPFN v2.

H CC18-SEMANTIC AND REGRESSION2025-SEMANTIC: SEMANTIC METADATA
GENERATION FOR ENHANCED DATASET UNDERSTANDING

A key component of our tabular analysis involved the creation of comprehensive semantic metadata for
both classification (cc18 semantic) and regression (regression semantic) datasets. This process, conducted
using Claude Research from Anthropic with human review, represents a significant advancement in dataset
documentation and understanding.

H.1 MOTIVATION AND SCOPE

Traditional machine learning benchmarks often lack rich semantic context about feature meanings, target
interpretations, and domain-specific knowledge. To address this limitation, we developed a systematic
approach to generate comprehensive semantic metadata for:

• CC18 Classification Tasks: 72 datasets from the OpenML CC18 benchmark suite
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Figure 13: MARVIS vs TabPFN v2 Regression Correlation. Scatter plot showing moderate positive
correlation (r = 0.884) between MARVIS and TabPFN v2 R² scores across regression datasets. The correlation
suggests similar strengths but with more divergent performance patterns compared to classification tasks.

• Regression Tasks: 41 carefully selected regression datasets from OpenML

• Total Coverage: 113 datasets with comprehensive semantic enrichment

H.2 SEMANTIC METADATA GENERATION ALGORITHM

The semantic metadata generation process follows a multi-stage pipeline designed to ensure accuracy,
comprehensiveness, and consistency across all datasets.

H.3 SEMANTIC ENRICHMENT STRUCTURE

The generated metadata follows a standardized schema that captures multiple dimensions of dataset under-
standing:

Feature-Level Enrichment: Each feature receives comprehensive semantic description including domain
context, technical interpretation, data type classification, and relationship analysis to the prediction task.
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Algorithm 1 Semantic Metadata Generation Pipeline
1: Input: OpenML dataset ID, basic task information
2: Output: Comprehensive semantic metadata JSON
3:
4: Stage 1: Data Source Integration
5: Query OpenML API for basic dataset information
6: Extract feature names, data types, target variables, and statistics
7: Collect dataset provenance and publication information
8:
9: Stage 2: Claude Research Process

10: Initialize Claude 3.5 Sonnet with domain expertise prompt
11: Instruct comprehensive multi-source research covering:
12: • Original dataset publications and creators
13: • Domain-specific knowledge bases
14: • Academic literature and citations
15: • UCI ML Repository and similar sources
16:
17: Stage 3: Structured Semantic Analysis
18: for each feature in dataset do
19: Generate semantic description with domain context
20: Classify data type and measurement characteristics
21: Explain relationship to prediction task
22: end for
23:
24: Stage 4: Target Variable Enhancement
25: if classification task then
26: Describe meaning of each class label
27: Provide real-world interpretation guidelines
28: else
29: Explain target variable units and ranges
30: Describe practical significance of values
31: end if
32:
33: Stage 5: Quality Assurance
34: Apply low temperature (0.1) for factual consistency
35: Include uncertainty acknowledgments where appropriate
36: Validate JSON structure and completeness
37: Enable human review and verification process

Target Variable Analysis: For classification tasks, detailed explanations of class meanings and real-world
interpretation. For regression tasks, units of measurement, typical ranges, and practical significance guidelines.

Historical and Methodological Context: Dataset provenance including original creators, institutions,
collection methodology, domain applications, and ethical considerations.

Example Semantic Enhancement:

Feature: ”bkblk” (Chess Kr-vs-Kp dataset)
Basic metadata: Binary feature (t/f)
Semantic enhancement: ”Whether the black king is blocked from moving to certain

35



1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

squares. In chess endgame analysis, this represents a critical positional constraint that
affects the feasibility of defensive strategies and directly influences whether White can
force a win from the current position.”

H.4 MULTI-SOURCE RESEARCH METHODOLOGY

The Claude Research process integrates information from multiple authoritative sources to ensure accuracy
and comprehensiveness:

• Primary Sources: Original dataset publications, creator documentation, and institutional repositories

• Academic Literature: Peer-reviewed papers utilizing the datasets, domain-specific research

• Repository Documentation: UCI ML Repository, OpenML detailed descriptions, Kaggle dataset
pages

• Domain Databases: Specialized knowledge bases relevant to specific application areas

• Cross-Validation: Multiple source verification to ensure factual accuracy

H.5 QUALITY ASSURANCE AND VALIDATION

The semantic metadata generation incorporates multiple layers of quality control:

Algorithmic Validation: Automated scripts verify JSON structure completeness, field presence patterns, and
schema compliance across all datasets.

Coverage Analysis: Systematic review ensures all required metadata fields are populated and coverage gaps
are identified for remediation.

Human Review Integration: The process includes explicit uncertainty acknowledgment when information
sources are limited, enabling targeted human verification.

Standardization Pipeline: Automated standardization scripts consolidate different metadata formats into a
universal schema while preserving original information and implementing backup systems.

H.6 COMPREHENSIVE DATASET CHARACTERIZATION

This section provides detailed characterization of the datasets used in our tabular modality analysis, covering
both the OpenML CC18 classification benchmark and the Regression 2025 benchmark suite.

H.6.1 DOMAIN DISTRIBUTION ANALYSIS

The benchmark collections span diverse application domains, providing comprehensive coverage of real-world
machine learning challenges.

H.6.2 REPRESENTATIVE DATASET EXAMPLES

OpenML CC18 Classification Tasks. Please refer to Table 8.

Regression 2025 Tasks. Please refer to Table 9.

H.6.3 DATASET COMPLEXITY ANALYSIS

The benchmark collections exhibit significant diversity in complexity characteristics:
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Domain CC18 Count Regression Count Total
Vision 27 4 31
Medical 7 7 14
Biology 5 2 7
Finance 4 3 7
Games 4 1 5
NLP 3 3 6
Science/Engineering 0 2 2
Social 0 1 1
Other 22 18 40

Total 72 41 113

Table 7: Domain Distribution Across Benchmark Collections. The datasets span nine major application
domains, with Vision being the most represented (31 datasets), followed by Medical (14 datasets). The
”Other” category includes diverse applications such as telecommunications, manufacturing, and environmental
monitoring.

Dataset Domain Features Classes Description
MiceProtein Biology 77 8 Mouse protein expression levels for Down syndrome study
dna Biology 1 3 Molecular biology DNA sequence classification
splice Biology 1 3 Primate splice-junction gene sequences analysis
bank-marketing Finance 16 2 Portuguese banking institution marketing campaigns
credit-g Finance 20 2 German credit risk assessment dataset
adult Finance 14 2 Census income prediction (≥50K annual income)
connect-4 Games 3 3 Connect-4 game position evaluation
kr-vs-kp Games 36 2 Chess King+Rook vs King+Pawn endgame positions
tic-tac-toe Games 9 2 Tic-tac-toe game board position analysis
breast-w Medical 9 2 Wisconsin breast cancer diagnosis
heart-statlog Medical 13 2 Heart disease diagnosis from clinical parameters
diabetes Medical 8 2 Pima Indian diabetes onset prediction
Devnagari-Script Vision 1024 46 Handwritten Devanagari character recognition
mnist 784 Vision 784 10 Handwritten digit recognition benchmark
Fashion-MNIST Vision 784 10 Fashion article classification from images

Table 8: Representative CC18 Classification Datasets. Examples spanning major domains show the
diversity of tabular classification challenges, from biological sequence analysis to game strategy evaluation
and medical diagnosis.

Feature Dimensionality Range:

• Low-dimensional (≤ 10 features): 29 datasets (25.7%)

• Medium-dimensional (11-50 features): 51 datasets (45.1%)

• High-dimensional (≥ 50 features): 33 datasets (29.2%)

Classification Complexity:

• Binary classification: 48 datasets (66.7% of CC18)

• Multi-class (3-10 classes): 21 datasets (29.2% of CC18)
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Dataset Domain Features Target Description
QSAR Bioconcentration Biology 13 Bioconcentration factor for environmental chemistry
SGEMM GPU kernel Biology 10 GPU kernel performance optimization metrics
climate change impact Finance 15 Agricultural productivity under climate change
world food wealth Finance 6 Global food security and economic indicators
Violent Crime County Finance 6 County-level violent crime rates (1975-2016)
medical charges Medical 4 Healthcare insurance charges prediction
heart failure records Medical 13 Clinical parameters for heart failure prediction
particulate-matter Medical 7 Air quality PM2.5 concentration levels
UCC Comments Medical 7 Health impact assessment from social media
housing prices 2020 Other 9 Real estate price prediction modeling
cpu performance Other 7 Computer hardware performance benchmarking
auto mpg Other 8 Vehicle fuel efficiency prediction
wine quality Other 11 Wine quality assessment from chemical properties
concrete strength Science/Eng 8 Concrete compressive strength from mixture
sulfur recovery Science/Eng 6 Industrial sulfur recovery process optimization

Table 9: Representative Regression Datasets. Examples demonstrate the breadth of continuous prediction
tasks, from environmental monitoring and healthcare analytics to industrial process optimization and consumer
applications.

• High-class (≥ 10 classes): 3 datasets (4.1% of CC18)

Domain-Specific Characteristics:

• Vision datasets: Typically high-dimensional (784-1024 features) with balanced class distributions

• Medical datasets: Often feature moderate dimensionality (8-20 features) with clinical interpretabil-
ity requirements

• Financial datasets: Characterized by mixed data types and class imbalance considerations

• Game datasets: Show discrete feature spaces with strategic decision-making patterns

• Biology datasets: Range from sequence data (low-dimensional) to protein expression (high-
dimensional)

I VLM REASONING ANALYSIS

This section provides detailed evidence that Vision-Language Models engage in genuine adaptive reasoning
when processing MARVIS visualizations, rather than relying solely on learned patterns or simple heuristics.
Our analysis examines reasoning traces, disagreement patterns, and method-specific behavioral signatures to
demonstrate that VLMs condition their responses on the visual information provided.

I.1 COMPREHENSIVE REASONING PATTERN ANALYSIS

Several findings argue against simple pattern matching explanations:

• Method-specific reasoning adaptation: Different visualization types elicit systematically different
reasoning approaches
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• Performance-quality correlation: Better reasoning correlates with higher accuracy across diverse
test cases

• Quantitative analysis emergence: Numerical reasoning appears precisely when relevant informa-
tion is provided

• Logical consistency within methods: Each approach maintains internal logical coherence while
differing from others

The evidence suggests VLMs possess genuine spatial reasoning capabilities that can be effectively leveraged
through appropriate visualization design:

• Color-space integration: Systematic use of color information for class identification

• Distance relationship understanding: Quantitative analysis of spatial proximity when information
is available

• Cluster structure recognition: Identification of grouping patterns in embedding spaces

• Multi-modal information synthesis: Integration of spatial, semantic, and quantitative information

I.1.1 PERFORMANCE-DRIVEN FEATURES

Analysis of 83 experimental configurations across multiple test cases reveals systematic differences between
correct and incorrect predictions, indicating that reasoning quality correlates with classification accuracy.

Reasoning Feature Correct Incorrect Difference
Response Length 281.2 chars 268.3 chars +12.9
Word Count 43.8 words 42.4 words +1.4
Color Mentions 1.85 1.52 +0.33
Distance Reasoning 0.074 0.057 +0.018
”Closest” Heuristics 0.56 0.77 -0.21
”Majority” Heuristics 0.05 0.25 -0.20
”Cluster” Reasoning 0.59 0.73 -0.13

Table 10: Reasoning Quality Correlation with Accuracy. Correct predictions exhibit longer, more
sophisticated responses with increased spatial analysis and reduced reliance on simple heuristics. This
pattern suggests VLMs engage in more thorough reasoning when visual information supports accurate
classification.

I.2 ADAPTIVE REASONING EVIDENCE

I.2.1 DISAGREEMENT PATTERN ANALYSIS

Analysis of prediction disagreements across methods provides evidence that different visualization types
provide genuinely different information to VLMs, resulting in systematic behavioral differences.

Key Disagreement Statistics:

• Only 35% agreement across all methods on test cases

• 65% partial disagreement indicates methods provide different information

• Highest disagreement pairs: tsne knn vs tsne 3d perturbation (33 disagreements)
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I.2.2 CONCRETE EXAMPLES OF ADAPTIVE REASONING

The following examples demonstrate how VLMs adapt their reasoning based on the specific visual information
provided:

Quantitative Analysis with k-NN Information:

”The query point is closer to the cluster of Class 1 neighbors (4 neighbors) than to the
cluster of Class 2 neighbors (1 neighbor). Additionally, the average distance to Class 1
neighbors (6.1) is slightly lower than to Class 2 neighbors (5.2), indicating higher similarity
to Class 1.”

Semantic Integration with Class Labels:

”The red star (query point) is closest to the orange-colored points, which represent the
’Long-term methods’ class. This spatial clustering indicates that the query point is more
aligned with the characteristics of the ’Long-term methods’ class.”

Basic Proximity Analysis:

”The red star (query point) is closest to the green-colored training points, which are
associated with Class 2.”

These examples show clear adaptation: quantitative distance calculations appear only with k-NN information,
semantic reasoning emerges with meaningful class labels, and basic approaches rely on simple proximity
heuristics.

J MARVIS EXTENDED RESULTS

In Table 11, we present the comprehensive results for all models on all benchmarks.

40



1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926

Under review as a conference paper at ICLR 2026

Domain Benchmark Method Backend Metric Value
Vision

CIFAR-10 Conventional Gemini-Flash-2.0 Accuracy 85.7
CIFAR-100 Conventional Gemini-Flash-2.0 Accuracy 64.3
CIFAR-10 Conventional Qwen 2.5 VL 3B Accuracy 83.2
CIFAR-100 Conventional Qwen 2.5 VL 3B Accuracy 51.0
CIFAR-10 KNN DinoV2-ViT-L-14-reg Accuracy 99.0
CIFAR-100 KNN DinoV2-ViT-L-14-reg Accuracy 91.6
CIFAR-10 CLAMS CLAM 3B Accuracy 98.0
CIFAR-100 CLAMS CLAM 3B Accuracy 88.0

Audio
ESC-50 KNN Whisper-Large Accuracy 76.0
RAVDESS KNN Whisper-Large Accuracy 47.9
UrbanSound-8K KNN Whisper-Large Accuracy 65.9
ESC-50 Contrastive CLAP Accuracy 90.5
RAVDESS Contrastive CLAP Accuracy 21.8
UrbanSound-8K Contrastive CLAP Accuracy 77.1
ESC-50 CLAMS CLAM 3B Accuracy 91.3
RAVDESS CLAMS CLAM 3B Accuracy 38.4
UrbanSound-8K CLAMS CLAM 3B Accuracy 79.8

Biological
FishNet Conventional Qwen 2.5 VL 3B Accuracy 17.3
AWA2 Conventional Qwen 2.5 VL 3B Accuracy 92.6
PlantDoc Conventional Qwen 2.5 VL 3B Accuracy 37.3
FishNet Conventional Gemini-Flash-2.0 Accuracy 59.5
AWA2 Conventional Gemini-Flash-2.0 Accuracy 96.5
PlantDoc Conventional Gemini-Flash-2.0 Accuracy 74.2
FishNet KNN BioClip2 Accuracy 83.7
AWA2 KNN BioClip2 Accuracy 97.1
PlantDoc KNN BioClip2 Accuracy 72.0
FishNet CLAMS CLAM 3B Accuracy 80.2
AWA2 CLAMS CLAM 3B Accuracy 95.7
PlantDoc CLAMS CLAM 3B Accuracy 67.4

Tabular Classification
CC-18 (Semantic) JOLT Qwen 2.5 3B Accuracy 41.2
CC-18 (Semantic) TabLLM Qwen 2.5 3B Accuracy 42.9
CC-18 (Semantic) TabLLM Gemini-Flash-2.0 Accuracy 50.1
CC-18 (Semantic) Conventional TabPFNv2 Accuracy 87.8
CC-18 (Semantic) CLAMS CLAM 3B Accuracy 84.5
CC-18 (Semantic) Conventional Random Forest Accuracy 86.5
CC-18 (Semantic) Conventional Logistic Regression Accuracy 82.5
CC-18 (Semantic) Conventional CatBoost Accuracy 87.0

Tabular Regression
Regression 2025 (Semantic) Conventional TabPFNv2 Avg R² (0-100) 66.9
Regression 2025 (Semantic) Conventional CatBoost Avg R² (0-100) 71.4
Regression 2025 (Semantic) JOLT Qwen 2.5 3B Avg R² (0-100) 05.1
Regression 2025 (Semantic) CLAMS CLAM 3B Avg R² (0-100) 66.0
Regression 2025 (Semantic) Conventional Linear Model Avg R² (0-100) 51.2
Regression 2025 (Semantic) Conventional Random Forest Avg R² (0-100) 72.8

Table 11: Comprehensive Performance Results Across Multiple Domains. Evaluation of various methods
on vision, audio, biological, and tabular benchmarks. CLAMS demonstrates competitive performance across
all domains, achieving near state-of-the-art results while using a unified approach. Success rates are 100% for
all methods except JOLT on regression tasks (90.3%).
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K MARVIS VISUALIZATION GALLERY

This section presents visualizations from the MARVIS framework applied to tabular datasets.

K.1 CMC DATASET

KNN Visualization
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📊  tsne_knn

📋  Property 📊  Value

Method Name tsne_knn

Prompt Length 1,776 characters

Response Length 299 characters

Visualizations 3 images (showing top 3)

🤖 System Prompt

Under review as a conference paper at ICLR 2026

43



2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067 💬 Example Response

Looking at thisenhanced t-SNE visualization of tabular data, 
you can see:

1. Colored points representing training data, where each 
color corresponds to a different class
2. Gray square points representing 🧪  test data  
3. One red ⭐  star point which is the 🎯  query point I want 
you to classify
4. A pie chart showing the distribution of the 5 nearest 
neighbors by class
5. The pie chart includes class counts, percentages, and 
average distances to neighbors

Class Legend:
- 🏷️  Class 0: Blue RGB(30, 119, 181)

- 🏷️  Class 1: Orange RGB(255, 127, 12)

- 🏷️  Class 2: Green RGB(43, 160, 43)

- 🧪  Test points: Light Gray RGB(211, 211, 211)

K-NN Analysis (k=5):
• 🏷️  Class 0: 3 neighbors (60%), AvgDist: 8.0
• 🏷️  Class 1: 1 neighbors (20%), AvgDist: 5.1
• 🏷️  Class 2: 1 neighbors (20%), AvgDist: 9.0

Dataset Context: Tabular data embedded using appropriate 
features
IMPORTANT: The pie chart shows the class distribution of the 
5 nearest neighbors found in the original high-dimensional 
embedding space, NOT just based on the 2D visualization 
space. Smaller average distances indicate higher similarity.

Based on BOTH the spatial position in the t-SNE visualization 
AND the explicit nearest neighbor connections, which class 
should this 🎯  query point belong to? The available classes 
are: "Class_0", "Class_1", "Class_2"

Consider:
- The spatial clustering patterns in the t-SNE visualization
- Which classes the nearest neighbors (connected by red 
lines) belong to
- The relative importance of close neighbors (thicker lines)

Please respond with just the class label (e.g., "Class_0", 
"Class_1", "Class_2") followed by a brief explanation of your 
reasoning based on the spatial clustering AND the pie chart 
neighbor analysis.

Format your response as: "Class: [class_label] | Reasoning: 
[brief explanation]" 

Class: Class_0 | Reasoning: The 🎯  query point is closer to 
the cluster of Class_0 neighbors (3 neighbors) compared to 
Class_1 and Class_2 neighbors. Additionally, the average 
distance to Class_0 neighbors (8.0) is lower than to Class_1 
(5.1) and Class_2 (9.0), indicating higher similarity to 
Class_0.
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2114

🎨 Visualizations

📈  visualization_4.png

📈  visualization_5.png
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📈  visualization_test_018.png
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2181
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2186
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2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255

📊  tsne_semantic_axes

📋  Property 📊  Value

Method Name tsne_semantic_axes

Prompt Length 1,294 characters

Response Length 309 characters

Visualizations 3 images (showing top 3)

🤖 System Prompt
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2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
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2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302

💬 Example Response

🎨 Visualizations

Looking at this t-SNE visualization of tabular data, you can 
see:

1. Colored points representing training data, where each 
color corresponds to a different class
2. Gray square points representing 🧪  test data  
3. One red ⭐  star point which is the 🎯  query point I want 
you to classify

Class Legend:
- No-use: Blue RGB(30, 119, 181)

- Long-term methods: Orange RGB(255, 127, 12)

- Short-term methods: Green RGB(43, 160, 43)

- 🧪  Test points: Light Gray RGB(211, 211, 211)

Semantic Axis Interpretation:
• X-axis (39.3% var): +Living standard (1=low, 2, 3, 4=high)
• Y-axis (15.0% var): Mixed factors

Dataset Context: Tabular data embedded using appropriate 
features

Based on the position of the red star (🎯  query point) 
relative to the colored training points, which class should 
this 🎯  query point belong to? The available classes are: 
"No-use", "Long-term methods", "Short-term methods"

Consider:
- The spatial relationships in the t-SNE visualization
- Which colored class clusters the red star is closest to or 
embedded within

Please respond with just the class label (e.g., "No-use", 
"Long-term methods", etc.) followed by a brief explanation of 
your reasoning based on the spatial clustering patterns you 
observe.

Format your response as: "Class: [class_label] | Reasoning: 
[brief explanation]" 

Class: Long-term methods | Reasoning: The red star (🎯  query 
point) is positioned closer to the cluster of orange-colored 
points, which represent the "Long-term methods" class. This 
spatial proximity suggests that the 🎯  query point is most 
similar to the "Long-term methods" class in the given t-SNE 
visualization.
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2323
2324
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2328
2329
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📈  visualization_4.png

📈  visualization_5.png
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