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Abstract
State-of-the-art abstractive summarization sys-001
tems often generate hallucinations; i.e., con-002
tent that is not directly inferable from the003
source text. Despite being assumed to be in-004
correct, we find that much hallucinated content005
is actually consistent with world knowledge,006
which we call factual hallucinations. Including007
these factual hallucinations in a summary can008
be beneficial because they provide useful back-009
ground information. In this work, we propose010
a novel detection approach that separates fac-011
tual from non-factual hallucinations of entities.012
Our method is based on an entity’s prior and013
posterior probabilities according to pre-trained014
and finetuned masked language models, re-015
spectively. Empirical results suggest that our016
method vastly outperforms two baselines in017
both accuracy and F1 scores and has a strong018
correlation with human judgments on factual-019
ity classification tasks. Furthermore, we use020
our method as a reward signal to train a sum-021
marization system using an off-line reinforce-022
ment learning (RL) algorithm that can signifi-023
cantly improve the factuality of generated sum-024
maries while maintaining the level of abstrac-025
tiveness. 1026

1 Introduction027

State-of-the-art abstractive summarization systems028

can generate fluent summaries with high automatic029

evaluation scores in terms of ROUGE (Lin, 2004).030

However, recent studies have shown that these sys-031

tems are prone to hallucinate content that is not032

supported by the source document (Maynez et al.,033

2020; Kang and Hashimoto, 2020; Durmus et al.,034

2020; Zhao et al., 2020; Filippova, 2020; Kryscin-035

ski et al., 2020). For instance, Maynez et al. (2020)036

discovered that 64.1% of the summaries generated037

by a BERT-based abstractive summarization model038

on XSUM (Narayan et al., 2018a) contain halluci-039

nations.040
1Both the data and code will be made publicly available

after the anonymity period.

Source:
Under the proposals, 120,000 additional asylum seekers
will be distributed among EU nations, with binding quotas.
(...) Mr Juncker told the European Parliament it was “not
a time to take fright”. (...) He said tackling the crisis was
“a matter of humanity and human dignity”. “It is true that
Europe cannot house all the misery in the world. But we
have to put it into perspective.” (...)
Generation:
European Commission President Jean-Claude Juncker has
set out his proposals for dealing with the migrant crisis
in a speech to MEPs, saying Europe cannot house all the
misery in the world.

Table 1: Example of factual hallucinations in a BART
generated summary on XSUM. Both the title “Euro-
pean Commission President” and the first name “Jean-
Claude” is not mentioned in the document but factual.

Previous studies commonly assume that hal- 041

lucination is an undesirable behavior in abstrac- 042

tive summarization systems. They investigate the 043

cause of model hallucination (Kang and Hashimoto, 044

2020; Wang and Sennrich, 2020) and propose meth- 045

ods that reduce the frequency of all hallucinations 046

(Filippova, 2020; Zhao et al., 2020; Nan et al., 047

2021; Narayan et al., 2021). 048

Our stance in this paper is that hallucinations 049

are not always undesirable. Many hallucinations 050

are factually correct and can provide additional 051

background knowledge that is important for sum- 052

mary comprehension. Table 1 presents one such 053

example from XSUM: the hallucinated content Eu- 054

ropean Commission President provides additional 055

background information on the role of Mr. Juncker. 056

Figure 1 illustrates our proposed view of the re- 057

lationship between the contents of a summary, of 058

source documents and world knowledge. Factual 059

hallucinations refer to content that is verifiable by 060

world knowledge but not inferable from source text. 061

We thus argue that not all hallucinations should 062

be treated equally; in particular, factual hallucina- 063

tions may be less deleterious or even potentially 064

beneficial to include in a summary, as opposed to 065

non-factual ones. We propose a method to classify 066

entities according to whether they are hallucina- 067
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Figure 1: The relationship between faithful generation,
factual/non-factual hallucination, source document and
world knowledge.

tions and whether they are factual (if hallucinated).068

We focus on entities (e.g., persons, locations, dates,069

cardinal numbers) because they are necessary to070

express the most salient pieces of information in a071

summary. Moreover, entity hallucinations are very072

common in generated summaries. As we will show073

later in our work, about 30% of entities generated074

by BART (Lewis et al., 2020) on XSUM test set are075

hallucinated.076

Our approach is based on the observation that077

many hallucinated entities are generated with very078

low probabilities. This indicates that the summa-079

rization model’s confidence correlates with gener-080

ated entities’ factuality statuses, and the uncertainty081

might give an accurate empirical measure of how082

likely the generated entities are hallucinated and083

non-factual.084

We refer to the probability of an entity being085

in a summary without considering the source doc-086

ument as its prior probability, and its probability087

given the document as its posterior probability. Our088

assumption is that if an entity in a generated sum-089

mary results in a factual error, giving the source090

should not provide more evidence for it, resulting091

in a small change in probability between the prior092

and the posterior. We therefore propose to use the093

prior and posterior probabilities as the key features094

in a simple classifier that predicts an entity’s hallu-095

cination status and factuality.096

Because of the lack of fine-grained hallucination097

annotation, we create an entity-level hallucination098

and factuality annotation on the XSUM dataset.099

We evaluate our method on this annotated dataset100

as well as annotations from Maynez et al. (2020).101

On both datasets, our approach outperforms two102

baseline models at identifying non-factual hallu-103

cinations. We also show that our approach has a104

strong correlation with the factuality scores given105

by human judges.106

We then apply our method to summarization 107

model training to improve the factuality of the 108

model. We frame the model training process as an 109

off-line RL problem. We use our factuality assess- 110

ment model’s prediction as a reward signal to guide 111

the training process and prevent the model from 112

overfitting to the noise in the dataset. Evaluation 113

results show that our approach can significantly 114

improve the factuality of summarization systems. 115

Our contributions are the following: (i) We 116

demonstrate that an entity’s prior and posterior 117

probabilities can be used to infer whether it is hallu- 118

cinated and factual. Based on this idea, we propose 119

a novel approach for entity-level hallucination de- 120

tection and factuality checking. Our approach out- 121

performs two baselines from previous work on two 122

human-annotated datasets. We also show that our 123

approach has a strong correlation with summary- 124

level factuality scores given by human judges. (ii) 125

We show that our classifier can provide reward sig- 126

nals to prevent summarization model from overfit- 127

ting the noise in the dataset. This can help improve 128

the model’s factuality while maintaining the level 129

of abstractiveness. (iii) We create a set of entity- 130

level hallucination annotations. 131

2 Related Work 132

The correctness of summarization systems’ outputs 133

has in the past been evaluated as one aspect of 134

content selection, for example using the Pyramid 135

method (Nenkova and Passonneau, 2004). As neu- 136

ral abstractive summarizers have become popular, 137

their issues with correctness have sparked much 138

recent work that focus specifically on model hallu- 139

cinations and summary factuality (Kryscinski et al., 140

2020). 141

2.1 Model Hallucination 142

Maynez et al. (2020) conducted a large-scale hu- 143

man evaluation of several neural abstractive sum- 144

marization systems, and found that hallucinations 145

are common among the outputs of different sum- 146

marization models. 147

Recently, many methods have been proposed to 148

reduce model hallucination. Kang and Hashimoto 149

(2020) propose a “loss truncation” training algo- 150

rithm that filters out noisy training samples which 151

may lead a model to hallucinate. Zhao et al. (2020) 152

use a verification system to recognize non-factual 153

quantities in summaries and adopt a re-ranking 154

system to reduce the number of hallucinated quan- 155
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tities in the final output summary. Narayan et al.156

(2021) use entity chains to mitigate the hallucina-157

tion problem in the generation of abstractive sum-158

maries. Nan et al. (2021) show that data filtering159

and use a summary-worthy entity classification task160

as an auxiliary training objective can help improve161

model’s entity-level factuality.162

Filippova (2020) proposed a method for control-163

ling hallucination in data-to-text generation task.164

They suggest that a conditional language model165

(CLM) will put more probability mass on a non-166

hallucinated entity than an unconditional language167

model (LM). Our work differs in that we focus on168

both hallucination and factuality. Also, our method169

works at the entity-level rather than the sentence-170

level, and is geared towards text summarization.171

2.2 Summary Factuality172

Another line of work focuses on evaluating the173

factual consistency of abstractive summarization174

systems. Kryscinski et al. (2020) train models on175

an artificially corrupted dataset for factual errors176

detection. Cao et al. (2020) induce artificial pertur-177

bations in text to train a summary error correction178

system, but find that there is a large gap between179

such artificial perturbations and the type of hallu-180

cinations that are generated by abstractive summa-181

rizers. (Goyal and Durrett, 2020) measure factual182

consistency by checking whether the semantic re-183

lationship manifested by individual dependency184

arcs in the generated summary is supported by the185

source document. Wang et al. (2020); Dong et al.186

(2020); Durmus et al. (2020) measure and improve187

the factual consistency of summaries by asking and188

answering questions based on generated summaries189

and input documents.190

3 Method191

In this section, we propose a novel detection ap-192

proach that separates factual from non-factual hal-193

lucinations of entities (Section 3.2), and present194

a factuality-aware training framework for sum-195

marization models trained on noisy dataset (Sec-196

tion 3.3).197

3.1 Problem Statement198

Let (S,R) be a pair of a source document and199

a reference summary, where S = (s1, ..., sM ) is200

the source document with M tokens, and R =201

(r1, ..., rL) is the reference summary with L to-202

kens. Let G = (g1, ..., gN ) be the model-generated203

summary with N tokens. For each named en- 204

tity ek, which we assume to be a span of tokens 205

gik , ..., gik+|ek|−1 (|ek| ≥ 1) starting at position ik 206

in G, the task is to determine whether ek is hal- 207

lucinated, and whether it is factual. We define an 208

entity as hallucinated if it is not directly inferable 209

in its generated context given the input document 210

S. If an entity is hallucinated, we further clas- 211

sify it into two subtypes: factual hallucinations 212

and non-factual hallucinations. Factual hallucina- 213

tions cannot be directly entailed from the source 214

document but are factually correct based on world 215

knowledge (see Table 1). Non-factual hallucina- 216

tions are entities that are neither inferable from the 217

source nor factual. 218

3.2 The Prior & Posterior Probability of an 219

Entity 220

We now define the prior and posterior probabili- 221

ties of an entity, which we will use to predict its 222

hallucination and factuality statuses. 223

For entity ek, we define its prior probability 224

pprior(ek) as the probability of its generation by 225

a language model that does not have access to the 226

source text. If ek spans multiple tokens, we com- 227

pute its probability auto-regressively. Let ck be the 228

context of entity ek in G, excluding the tokens in 229

ek. Then: 230

pprior(ek) = PMLM(ek | ck) (1) 231

=

|ek|∏
t=1

PMLM(etk | e1...t−1k , ck) (2) 232

which we compute using a masked language model 233

PMLM. 234

The posterior probability ppos(ek) of entity ek is 235

the conditional probability of the entity given the 236

context and the source text: 237

ppos(ek) = PCMLM(ek | ck, S) (3) 238

=

|ek|∏
t=1

PCMLM(etk | e1...t−1k , ck, S), (4) 239

where CMLM is a conditional masked language 240

model. CMLM is an encoder-decoder model that is 241

trained with a masked language model objective on 242

a parallel dataset. Specifically, a CMLM predicts 243

a target sequence T given a source text S and part 244

of the target Tmasked, where Tmasked is the target 245

sequence with a random entity being masked. In 246

3



order to correctly generate the missing part of the247

sentence, the model needs to condition on both248

Tmasked and S. Alternatively, we can calculate the249

entity’s posterior probability using a conditional250

language model (CLM) instead of a CMLM. In this251

case, the entity’s posterior probability is defined as252

PCLM(ek | cek , S) where cek = g1, ..., gi−1. Note253

that CLM is only conditioned on the left context.254

Training a Discriminator To classify the hallu-255

cination and factuality statuses of a given entity,256

we need to train a discriminator model. We use257

the K-Nearest Neighbors (KNN) algorithm since258

it requires no training and makes minimal assump-259

tions about the form of the decision boundary, as260

a non-parametric method. It also offers adequate261

interpretability. The KNN classifier is trained us-262

ing the prior and posterior probabilities as fea-263

tures on our labeled dataset. Since the classifier264

is used for entity hallucination and factuality as-265

sessment, we refer to it as ENTFA. Besides using266

the prior/posterior probability as features, we also267

add a binary overlap feature that indicates whether268

the entity appears in the document. We train two269

classifiers for hallucination detection and factuality270

checking tasks respectively.271

3.3 Improving the Factuality of Abstractive272

Summarization Systems273

We now propose a factuality-aware training ap-274

proach for summarization systems that combines275

our factuality assessment model with the latest off-276

line RL technique.277

RL for Text Generation Sequence generation278

of the tokens in the summary text can be viewed as279

a finite Markov Decision Process (MDP). At each280

time-step t, the state st consists of the source text281

x and the previously generated tokens y<t, st =282

(y<t, x). The agent, which is the summarization283

model, takes an action by generating a new token284

at. Depending on the action taken, the agent gets a285

reward rt = R(st, at) and deterministically transi-286

tions to the next state st+1 = (y<t+1, x). The prob-287

ability of each action (i.e., token) is specified by the288

policy πθ(at|st). The goal of the agent is to maxi-289

mize the discounted cumulative reward throughout290

the trajectory: J(θ) = Eτ∼π
[∑T

t=0 γ
trt

]
.291

When training the summarization model with292

human-written reference summaries, we can frame293

the training process as an off-line RL problem294

with expert demonstrations (i.e., the reference sum-295

maries). In this setting, since we are sampling 296

trajectories from a behavior policy, we need an im- 297

portance sampling term wt to correct the gradient 298

estimation. Following Pang and He (2021)’s work, 299

we approximate wt with πθ(at|st) and this gives 300

us the following objective: 301

∇θJ(θ) =

Eτ∼πb
[∑
t=0

πθ(at|st)∇θ log πθ(at | st)Q̂(at, st)
]

(5)

302

where Q̂(at, st) =
∑T

t′=t γ
t′−trt′ is the estimated 303

return from state st and πb is the behavior policy 304

from which we draw trajectories τ . In our case, πb 305

is the (noisy) summarization dataset. 306

Training with a Factuality-based Reward One 307

problem in the off-line RL setting is that expert 308

demonstrations, which in our case are the reference 309

summaries, are often noisy and contain content that 310

cannot be inferred from the source document. The 311

commonly used teacher forcing training encour- 312

ages the model to blindly imitate the training data, 313

which leads to model hallucination at inference 314

time (Kang and Hashimoto, 2020). 315

To discourage the model from overfitting to the 316

noise in the training set, we use the predictions 317

from our classifier as factuality reward signals to 318

guide the training of the summarization model. In 319

the off-policy learning stage, we use our factual- 320

ity classifier to label all the entities in the training 321

set. If an entity is classified by our classifier as 322

“non-factual”, we consider it noise and give it a neg- 323

ative reward −rnfe. For factual entities and other 324

tokens, we use the posterior probability from a 325

MLE-trained model as token-level rewards, as in 326

(Pang and He, 2021). Formally, we have: 327

R(st, at) =

{
−rnfe, if at is non-factual
pMLE(at|st), otherwise

328

4 Evaluation Tasks and Datasets 329

In this section, we first discuss the datasets used 330

for the evaluation of ENTFA. Then, we introduce 331

the evaluation tools used for evaluating the effec- 332

tiveness of our factuality-aware training method. 333

4.1 Hallucination and Factuality Assessment 334

XENT dataset To study entity hallucination and 335

factuality in abstractive summarization, we need 336

annotations of entity- or token-level hallucination. 337
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To the best of our knowledge, there is no such338

dataset available. Therefore, we create a dataset339

ourselves, which we call the XENT dataset.340

We2 annotate 800 summaries generated by341

BART, which is one of the current state-of-the-342

art abstractive summarization models. The input343

documents are randomly selected from XSUM test344

set. We choose XSUM because it is more abstrac-345

tive than other summarization datasets. We extract346

2,838 entities from the 800 generated summaries.347

We randomly select 30% of the samples as our test348

set.349

We manually labeled each entity with one of the350

following three tags: non-hallucinated, factual hal-351

lucination, and non-factual hallucination. First, we352

check whether the entity can be directly entailed353

using the information from the source document.354

If so, then the entity is non-hallucinated; otherwise,355

we need to decide whether the entity is factual356

using world knowledge. This often requires exter-357

nal resources such as Wikipedia or Google Search.358

Based on the search result, the entity is labeled as359

either factual hallucination or non-factual halluci-360

nation. If there is no information found online to361

prove or disprove the hallucinated entity, it is la-362

beled as non-factual. There is a special case where363

the entity misrepresents information from the doc-364

ument. For instance, the summary might include365

a number from the document but that number is366

actually related to a different event. In this case,367

the entity is considered as an intrinsic hallucination368

(Maynez et al., 2020). In this work, we will focus369

on extrinsic hallucinations, so we discarded all in-370

trinsic hallucinations in our experiments. Table 2371

shows the distribution of entities by hallucination372

and factuality status in our labeled dataset. We373

show an example for each hallucination type in374

Appendix A.1.375

Inter-Annotator Agreement We report Fleiss’s376

Kappa (κ) to access the reliability of agreement be-377

tween annotators. We compute agreement on 800378

annotated entities and obtain almost perfect agree-379

ment (0.80 ≤ κ ≤ 1.00) with κ = 0.809. Follow-380

ing Pagnoni et al. (2021), we also report the per-381

centage µ of annotators that agree with the majority382

class. We obtain µ = 0.931 of annotators agree-383

ing with the majority class on the four-category384

annotation which shows substantial agreement.385

2Two coauthors and three graduate students.

MENT Dataset Recently, Maynez et al. (2020) 386

released a set of factuality and hallucination annota- 387

tions for XSUM. For each generated summary, they 388

labeled the hallucinated spans as well as the overall 389

factuality of the summary. Compared with our la- 390

beling approach, their annotation has a lower gran- 391

ularity and does not distinguish between factual 392

hallucination and non-factual hallucination. There- 393

fore, we have to convert their dataset first before 394

using it for evaluation. 395

To perform entity-level factuality checking on 396

their dataset, we do the following: First, we ex- 397

tract entities from the annotated summaries. For 398

entities that are extracted from factual summaries, 399

we label them as factual entities. For each entity 400

from non-factual summary, if it is inside an extrin- 401

sic hallucinated span, then we assume the entity 402

is non-factual. Otherwise the entity is labeled as 403

a factual. This process gives us a new dataset that 404

has the same format as ours for entity-level factual- 405

ity evaluation. We refer to this new dataset as the 406

MENT dataset. 407

However, it is worth pointing out that the con- 408

verted dataset is noisy. For instance, in Maynez 409

et al. (2020)’s annotation, the entire generated sum- 410

mary is often labeled as a hallucinated span if it 411

does not capture the meaning of the document well. 412

In this case, the hallucinated span could still con- 413

tain faithful entities with respect to the source docu- 414

ment. This could result in false-positive non-factual 415

entities after the conversion. Therefore, we filter 416

out entities in the extrinsic hallucination span that 417

also appear in the source document. 418

4.2 Correlation with Human Judgments of 419

Factuality 420

In addition to entity-level classification perfor- 421

mance, we also evaluate our methods by corre- 422

lating them against human judgments of factuality. 423

Previous work has collected summary-level judg- 424

ments of factuality from human annotators, which 425

are then correlated with automatic evaluation mea- 426

sures applied to those summaries. To apply our 427

entity-level method, we use the lowest classifier 428

confidence for the factual class among its entities 429

as the factuality score for the entire summary. We 430

evaluate correlation on two datasets by Pagnoni 431

et al. (2021) and Wang et al. (2020). 432
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Label #Samples Total Ent.

Non-hallucinated 1,921 (67.69%)

2,838Factual hal. 441 (15.54%)
Non-factual hal. 421 (14.83%)
Intrinsic hal. 55 (1.94%)

Table 2: Statistics of labeled dataset. Entities are ex-
tracted from BART generated summaries on XSUM.

4.3 Evaluating the Factuality of433

Summarization Systems434

To evaluate our factuality-aware training approach435

proposed in Section 3.3, we train a summarization436

model with factuality rewards and evaluate model’s437

predictions on XSUM test set. To evaluate the faith-438

fulness of generated summaries, we use automatic439

faithfulness evaluation tools FEQA (Durmus et al.,440

2020) and DAE (Goyal and Durrett, 2020)3. We441

also calculate ROUGE scores, and the percentage442

of n-grams and percentage of entities in the gener-443

ated summaries that are not found in the source doc-444

ument (ENFS). The percentage of novel n-grams445

reflects the extractiveness of summarization model.446

5 Experiments447

Training CMLM & MLM For training the448

CMLM, we use both XSUM, Narayan et al.449

(2018b)) and the CNN/Dailymail dataset (Hermann450

et al., 2015) dataset. To build a training corpus for451

CMLM, we randomly select one entity in each ref-452

erence summary and mask it with a special [MASK]453

token. We append a [S] token at the beginning of454

each summary. The document and summary are455

concatenated together (separated by [\S] token) as456

CMLM’s input. The training target is the reference457

summary without any masking. If there is no speci-458

fication, we use the CMLM trained on XSUM. For459

the MLM, we use the large BART model. BART is460

pre-trained on five different reconstruction tasks in-461

cluding token masking and text infilling. For more462

experimental setup and hyper-parameter setting de-463

tails, see Appendix A.2.464

5.1 Classification Experiments465

Baselines Our baseline models are based on the466

two methods proposed by Filippova (2020): the467

overlap-based method and the LM-based method.468

The overlap-based method checks the word over-469

lap between the summary and the source document.470

3In this work, we define the faithfulness of the summary
as whether it is faithful with respect to the source. Factuality
as whether is factual with respect to world knowledge.

Hallucination Factuality
Acc. F1 Acc. F1

Word overlap 92.93 91.73 81.25 74.19
LM-based 74.18 54.99 84.54 57.80

ENTFA (ours) 93.09 91.91 90.95 81.82

Table 3: Entity’s factuality and hallucination status
evaluation results on XENT. We report the accuracy
and (macro) F1 score on the test set. The number of
neighbors k is set to 20 for both tasks.

In our case, we check whether a given entity in 471

the generated summary also exist in the source 472

document. If it does not, the entity is classified 473

as both hallucinated and non-factual. The LM- 474

based method uses LM and CLM to compute the 475

token’s prior and posterior probability. In Filippova 476

(2020)’s work, they compare the value of pprior and 477

ppos. If the generated token does not match the 478

reference and pprior is greater than ppos, the token is 479

classified as hallucinated. Since we are evaluating 480

the generated summary but not the reference, we 481

modify their method to the following: if the entity 482

is not found in the source and pprior > ppos, then the 483

entity is classified as non-factual and hallucinated. 484

Evaluation Results on XENT Table 3 shows the 485

evaluation results of our classifiers and baselines 486

in terms of both entity factuality and hallucination 487

status classification. The results show that our ap- 488

proach outperforms two baselines by large margins 489

on the factuality classification task. To show that 490

our model is statistically better than the baselines, 491

we run a 10-fold cross-validated paired t-test com- 492

paring our model with two baselines. The results 493

show that our model is better than the baseline 494

models with p-value less than 3.3e − 5. On the 495

hallucination detection task, the word-overlap base- 496

line achieves a relatively high accuracy 92.93% 497

compared with our model’s 93.09%. However, the 498

word-overlap model alone cannot distinguish be- 499

tween factual and non-factual hallucinations. This 500

is the reason for its performance degradation on 501

factuality classification task. 502

For hallucination classification, the reason com- 503

puting word overlap with the source does not com- 504

pletely solve the hallucination detection problem is 505

that hallucination is defined based on the semantic 506

relationship between the source and the summary. 507

There can exist words that are not in the source 508

document but which can nevertheless be inferred 509

from it. We put three-class classification results in 510

Appendix A.3. 511
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Acc. F1

Word overlap 68.22 54.68
LM-based 67.48 48.02

ENTFA (ours) 78.48 60.23

Table 4: Entity-level factuality evaluation results on
converted MENT Dataset (Maynez et al. (2020)).

Metric FRANK
(Partial Pearson’s ρ)

Wang et al.
(PCC)

BLUE 0.139 0.118
ROUGE-1 0.155 0.132
ROUGE-L 0.156 0.089
METEOR 0.155 0.100

BERTScore -0.0359 0.025
QAGS -0.0225 0.175
FEQA 0.0242 -
DAE 0.0444 -

ENTFA (ours) 0.183 0.268

Table 5: Summary-level Pearson correlation coeffi-
cients between various automatic metrics and human
judgments of factuality for XSUM datasets. In the mid-
dle column, we use the FRANK benchmark for factual-
ity evaluation metrics from Pagnoni et al. (2021); In the
right column, we use the human judgments collected by
Wang et al. (2020). All baselines’ coefficient values are
cited from their papers.

Evaluation Results on MENT Dataset Table 4512

shows the evaluation results on MENT. ENTFA513

are learned on our annotated training set with k set514

to 20. The performance of all models is lower on515

this dataset. This may be due to fact that the con-516

verted dataset is noisier than the XENT dataset (see517

Section 4.1). For the factuality classification task,518

our model outperforms two baseline models. This519

demonstrates the generalizability of our approach.520

5.2 Correlation Experiments521

Table 5 presents the correlation evaluation results.522

On Pagnoni et al. (2021)’s benchmark dataset, our523

approach has the highest partial Pearson correlation524

coefficient ρ = 0.183 (p < 1e−8). On Wang et al.525

(2020)’s dataset (right column), our approach out-526

performs all other automatic metrics significantly.527

These results indicate that our model can be used528

for automatic factuality evaluation of summaries at529

both the entity and sentence levels.530

5.3 Factuality Evaluation Results of531

Summarization Systems532

Baselines We compare our approach with four533

baselines: a teacher forcing-based summarizer534

(MLE), a RL-based summarizer (RL) (Pang and535
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Figure 2: The factuality and ROUGE score trade-off
curve on XSUM. We use different reward value rnfe
for our approach and different drop rate c for the loss
truncation baseline.

He, 2021) and a summarizer trained with the loss 536

truncation technique from Kang and Hashimoto 537

(2020). We also replace our factuality assessment 538

model ENTFA with Filippova (2020)’s approach 539

(LM-based) for entity factuality labeling as another 540

baseline model (see Section 3.3). 541

Table 6 shows the evaluation results on XSUM. 542

The results show that our approach outperforms all 543

baselines with fewer non-factual entities and higher 544

faithfulness scores. Note that our approach has the 545

lowest ENFS rate while having the highest percent- 546

age of factual hallucinations. Compared with the 547

loss truncation baseline, our method also produces 548

more novel n-grams. These show that our method 549

does not improve the factuality of the model by 550

simply making the model more extractive. 551

Figure 2 shows the factuality and abstractiveness 552

trade-off curves of our model compared to the loss 553

truncation baseline. At the same level of ROUGE 554

performance, our method can obtain a higher factu- 555

ality score. This further proves that our model can 556

generate both factual and high-quality summaries 557

compared with the loss truncation baseline. 558

6 Analysis 559

6.1 Ablation Studies 560

To explore the effect of each feature, we conduct 561

an ablation study by training the KNN classifier 562

with fewer features. The results are illustrated in 563

Table 7 and show that all the proposed features 564

are useful. For factuality classification, The perfor- 565

mance w/o posterior drops significantly from 90.95 566

to 85.69. This result suggests that the posterior 567

probability is crucial for factuality classification. 568

For hallucination classification, the word-overlap 569

feature has the most signification impact on the 570

model performance. 571
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ROUGE % of novel n-gram Faithfulness ENTFA
System R1 ↑ RL ↑ unigrams ↑ bigrams ↑ % ENFS ↓ FEQA ↑ DAE ↑ % Factual Ent ↑ % Factual Hal ↑

MLE 45.1 37.3 27.86 74.47 42.0 25.9 34.6 82.8 21.4
RL 45.8 37.6 28.14 74.73 43.2 25.6 33.3 82.8 21.6
LM-based 43.2 34.6 29.75 75.86 38.2 24.2 31.3 87.4 21.7

Loss trunc (c=0.3) 44.1 36.0 26.82 73.39 41.3 26.3 36.4 83.9 21.3
Loss trunc (c=0.7) 42.7 34.8 26.61 73.19 40.6 26.7 38.8 84.1 20.7

Ours (rnfe = 2.0) 44.6 36.2 27.71 74.90 37.2 26.5 37.3 90.1 24.0
Ours (rnfe = 4.0) 43.0 34.9 26.87 74.11 32.8 27.3 40.8 92.5 22.4

Table 6: Comparison of different summarization models. Results are evaluated on XSUM’s official test set. “%
Factual Ent” and “% Factual Hal” are the percentage of factual entities and factual hallucinations classified by
ENTFA model respectively. “% ENFS” is the percentage of entities in generated summary that not found in source
document. For the loss truncation baseline, c is the percentage of data to be dropped.

Factuality Hallucination

ENTFA 81.82 91.91

w/o overlap 77.18 74.83
w/o prior 80.12 91.32
w/o posterior 70.30 91.12

Table 7: Ablation studies of different feature combina-
tion. We report the F1 score on XENT test set.
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Figure 3: Entity distribution over posterior probabili-
ties from CMLMXSUM and CMLMCNN/DM. The shad-
ing shows the classification boundaries of the classifier.

6.2 Where Does the Model Learn to572

Hallucinate?573

Table 2 shows that 30% of the entities in the sum-574

maries generated by BART are hallucinated, in-575

cluding 15% factual hallucinated entities. To gener-576

ate factual hallucinated entities, the summarization577

model needs to integrate background knowledge578

into the summary. One interesting problem is in-579

vestigate where the model learns that knowledge.580

Since the BART is pre-trained on a large text cor-581

pus and fine-tuned on XSUM, the knowledge of582

hallucinated entities could come from either the583

pre-training corpus or the XSUM training set. To584

investigate this, we trained a separate CMLM on585

the CNN/DM dataset.586

Figure 3 shows the entity distribution from587

the two CMLM models. For non-hallucinated588

entities, the distributions are similar; for fac-589

tual hallucinations, we can find that a large por-590

tion of them has very low posterior probabilities 591

under CMLMCNN/DM, but high posterior under 592

CMLMXSUM. This pattern suggests that the knowl- 593

edge of many factual hallucinations comes from 594

the XSUM training set. 595

We define σ(ek) = log
PCMLMXSUM

(ek)

PCMLMCNN/DM (ek)
. If 596

σ(ek) ≥ 0, it suggests that CMLMXSUM is more 597

confident that ek is factual than CMLMCNN/DM. 598

For a factual hallucination ek, we can infer that the 599

knowledge of ek is in XSUM if σ(ek) is large. To 600

further verify this, we retrieve the 10 most similar 601

documents from XSUM and CNN/DM for each 602

factual hallucinated entity using TF-IDF. Then, we 603

count the number of times each entity appears in 604

those similar training samples. For entities with 605

σ(ek) ≥ 5, the average number of appearances is 606

2.19 on XSUM and 0.77 on CNN/DM. For enti- 607

ties with σ(ek) ≤ 0, the average number of ap- 608

pearances becomes 2.85 and 2.46 on XSUM and 609

CNN/DM respectively. This further confirms that 610

the knowledge of factual hallucinations with large 611

σ(ek) comes from XSUM. 612

7 Conclusion 613

In this paper, we investigate the hallucination and 614

factuality problems in abstractive summarization. 615

We show that about 30% of entities generated by 616

state-of-the-art summarization model are halluci- 617

nated. More interestingly, more than half of the 618

hallucinated entities are factual with respect to the 619

source document and world knowledge. We pro- 620

pose a novel method based on the entity’s prior 621

and posterior probabilities according to masked lan- 622

guage models. Our approach outperforms two base- 623

line models on both factuality classification and 624

hallucination detection tasks on human-annotated 625

datasets. We also show that using our classifier as 626

a reward signal can vastly improve the factuality of 627

summarization systems. 628
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A Appendix790

A.1 Hallucination Examples791

Table 9 shows four examples of different classes of792

hallucinations. In the first example, both entity “Ed-793

inburgh Zoo” and “Tian Tian” are non-hallucinated794

since they are both mentioned in the source docu-795

ment. In the second example, location “Cardiff” is796

classified as factual hallucination. This location in-797

formation is not directly inferable from the source798

document. However, it is factual based on the infor-799

mation we found online. In the third example, the800

name of the cafe shop “Waverley” in the generated801

summary is hallucinated and non-factual. In the802

last example, “Swansea” is the place where the man803

is from but not the location of the power station.804

A.2 Experimental Setup805

Dataset We use both XSUM, Narayan et al.806

(2018b)) and the CNN/Dailymail dataset (Her-807

mann et al., 2015) in this work. CNN/DailyMail808

is a widely used summarization benchmark with809

287,227 training samples, 13,368 validation sam-810

ples, and 11,490 test samples. XSUM dataset con-811

tains 226,711 British Broadcasting Corporation812

(BBC) articles. Each article is paired with a sin-813

gle sentence summary written by the BBC journal-814

ists. The dataset is split into three subsets: training815

(204,045, 90%), validation (11,332, 5%), and test816

(11,334, 5%) sets.817

Language Model Hyperparameters All lan-818

guage models used in this paper are based on the819

Transformer encoder-decoder architecture from the820

Fairseq library (Ott et al., 2019) that is written in821

PyTorch (Paszke et al., 2017). For the CMLM train-822

ing, we initialize the model with the checkpoint of823

the large BART model. The max sequence length824

is set to 1024 for both the encoder and decoder825

modules. We fine-tuned the model for 15,000 steps826

with the warm-up steps set to 500. We use the stan-827

dard cross-entropy loss as our objective function828

with 0.1 label-smoothing (Szegedy et al., 2016).829

The Adam optimizer (Kingma and Ba, 2015) with830

ε = 1e-8 and an initial learning rate 3e-5 are used831

for training. The dropout rate in each layer is set832

to 0.1. All experiments are conducted on 4 Tesla833

V100 GPUs with 32GB of memory.834

RL Training In the off-line RL experiment, we835

initialize the model using the BART large model836

finetuned on XSUM dataset4. The discount factor 837

γ is set to 1 and the learning rate r is set to 1e− 5. 838

We update the model for 30,000 steps in total with 839

1000 warm-up steps. We use polynomial decay to 840

update the learning rate after each training step. No 841

reward-shaping is used. 842

To make the training more stable, we use an- 843

other policy network π̃θ to compute the importance 844

weight w. π̃θ is kept as a slow copy of πθ with the 845

same model architecture. We use Polyak updates 846

to slowly update the weight of π̃θ in the direction 847

to match πθ every step. The update rate of π̃θ is set 848

to 0.01. 849

A.3 Classification Results on XENT Dataset 850

Prec. Recall F1

Non-hallucinated 97.88 92.38 95.05
Factual hal. 60.84 84.87 70.88

Non-factual hal. 71.43 56.18 62.89

Table 8: Evaluation results on XENT. We report the
leave-one-out error of our ENTFA model with prior,
posterior probability and word overlap as features.

Table 8 shows the three-class classification re- 851

sults of our model on XENT dataset. Since we are 852

the first work (to the best of our knowledge) that 853

distinguishes between factual and non-factual hal- 854

lucinations, we did not have a baseline model to 855

compare with right now. We compare with other 856

models separately in terms of factuality and hallu- 857

cination classification in Section 5.1. 858

A.4 Prior/Posterior Probabilities 859

Figure 4 plots entities in the XENT dataset ac- 860

cording to their prior and posterior probabilities 861

and shows the KNN classification boundaries of 862

ENTFA w/o overlap. In Figure 4a, we find that 863

the non-factual hallucinated entities are clustered 864

around the origin. This is in line with our expecta- 865

tions since non-factual hallucinations have lower 866

prior and posterior probabilities. Both factual hallu- 867

cinated and non-hallucinated entities are gathered 868

in the top area with high posterior probabilities. 869

In Figure 4b, the KNN classifier separates the 870

factual and non-factual entities with clear bound- 871

aries. A large part of the factual hallucinated en- 872

tities are correctly identified by CMLMXSUM with 873

4https://github.com/pytorch/fairseq/
tree/master/examples/bart
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Category Source Document Generated Summary

Non-hallucinated

(...) Tian Tian has had cubs in the past in China, before she came on
loan to Edinburgh. If she does have a successful delivery, it will be the
first time a giant panda has been born in Britain. The panda enclosure
at Edinburgh Zoo is due to close to visitors from Saturday ahead of a
possible birth.

Edinburgh Zoo’s giant
panda, Tian Tian, could
give birth at the end of
the month, it has been
confirmed.

Factual
Hallucination

The panther chameleon was found on Monday by a dog walker in the
wooded area at Marl Park. It had to be put down after X-rays showed all
of its legs were broken and it had a deformed spine. RSPCA Cymru said
it was an "extremely sad example of an abandoned and neglected exotic
pet". (...)

A chameleon that was found
in a Cardiff park has been
put down after being aban-
doned and neglected by its
owners.

Non-factual
Hallucination

The city was brought to a standstill on 15 December last year when a
gunman held 18 hostages for 17 hours. Family members of victims Tori
Johnson and Katrina Dawson were in attendance. (...) Prime Minister
Malcolm Turnbull gave an address saying a "whole nation resolved to
answer hatred with love". (...)

Sydney has marked the first
anniversary of the siege at
the Waverley cafe in which
two women were killed by
a gunman in the Australian
city.

Intrinsic
Hallucination

Christopher Huxtable, 34, from Swansea, had been missing since the
collapse in February. His body was found on Wednesday and workers
who carried out the search formed a guard of honour as it was driven
from the site in the early hours of the morning. (...)

The body of a man whose
body was found at the site
of the Swansea Bay Power
Station collapse has been re-
moved from the site.

Table 9: Examples of four classes of hallucinations.
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Figure 4: The distribution of entities over prior/posterior probability. Each point in the figure represents an entity
(pprior(ek), ppos(ek)) and shading indicates the confidence of the classifier. (a) The distribution of entities; (b) The
entity factuality classification results with KNN (k = 20) classifier. Both factual hallucinated and non-hallucinated
entities are colored blue; (c) The KNN (k = 20) classification boundaries of hallucinated and non-hallucinated
entities.

relatively high posterior probabilities. This ex-874

plains our model’s superior performance on fac-875

tuality checking. The top and right histograms in876

Figure 4b show the entity distribution over prior877

and posterior probability value respectively. As878

shown in 4b’s histogram, factual entities have sig-879

nificantly higher posterior probability than that of880

non-factual entities on average.881

Figure 5 shows histograms of the prior and882

posterior probabilities of entities from MLM883

and CMLMXSUM, separated by their class (i.e.,884

whether they are hallucinated and/or factual). Non-885

hallucinated entities have higher posterior proba-886

bility than factual and non-factual hallucinations887

on average. The average posterior probability for888
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Figure 5: Normalized histogram of model prediction
probability for three classes of entities. The first row
shows the entities’ posterior probability calculated us-
ing CMLM. The second row shows the prior probabil-
ity from MLM.

non-hallucination, factual hallucinations, and non- 889
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Figure 6: Evaluation of an abstractive summarization
model (BART) trained on datasets with different levels
of noise. The y-axis on the left represents the percent-
age of factual entities classified as factual by (ENTFA)
or the word overlap baseline. The y-axis on the right in-
dicates ROUGE-1 scores. X-axis = 0 and x-axis = 1.0
means that the model is trained on 50k clean samples
and 50k noisy samples respectively; x-axis = 0.5 rep-
resents the model trained on a mix of 25k clean sam-
ples and 25k noisy samples. X-axis = 2.0 represents a
model that is trained on 100k noisy samples. All mod-
els are tested on XSUM’s official test set. We observe a
similar trend with the PEGASUS model (Figure 7).

factual hallucinations are 0.763, 0.599, and 0.133890

respectively.891

A.5 Evaluating Entity Factuality on Noisy892

Training Data893

Recent work (Narayan et al., 2021; Nan et al., 2021)894

has shown that filtering out noisy training samples895

in the XSUM dataset can mitigate the hallucination896

issue. Therefore, we divide the XSum training set897

into clean samples and potentially noisy samples.898

Potentially noisy samples are samples where the899

reference summary contains entities that does not900

appear in the source. This gives us around 150k901

potentially noisy training samples and 50k clean902

training samples. Then, we mix the clean sam-903

ples with noisy samples at different proportions to904

create training sets with different levels of noise.905

Figure 6 shows the evaluation results of summa-906

rization models trained on these datasets. We can907

see that the model generates fewer factual entities908

as the training set gets noisier. Also, it shows that909

ROUGE score is not a favorable metric in terms910

of factuality evaluation. Since with the training911

set size fixed, the model seems to achieve higher912

ROUGE score at the expense of entity factuality.913

In addition, this indicates that if the system is op-914

timized only for ROUGE, they may inadvertently915

harm factual consistency. 916

We also observe that the word overlap method 917

predicts much lower entity factuality rate than 918

ENTFA. This is due to the fact that the word over- 919

lap method cannot identify factual hallucinations 920

and introduce many false-negative samples. To ver- 921

ify this, we extracted all entities from summaries 922

generated by the model trained on 50k noisy sam- 923

ples (x-axis = 1.0). Among these entities, there 924

are 7,358 entities that do not appear in the source 925

but are predicted as factual by our model. We find 926

that 50.5% of these entities can be found in the ref- 927

erence summary. As a contrast, only 12.7% entities 928

predicted as non-factual by our model can be found 929

in the reference. 930
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Figure 7: Evaluation of PEGASUSLARGE trained on
datasets with different levels of noises.

Figure 7 shows the evaluation result of PEGA- 931

SUS model (Zhang et al., 2020) follows the eval- 932

uation set up in Section A.5. Both figures show a 933

similar trend that the models get higher ROUGE 934

score when trained on noisier dataset with the cost 935

of generating more non-factual entities. 936

Compared with BART model, PEGASUS gen- 937

erates more hallucinated entities and has higher 938

ROUGE score overall. For instance, when both 939

trained on 50k clean data, PEGASUS has ROUGE- 940

1 score 0.450 compared with BART’s 0.406. The 941

predicted factual entity rate for PEGASUS and 942

BART is 84.79% and 91.81% respectively. This 943

may be due to the fact that PEGASUS is pre- 944

trained on a much larger corpus than BART. We 945

leave the study of this phenomenon to future work. 946

A.6 Why not Use CLM? 947

Filippova (2020)’s work on data-to-text generation 948

shows that low posterior probability from a CLM 949

during decoding indicates hallucination. Take the 950

summarization model as an example, if an entity 951

is generated with very low posterior probability, it 952
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is likely that the generated entity is hallucinated953

and non-factual. However, compared with CMLM,954

CLM has more uncertainty during decoding since955

the right context of the entity is not determined.956

The uncertainty of the CLM comes from both con-957

tent selection (text content and structure) and lex-958

ical choice (Xu et al., 2020). For CMLM though,959

the uncertainty is mostly reduced to the latter.960

Figure 8 show the entity posterior probabilities961

from CLM and CMLM model. As shown in the962

figure, we can find that most factual entities (blue963

points) are above the x = y line. This means964

CMLM gives more certainty to the same factual en-965

tity than CLM. The ROC curve in Figure 9 further966

shows this. As the lines get closer to the origin, the967

threshold becomes larger, and CMLM has a higher968

TPR than CLM. This means CMLM will classify969

more entities as factual. The higher AUC value970

of CMLM further demonstrates that CMLM is a971

better choice for factuality checking than CLM.972
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Figure 8: Posterior probabilities calculated from CLM
and CMLM. Both models are trained on XSUM dataset.
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Figure 9: ROC curve of entity’s posterior probability
and factuality.

14


